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Abstract Maxwell-like field relations which describe spatially-averaged kinematic be-

haviour of electrons and atomic nuclei (modelled as point charges) are obtained at any

prescribed scale using weighting function methodology. Upon appeal to the experimental

laws of Coulomb and Biot-Savart, and to dimensional considerations, these relations yield

the macroscopic Maxwell equations as they pertain to electrostatics and magnetostatics.

Generalisation to classical macroscopic electrodynamics is effected by taking account of

signal transmission delay and selection of appropriate retardation potentials. Unlike previ-

ous derivations, no appeal is made to the microscopic field relations of Lorentz.
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1 Introduction

The foundations of electromagnetic theory were established in the nineteenth century to ex-

plain experimental evidence associated with a wide variety of phenomena concerning elec-

tric charge, its flow, and links with magnetic effects. In a two-volume treatise Maxwell in

1873 presented a meticulous and comprehensive survey [1] of phenomena and experimen-

tation, and developed a theoretical framework within which results could be interpreted. In

a radical departure from the Newtonian concept of action at a distance, Maxwell’s account

introduced relations between fields (that is, continuous functions of position and time) hold-

ing in the aether, on the basis of which he conjectured the electromagnetic nature of light. In

particular Maxwell’s equations included (using modern notation: see Hendry [2], Chap. 6)

div D = ρ, (1.1)
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∂D/∂t + j = curl H, (1.2)

B = curl A (1.3)

and

f = v × B − ∂A/∂t − ∇ψ. (1.4)

Here D denotes electric displacement, ρ charge density, j electric current density, H mag-

netic displacement, B magnetic field, A magnetic potential, f electromotive force, v velocity

(relative to the aether), and ψ electrostatic potential.

Immediately (1.3) yields

div B = 0. (1.5)

Further, on taking the divergence of relation (1.2) and the time derivative of (1.1) it follows

that

∂ρ/∂t + div j = 0. (1.6)

If the electric field E is defined via

E := −∂A/∂t − ∇ψ, (1.7)

then the time derivative of (1.3) yields

∂B/∂t = −curl E, (1.8)

and relation (1.4) may be written as

f = v × B + E. (1.9)

The relations which are now considered to be the most fundamental, and which bear

Maxwell’s name, are (1.1), (1.2), (1.5) and (1.8).

Attempts to deduce Maxwell’s equations from dynamical principles were restricted by

contemporaneous understanding of the nature of matter. In 1902 Lorentz [3, 4] proposed

a system of Maxwell-like equations which related to individual small isolated regions of

charged matter he termed electrons. Each electron was characterised by a charge density

field ρ, which vanished outside the region it occupied, together with fields of velocity v,

electric displacement d, and magnetic force h. In stationary aether these were to satisfy

(cf. [4], equations I, II, IV, V, VI)

div d = ρ, ∂ρ/∂t + divρv = 0, (1.10)

div h = 0, curl h = c−1(∂d/∂t + ρv), (1.11)

and

∂h/∂t = −c curl d, (1.12)

where c denotes the speed of light in the aether. Further, ‘the force, reckoned per unit charge,

which the aether exerts on a charged element of volume’, was postulated (cf. [4], equa-

tion VII) to be

f = d + c−1v × h. (1.13)
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Here d was identified as ‘the electric force that would act on an immovable charge’.

The foregoing fields were considered to change rapidly and irregularly, and observ-

able/measurable quantities were to be identified with local spatial averages computed over

many charges (cf. [3]). Specifically, the average of any field F , evaluated at location x, is

〈F 〉(x) := V −1

∫

C(x)

F dv. (1.14)

Here the volume integral is taken over the averaging region C(x) of volume V . Relations

(1.10)–(1.13) were averaged using properties1

∂/∂t
{

〈F 〉
}

= 〈∂F/∂t〉, ∇
{

〈F 〉
}

= 〈∇F 〉. (1.15)

Distinguishing between electrons associated with conduction, polarisation, and magnetisa-

tion, Lorentz obtained the macroscopic Maxwell Eqs. (1.1), (1.5), (1.8), and a version of

(1.2) of the form

curl H = C with div C = 0. (1.16)

Identification of composite current C with ∂D/∂t + j yields (1.2) and, via (1.1) and (1.16)1,

also (1.6). Further, Lorentz effected decompositions

D = E + P and H = B − M, (1.17)

where P and M represented electric and magnetic polarisation densities.

Many studies have subsequently refined Lorentz’ pioneering work. In particular, once

electrons and atomic nuclei were established to be the fundamental and discrete carriers of

charge, it became natural to model these entities as point charges, and to attempt to introduce

such knowledge into the microscopic relations. Further, averaging procedures, together with

modelling assumptions concerning subatomic behaviour, have been clarified. Specifically,

averaging may be purely spatial (Van Vleck [6]), jointly in space and time (Rosenfeld [7]),

or statistical (via designation of an appropriate ensemble: Mazur and Nijboer [8]). These

approaches were reviewed by de Groot [9] who also discussed covariant derivations. A more

rigorous approach to spatial averaging via the introduction of a weighting function was

employed by Russakoff [10].

The aforementioned works are based upon the microscopic relations (1.10)–(1.13), even

if atomicity is introduced via expressions for ρ and j (:= ρv) in terms of sums involving

δ-functions and instantaneous point charge locations and velocities. Such atomicity is some-

what at variance with the interpretations of d and h, no matter how locally these fields are

defined. It is helpful to bear in mind relevant spatial scales. The respective sizes of nuclei

and atoms are of orders 10−15 m and 10−10 m, and so the Lorentz equations, postulated to

model electromagnetic behaviour within atoms, relate to behaviour at scale 10−10 m or less.

On the other hand Maxwell’s equations pertain to reproducible macroscopic behaviour at

scales often described as ‘physically infinitesimal’ but ‘microscopically large’. Practically

speaking, field values must be related to measurements, and hence to spatial and temporal

sensitivity of monitoring devices. In any specific physical context it is thus for experimenta-

tion to determine the scales of length and time at which Maxwell’s relations provide a valid

description.

1Derivation of these results can be made rigorous by implementing cellular averaging in terms of a weighting

function: cf. Murdoch [5], p. 61 and pp. 197–199.
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Here the approach is from the outset entirely atomistic and no appeal is made to pos-

tulated microscopic relations. Electrons and atomic nuclei are modelled as point charges.

Spatial averaging of the kinetic behaviour of any set of charges is effected in terms of a

scale-dependent weighting function w. The starting point in Sect. 2 is the definition of a

charge density field ρw whose time derivative immediately introduces a current density jw
which satisfies (1.6). Any solution a to div a = w leads directly to relations of forms (1.1)

and (1.2), with specific definitions of the electrokinetic fields Dw and Hw . A natural choice

of w is introduced in Sect. 3 which accords equal weighting to charges within a prescribed

distance ǫ from any point x at which an average is to be computed, and zero weighting to

charges further than ǫ + δ from x, with δ ≪ ǫ. For distances in the range [ǫ, ǫ + δ] weight-

ing corresponds to a choice of mollifier which ensures that w is everywhere smooth. The

assumption that the corresponding function a be isotropic leads to natural decompositions

Dw = Pw + Ew and Hw = −Mw + Bw , together with potentials ψw and Aw for which

Ew = −∇ψw , Bw = curlAw and ∂ψw/∂t + divAw = 0. The contributions to values Ew(x)

and Bw(x) from any charge qi distant further than ǫ + δ from x are shown to be −qiui/4πu3
i

and qiui ×vi/4πu3
i , respectively. (Here ui denotes the displacement of qi from x, ui its mag-

nitude, and vi its velocity.) Additional time averaging is introduced in Sect. 4 to elucidate the

physical interpretations of fields by considering bound and free/diffusive electrons in simple

systems. In particular, Pw is seen to be a density of a measure of time-averaged electron

charge distribution about parent nuclei: individual contributions are time-averaged dipole

moments which measure orbital asymmetry. In Sect. 5 the electrokinetic fields Ew and Bw

are linked with the force-related electrostatic and magnetostatic fields Es
w and Bs

w via the

experimental results of Coulomb and Biot-Savart, respectively. Specifically, Es
w = ǫ−1

0 Ew

and Bs
w = μ0Bw , where ǫ0 and μ0 are determined by experiment, satisfy ǫ0μ0 = c−2, and

serve to ensure dimensional consistency. A formal generalisation to dynamical contexts mo-

tivated by (1.7) leads to a complete set of Maxwell relations, consequent upon knowledge

of the instantaneous location and velocity of every charge. However, such global instanta-

neous information can never be known, but requires time to be communicated. This issue

is addressed in Sect. 6. It is assumed that information is transferred at the local speed of

light and is visualised via the artifice of hypothetical radar signal reflection. The consequent

fully-dynamical Maxwell relations correspond to knowledge of the apparent locations and

velocities as monitored at any given location and time. Such information has required time

to be transmitted and corresponds to an earlier (retarded) time. In Sect. 7 the consequences

of force relation (1.9) holding in a general dynamical context are explored. The individual

contribution Bd
i of a charge Pi to the dynamic magnetic field at location x is shown to be

orthogonal both to the corresponding dynamic electric field contribution Ed
i and to the ap-

parent displacement of Pi from x. The force Fi on a charge at x due to Pi is expressed as a

linear transformation acting on Ed
i . A brief summary and concluding remarks are appended

in Sect. 8.

The notation employed is direct (that is, free of co-ordinate considerations: cf. [5]) and

standard identities involving scalar and vector fields are employed without reference.

2 Spatial Averaging and Weighting Functions

Electromagnetic phenomena derive from the behaviour of electrons and atomic nuclei which

are here modelled as point charges. Relations which describe spatially-averaged kinetic be-

haviour of assemblies of such charges are derived: these are formally identical to Maxwell’s

Eqs. (1.6), (1.1) and (1.2).
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Here mi , qi and xi(t) denote the mass, charge, and location at time t , of a typical

charge Pi . For any assembly of charges, the net charge within any region R at time t ,

divided by the volume V of R, yields a volumetric average (that is, a density) ρ(R, t) at

time t . Symbolically,

ρ(R, t) :=

′
∑

i

qi/V, (2.1)

where the primed sum is taken only over those charges in R at time t . Equivalently,

ρ(R, t) =
∑

i

qiwi(t), (2.2)

where the sum is over all assembly charges, and wi(t) = 1 or 0 according to whether or not

Pi lies in R at time t .

The weighted sum in (2.2) can be generalised to yield a candidate electric charge density

field via

ρw(x, t) :=
∑

i

qi w
(

ui(x, t)
)

, (2.3)

where the displacement of Pi from location x at time t

ui(x, t) := xi(t) − x. (2.4)

Suppressing arguments, (2.3) may be written as

ρw =
∑

i

qiw(ui). (2.5)

Here weighting function w is defined on the space V of all displacements in three-

dimensional Euclidean space, takes real values with physical dimension L−3, and assigns

greater values to charges near x than those far therefrom. In order that the integral of ρw

over all space should yield the total net assembly charge it is sufficient that

∫

V

w(u)du = 1. (2.6)

Consideration of an assembly consisting of a single charge indicates that normalisation con-

dition (2.6) is also necessary: cf. [5], p. 45.

Remark 2.1 While the physical interpretation of ρw depends upon the specific form of w,

it is instructive to proceed formally before making a natural, scale-dependent, choice in

Sect. 3.

From (2.3), noting that vi := dxi/dt does not depend upon x, and using the chain rule,2

∂ρw/∂t =
∑

i

qi∇uw .vi =
∑

i

qi(−∇xw .vi)

= −
∑

i

qi div{viw} = −div

{

∑

i

qiviw

}

. (2.7)

2∇uw and ∇xw denote derivatives with respect to arguments u and x, respectively. Direct (that is, co-ordinate-

free) notation is employed: cf., e.g., Murdoch [5], in particular Lemma 4.2.1.
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Thus (cf. (1.6))

∂ρw/∂t + div jw = 0, (2.8)

where a candidate current density field is

jw :=
∑

i

qiviw(ui). (2.9)

Remark 2.2 If qi is replaced by mi , then the mass density field

ρm
w :=

∑

i

miw(ui) (2.10)

is similarly seen to satisfy

∂ρm
w /∂t + div pm

w = 0, (2.11)

where

pm
w :=

∑

i

miviw(ui). (2.12)

Here pm
w is a momentum density field. Writing

vm
w := pm

w/ρm
w (2.13)

yields

∂ρm
w /∂t + div

{

ρm
w vm

w

}

= 0, (2.14)

and vm
w is a (mass) velocity field. Definition (2.13) makes sense if ρm

w �= 0; that is, wherever

and whenever matter is found.

The electrokinetic analogue of (2.13), namely

vw = jw/ρw, (2.15)

makes sense only where and when ρw �= 0, and hence is not a sensible construct for

electrically-neutral assemblies. However, for assemblies consisting only of electrons, or only

of nuclei, (charge) velocity fields are well-defined in terms of the relevant densities of cur-

rent and charge. Indeed, for an assembly of identical charges (so qi = q and mi = m, say)

the constancy of ratio qi/mi (= q/m) mandates that the mass and charge velocities be the

same:

vw = jw/ρw =
∑

i

qviw(ui)/
∑

i

q w(ui) =
∑

i

viw(ui)/
∑

i

w(ui)

=
∑

i

mvi w(ui)/
∑

i

mw(ui) = pm
w/ρm

w = vm
w . (2.16)

Now suppose that, for some function a : V → V ,

ai(x, t) := a
(

ui(x, t)
)

(2.17)

is a solution to

div ai = w(ui). (2.18)
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Accordingly,

ρw =
∑

i

qiw(ui) =
∑

i

qi div ai = div

{

∑

i

qiai

}

, (2.19)

and so

div Dw = ρw, (2.20)

where (cf. (2.17))

Dw :=
∑

i

qi ai =
∑

i

qia(ui) (2.21)

is a candidate electric displacement field.

From (2.17), use of the chain rule yields

∇x ai = (∇u a)(∇xui) = (∇u a)(−1) = −∇u a. (2.22)

Since vi is independent of x, from (2.21), (2.17), the chain rule, and (2.22) it follows that3

∂Dw/∂t = ∂/∂t

{

∑

i

qiai

}

=
∑

i

qi ∂/∂t
{

a(ui)
}

=
∑

i

qi(∇u a)∂ui/∂t =
∑

i

qi(−∇x ai)vi

= −
∑

i

qi div{ai ⊗ vi} = −div

{

∑

i

qiai ⊗ vi

}

. (2.23)

Further, from (2.9) and (2.18),

jw =
∑

i

qivi div ai =
∑

i

qi div{vi ⊗ ai} = div

{

∑

i

qivi ⊗ ai

}

. (2.24)

Accordingly, (2.23) and (2.24) yield

∂Dw/∂t + jw = divHw, (2.25)

where

Hw :=
∑

i

qi(vi ⊗ ai − ai ⊗ vi). (2.26)

Relation (2.25) and definition (2.26) may be re-written by introducing relevant axial vec-

tors.

Remark 2.3 To any skew-symmetric tensor W corresponds an axial vector ax(W) =: w for

which

Wk = w × k (2.27)

3The tensor (or dyadic) product a ⊗ b of vectors a and b is that linear transformation which maps any

vector k into (b .k)a: cf. [5], p. 317. For any order 2 tensor field L, div L is the vector field for which

(div L).k = div(LT k) for any fixed vector k: cf. [5], p. 390.
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for any vector k. (Cf., e.g., Murdoch [5], A.15.) In particular,

ax(a ∧ b) = −a × b, (2.28)

where

a ∧ b := a ⊗ b − b ⊗ a. (2.29)

Further, if W denotes a skew-symmetric field and w the corresponding axial vector field,

then for any fixed vector k

(div W).k = div
{

WT k
}

= div{−Wk} = −div{Wk}

= −div{w × k} = −k . curl w + w . curl k

= −(curl w).k. (2.30)

Accordingly, since k is arbitrary,

div W = −curl w. (2.31)

It follows from (2.28) that with W = vi ∧ ai ,

div{vi ∧ ai} = −curl{−vi × ai} = curl{vi × ai}. (2.32)

Remark 2.3 enables (2.25) to be written as

∂Dw/∂t + jw = curl Hw, (2.33)

where (cf. (1.2)) candidate magnetic displacement field

Hw :=
∑

i

qi vi × ai =
∑

i

qivi × a(ui). (2.34)

While relations (2.25) and (2.33) are equivalent, the former requires no appeal to orientation

(that is, to ‘right-’ and ‘left-handedness’) which is necessary both for the definition of a

vector product and of the curl operator.

Remark 2.4 Relations (2.8), (2.20) and (2.33) are formally identical with Maxwell relations

(1.6), (1.1) and (1.2). However, the physical interpretation of all fields depends upon the

choice of weighting function w. From an analytical viewpoint, relations (2.6) and (2.7) re-

quire that w be, respectively, integrable and differentiable. Indeed, the regularity of all fields

depends precisely upon that associated with choice w. In the following section a specific

natural choice (appropriate to any prescribed length scale) is made. Such choice provides

physical insight, and mandates a natural binary decomposition both of Dw and Hw , thereby

introducing electric and magnetic fields which figure in Maxwell equations (1.5) and (1.8).

3 Electrokinetics via a Natural Choice of Weighting Function

The weighting function w introduced in (2.3) et seq does not depend explicitly upon loca-

tion x and its values are invariant under translation, consistent with regarding space to be

homogeneous. That space also be isotropic requires that

w(Qu) = w(u) (3.1)
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for every displacement u and every proper orthogonal tensor Q. That is, w(u) is independent

of the direction of u, so

w(u) = w(uû) =: w̃(u), (3.2)

where

u := ‖u‖ and û := u/u. (3.3)

Thus homogeneity and isotropy of space have mandated that w values be Galilean invariant

and depend only upon separations.

The simplest form of w is given by

wǫ(u) = V −1
ǫ if 0 ≤ u < ǫ

wǫ(u) = 0 if u ≥ ǫ

}

, (3.4)

where Vǫ := 4πǫ3/3. This corresponds to spherical averaging regions and a specific choice

ǫ of length scale.

Remark 3.1 Choice w = wǫ in (2.3) yields ρw(x, t) as the sum of those charges which at

time t lie within that sphere Sǫ(x) of radius ǫ and centre x, divided by the volume of the

sphere. Similar interpretations of ρm
w (x, t) and pm

w(x, t) apply in respect of mass and mo-

mentum: see (2.10) and (2.12). Further, from (2.13) vm
w(x, t) is identifiable with the velocity

of the mass centre of those charges within Sǫ(x) at time t . Notice from (2.16) that, for any

assembly of identical charges, vw coincides with the corresponding mass centre velocity.

While choice (3.4) delivers precise definitions and physical interpretations, wǫ fails to

be differentiable (indeed, suffers jump discontinuities) wherever u = ǫ, and hence neither

∂ρw/∂t nor div jw are defined thereat. This wrinkle may be overcome by mollifying wǫ for

u ∈ [ǫ, ǫ + δ] with δ(> 0) arbitrarily small. Specifically,

wǫ,δ(u) := k if 0 ≤ u < ǫ,

wǫ,δ(u) := kϕ(λ) if u = ǫ + λδ (0 ≤ λ ≤ 1), (3.5)

wǫ,δ(u) := 0 if u > ǫ + δ.

Here k is a constant determined by normalisation (2.6), and ϕ is a monotonic decreasing

function on [0,1] of class Cn for which ϕ(0) = 1, ϕ(1) = 0, and all derivatives up to order

n vanish (one-sidedly) at λ = 0 and λ = 1.

Remark 3.2 It follows that any fields defined in terms of wǫ,δ weighted sums inherit class Cn

spatial regularity and also (via multiple use of the chain rule) class Cr temporal regularity if

trajectories xi(t) are of class Cs and r = min(n, s).

Normalisation condition (2.6) with (3.2) yield, on employing spherical polar co-

ordinates,

4π

∫ ∞

0

u2w̃(u)du = 1. (3.6)

It follows from (3.5) that (cf. [5], §4.3.5)

k = V −1
ǫ

(

1 + O(δ/ǫ)
)

as δ → 0. (3.7)
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The simplest mollifier sufficient to render wǫ,δ of class C1 is

ϕ(λ) := 2λ3 − 3λ2 + 1. (3.8)

From (3.5) and (3.6) such choice implies

1

4πk
=

∫ ǫ

0

u2du + δ

∫ 1

0

(ǫ + λδ)2
(

2λ3 − 3λ2 + 1
)

dλ. (3.9)

Straightforward integration yields

1

kVǫ

= 1 + 3r/2 + 9r2/10 + r3/5, (3.10)

where

r := δ/ǫ. (3.11)

It follows (cf. (3.7)) that

k = V −1
ǫ

(

1 − 3r/2 + 27r2/20 + O
(

r3
))

as r → 0. (3.12)

Interpretation of Dw and Hw (cf. (2.21) and (2.34)) requires specification of a (cf. (2.17)

and (2.18)), and hence depends upon both ǫ and mollifier ϕ. In view of spatial isotropy we

assume that

a(ui) = a(ui)ui, (3.13)

where a is scalar-valued.

Theorem 3.1

a(u) = −k/3 if u < ǫ, (3.14)

a(u) = −1/4πu3 if u > ǫ + δ, (3.15)

a(u) = −
(

kǫ3/3u3
)

F(λ) if 0 ≤ λ ≤ 1, (3.16)

where (cf. (3.11) and (3.5)2) λ = (u − ǫ)/δ and

F(λ) := 1 + 3
(

1 − λ2 + λ3/2
)

rλ + 3
(

1 − 3λ2/2 + 4λ3/5
)

r2λ2 +
(

1 − 9λ2/5 + λ3
)

r3λ3.

(3.17)

Proof The divergence theorem, (2.17) and (2.18) yield

∫

SR(xi )

w(ui)dVx =

∫

SR(xi )

div adVx =

∫

∂SR(xi )

a .ndSx. (3.18)

Here SR(xi) denotes that spherical ball of radius R centred at xi and ∂SR(xi) its boundary.

The outward unit normal at point x ∈ ∂SR(xi) is

n(x) = (x − xi)/‖x − xi‖ = −ui/ui =: −ûi . (3.19)

Thus from (3.13) and (3.19), noting ui = R on ∂SR(xi),

a .n = a(ui)ui .− ûi = −ui a(ui) = −Ra(R). (3.20)
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Hence (3.18) and (3.20) yield

∫

SR(xi )

w(ui)dVx = −Ra(R) .4πR2 = −4πR3a(R). (3.21)

If R < ǫ, then from (3.5)1 and (3.21),

k .4πR3/3 = −4πR3a(R) (3.22)

and hence if u < ǫ, then a(u) = −k/3.

If R > ǫ + δ, then normalisation (2.6), (3.5)3 and (3.21) yield

1 = −4πR3 a(R), (3.23)

so

a(u) = −1/4πu3 if u > ǫ + δ.

If ǫ ≤ R ≤ ǫ + δ, then (3.5)1,2 and (3.21) yield

−4πR3a(R) = 4π

∫ R

0

u2wǫ,δ(u)du

= 4πk

∫ ǫ

0

u2du + 4πk

∫ R

ǫ

u2ϕ(x)du, (3.24)

where

x := (u − ǫ)/δ. (3.25)

Thus

−R3a(R) = kǫ3/3 + kδ

∫ λ

0

(ǫ + xδ)2ϕ(x)dx, (3.26)

where

λ := (R − ǫ)/δ. (3.27)

Recalling (3.11) and (3.8),

∫ λ

0

(ǫ + xδ)2ϕ(x)dx

= ǫ2

∫ λ

0

(1 + rx)2
(

2x3 − 3x2 + 1
)

dx

= ǫ2λ
{(

1 − λ2 + λ3/2
)

+ rλ
(

1 − 3λ2/2 + 4λ3/5
)

+ r2λ2
(

1/3 − 3λ2/5 + λ3/3
)}

= ǫ2λ
(

F(λ) − 1
)

/3rλ = ǫ3
(

F(λ) − 1
)

/3δ, (3.28)

with F given by (3.17). Hence (3.26) yields

−R3a(R) = kǫ3/3 + kǫ3
(

F(λ) − 1
)

/3 = kǫ3F(λ)/3. (3.29)

Writing R = u yields (3.16). �
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Remark 3.3 Theorem 3.1 highlights a marked difference in the nature of a(u) for u < ǫ as

compared with u > ǫ + δ. In particular, for 0 ≤ u < ǫ,

a(u) = −k/3 = −wǫ,δ(u)/3. (3.30)

If

a1(u) := −wǫ,δ(u)/3 and a2(u) := a(u) + wǫ,δ(u)/3, (3.31)

then

a = a1 + a2. (3.32)

Accordingly,

a1(ui) = −k/3 and a2(ui) = 0 if 0 ≤ ui < ǫ, (3.33)

a1(ui) = 0 and a2(ui) = −1/4πu3
i if ui > ǫ + δ. (3.34)

The binary decomposition (3.32) of a (and hence, via (3.13), of a) motivates correspond-

ing decompositions of fields Dw and Hw . Specifically (cf. (1.17)),

Dw = Pw + Ew, Hw = −Mw +Bw. (3.35)

Here, noting (3.31) and suppressing subscripts ǫ and δ,

Pw :=
∑

i

qi a1(ui)ui = −(1/3)
∑

i

qiw(ui)ui, (3.36)

Ew :=
∑

i

qi a2(ui)ui =
∑

i

qi

(

a(ui) + w(ui)/3
)

ui, (3.37)

−Mw :=
∑

i

qi a1(ui)vi × ui = −(1/3)
∑

i

qiui × viw(ui), (3.38)

Bw :=
∑

i

qi a2(ui)vi × ui =
∑

i

qi

(

a(ui) + w(ui)/3
)

vi × ui . (3.39)

Remark 3.4 Fields Pw and Mw are local spatial densities (cf. (2.5) and (2.9)) of electroki-

netic variables −qiui/3 and −qiui ×vi/3. In particular, values Pw(x, t) and Mw(x, t) derive

(cf. (3.36)1, (3.38)1 and (3.34)1) only from charges within a distance ǫ + δ from x at time t .

In contrast, values Ew(x, t) and Bw(x, t) derive (cf. (3.37)1, (3.39)1 and (3.33)2) only from

charges further than ǫ from x at time t .

Remark 3.5 In view of (2.20) and (3.35)1 it is natural to examine the separate contributions

of divEw and div Pw to ρw . Now

div
{

a2(ui)ui

}

= div
{

a(ui)ui

}

+ (1/3)div
{

w(ui)ui

}

= w(ui) + (1/3)
(

w(ui)div ui + ∇w(ui) .ui

)

. (3.40)

Since

∇ui = −1 and u2
i = ui .ui, (3.41)
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div ui = −3 (3.42)

and

2ui∇ui = 2(∇ui)
T ui = −2ui,

so

∇ui = −ui/ui =: −ûi . (3.43)

Accordingly, (3.40) with (3.42) and (3.43) yield, via the chain rule,

div
{

a2(ui)ui

}

= (1/3)w′(ui)∇ui .ui = −uiw
′(ui)/3. (3.44)

Since w′(ui) vanishes for ui < ǫ and ui > ǫ + δ (cf. (3.5)), the only contributions to divEw

evaluated at x come from charges for which ǫ ≤ ui ≤ ǫ + δ. It follows that if the contribution

to Ew from charge qi is labelled E i , and if R is a region for which Sǫ+δ(xi) ⊂ R (cf. (3.18)),

then (cf. (3.5)2 and (3.11))

∫

R

divE i dV =

∫

R

−(1/3)qiw
′(ui)ui dV

= −(4πqi/3)

∫ 1

0

w′(ǫ + λδ)(ǫ + λδ)3δ dλ

= −
(

4πkǫ3qi/3
)

∫ 1

0

ϕ′(λ)(1 + λr)3dλ. (3.45)

However, notice normalisation condition (3.9) may be written as

1/4πk − ǫ3/3 = ǫ2δ

∫ 1

0

ϕ(λ)(1 + λr)2dλ

= ǫ2δ

{

[

ϕ(λ)(1 + λr)3/3r
]1

0
− (1/3r)

∫ 1

0

ϕ′(λ)(1 + λr)3dλ

}

= ǫ2δ . − 1/3r −
(

ǫ3/3
)

∫ 1

0

ϕ′(λ)(1 + λr)3dλ,

so4

∫ 1

0

ϕ′(λ)(1 + λr)3dλ = −3/4πkǫ3. (3.46)

Accordingly (3.45) becomes

∫

R

divE i dV = qi

(

=

∫

R

qiw(ui)dV

)

. (3.47)

Writing

ρi := qi w(ui), Pi := qia1(ui)ui, (3.48)

4This result could have been obtained by straightforward integration in (3.45). However, relating normalisa-

tion condition (3.9) to (3.45), via integration by parts, yields result (3.47) for any choice of mollifier.
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it follows from (3.47), (2.20) and (3.36), that

∫

R

(divE i − ρi dV ) = 0 = −

∫

R

div Pi dV . (3.49)

Accordingly, for any assembly of charges Pi each of which satisfies Sǫ+δ(xi) ⊂ R,

∫

R

(divEw − ρw)dV = 0 = −

∫

R

div Pw dV . (3.50)

It should be noted that this does not imply that

divEw − ρw = 0 = −div Pw,

since this would require (3.50) to hold for arbitrarily small regions (and hence condition

Sǫ+δ(xi) ⊂ R would fail to be satisfied). Indeed, in general (3.50) is approximate if there is

any charge for which Sǫ+δ(xi) ∩ R �= Sǫ+δ(xi) (in such case part of the mollifying region

would lie outside R).

Fields Ew and Bw are expressible in terms of potential functions:

Theorem 3.2 If f satisfies

f ′(u) = ua2(u), (3.51)

then

Ew = −∇ψw, Bw = curlAw, (3.52)

where

ψw :=
∑

i

qif (ui), Aw :=
∑

i

qi f (ui)vi . (3.53)

Proof From the chain rule, (3.43) and (3.51),

∇f (ui) = f ′(ui)∇ui = −f ′(ui)ûi = −uia2(ui), (3.54)

and (3.52)1 follows from (3.37)1. Further, noting that xi does not depend upon x so

curl vi = 0,

curl
{

f (ui)vi

}

= ∇f (ui) × vi = −a2(ui)ui × vi = a2(ui)vi × ui . (3.55)

Thus (3.52)2 follows via (3.39)1. �

Corollary 3.2.1

curlEw = 0, div Bw = 0. (3.56)

Corollary 3.2.2

∂ψw/∂t + divAw = 0. (3.57)
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Proof From (3.53)1,

∂ψw/∂t =
∑

i

qi f
′(ui)∂ui/∂t, (3.58)

where, from (3.41)2,

2ui∂ui/∂t = 2ui .vi,

so (cf. (3.43)2)

∂ui/∂t = ûi .vi . (3.59)

Accordingly,

∂ψw/∂t =
∑

i

qi f
′(ui)ûi .vi . (3.60)

From (3.53)2, (3.54) and (3.43), noting div vi = 0,

divAi =
∑

i

qi div
{

f (ui)vi

}

=
∑

i

qi ∇f (ui) .vi

= −
∑

i

qi f
′(ui)ûi .vi . (3.61)

Adding (3.60) and (3.61) yields (3.57). �

Remark 3.6 From (3.33)2 and (3.34)2, a2(ui) = 0 if ui < ǫ and a2(ui) = −1/4πu3
i if u >

ǫ + δ. Thus, from (3.51), f ′(ui) = 0 if ui < ǫ and f ′(ui) = −1/4πu2
i if ui > ǫ + δ. Noting

that the constant of integration plays no part in determining Ew and Bw , without loss of

generality

f (ui) = 0 (ui < ǫ), f (ui) = 1/4πui (ui > ǫ + δ). (3.62)

Remark 3.7 Selection of natural choice (3.4) of scale-dependent weighting function w (suit-

ably mollified in (3.5)), and associated displacement function a (delineated via (2.17), (2.18)

and (3.13)) have resulted in relations formally identical to equations in classical electro-

magnetic theory. In particular, (2.20) and (2.33) are explicitly scale-dependent versions of

Maxwell relations (1.1) and (1.2). Additionally, decompositions (3.35), together with the ex-

istence of potential functions given in (3.53) and which satisfy (3.57), take standard forms.

However, all relations derived here are of purely electrokinetic character. While this is in-

deed the actual physical nature of spatial densities ρw , jw , Pw and Mw , and of Dw and Hw ,

the fields E and B which appear in Maxwell relations (1.5) and (1.8) are intimately related

to the transmission of force, via (1.9). Evidently the physical dimensions of Ew and Bw are

not those of E and B, respectively. Indeed, from (1.9) E and v × B have the dimensions of

force per unit charge. Accordingly,

dim E = MLT −2Q−1, dim B = MLT −2Q−1
(

LT −1
)−1

= MT −1Q−1. (3.63)

On the other hand, noting w, a, a1 and a2 have dimension L−3 (cf. (3.30) and (3.31)), from

(3.37) and (3.39)

dimEw = L−2Q, dimBw = L−1T −1Q. (3.64)
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This issue is resolved in Sect. 5 by appeal to the experimentally-based laws of Coulomb and

Biot-Savart, after examining the interpretation of fields for simple atomic systems via time

averaging.

Remark 3.8 Mollifier ϕ in (3.8) was the simplest choice. Further regularity may be ensured

via polynomials of higher order: cf. [5], §4.3.6. Different choices change field definitions

only over separations ui in the range [ǫ, ǫ + δ] and k satisfies (3.7).

4 Time Averaging and Interpretation of Atomic Kinetics

Any theoretical description of material behaviour must be related to its observation and mea-

surement. Since no measurement can reflect behaviour at a geometrical point nor instant in

time, but is limited by both the spatial and temporal sensitivity of the monitoring proce-

dure and apparatus (cf. [5], Sect. 8.2), measurement values represent local averages jointly

in space and time. This motivates a further temporal averaging of the spatially-averaged

relations obtained so far.

The 
-time average f
 of any integrable function of time is

f
(t) :=
1




∫ t

t−


f (τ)dτ. (4.1)

It follows (cf. [5], p. 78) that if f is a class C1 field, then

∂/∂t{f
} = (∂f/∂t)
. (4.2)

Further, if f is a C1 vector field, then (cf. [5], Remark 8.3.1)

(div f)
 = div{f
}, (curl f)
 = curl{f
}. (4.3)

Result (4.3)1 also holds for tensor fields of any order.

Accordingly, time averaging relations (2.8), (2.20), (2.33), (3.35), (3.52), (3.56) and

(3.57) yields versions formally identical to their originals but wherein all fields are replaced

by their time-averaged counterparts.

Remark 4.1 Consider a simple model of a conductor as a system of atomic nuclei Pj (charge

Zj e) each of which has a fixed set of Nj bound electrons Pjk , together with a system of

free/diffusive electrons Pℓ. Both systems give rise to a relation of form (2.8), namely

∂ρb
w/∂t + div jbw = 0, ∂ρf

w/∂t + div jfw = 0. (4.4)

Here ‘b’ and ‘f ’ designate the bound and f ree systems. Of course, for the system as a whole,

(2.8) is satisfied with

ρw = ρb
w + ρf

w, jw = jbw + jfw. (4.5)

Suppressing time dependence (cf. (2.3)),
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ρb
w(x) :=

∑

j

Zj ew(xj − x) +
∑

j

Nj
∑

jk=1

(−e)w(xjk − x)

=
∑

j

(Zj − Nj )ew(xj − x) +
∑

j

Nj
∑

jk=1

(−e)
{

w(xjk − x) − w(xj − x)
}

. (4.6)

Also (cf. (2.9))

jbw(x) :=
∑

j

Zj ej vj w(xj − x) +
∑

j

Nj
∑

jk=1

(−e)vjkw(xjk − x)

=
∑

j

{

(Zj − Nj )evj +

Nj
∑

jk=1

e(vj − vjk )

}

w(xj − x)

+
∑

j

Nj
∑

jk=1

evjk

{

w(xj − x) − w(xjk − x)
}

. (4.7)

If Pj and its bound charges lie in Sǫ(x), then from (3.5)1 and (3.12) their contribution to

ρb
w(x) is essentially (Zj − Nj )e/Vǫ and to jbw is {(Zj − Nj )evj +

∑Nj

jk=1 e(vj − vjk )}/Vǫ .

If this subsystem remains in Sǫ(x) for the time interval (t − 
, t), then its contribution

to (ρb
w)
(x, t) is (Zj − Nj )e/Vǫ and to (jbw)
(x, t) is (Zj − Nj )e(vj )
/Vǫ . Here the fac-

tor (vj − vjk )
 = (ẋ − ẋjk )
 = d/dt{(xj − xjk )
} has been regarded to be negligible as a

consequence of the bounded nature of Pjk . In a solid macroscopically at rest, nuclei vibrate

erratically on time scales of order 10−13 s about fixed locations. Accordingly, if 
 ≫ 10−13 s

(say 
 ∼ 10−6 s) then (vj )
 = (ẋj )
 = d/dt{(xj )
} = 0. In such case (and neglecting nu-

clei which cross or straddle the mollifying region Sǫ+δ(x) − Sǫ(x)) (jbw)
 (x, t) = 0 and

(ρb
w)
 (x, t) does not change with time. Thus both terms in the time-averaged version of

(4.4)1 vanish and, from (4.5),

(ρw)
 =
(

ρb
w

)



+

(

ρf
w

)



, (jw)
 =

(

jfw
)



(4.8)

and

∂/∂t
{(

ρf
w

)




}

+ div
{(

jfw
)




}

= 0 (4.9)

for a conductor macroscopically at rest. More generally it is time averages of terms (Zj −

Nj )e/Vǫ and (Zj −Nj )evj/Vǫ , taken over nuclei instantaneously in Sǫ(x), which dominate

contributions to (ρb
w)
 (x, t) and (jbw)
 (x, t). The latter is an ionic current density which

might be significant in an electrolytic context.

Remark 4.2 Consider an assembly of neutral atoms. In such case all electrons are bound, so

Nj = Zj for all atoms. The contribution to Pw(x, t) from such an atom, all of whose charges

lie in Sǫ(x) at time t , is from (3.36)2 closely approximated (here r is neglected, so k = V −1
ǫ

from (3.12)) by

−(1/3Vǫ)

{

Zj e(xj − x) +

Zj
∑

jk=1

(−e)(xjk − x)

}

= −pj/4πǫ3. (4.10)
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Here

pj :=

Zj
∑

jk=1

(−e)rjk with rjk := xjk − xj . (4.11)

Term −erjk represents an instantaneous dipole moment associated with the displacement

of electron Pjk from its parent nucleus. Such moment will vary erratically on an atomic

timescale (∼ 10−13 s). However, if 
 ∼ 10−6 s, then −e(rjk )
 represents a time-averaged

dipole moment which is a measure of time-averaged orbital asymmetry. Correspondingly,

(pj )
 is a measure of the averaged total charge distribution about nucleus Pj , namely the

polarisation of this atom. From (4.10) the contribution to (Pw)
(x, t) from atoms which

remain in Sǫ(x) during time averaging constitutes a polarisation density associated with

these atoms: strictly speaking, −1/3 multiplied by the sum of the time-averaged dipole

moments and divided by Vǫ . In general there will also be contributions both from atoms

which migrate into and out of Sǫ(x), and atoms which straddle the mollifying region, at

any time in the interval (t − 
, t). If the system constitutes a solid at macroscopic rest

((vj )
 = 0), then only ‘straddling’ atoms are involved and, since δ ≪ ǫ, their contribution

may be expected to be negligible.

Remark 4.3 The contribution to Mw(x, t) from a neutral atom within Sǫ(x) at time t is (cf.

(3.38)2, (3.5)1 and (3.12)) essentially

(1/3Vǫ)

{

Zjeuj × vj +

Zj
∑

jk=1

(−e)ujk × vjk

}

= (1/3Vǫ)

{

Zj e uj × vj +

Zj
∑

jk=1

(−e)(rjk + uj ) × (ṙjk + vj )

}

= (1/3Vǫ)

{ Zj
∑

jk=1

mjk + uj × ṗj + pj × vj

}

, (4.12)

where

mjk := (−e)rjk × ṙjk . (4.13)

Term mjk is the instantaneous magnetic moment of electron Pjk about its parent nucleus.

Erratic variation in mjk is smoothed by time averaging, and

(mj )
 :=

Zj
∑

jk=1

(mjk )
 (4.14)

is a measure of averaged orbital angular momentum of electrons about their parent nucleus

(on noting mjk = −(e/m)rjk × mṙjk , where m denotes electron mass). From (4.12), (4.14)

and (3.38), the contribution to (Mw)
(x, t), from atoms which remain in Sǫ(x) during time

averaging, is a density (×1/3) of net time-averaged atomic moments (mj )
 together with

averages (uj × ṗj + pj × vj )
. For a solid at macroscopic rest Mw(x, t) is characterised by

such contributions upon neglecting ‘straddling’ atoms (cf. Remarks 4.1 and 4.2).



On Spatially-averaged Electrokinetics of Point Charges. . .

Remark 4.4 From (3.37) and (3.33)2, only charges further than ǫ from x at time t contribute

to Ew(x, t). Any charge further than ǫ + δ at this time yields (cf. (3.34)2) a contribution

−qiui/4πu3
i . The net contribution from a neutral atom outside Sǫ+δ(x) is

−(1/4π)

{

Zjeuj/u
3
j +

Zj
∑

jk=1

(−e)ujk/u
3
jk

}

. (4.15)

Now

u−3
jk

= (ujk .ujk )
−3/2 =

[

(uj + rjk ) . (uj + rjk )
]−3/2

= u−3
j

[

1 + 2rjk .uj/u
2
j + (rjk/uj )

2
]−3/2

= u−3
j

[

1 − 3(rjk .uj )/u
2
j + O

(

(rjk/uj )
2
)]

. (4.16)

Contribution (4.15) may thus (on neglect of O((rjk/uj )
2) terms) be written as

− (1/4π)

Zj
∑

jk=1

e
{

uj/u
3
j − (uj + rjk )

[

u−3
j − 3(rjk .uj )u

−5
j

]}

= −(1/4π)
{

pj/u
3
j − 3(uj ⊗ uj )pj u−5

j

}

= −Aj pj , (4.17)

where (cf. (3.43)2)

Aj :=
(

1/4πu3
j

)

(1 − 3ûi ⊗ ûi). (4.18)

Fluctuations in the location of an atomic nucleus in a solid at rest are much less than a typical

atomic radius of 10−10 m. Thus if ǫ > 10−6 m, then (noting here uj > ǫ + δ) (Aj pj )
 ∼

(1/4πu3
j )(Âj pj )
, where Âj := (1 − 3ûi ⊗ ûi).

Remark 4.5 From (3.39) and (3.33)2, only charges further than ǫ from x at time t contribute

to Bw(x, t). Any charge for which ui > ǫ + δ at this time yields (cf. (3.34)2) a contribution

qiui × vi/4πu3
i . Thus the contribution from a neutral atom outside Sǫ+δ(x) is (neglecting

terms as in (4.17))

(1/4π)

Zj
∑

jk=1

e
{

uj × vj/u
3
j − (uj + rjk ) × (vj + ṙjk )

[

u−3
j − 3(rjk .uj )u

−5
j

]}

=
(

1/4πu3
j

)

{

uj × ṗj + mj + 3ûj × e

( Zj
∑

jk=1

ṙjk ⊗ rjk

)

ûj

}

+ Aj pj × vj . (4.19)

In a solid at macroscopic rest uj varies negligibly in [t − 
, t] and the contribution to

(Bw)
(x, t) is essentially

(

1/4πu3
j

)

{

uj × d/dt
{

(pj )


}

+ (mj )
 + 3ûj × e

( Zj
∑

jk=1

ṙjk ⊗ rjk

)




ûj + (Âj pj × vj )


}

.

(4.20)
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The foregoing remarks emphasise the rôle of time averaging in interpreting the subatomic

contributions to macroscopic measures of atomic kinetics for simple systems. The method-

ology extends to molecular systems modulo context-dependent considerations: for example,

book-keeping appropriate to (valence) electrons which are shared by several nuclei.

5 Consequences of the Coulomb and Biot-Savart Laws

If E i denotes the contribution to Ew of a charge qi for which ui > ǫ + δ, then (cf. (3.37)1

and (3.34)2) for any charge q

qE i = −qqi ui/4πu3
i . (5.1)

This may be compared with Coulomb’s law for the force fesqqi
exerted in vacuo on a stationary

charge q at location x by a stationary charge qi at xi , namely (in SI units: cf., e.g., Griffiths

[11], (2.1))

fesqqi
= −qqiui/4πǫ0u

3
i . (5.2)

Thus, for in vacuo separations in excess of ǫ + δ,

fesqqi
= qE i/ǫ0. (5.3)

Accordingly, for any set {qi} of stationary charges all of which are distant at least ǫ + δ from

x, the assumption of linear superposition (cf. [11], 2.4; Zangwill [12], (2.18); Jackson [13],

24–26; Elliott [14], Sect. 3.2) yields a static electric field Es
w at x for which

qEs
w :=

∑

i

fesqqi
= qǫ−1

0

∑

i

E i . (5.4)

Hence, for such a collection of charges

Es
w = ǫ−1

0 Ew. (5.5)

Similarly, if ui > ǫ + δ, then the contribution of charge qi to Bw is (cf. (3.39)1 and

(3.34)2)

Bi := qiui × vi/4πu3
i . (5.6)

Consider a localised set of charges Pi which lie within a sphere of radius ǫ centred at point X.

If R = X − x and R := ‖R‖ ≫ ǫ, then ui = (xi − X) + (X − x) ∼ R and

∑

i

Bi ∼
∑

i

qiR × vi/4πR3

=
(

R/4πR3
)

×

(

∑

i

qivi/Vǫ

)

Vǫ ∼
(

R/4πR3
)

× jw(X)Vǫ . (5.7)

This may be compared with the Biot-Savart law in which the contribution 
Bs to the net

magnetic field Bs at x arising from such a collection of charges is (cf., e.g., [12], (10.15))

essentially


Bs =
(

μ0 R/4πR3 × js
)

Vǫ . (5.8)
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Here js is the current density associated with the charges and is steady (emphasised by

superscript ‘s’). Comparison of (5.7) with (5.8) suggests the natural identification (for the

charges considered)

Bw =
∑

i

Bi =: μ−1
0 Bs

w. (5.9)

Remark 5.1 Relation (5.5) and identification (5.9) pertain to experimental results in vacuo

(otherwise described as ‘free space’) based upon force relation (1.9). Specifically, no charges

within ǫ + δ of x are present. More generally, (5.5) and (5.9) motivate definitions

Es
w := ǫ−1

0 Ew, Bs
w := μ0Bw, (5.10)

which add contributions (if any) from charges for which ǫ ≤ ui ≤ ǫ + δ (cf. (3.37)1, (3.39)1,

(3.33)2, (3.31)2 and (3.16)). Since δ ≪ ǫ is arbitrarily small, definitions (5.10) in general

represent precise book-keeping rather than a physical issue.

From (3.35) and (5.10),

Dw = Pw + ǫ0Es
w, Hw = −Mw + μ−1

0 Bs
w. (5.11)

Further, from (3.52), (3.53) and (5.10),

Es
w = −∇ψ s

w, Bs
w = curl As

w, (5.12)

where

ψ s
w := ǫ−1

0 ψw = ǫ−1
0

∑

i

qi f (ui), As
w := μ0Aw = μ0

∑

i

qi f (ui)vi . (5.13)

Relation (3.57) may be written as

∂ψ s
w/∂t + (1/ǫ0 μ0)div As

w = 0. (5.14)

Remark 5.2 From (5.10)1, (3.63)1 and (3.64)1,

dim ǫ0 = dimEw/dim Es
w = dimEw/dim E = M−1L−3T 2Q2. (5.15)

From (5.10)2, (3.63)2 and (3.64)2,

dimμ0 = dim Bs
w/dimBw = dim B/dimBw = MLQ−2. (5.16)

Hence

dim(ǫ0μ0) = L−2T 2 =
(

LT −1
)−2

, (5.17)

ǫ0μ0 has the dimension of (speed)−2, and so ǫ0μ0 = αc−2 for some dimensionless con-

stant α. Experimentation yields α = 1: that is,

ǫ0μ0 = c−2. (5.18)

From (5.12), (5.14) and (5.18),

curl Es
w = 0, div Bs

w = 0, (5.19)



A.I. Murdoch

and

∂ψ s
w/∂t + c2 div As

w = 0. (5.20)

Remark 5.3 The experimental laws of Coulomb and Biot-Savart relate to macroscopically

stationary situations and hold at points in the neighbourhoods of which no charges are to be

found. Specifically, the stationary requirement yields (cf. (2.8), (2.33) and (5.14))

∂ρw/∂t = 0, ∂Dw/∂t = 0, ∂ψ s
w/∂t = 0, (5.21)

while the free space condition (at scale ǫ + δ) implies that (cf. (2.5), (2.9), (3.36)2 and

(3.38)2)

ρw = 0, jw = 0, Pw = 0, Mw = 0. (5.22)

Accordingly, from (2.20), (5.22)1, (5.11)1 and (5.22)3,

div Es
w = 0, (5.23)

while from (2.33), (5.21)2, (5.22)2, (5.11)2 and (5.22)4,

curl Bs
w = 0. (5.24)

It follows from (5.12)1 and (5.23) that


ψ s
w = 0, (5.25)

while (5.24) and (5.12)2 yield

0 = curl curl As
w = ∇

{

div As
w

}

− 
As
w.

Accordingly, from (5.21)3 and (5.14),


As
w = 0. (5.26)

Of course, relations (5.25) and (5.26) are immediately evident on noting that here ui > ǫ + δ

and thus f (ui) = 1/4πui (cf. (3.62)2).

As they stand, relations (5.12) and (5.13) do not of themselves indicate any restriction

to macroscopically-static situations, and admit formal generalisation to dynamical contexts

without change. In particular, (2.20) may be written, via (5.11)1, as

ǫ0 div Es
w = ρ ′, (5.27)

where

ρ ′ := ρw − div Pw. (5.28)

Further, (2.33) may be expressed, via (5.11)1 and (5.11)2, as

ǫ0μ0 ∂Es
w/∂t + μ0 J′ = curl Bs

w, (5.29)

where

J′ := jw + ∂Pw/∂t + curl Mw. (5.30)
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Thus

∂ρ ′/∂t = ∂ρw/∂t − ∂/∂t{div Pw} = ∂ρw/∂t − div {∂Pw/∂t}, (5.31)

div J′ = div jw + div{∂Pw/∂t}, (5.32)

and hence, via (2.8),

∂ρ ′/∂t + div J′ = 0. (5.33)

While (5.27) and (5.29) are two often-cited versions of Maxwell relations (cf., e.g., Grif-

fiths [11], §10.1.1) the foregoing approach does not yield a corresponding version of (1.8).

Guided by (1.7), suppose

Ẽw := Es
w − ∂As

w/∂t = −∇ψ s
w − ∂As

w/∂t. (5.34)

Then clearly

curl Ẽw = −curl
{

∂As
w/∂t

}

= −∂/∂t
{

curl As
w

}

, (5.35)

whence, from (5.12)2,

curl Ẽw = −∂Bs
w/∂t. (5.36)

While this relation has been an immediate consequence of (5.34), relation (5.29), with Es
w

equated with Ẽw + ∂As
w/∂t , introduces an extra term ǫ0μ0 ∂2As

w/∂t2. Rather than adopting

this approach, consider the direct consequence of definition (5.34) which is summarised in

the following result.

Theorem 5.1

∂Bs
w/∂t = −curl Ẽw, c−2∂Ẽw/∂t + μ0J̃w = curl Bs

w, (5.37)

where

−μ0 J̃w := 
As
w − c−2∂2As

w/∂t2. (5.38)

Further,

div Ẽw = ρ̃w/ǫ0, (5.39)

where

−ǫ−1
0 ρ̃w := 
ψ s

w − c−2∂2ψ s
w/∂t2, (5.40)

and

∂ρ̃w/∂t + div J̃w = 0. (5.41)

Proof Result (5.37)1 was derived above. From (5.12)2, (5.20), (5.12)1, (5.34)1 and (5.38),

curl Bs
w = curl curl As

w = ∇
{

div As
w

}

− 
As
w = ∇

{

−c−2∂ψ s
w/∂t

}

− 
As
w

= c−2∂/∂
{

−∇ψ s
w

}

− 
As
w = c−2∂Es

w/∂t − 
As
w

= c−2
{

∂Ẽw/∂t + ∂2As
w/∂t2

}

− 
As
w = c−2∂Ẽw/∂t + μ0J̃w.
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From (5.34)1, (5.12)1, (5.20) and (5.40),

div Ẽw = div Es
w − div

{

∂As
w/∂t

}

= −
ψ s
w − ∂/∂t

{

div As
w

}

= −
ψ s
w + c−2∂2ψ s

w/∂t2 = ρ̃/ǫ0.

From (5.38), (5.20), (5.40) and (5.18),

−div{μ0J̃w} = div
{


As
w

}

− c−2 div
{

∂2As
w/∂t2

}

=
(


 − c−2∂2/∂t2
){

div As
w

}

=
(


 − c−2∂2/∂t2
){

−c−2∂ψ s
w/∂t

}

= −c−2∂/∂t
{(


 − c−2∂2/∂t2
)

ψ s
w

}

= c−2ǫ−1
0 ∂ρ̃w/∂t = μ0∂ρ̃w/∂t. �

Corollary 5.1.1


Bs
w − c−2∂2Bs

w/∂t2 = s1, (5.42)

and


Ẽw − c−2∂2Ẽw/∂t2 = s2, (5.43)

where

s1 := −μ0 curl J̃w, s2 := ǫ−1
0 ∇ρ̃w + μ0∂ J̃w/∂t. (5.44)

Proof Relation (5.42) with (5.44)1 follow upon taking the curl of (5.38) and noting (5.12)2.

Taking the gradient of (5.40) and noting (5.34),

ǫ−1
0 ∇ρ̃w =

(


 − c−2∂2/∂t2
){

Ẽw + ∂As
w/∂t

}

= 
Ẽw − c−2∂2Ẽw/∂t2 + ∂/∂t
{

−μ0 J̃w

}

via the time derivative of (5.38). �

Remark 5.4 The foregoing definitions and manipulations require that Ẽw and Bs
w be of class

C2 in space and time. In particular, (5.10)1,2 require that Ew and Bw be spatially of class C2.

Accordingly, from (3.37), (3.39) and (3.31), w must be of class C2. However, simplest

choice (3.8) of C1 mollifier ϕ implies that w is only of class C1. The simplest choice of C2

mollifier is (cf. [5], (4.3.59))

ϕ5(λ) := −6λ5 + 15λ4 − 10λ3 + 1. (5.45)

The corresponding analysis is straightforward, delivers an appropriate polynomial in place

of F(λ) (cf. (3.16) and (3.17)), and affects only separations in the range ǫ < ui < ǫ + δ.

Remark 5.5 Since f (ui) = 0 if ui < ǫ, from (5.13), (5.12), (5.34), (5.42) and (5.43) only

charges further than ǫ from x contribute to the values of ψ s
w , As

w , Ẽw , Bs
w , s1 and s2. If

all charges are further than a distance d from x (so that x lies in free space), then one can

choose a scale ǫ and mollifying interval δ such that ǫ + δ < d . In such case relations (5.22)

hold at any such scale. Further, (5.42) and (5.43) hold with sources given by (5.44)1,2 in

which ρ̃w and J̃w satisfy (5.40) and (5.38). Here ψ s
w and As

w are defined by (5.13)1,2 with

f (ui) = 1/4πui . Specifically, we have
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Corollary 5.1.2 If all charges are further than ǫ + δ from location x, then at x

ρ̃w =
(

1/4πc2
)

∑

i

qi

{

αi − (ui . v̇i)u
−3
i

}

(5.46)

and

J̃w =
(

1/4πc2
)

∑

i

qi

{

αivi − Li v̇i + u−1
i v̈i

}

, (5.47)

where

αi :=
[

3(ui .vi)
2 − u2

i v
2
i

]

u−5
i (5.48)

and

Li :=
[

2(ui .vi)1 + vi ⊗ ui

]

u−3
i . (5.49)

Further,

Ẽw = −(1/4πǫ0)
∑

i

qiu
−3
i

{

ui + c−2
[

u2
i v̇i − (ui .vi)vi

]}

(5.50)

and

Bs
w =

(

1/4πǫ0c
2
)

∑

i

qiu
−3
i (ui × vi). (5.51)

Proof If ui > ǫ + δ, then (cf. (3.62)2) f (ui) = 1/4πui . Straightforward calculations yield



{

u−1
i

}

= 0, 

{

u−1
i vi

}

= 0, ∂2/∂t2
{

u−1
i

}

= αi − (ui . v̇i)u
−3
i , (5.52)

∂2/∂t2
{

u−1
i vi

}

=
[

αi − (ui . v̇i)u
−3
i

]

vi − 2(ui .vi)u
−3
i v̇i + u−1

i v̈i . (5.53)

Relations (5.46) and (5.47) follow from (5.40), (5.38) and definitions (5.13)1,2.

Fields Ẽw and Bs
w are given by (5.34) and (5.12)2 with ψ s

w and As
w defined by (5.13)1,2.

Relations (5.50) and (5.51) follow on noting that

∇
{

u−1
i

}

= u−3
i ui, ∂/∂t

{

u−1
i vi

}

= −u−3
i (ui .vi)vi + u−1

i v̇i, (5.54)

and

curl
{

u−1
i vi

}

= ∇
{

u−1
i

}

× vi = u−3
i ui × vi . (5.55)

�

Remark 5.6 At this point a complete set of Maxwell equations has been obtained, at any spa-

tial scale, from a Newtonian perspective. While relations (2.8), (2.20) and (2.33) are entirely

general (and of purely kinematic character) relations (5.37) are associated with forces in free

space, via the results of Coulomb and Biot-Savart, and hence have been shown to hold in

vacuo. The analytic key to the theory is function f : this determines ψ s
w and As

w (cf. (5.13))

and thereby Ẽw and Bs
w (cf. (5.12) and (5.34)). The form of f is determined by choice of

scale ǫ and mollifier ϕ. Departure from Newtonian dynamics stems from consideration of

the argument ui of f in respect of any charge. Determination of ui(x, t) requires knowledge

of the location of Pi at time t . In a dynamic context this cannot be known at x since infor-

mation transfer is not instantaneous. Indeed, the inhomogeneous wave equations (5.42) and
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(5.43) indicate that the transfer speed in free space is c. Information available at x at time t

consists of the apparent displacement ua
i (x, t) of Pi from x at time t , and time derivatives

thereof: in particular, the apparent velocity va
i := ∂ua

i /∂t . In generalising the discussion to

take account of information delay (‘retardation’) the key is to find analogues of potentials

ψ s
w and As

w which depend upon available knowledge, namely ua
i and va

i .

6 Signal Transmission Times, Retardation and Classical Maxwellian

Electrodynamics

Consider the behaviour of a moving point charge Pi as monitored by an observer O located

at a point x in an inertial frame F . Information available to O at time t can involve only data

that has reached O at, or before, this time. Since transmission of information is not instan-

taneous, it is necessary to examine the consequences of transmission time delay. Examined

here are the relationship between the apparent location of Pi at time t , the delay such datum

of information takes to reach O , and the actual trajectory of Pi .

It is instructive to consider how, at least in principle, information about the motion of

Pi could be obtained. Suppose that O has a radar device capable of detecting a reflected

segment (from Pi ) of any signal that it has transmitted. Suppose further that any such seg-

ment, both during its outward and inward paths, travels in a straight line at constant speed

c, and is instantaneously reflected by Pi . Such a signal, emitted from x at time t ′ and re-

ceived back at time t , will have travelled a total distance c(t − t ′) and been reflected at time

t ′ + (t − t ′)/2 = (t + t ′)/2 when at a distance c(t − t ′)/2 from x. If xi(τ ) denotes the location

of Pi at time τ , then the distance travelled by the signal between its reflection and reception

is
∥

∥xi

((

t + t ′
)

/2
)

− x
∥

∥ = c
(

t − t ′
)

/2. (6.1)

Changing notation, if τi(x, t) denotes the time at which the signal reaching x at time t was

reflected from Pi , then

τi(x, t) =
(

t + t ′
)

/2, (6.2)

a detectable quantity. Accordingly, (6.1) may be written as

∥

∥xi

(

τi(x, t)
)

− x
∥

∥ = c
(

t − τi(x, t)
)

. (6.3)

Assuming that the device can detect the direction of the incoming signal, such information,

together with (6.3), determines location xi(τi(x, t)). This is the apparent location of Pi at

time t as monitored at location x,xa
i (x, t) say. That is,

xa
i (x, t) := xi

(

τi(x, t)
)

= (xi ◦ τi)(x, t). (6.4)

Remark 6.1 In any motion of Pi , apparent location xa
i (x, t) is unique. Indeed, suppose that

a signal emitted from x gives rise to segments which are reflected by Pi at times τ and τ ′,

and are both received at x at time t . Thus τ and τ ′ are two values of τi(x, t), and xi(τ ) and

xi(τ
′) are both candidates for xa

i (x, t). From (6.3) it follows that5

∥

∥xi(τ ) − xi

(

τ ′
)∥

∥ =
∥

∥

(

xi(τ ) − x
)

−
(

xi

(

τ ′
)

− x
)∥

∥

5For any pair of vectors v and v′ , ‖v − v′‖ ≥ |‖v‖ − ‖v′‖ |.
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≥
∣

∣

∥

∥xi(τ ) − x
∥

∥ −
∥

∥xi

(

τ ′
)

− x
∥

∥

∣

∣

=
∣

∣c(t − τ) − c
(

t − τ ′
)∣

∣ = c
∣

∣τ − τ ′
∣

∣. (6.5)

Hence the average speed of Pi over a time interval of duration |τ −τ ′| is at least c, a physical

impossibility. Thus the hypothesis of two times τ and τ ′ is incorrect, τi(x, t) is unique, and

so xa
i (x, t) is unique.

The apparent displacement of Pi from x at time t is

ua
i (x, t) := xa

i (x, t) − x = xi

(

τi(x, t)
)

− x. (6.6)

Writing

ua
i := ‖ua

i ‖, (6.7)

relation (6.3) becomes

ua
i (x, t) = c

(

t − τi(x, t)
)

. (6.8)

Time τi , apparent location xa
i , and apparent displacement ua

i are functions of x and t , and are

thus fields; τi is termed the retarded time field. In particular, τi(x, t) and xa
i (x, t) constitute

the basic information about any motion of Pi which is available at x at time t . Such infor-

mation is necessary in computation of velocities. Here a distinction must be made between

the actual velocity of Pi at any time τ , namely

vi(τ ) := d/dτ
{

xi(τ )
}

= ẋi(τ ), (6.9)

and the apparent velocity

va
i (x, t) := ∂/∂t

{

xa
i (x, t)

}

= ∂/∂t
{

ua
i (x, t)

}

(6.10)

corresponding to Pi as monitored at x and time t . In particular, vi is a vector-valued function

of time, whereas va
i is a vector-valued field. From (6.4) and the chain rule,

va
i (x, t) = ∂/∂t

{

xa
i (x, t)

}

= ∂/∂t
{

xi

(

τi(x, t)
)}

= ẋi

(

τi(x, t)
)

∂τi/∂t. (6.11)

That is,

va
i (x, t) = vi

(

τi(x, t)
)

∂τi/∂t. (6.12)

To determine ∂τi/∂t , note that from (6.6) and (6.8)

ua
i .ua

i =
(

ua
i

)2
= c2(t − τi)

2. (6.13)

Differentiation with respect to t yields, via (6.10)2 and (6.8),

2ua
i .va

i = 2c2(t − τi)(1 − ∂τi/∂t) = 2cua
i (1 − ∂τi/∂t). (6.14)

Accordingly,

∂τi/∂t = 1 − c−1ûa
i .va

i =: βi, (6.15)

where

ûa
i := ua

i /u
a
i . (6.16)
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Thus ûa
i (x, t) denotes a unit vector in the direction of Pi from x at the latest time τi(x, t)

that information about Pi reaches xi at time t . From (6.12) and (6.15),

vi

(

τi(x, t)
)

=
(

βi(x, t)
)−1

va
i (x, t). (6.17)

Equivalently,

vi ◦ τi = β−1
i va

i . (6.18)

This relation delivers the actual velocity at time τi(x, t) in terms of information available at

x and time t .

The spatial derivative (or ‘gradient’) of (6.13) yields, with (6.8)

2
(

∇ua
i

)T
ua

i = 2c2(t − τi)(−∇τi) = −2cua
i ∇τi . (6.19)

From (6.6), the chain rule and (6.9),

∇ua
i = ∂xi/∂τ ⊗ ∇τi − 1 = ẋi ⊗ ∇τi − 1 = vi ⊗ ∇τi − 1, (6.20)

whence
(

∇ua
i

)T
= ∇τi ⊗ vi − 1. (6.21)

Hence (6.19) may be written, noting (6.16), as

(∇τi ⊗ vi − 1)ûa
i = −c∇τi, (6.22)

and so
(

vi . ûa
i + c

)

∇τi = ûa
i . (6.23)

Since, from (6.17) and (6.15)2,

vi . ûa
i + c = β−1

i va
i . ûa

i + c = β−1
i

(

va
i . ûa

i + βic
)

= β−1
i c, (6.24)

it follows from (6.23) that

∇τi = βi û
a
i /c. (6.25)

From (6.20)3, (6.25) and (6.18),

∇ua
i = vi ⊗ βi ûa

i /c − 1 = va
i ⊗ ûa

i /c − 1, (6.26)

and, from (6.8) and (6.25),

∇ua
i = −c∇τi = −βi û

a
i . (6.27)

Further, from (6.26) and (6.15)2,

div ua
i := tr

{

∇ua
i

}

= va
i . ûa

i /c − 3 = −βi − 2. (6.28)

In order to generalise the discussion of Sect. 5 to dynamic situations, taking account of signal

transmission delay, it suffices to consider the potential functions: cf. Remark 5.6. A natural

choice Ad
w for the dynamic counterpart of As

w (cf. (5.13)2) would seem to be

Ad
w := μ0

∑

i

qi f
(

ua
i

)

va
i = μ0

∑

i

qi f
(

ua
i

)

βi vi . (6.29)
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Choice Ad
w(x, t) takes account of the latest information concerning charge displacements

and velocities that is available at x and time t , has the form of (5.13)2, and would coin-

cide with As
w(x, t) were transmission times to be negligible. A choice of the corresponding

dynamic electric potential might be

ψ̃d
w := ǫ−1

0

∑

i

qi f
(

ua
i

)

. (6.30)

However, this field does not satisfy the counterpart of the Lorenz gauge relation (cf., e.g.,

Jackson [13], p. 240), namely

∂ψd
w/∂t + (1/ǫ0μ0)div Ad

w = 0. (6.31)

To obtain an appropriate candidate ψd
w , consider (cf. (6.29))

div
{

f
(

ua
i

)

va
i

}

= ∇f
(

ua
i

)

.va
i + f

(

ua
i

)

div va
i . (6.32)

From (6.27),

∇f
(

ua
i

)

= f ′
(

ua
i

)

∇ua
i = −βi f

′
(

ua
i

)

ûa
i , (6.33)

while, from (6.28),

div va
i = div

{

∂ua
i /∂t

}

= ∂/∂t
{

div ua
i

}

= −∂βi/∂t. (6.34)

Accordingly, (6.32), (6.33) and (6.34) imply

div
{

f
(

ua
i

)

va
i

}

= −βi f
′
(

ua
i

)

ûa
i .va

i − ∂βi/∂t f
(

ua
i

)

. (6.35)

From (6.8) and (6.15),

∂/∂t
{

f
(

ua
i

)}

= f ′
(

ua
i

)

∂ua
i /∂t = f ′

(

ua
i

)

c(1 − ∂τi/∂t)

= f ′
(

ua
i

)

cc−1ûa
i .va

i = f ′
(

ua
i

)

ûa
i .va

i . (6.36)

Hence, from (6.35) and (6.36),

div
{

f
(

ua
i

)

va
i

}

= −∂/∂t
{

βi f
(

ua
i

)}

, (6.37)

and thus

ψd
w := ǫ−1

0

∑

i

qiβi f
(

ua
i

)

(6.38)

satisfies (6.31).

The results of Sect. 5 can now be generalised by essentially replacing superscript ‘s’

by ‘d’. Specifically, function f is known once weighting function w is chosen: this follows

from Theorem 3.1, consequent upon definition (3.5), (3.31)2 and (3.51). In particular (cf.

Remark 3.6), f (u) = 0 if u < ǫ and f (u) = 1/4πu if u > ǫ + δ. Knowledge of f , and the

latest information concerning displacements and velocities (namely ua
i and va

i ), yield fields

Ad
w and ψd

w via (6.29) and (6.38). The corresponding dynamic electric field Ed
w and magnetic

field Bd
w are

Ed
w := −∇ψd

w − ∂Ad
w/∂t, Bd

w := curl Ad
w. (6.39)
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Theorem 6.1

div Ed
w = ρd

w/ǫ0, div Bd
w = 0, (6.40)

∂Bd
w/∂t = −curl Ed

w, c−2∂Ed
w/∂t + μ0 Jd

w = curl Bd
w, (6.41)

where

−ǫ−1
0 ρd

w := 
ψd
w − c−2∂2ψd

w/∂t2, −μ0 Jd
w := 
Ad

w − c−2∂2Ad
w/∂t2, (6.42)

and

∂ρd
w/∂t + div Jd

w = 0. (6.43)

Proof Relations (6.40)2 and (6.41)1 are immediate consequences of relations (6.39). Proofs

of the remaining relations are precise analogues of those in Theorem 5.1, on invoking (6.31)

in place of (5.14), writing Ed
w in place of Ẽw , and changing superscript ‘s’ to ‘d’. �

Remark 6.2 Relations (6.40) and (6.41) constitute the general macroscopic form of

Maxwell’s equations in free space at scale ǫ in classical electrodynamics when supple-

mented by the purely kinematic relations (2.8), (2.20) and (2.33), with w given by (3.5).

These relations take exactly the same form when additional time averaging is implemented

in the manner of Sect. 4, specifically via invocation of properties (4.2) and (4.3). However,

although all relations are thus form invariant under changes of length and time scales, the

phenomena they represent may not be so obliging. Indeed, fields ρd
w and Jd

w , which are the

dynamic analogues of charge and current densities ρw and jw , are to be expected to depend

upon the spatial and temporal scales associated with measurements of the phenomena of

interest. Furthermore, fields ρd
w and Jd

w (or their time-averaged counterparts) can be con-

sidered to drive associated electromagnetic phenomena: their prescription gives rise to the

inhomogeneous d’Alembert equations (6.42) for the corresponding potentials ψd
w and Ad

w

which in turn (via (6.39)) generate the relevant fields Ed
w and Bd

w which satisfy (6.40) and

(6.41). In particular, suppose the 
-time averages of ρd
w and Jd

w vanish in some region. Then

in this region the corresponding fields Ed
w and Bd

w satisfy (cf. (6.40)1 and (6.41)2),

div Ed
w = 0, div Bd

w = 0, (6.44)

∂Bd
w/∂t = −curl Ed

w, c−2∂Ed
w/∂t = curl Bd

w. (6.45)

Accordingly, from (6.45)1, (6.45)2 and (6.44)1,

∂2Bd
w/∂t2 = −∂/∂t

{

curl Ed
w

}

= −curl
{

∂Ed
w/∂t

}

= −c2 curl curl Bd
w = −c2

(

∇
{

div Bd
w

}

− 
Bd
w

)

= c2
Bd
w, (6.46)

and, similarly,

c−2∂2Ed
w/∂t2 = 
Ed

w. (6.47)

That is, both the electric and magnetic fields constitute wave disturbances travelling at speed

c wherever and whenever ρd
w and Jd

w both vanish.
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Remark 6.3 Fields ψd
w and Ad

w with f (ua
i ) = 1/4πua

i are the Liénard-Wiechert potentials.

These were derived in connection with solving inhomogeneous d’Alembert equations of

form (6.42) using Green’s functions (cf., e.g., [13], §6.4 and Jones [15], §3.1).

Remark 6.4 If ua
i > ǫ + δ, then (cf. (6.38)) βi f (ua

i ) = βi/4πua
i . To discover the physical

interpretation of βi/u
a
i , note that

ui(x, t) = xi(t) − x = xi(τ ) + ẋi(τ )(t − τ) + o(t − τ) − x. (6.48)

With τ = τi(x, t) and recalling (6.6), (6.9), (6.8) and (6.17),

ui(x, t) = ua
i (x, t) + vi

(

τi(x, t)
)

ua
i (x, t)/c + o(t − τi)

= ua
i (x, t)

(

ûa
i (x, t) +

(

β−1
i c−1va

i

)

(x, t)
)

+ o
(

ua
i /c

)

. (6.49)

Suppressing arguments x and t , it follows that

ui = ‖ui‖ = (ui .ui)
1/2

= ua
i

{(

ûa
i + va

i /βi c
)

.
(

ûa
i + va

i /βi c
)}1/2

+ o
(

ua
i /c

)

= ua
i

(

1 + ûa
i .va

i /βi c
)

= ua
i

(

1 + (1 − βi)/βi

)

= ua
i /βi, (6.50)

via (6.15)2 and neglecting terms of order O((va
i /c)

2) and o(ua
i /c). Accordingly, if ua

i >

ǫ + δ, then

βi f
(

ua
i

)

= βi/4πua
i = 1/4πui, (6.51)

upon neglect of terms as in (6.50).

Remark 6.5 Macroscopic steady-state situations were discussed in Sect. 5 and generalised

to dynamic contexts via definition (5.34) of a dynamic electric field Ẽw together with the

consequences exhibited in Theorem 5.1. In order to take account of non-instantaneous in-

formation transfer the artifice of hypothetical radar signalling was introduced. However,

such monitoring would not only be impracticable but also intrusive. Indeed, radar signals

would interact with electrons and nuclei, and constitute a measurement process requiring a

quantum mechanical description. Nevertheless, the discussion captures precisely how infor-

mation concerning a moving charge is communicated: this is transmitted precisely as the

signal after reflection.

7 The Force on a Moving Charge

Consider the consequences of assuming that the Lorentz force relation (1.9) has general

validity. In such case the force acting on a point charge q moving with velocity v in an

inertial frame would be (cf. (6.39))

F = q
(

Ed
w + v × Bd

w

)

(7.1)

= q
(

−∇ψd
w − ∂Ad

w/∂t + v × curl Ad
w

)

. (7.2)
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Here field values are calculated at the instantaneous location x of q at time t . If ua
i (x, t) >

ǫ + δ for all charges Pi , then f (ua
i ) = 1/4πua

i (cf. Remark 3.6) and the contribution from

Pi to F is

Fi := q
(

Ed
i + v × Bd

i

)

, (7.3)

where (cf. (6.39)1, (6.38) and (6.29))

Ed
i := −∇

{

(qi/4πǫ0)
(

βi/u
a
i

)}

− ∂/∂t
{

(μ0 qi/4π)va
i /u

a
i

}

(7.4)

and

Bd
i := curl

{

(μ0qi/4π)va
i /u

a
i

}

. (7.5)

Recalling (6.18) and writing

γi := βi/u
a
i (7.6)

yield (via (5.18))

Ed
i = −(qi/4πǫ0)

{

∇γi + c−2∂/∂t{γivi}
}

(7.7)

and

Bd
i =

(

qi/4πǫ0c
2
)

curl{γi vi}. (7.8)

Lemma 7.1

∇γi = c−1γ 2
i vi + γ 3

i

(

1 − v2
i /c

2 − v̇i .ua
i /c

2
)

ua
i , (7.9)

∂/∂t{γivi} = γ 2
i ua

i v̇i − γ 3
i

{

vi .ua
i +

(

ua
i /c

)(

v2
i + v̇i .ua

i

)}

vi, (7.10)

curl{γivi} = c−2γ 3
i ua

i ×
{

cγ −1
i v̇i +

(

c2 − v2
i − v̇i .ua

i

)

vi

}

. (7.11)

For brevity proofs of these results are omitted, as are those of the following theorem.

Theorem 7.1

Ed
i = −

(

qi/4πǫ0c
2
)

ua
i γ

3
i

{

α1ûa
i + α2vi + α3v̇i

}

(7.12)

and

Bd
i = ua

i ×
(

qi/4πǫ0c
3
)

γ 3
i {α2vi + α3v̇i}, (7.13)

where

α1 := c2 − v2
i − v̇i .ua

i , α2 := c−1α1, α3 := γ −1
i . (7.14)

Corollary 7.1

Bd
i = −c−1ûa

i × Ed
i . (7.15)

This is an immediate consequence of (7.12) and (7.13).

Remark 7.1 These results duplicate those given in Griffiths [11]. In particular, (7.12) is

expressed (cf. op. cit. (10.65)) as

Ed
i =

(

qi r/4πǫ0(r .u)3
){(

c2 − v2
i

)

u + r × (u × v̇i)
}

, (7.16)
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where

r := −ua
i , r := ‖r‖, u := −cûa

i − vi . (7.17)

Thus (cf. (6.18), (6.15)2 and (7.6))

r .u = cua
i + ua

i .vi = cua
i

(

1 + ûa
i .va

i /βi c
)

= cua
i /βi = cγ −1

i . (7.18)

Remark 7.2 From (7.3) and (7.15),

Fi = q
{

Ed
i − c−1v ×

(

ûa
i × Ed

i

)}

= q
{(

1 + c−1v . ûa
i

)

Ed
i − c−1

(

v .Ed
i

)

ûa
i

}

. (7.19)

Equivalently,

Fi =
{(

1 + c−1v . ûa
i

)

1 − c−1ûa
i ⊗ v

}

Ed
i . (7.20)

Remark 7.3 The results of Theorem 7.1 furnish individual contributions to the macroscopic

fields which satisfy the Maxwell relations (6.40). There were two underlying assumptions

involved: (i) separations ua
i were to exceed ǫ + δ, where ǫ was associated with any scale at

which the Biot-Savart law is valid (cf. identifications (5.7) and (5.8)), and (ii) the potentials

given in (5.13) were assumed to have dynamic generalisations (6.38) and (6.29).

8 Summary and Concluding Remarks

The microscopic basis of classical macroscopic electromagnetic relations has been investi-

gated via recognition of the rôle played by spatial and temporal averaging, here implemented

in terms of weighting functions. Modelling electrons and nuclei as point charges, any choice

w of weighting function yielded definitions ρw and jw of charge and current densities which

satisfy (1.6). Any solution a to div a = w gave rise to purely electrokinetic fields Dw and

Hw which satisfy (1.1) and (1.2). At any prescribed scale ǫ, choice of a specific and natural

weighting function resulted in binary decompositions (3.35) of Dw and Hw . These decom-

positions introduced electric and magnetic polarisation densities together with electrokinetic

fields Ew and Bw that were expressible in terms of scalar and vector potentials ψw and Aw ,

respectively. The experimental laws of Coulomb and Biot-Savart enabled the macroscopic

time-independent electric and magnetic fields Es
w and Bs

w in free space to be expressed as

scalar multiples of Ew and B
s
w and hence in terms of potential functions ψ s

w and As
w . Fields

Bs
w and As

w satisfy (1.3) and (1.5), and Es
w satisfies (1.7) and (1.8) in this macroscopically

stationary context. Generalisation to macroscopically dynamic situations was effected in two

stages. In the first stage the dynamic electric field was formally defined via (1.7), with ψ and

A identified with ψ s
w and As

w , and the consequences exhibited in Theorem 5.1. The second

stage addressed the consequences of non-instantaneous transmission of information: this in-

volved selection of appropriate modified versions ψd
w and Ad

w of ψ s
w and As

w , and resulted in

the final form of the relations under investigation, displayed in Theorem 6.1. The individual

contribution of any given charge to the force on another moving charge, as predicted by the

Lorentz relation (1.9), was computed as an exercise and for completeness.

Remark 8.1 Relations (2.8), (2.20) and (2.33) are completely general and electrokinetic

in nature. However, while Maxwell’s equations (6.40)1,2 and (6.41)1,2 hold in vacuo, their
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counterparts in regions occupied by matter depend upon the matter in question, and thus

must incorporate constitutive relations. The simplest, for homogeneous isotropic media, are

Pw = χeEw, Mw = νmBw, (8.1)

where χe and νm are dimensionless constants. Accordingly, from (3.35)1,2,

Dw = (1 + χe)Ew, Hw = (1 − νm)Bw. (8.2)

If the Coulomb and Biot-Savart laws hold within a medium with unchanged values of ǫ0 and

μ0, then from (5.5) and (5.9)

Dw = ǫEs
w, Hw = μ−1Bs

w, (8.3)

where, writing χm := νm/(1 − νm),

ǫ := (1 + χe)ǫ0, μ := (1 + χm)μ0. (8.4)

Dimensionless constants χe and χm are termed the electric and magnetic susceptibilities of

the medium (cf. [14], p. 354 and p. 412). In such case relations (2.20) and (2.33) yield

div Es
w = ǫ−1ρw, ∂Es

w/∂t + ǫ−1jw = (ǫμ)−1curl Bs
w. (8.5)

Remark 8.2 Consideration of information transmission in Sect. 6 involved invariance of

signal speed, the fundamental phenomenon addressed by special relativity. The final results

are accordingly consistent with this theory, but have been derived independently of other

relativistic considerations (cf. [9, 14]) and are thus described as classical. Of course, the

quantum mechanical notion of electron spin and its macroscopic consequences lie outwith

a classical formulation.

Remark 8.3 The ubiquitous nature of electromagnetism requires that all charges in the uni-

verse be a priori considered to contribute to local values of electric and magnetic fields.6

In examining specific localised behaviour those charges in the region of interest may be

distinguished from all others, resulting in internal or localised fields together with their

complements, the corresponding external or ‘far’ fields.

Remark 8.4 As indicated in Remark 6.2, when time-averaged the relations of Theorem 6.1

are form-invariant with respect to changes in the choices of length and time scales associ-

ated with the spacetime averaged fields which appear therein. However, if local field values

are associated with measurements, then the sensitivity of the measuring devices introduces

associated and specific scales of length and time.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-

national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license, and indicate if changes were made.

6For example, the terrestrial magnetic field and its effect upon compass needles, or the effect of solar flares

upon long range radio communications.
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