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ABSTRACT:  In this work, we present a novel, geopolymer temperature-sensing patch which 

can be heated using induction and used to infer thermal conductivity of the surrounding 

medium. The sensor patches, applied to concrete specimens, were fabricated by loading a 

geopolymer binder with 0 - 60 wt% ground magnetite. The magnetite content allowed the 

patches to be heated using an induction coil, while temperature profiles were monitored via 

changes in patch electrical impedance. Sensor patches were left uncoated, or were coated in 

surface-water, soil and sand. Each material provided a unique thermal signature which, with 

simple signal processing, could be used to reliably detect whether the patch was buried. 
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INTRODUCTION 

Deburial and scouring can degrade the stability of any large civil structure. Structures subjected 

to large dynamic loads or changing water levels, such as wind turbines and bridges, are 

particularly affected [1]. Traditional automated scour monitoring methods and instrumentation 

are often expensive to install and maintain, so there is keen interest in developing new deburial 

monitoring systems. 

Several methods have been proposed for deburial detection, including solutions based on fibre 

optics and micro-electromechanical system (MEMS) devices [2]. Unfortunately, the technical 

challenge of providing robust packaging for fibre and MEMS sensors can present a barrier to 

their widespread use [3, 4]. 

Geopolymer binders are a novel class of chemically stable, low shrinkage piezoresistive 

materials, which are highly suited to civil applications. Unintrusive and easy to apply, 

geopolymer binders provide excellent adhesion to concrete structures [5]. Once cured, the 

binders form a tough ceramic-like resin that can be used to detect environmental parameters 

via changes in electrical impedance [6].  

In this preliminary work, geopolymer binders are doped with a ferromagnetic mineral and then 

applied to concrete surfaces. The doping allows the patches to be heated using an induction 

coil, while the electrical impedance of the patches is interrogated to monitor patch temperature 

during heating and cooling. Thermal decay signatures are then used to detect whether the sensor 

is surrounded by air, soil, sand, or a mixture of these materials. It is proposed that these 

geopolymer sensor patches may provide a new method of detecting deburial of concrete assets. 

 

THEORY OF OPERATION 

Geopolymer Binders 

Adhesive geopolymer gels can be created by mixing fly ash with an alkaline activator. When 

the gel is exposed to elevated temperatures, it cures over several hours to form a solid, ceramic-

like binder. On the microscale, geopolymers are amorphous materials, comprised of a matrix 

of long, cross-linked chains of tetrahedral AlO4 and SiO4 units [7]. Free alkali ions, such as 

Na+, reside within this matrix to balance its electrical charge. These residual ions act as charge 

carriers, allowing geopolymers to behave as fast ionic conductors, with conductivities of order 

10-6 S/cm [8]. 

When an alternating current, I, is applied across a geopolymer, the measured voltage, V, is 

dependent on the specimen's impedance, Z: 

ܫܸ ൌ ܼ ൌ  (1) ܣߪܮ

Here, ı and L are the conductivity and length of the geopolymer sample, while A is the contact 

area between the geopolymer and the electrodes. If it is assumed that the contact area remains 

reasonably constant, then partial differentiation of (1) reveals the temperature, T, dependence 

of the impedance: ͳܼ ߲ܼ߲ܶ ൌ ௅ߙ െ ͳߪ  (2) ߲ܶߪ߲



where ĮL =  (1/L)(∂L/∂T) ≈ 10-6 ˚C-1, is the geopolymer’s coefficient of thermal expansion [9].  

The dependence of ionic conductivity on temperature is governed by the Arrhenius equation, 

parameterised by a constant B [10]: ߪ ן ݁షಳ ሺ೅ష೅೒ሻൗ
 

(3) 

where Tg ≈ 800 K is the geopolymer glass transition temperature [11]. The parameter B is 

proportional to the activation energy of the alkali ions in the geopolymer, and typically takes a 

value ~104. Note that below Tg, geopolymer conductivity increases with temperature because 

the alkali charge carriers become more mobile as the sample is heated. Differentiation of 

equation (3) and substitution into (2) shows that the temperature sensitivity of the impedance 

takes the form: οܼܼ ൌ ൭ߙ௅ െ ൫ܶܤ  െ ௚ܶ൯ଶ൱ οܶ (4) 

where B/(T-Tg)
 ĮL. Below Tg, fractional shifts in the measured impedance take unique ب 2

values. If the geopolymer patch remains close to room temperature, then Tg ب T, and equation 

(4) is approximately linear: οܼܼ ൎ ቆ ܶܤ௚ଶቇ οܶ (5) 

Characterisation of this equation allows geopolymer patches to be used as thermometers 

 

Induction Heating 

Alternating the current within an induction coil sets up a local, temporally changing magnetic 

field. This can initiate Eddy currents at the surfaces of nearby conductors, resulting in Joule 

heating. While geopolymers may experience some Joule heating, their electrical conductivities 

are ~1012 times lower than most metals, so the Eddy currents generated are small. 

To enhance heating, geopolymer gels may be doped with ferromagnetic materials prior to 

curing. Ferromagnets possess an inherent magnetisation, designated by the vector M. 

Application of the induction coil’s external field, H, causes the magnetic domains within the 

ferromagnet to expand and contract along the axis of M. During one cycle of the H-field, the 

friction produced by this movement generates additional heat. 

 

SENSOR MANUFACTURE AND TESTING 

Overview 

The configuration of the geopolymer patch sensor is shown in Figure 1a. A magnetite-doped 

geopolymer sensing patch is applied to the surface of a small concrete cube (each side 

approximately 3 cm) and protected with a thin layer of epoxy. Four electrical probes are 

embedded into the geopolymer layer. An alternating current, I, is applied across the two outer 

probes using a current source, while the voltage, V, is measured over the two inner probes. 

Impedance, Z, is then calculated using equation (1). Separation of the electrodes allows for 

more accurate impedance monitoring as it reduces contact and lead resistances. 



 

 

Figure 1, The configuration of the geopolymer patch sensor, shown in a), and the induction 

heating set up, shown in b). 

 

The patch sensor was left uncovered in air or covered with surface water, dry sand, wet sand 

or wet soil. The instrumented concrete block was then heated by a two-turn induction coil, as 

shown in Figure 1b. The current within the coil was driven at 100 – 200 A amplitude and 350 

kHz frequency for 15-20 seconds. 

For initial characterisation, patches of varying magnetite content were heated in air for 20 

seconds while sensor impedance was monitored. Temperature measurements from a fibre 

Bragg grating thermometer were used to verify that impedance shifts were indeed a result of 

geopolymer patch heating [12]. Finally, a patch with 35 wt% magnetite content was 

sequentially tested while uncovered and while covered in surface water, dry sand, wet sand, or 

wet soil. Impedances were monitored for each case during 15 seconds of induction heating and 

~80 seconds of cooling. 

 

Manufacturing Method 

The geopolymer gel was fabricated by combining 72 wt% low-calcium, class-F fly ash, with 
20 wt% sodium silicate solution (Na2SiO3, with 29.4 wt% SiO2 and 14.7 wt% NaO2, in water) 

and 8 wt% of 10 M sodium hydroxide solution. 

Batches of geopolymer gel, each 2 – 3 grams, were mixed with varying quantities of crushed 

magnetite – a ferromagnetic mineral containing iron oxides. Magnetite contents in each batch 

varied from 0 – 60 % by weight. Each doped geopolymer gel batch was applied to the surface 

of a separate concrete cube, prior to curing in an oven for 3 days at 40 ˚C. After curing, a thin 
layer of epoxy was applied over the patches to protect them from mechanical abrasion and 

changing chemical contamination, as these factors may lead to spurious impedance signals. 

 

Interrogation 

Alternating currents of 30 – 80 µA amplitude were applied across the outer-probes of the 

sensor, while the voltage over the inner probes was measured using a data acquisition card. The 

typical voltage noise was 2 mV and the interrogation rate was ~10 kHz. High-frequency 

alternating currents at 1 kHz frequency were used during impedance monitoring as this reduces 

the effects of capacitance and false polarisation potentials at the sensor electrodes [13]. 

a)        b) 



 

RESULTS 

Initial Characterisation 

Figure 2 shows the evolution of patch temperature (as measured by the fibre gauge) and its 

electrical impedance during 20 seconds of induction heating and one minute of cooling. 

Profiles for magnetite contents of W = 10, 20, 30 and 35 wt% are shown.  For W < 30 wt%, the 

maximum temperatures achieved are approximately linear with magnetite content. Beyond 

this, temperature saturation occurs as the induction heating rate cannot overcome heat losses. 

The temperature and impedance profiles match, which confirms that the impedance is 

providing a measurement of heating and cooling. As the geopolymer sensor is more sensitive 

to temperature than the fibre gauge, the impedance signal provides a low-noise, high resolution 

measurement. 

The peaks in temperature and impedance shifts from Figure 2 are plotted against each other in 

Figure 3. This is a graphical representation of equation (5), and so the parameter B = 5×104 can 

be estimated from the slope of the linear fit. This is of the same order (104) as that suggested 

by underlying ionic conductor theory. 

Note that, while the results are not presented here, sensors with magnetite contents as high as 

60 wt% were briefly tested. The higher contents yielded little or no improvement to induction 

heating. Furthermore, as with any cementitious substance, as more aggregate (magnetite) was 

added to the geopolymer, its flow and adhesion decreased. This decreased the robustness of the 

patches, so geopolymer gels with 35 wt% magnetite were used for the remainder of this work. 



 
Figure 2, Temperature and impedance evolution of doped magnetite geopolymer specimens 

during 20 seconds of induction heating. 

 

Deburial Sensing 

The 35 wt% patch sensor was left uncovered or covered in water, soil or sand and then 

induction heated for 15 seconds. The impedance profiles for the various materials tested are 

shown in Figure 4. Note that two separate cases for air are provided to demonstrate sensor 

repeatability. 

While there are minor differences in the temperature rise portions of the graphs, the temperature 

decays provide a more distinct signature for each material. Temperature decays are slower for 

air and sand due to their lower thermal conductivities (<1 W/m.K). Wet soil and wet sand have 

much higher thermal conductivities (1-4 W/m.K) and so provide the most rapid temperature 

decays. 



 
Figure 3, Relationship between maximum geopolymer temperature and impedance shift. 

Magnetite contents (wt%) are labelled. 

 

 
Figure 4, Patch (35 wt% magnetite) response during 15 seconds of induction heating. The 

sensor was covered in dry sand, nothing (air), water, wet soil and wet sand. The impedance 

response has been normalised by its maximum value. 

 

In this work, a simple algorithm was written to allow software to distinguish between the 

impedance-shift signatures for each material. The line labelled air in Figure 4 provides a set of 

reference impedance-shift values. These are denoted Air i, for i = 1… N. Any other line, such 

as dry sand, can be denoted by a different set, Gi. The difference between Gi and Air i is 

calculated on a point-by-point basis, and the difference is then integrated numerically:  



݂ሺܩሻ ൌ ȟʹݐ ෍ሺܩ௜ െ ௜ሻݎ݅ܣ ൅ ሺܩ௜ାଵ െ ௜ାଵሻேݎ݅ܣ
௜ୀଵ  (6) 

where ∆t is the time interval between measurement points. 
Values for |f(G)| for each of the materials tested are provided in Figure 5. Each of the materials 

is clearly distinguishable from air, so it the sensor is able to detect deburial. There are 

limitations to the approach, however. While water and dry sand signatures are clearly 

distinguishable in Figure 4, the difference is less obvious in Figure 5. Distinguishing between 

these, and a wider variety of materials at different ambient temperatures in real applications, 

may require more sophisticated machine learning approaches. 

 

 
Figure 5, Values of |f(G)| for the impedance decay of each line from Figure 4. 

 

CONCLUSIONS 

Thermal conductivity sensor patches have been fabricated by doping geopolymer binders with 

ground magnetite. When the geopolymer’s magnetite content was less than 35 wt%, it retained 

its adhesion and flow characteristics, allowing it to be painted on to concrete surfaces prior to 

curing. Once cured, the magnetite doping allowed the patches to be heated by up to 3 °C  within 

20 seconds using a 100 A induction coil. Temperature changes in the patch were monitored via 

changes in its electrical impedance. In this preliminary work, sensor patches were able to 

distinguish between the presence of air, surface water, dry sand, wet sand and wet soil, as each 

material provided a unique thermal signature. Crucially this allows the sensor to detect whether 

it is buried. With further development, these sensors may be used to monitor scouring of wind 

turbine foundations, deep sea cables and bridges. 
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