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Abstract—This paper describes the regime-switching auto-
regressive models used to win the EEM 2017 Wind Power
Forecasting Competition. The competition required participants
to produce daily forecast wind power production for a portfolio
of wind farms from 2 to 38 hours-ahead based on historic
generation and numerical weather prediction analysis data only.
The regimes used in the methodology presented are defined on the
previous day’s weather conditions using the k-medians clustering
algorithm. Cross-validation is used to identify models with the
best predictive power from a pool of candidate models. The final
methodology produced a final weighted mean absolute error
4.5% lower than the second place team during the two-week
competition period.

Index Terms—Wind Power, Forecasting, Time Series, Cluster-
ing, Autoregression, Regime Switching

I. INTRODUCTION

Wind power forecasting is an essential process in mod-

ern power system operation in networks with significant

penetration of wind generation, and is central to successful

electricity market participation in these regions. Short-term

forecasts from hours- to days-ahead are used in generation

and maintenance scheduling, and for trading in electricity

markets forecasts; and very-short-term forecasts from minutes-

to hours-ahead are used for participation in intra-day markets

and by power system operators to balance supply and demand

in real time [1], [2]. Due to the stochastic nature of the wind

resource forecasts will always be required to inform decisions

where future wind generation is a factor. Furthermore, the

importance and value of high-quality forecasting will increase

with the penetration of wind power. The growing demand

for energy forecasts, and for improvement in forecast quality,

has motivated a great deal of research and development, and

also competitions to compare methodologies in a controlled

environment, see [3], [4], for example.

This paper details team p9’s winning approach to the

problem set in the EEM 2017 Wind Power Forecasting Com-

petition. The competition required participants to forecast the

aggregated wind power generation from a portfolio of wind

farms from 2 to 38 hours-ahead at 15 minute resolution on

a daily basis for two weeks. Participants were provided with

one year of historic power production and numerical weather

prediction data (analysis only, no forecasts) to train their

forecasting models, plus daily updates during the competition

period. Team p9’s solution was based on regime-switching

auto-regressive models with regimes defined on the most

recent day’s weather. This approach won the competition with

a 4.5% lower error score (the competition was scored on re-

weighted mean absolute error) than the second place team.

Deterministic wind power forecasts, the focus for this com-

petition, comprised of single-valued best estimates of future

energy for a particular time-horizon are approaching techno-

logical maturity. A comprehensive review of the concerted

research effort of the wider academic community can be found

in [5], [6]. However, due to the stochastic nature of the wind

there is a broad consensus in the academic community that

forecasts should be probabilistic in order to quantify forecast

uncertainty [7], [8]. Despite this, many forecast users still only

utilise deterministic forecasts due to their interpretability and

difficulties associated with incorporating complex probabilistic

information into decision-making processes. Therefore, im-

proving deterministic power forecasts is an important pursuit,

and developing new methodologies is the focus of current

research [9], [10]. Furthermore, improvements in deterministic

forecasting will translate to improvements in probabilistic

forecasting in many cases.

The methodology used in this paper has particular relevance

to very-short-term wind power forecasting where it is typically

assumed that statistical models based on time series analysis

are superior to the those which rely on physical model outputs,

i.e. Numerical Weather Prediction [6], [11]. The superiority

of purely statistical models within this time horizon is due

to a number of factors including: the most recent input

measurements to a NWP may be several hours old by the

time the forecast is issued, and errors introduced by the spatial

interpolation process required to make predictions at a specific

point of interest from gridded NWP output. The competition

set-up did not include numerical weather prediction forecasts

so only time series methods could be considered for all

forecast horizons; however, we show that there is value in

conditioning time series model on features derived NWP data.

A wide variety of well established and time series methods

have been adapted for power forecasting including autore-

gressive [12] and autoregressive moving average [13] models,

in addition to contemporary methods such as neural net-

works [14] and Markov chains [15]. Hybrid methods that

combine several time series models have also been studied and

shown to outperform individual methods in some cases [16].

Spatial models that consider multiple locations simultaneously

have been developed and shown to improve forecast skill at all

measurement locations [17], [18], and it has been shown that

the spatial dependency structure itself is dynamic and exhibits



seasonality and dependence wind direction, for example [19],

[20].

Time series models may be conditioned on observed or

unobserved regimes. Wind speed forecasting techniques based

on switching between different models depending on wind

direction is proposed in [19] with regimes selected via a

cross-validation procedure. Hidden-Markov regime-switching

methods have been developed to forecast offshore wind power

with the number of regimes chosen to be three to reflect the

three distinct regions of the wind farm power curve [21],

[22]. More recently, cyclone detection has been used to

predict periods of potentially large forecast error in day-ahead

wind power forecasting [23] and atmospheric classification

has been used to improved very-short-term spatio-temporal

wind forecasting [24]. The large-scale meteorological situation

has a clear bearing on forecast performance but it is often

overlooked by studies, which restrict themselves to wind and

power time series only. In this work, the mean wind vector

for the 24 hours preceding the forecast issue time are used

to define regimes on which simple time series models are

conditioned.

While many approaches to wind forecasting have been pro-

posed, it is often difficult to compare their performance since

results will differ across datasets and implementing multiple

sophisticated methods for comparison on the same dataset

is challenging. For this reason, forecasting competitions are

very valuable pursuit and provide valuable learning for both

forecast producers and users.

This paper is organised as follows. Section II details the

methodology used in the competition including the data-

exploration used to inform model selection and Section III

details the cross-validation and competition results. Section IV

indications some proposed model improvements and finally,

Section V presents the conclusions.

II. METHODOLOGY

The following section details the approach taken by team p9

from exploration of the competition training dataset to model

fitting and evaluation.

A. Competition Framework

The competition was based on forecasting the 15 minute

resolution aggregated wind power generation from a portfolio

of wind farms from 2 to 38 hours-ahead on a daily basis. For

each day’s forecast the previous 24 hours of generation data

and NWP analysis at 3 hour resolution data for 10 geographic

locations is provided. A training dataset comprising 1 year

of the same data is also provided for model fitting. The

meteorological parameters provided are zonal and meridional

wind speed at 2m, 80m and 100m above ground, temperature

at 2m, and global surface radiation. Only wind speeds at 100m

at one of the 10 locations and the most recent 1.5 hours of

power data were inputs to p9’s final model.

B. Data Exploration

The first stage in the process involves visually exploring the

given data to identify the basic characteristics of the dataset.
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Fig. 1. Contour plot of the empirical power curve for the wind park portfolio.
Power contours (labelled, MW) are plotted for zonal and meridional wind
speed 100m above ground from ‘location 4’ in the competition training data.
The dataset only spans the illustrated domain. There is a strong directional
dependence on power performance and maximum wind speed.

Inspection of the aggregate power versus wind speed and

direction from the 10 NWP locations revealed that few of

the NWP grid points provided were related to the location of

the wind portfolio of interest. The portfolio power curve (with

direction) at location 4 is illustrated in Figure 1. The familiar

wind power curve is clearly visible and shows a significant

directional dependence. It was also observed that the capacity

of the portfolio appeared to increase over the course of the

1 year of training data; however, with the limited information

available this was difficult to quantify and was not incorporated

into our final model.

C. Benchmark Models

Initially, we implement a selection of standard benchmark

models against which we can evaluate more complex ap-

proaches. These were: the ‘mean forecast’ where the forecast

for every horizon is the mean of all historic data; persistence,

where the forecasts for every horizon is equal to the most

recent measurement; and an autoregressive (AR) model of

order p, where the forecast is a weighted sum of p previous

measurements (or forecasts in when making multiple set-ahead

predictions). We also considered a generalised additive model

based on a single lagged measurement and diurnal and annual

seasonality; an AR(p) model with parameter estimation via

the least absolute shrinkage and selection operator (LASSO);

and a tree-based gradient boosting machine (GBM). Following

evaluation of these models, further modifications are explored.

All models are evaluated via k-fold cross-validation which

allows for efficient out-of-sample testing over the relatively

small training dataset to gives a representative measure pre-

dictive performance.

1) Autoregressive Model: Modelling the wind power time-

series as an AR(p) process assumes that the wind power at

time t is a weighted sum of p past measurements plus some



error ǫt,

yt = φ0 +

p
∑

i=1

φiyt−i + ǫt , (1)

where φ0 is the model intercept and φi, i > 0 are the

autoregressive coefficients associated with the ith lag. The

model parameters are estimated by ordinary least squares

(OLS), which produced the optimal linear unbiased predictor

in the case where ǫt has constant variance and is serially

uncorrelated. Although this condition is likely violated, the

simplicity and robust performance of this model necessitate its

inclusion. The order of the model p is chosen by examining

the autocorrelation and partial correlation function of the wind

power time series [25].

As the winds are effected by the daily heating and cooling

of the Earth it is desirable to introduce the time-of-day as

an exogenous dummy variable to capture diurnal profiles. An

alternative approach would be to model the diurnal trend via

some periodic function such as a Fourier series and/or de-trend

the time series. The new model is denoted ARX(p) and written

yt =

p
∑

i=1

φiyt−i +

q−1
∑

j=0

ηjDj,t + ǫt , (2)

where

Dj,t =

{

1 , ⌊ t%q

r
⌋ = j

0 , otherwise
, (3)

t % q denotes the remainder of t divided by q, and ⌊x⌋
denotes the floor operator which returns the value of x rounded

down to the nearest integer. In this work data are 15 minute

resolution therefore q = 96. To obtain 96 dummy variables,

one for each 15 minute period of the day r = 1, and to obtain

hour-of-the-day dummy variables r = 96
24 = 4. The final value

of r is chosen based on cross-validation. The parameters φi

and ηj are estimated by OLS as for the AR(p) model. Note the

intercept φ0 is superseded by ηjDj,t which may be interpreted

as a time-dependent intercept.

2) Generalized Additive Model: Generalised additive mod-

els may be used to model smooth non-linear responses ex-

planatory variables, in contrast to the linear responses of

the ARX models described above. This can be achieved by

recasting the linear model as an additive model of smooth

functions

yt = β1f1(yt−1) + β2f2(Dt) + β3f3(At) + ǫt , (4)

where Dt = t%q, At = t%(q×365), and fi(·), i = 1, 2, 3 are

smooth functions to be estimated. Here, we choose f1(·) to be

a cubic spline, and f2(·) and f3(·) to be cyclic cubic splines

to capture smooth non-linear dependence on the first lagged

measurement, time-of-day and day-of-year, respectively. The

parameters βi, i = 1, 2, 3 and those of the cubic splines are es-

timated by penalized least squares to control the ‘wigglyness’

of the cubic splines as described in [26].

3) LASSO: The least absolute shrinkage and selection

operator [27] simultaneously performs linear regression and

feature selection estimation by shrinking the absolute size

of coefficients β by adding the ℓ1 norm of β to the model

cost function. For a set of T samples, {Y,X}, where Y

and X are matrices of vertically stacked instances of yt and

xt = [yt−1, ...yt−p], respectively, the LASSO cost function is

given by

||Y −Xβ||22 + λ||β||1 . (5)

The user-defined shrinkage parameter λ controls sparsity and

is typically selected via a cross-validation procedure. Here, p is

set by the largest lag determined to have statistical significance

in the partial autocorrelation function of yt with a significance

level of 1%. The values of β and λ are estimated using the R

package glmnet which minimises (5) by cyclical coordinate

descent [28].

4) Gradient Boosting Machines: Gradient boosting con-

structs a powerful predictive model from an ensemble of weak

learners where, in this case, each learner is a regression tree.

The ensemble of regression trees is constructed sequentially

by estimating a new tree according to some user-specified

differentiable loss function. Importantly, the optimisation is

solved by steepest descent [29]. The user must specify the

number of trees to fit, n, and the number of regions each tree

divides the input space into. An additional shrinkage parameter

may be included to control the learning rate of the fitting

procedure and reduce the impact of individual trees in the

ensemble. In this implementation, lagged measurements and

time of day and year variables are used as inputs. For more

information on this algorithm please refer to [29].

D. Cluster Based Regime-Switching

Motivated by knowledge that synoptic-scale meteorological

conditions persists for several days (longer than the compe-

tition’s 38-hour forecast horizon) and our observation that

the production characteristics of the wind park portfolio vary

significantly in different regions it’s directional power curve,

we develop a regime-switching approach in an attempt to

model, and forecast, these distinct behaviours separately.

Regime-switching models in short-term wind forecasting

have been employed to capture structural differences in wind

power time series due to localised weather phenomena and

characteristics of wind turbine power curve [19], [22], [24].

These models either utilise exogenous variable, such as wind

direction [19] or atmospheric mode [24], or model some

unobserved hidden-Markov process [12].

Here, we define a number of discrete regimes based on

the clustering weather data available in the EEM competition

paradigm. We define the mean wind vector θt = (ũt, ṽt) where

ũt and ṽt are the mean zonal and meridional wind speeds

over the 24 hours immediately preceding time t. The k-median

algorithm [30] is then used to define k regimes. This algorithm

generates disjoint regions Rk that collectively cover the input

space spanned by θt.

A level plot, showing the history of the weather regime st
during the training dataset is plotted in Figure 2 where k = 5
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Fig. 2. Level plot of weather regime st for k = 5 clusters, overlaid with
regime number. Month 13 consists of the competition period data.

clusters. We observe that in general the regime persists for

several days and therefore that it is reasonable to forecast up

to 38-hours ahead assuming no change in regime. A possible

extension would be to forecast the future regime, but that is

beyond the scope of this work.

Separate AR(p) and ARX models are fit for each regime

and forecasts are produced using the model corresponding to

the regime at the forecast issue time. The number of clusters

is selected via cross-validation.

The regime-switching ARX model is written

yt =

p
∑

i=1

φ
( st)
i yt−i +

q−1
∑

j=0

η
(st)
j Dj,t + ǫt (6)

where

st =























1 for θt ∈ R1

2 for θt ∈ R2

...

k for θt ∈ Rk

. (7)

Setting all ηj = 0 reduces (6) to the regime-switching AR

model. The model above may be interpreted as a conditional

AR/ARX model where the regression parameters and condi-

tioned on the discrete switching variable st.

E. Forecast Blending

While it is expected that the performance of all models

will deteriorate with forecast horizon, the best performing

approach for a given horizon may not be the best for all others.

Therefore, the final forecast we issue is taken from the model

that has performed best in cross-validation for each specific

horizon. The transition between models is blended using a the

logistic function over one hour of the horizon purely for visual

satisfaction with negligible impact on overall performance.
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Fig. 3. Visualisation of k-median clusters for k = 5. The clusters pattern
reflects the distinct regions of the directional power curve illustrated in
Figure 1.

III. RESULTS

For simplicity, 11-fold cross-validation is used with each

month from February to December held out in turn. January

is excluded for simplicity as lagged values are unavailable for

the first day and also to reduce the influence of the apparently

depreciated capacity observed for the first months of the year.

The competition ranking is based on mean absolute error

(MAE), so that is the measure by which we evaluate candidate

forecast models. The MAE is given by

MAE =
1

N

N
∑

i=1

|yi − ŷi| (8)

where ·̂ denotes a forecast and N is the total number of

forecasts being evaluated. The competition ranking is based

on the average of the MAE for the issue day (from 10:00

to 23:45, or 2 to 15.75 hours-ahead) and the MAE for the

day-ahead (00:00 to 23:45, or 16 to 37.75 hours ahead).

This has the effect of placing a greater weight on the earlier

horizons, though our blending approach optimises for all

horizons independently so no special action is required to

optimise performance specifically for the competition.

The cross-validation results for the benchmark models for

forecast horizons from 15 minutes to 38 hours ahead are

plotted in Figure 4. Little separates the different forecasts for

the shortest horizons, but the GAM and AR models are clearly

superior to the others for horizons greater than 8 hours.

The regime-switching AR/ARX approaches were imple-

mented for 2 to 6 cluster numbers and 5 was found to be

optimal with hour-of-day dummy variables r = 4 for the

ARX model. Performance of these models is illustrated in

Figure 5. A regime-switching GAM was also implemented but

performed worse than the original GAM, perhaps due to the

higher burden of training data required for reliable parameter

estimation.

Importantly, this result reveals that at horizons up to 12

hours ahead the regime-switching AR model out-performs the
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Fig. 4. Results of 11-fold cross-validation for benchmark models.
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Fig. 5. Cross validation results for AR and cluster-based regime switching
AR and ARX models used in competition entries.

regime ARX, but at horizons greater than 12 hours the regime-

switching ARX is marginally better. Therefore, forecasts from

these two models are blended around the 12 hour-ahead

horizon to produce our final forecasts for submission during

the competition period.

The poor performance of the regime-switching ARX model

at the very short-term time-scale could be due to the unsophis-

ticated nature of the engineered diurnal features. At instances

where the wind speed is low and the last measured power

value is near the minimum, the regime-switching ARX can

give spurious results in the very short term due to the dummy

variable multipliers. However, as the AR forecast develops

through the horizon it will tend to the mean and the indicator

multipliers will give a more meaningful forecast.

A. Competition Forecasts

The competition period entailed submitting 14 forecasts on

a daily rolling basis for the quarter hourly generation from

2 to 38 hours ahead. Team p9’s entries and the code used to
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Fig. 6. Daily performance of p9 and other teams during the competition.

TABLE I
FINAL RESULTS TABLE - TOP 10

Ranking Team Weighted MAE (MW)

1 p9 19.5906
2 4C 20.5070
3 p5 20.5590
4 Zephyr 21.6042
5 dmlab 22.1197
6 Keanu 22.5210
7 return42 22.6332
8 p25 22.8069
9 DSAP XXQ 23.3469
10 DSAP group1 23.4810

produce them may be downloaded here [31]. Forecast blending

was only introduced from day 5 onwards.

The results for each day of the competition period are shown

in Figure 6 which illustrates that (with the exception of day

5 and 7) the p9’s final forecast model closely tracks the best

performing team on each day.

Performance of the top teams 10 as published by the

competition organisers is reproduced in Table I. Team p9’s

final error score is 4.5% lower compared to the second place

team.

IV. DISCUSSION

Some refinements to the models presented here may yield

further improvement in forecast performance. As mentioned in

Section II-B, the capacity of the wind farm portfolio of interest

appeared to increase over the training period. Parametrising

this capacity may have improved final forecast performance,

but we were unable to reliably estimate the portfolio’s capacity

with the data available. In addition, given more training

data it may have been possible identify a greater number or

more precise weather regimes based on a greater number of

weather variables, which may also have improved forecast

performance.

The EEM Wind Power Forecasting Competition has pro-

vided a platform for researchers and forecast producers to

compare different methodologies in a controlled environment;



however, since NWP forecasts were not available for par-

ticipants in the competition the usefulness of the winning

methodologies is limited. Day-ahead forecasts driven by NWP

typically exhibit 40%-60% improvement compared to persis-

tence [6], while our winning entry achieved less than 20%

without NWP.

V. CONCLUSIONS

This paper details team p9’s approach to the problem set

in the EEM 2017 Wind Power Forecasting Competition. The

solution was based on a blend of regime-switching auto-

regressive models with regimes defined on the previous day’s

wind conditions identified using k-medians clustering. This

approach won the competition with a weighted mean absolute

error 4.5% lower than the second-place finishers.

Rigorous evaluation of multiple candidate models, and the

blending of the best performing models for specific forecast

horizons was key to the success of team p9, as was a com-

bination of wind energy and meteorology domain knowledge

which informed modelling decisions.
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