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ABSTRACT: This study investigates the effects of key process parameters of
continuous mixing-induced supersaturation on the antisolvent crystallization of
lactose using D-optimal Design of Experiments (DoE). Aqueous solutions of
lactose were mixed isothermally with antisolvents using a concentric capillary
mixer. Process parameters investigated were the choice of antisolvent (acetone or
isopropanol), concentration of lactose solution, total mass flow rate, and the ratio
of mass flow rates of lactose solution and antisolvent. Using a D-optimal DoE a
statistically significant sample set was chosen to explore and quantify the effects of
these parameters. The responses measured were the solid state of the lactose
crystallized, induction time, solid yield and particle size. Mixtures of α-lactose
monohydrate and β-lactose were crystallized under most conditions with β-lactose content increasing with increasing amount of
antisolvent. Pure α-lactose monohydrate was crystallized using acetone as the antisolvent, with mass flow ratios near 1:1, and near
saturated solutions of lactose. A higher resolution DoE was adopted for acetone and was processed using multivariate methods to
obtain a crystallization diagram of lactose. The model was used to create an optimized process to produce α-lactose monohydrate
and predicted results agreed well with those obtained experimentally, validating the model. The solid state of lactose, induction
time, and solid yield were accurately predicted.

■ INTRODUCTION

Lactose is found in the milk of most mammals and is a
commercial commodity in the food and pharmaceutical
industries.1 Due to its variety of application as a sweetener
and excipient, lactose has been of great industrial and academic
interest.2 Its synthesis and chemistry as a naturally occurring
sugar has been extensively studied,3,4 as well as its interaction
with proteins,5 crystallization and purification,6 physical
properties, and role in secondary processing.7−9

Lactose is a disaccharide consisting of galactose and glucose,
linked by a β-1→4 glycosidic linkage. In aqueous solution the
hydroxyl group on the C1 carbon of the glucose interchanges
between the α or β anomer (Figure 1).10,11 This phenomenon
known as mutarotation occurs with ease so that either the α or
β anomer of lactose can precipitate from solution, posing a
unique challenge in lactose crystallization.12 In an aqueous
solution at neutral pH lactose will equilibrate at 37% α-lactose
and 63% β-lactose.13 This equilibrium has been reported to be
achieved within 3.5−6 h at room temperature.11,14,15 Previous
studies have shown the effects in reducing the rate of
mutarotation by using dimethyl sulfoxide as a solvent hindering

transformation to β-lactose, and allowing specific crystal growth
of α-lactose to dominate.16

α-Lactose and β-lactose exist in several solid forms (Figure
1). Lactose is known to crystallize as β-lactose anhydrous
prepared from near boiling aqueous lactose solutions17 or
heated pyridine solutions.18−20 The most common commercial
solid state of α-lactose is the hydrate form, α-lactose
monohydrate obtained from cooling crystallization in pH
neutral aqueous solutions. Other solid states include stable and
unstable forms of α-lactose anhydrous can be prepared by
heating solid samples of α-lactose monohydrate.21 A 1:1 α/β
co-crystal has also been reported.22−24 Amorphous lactose has
been prepared using spray drying, and depending on the
conditions during preparation it can consist of varying degrees
of both anomers, ranging from >95% α-lactose to <40% α-
lactose.24,25

Seeded cooling crystallization is commonly used as a method
to crystallize α-lactose monohydrate due to its stability at
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ambient temperatures and temperature dependent solubility
profile in water. Seeding to crystallize α-lactose monohydrate is
important because nucleation during the cooling crystallization
of lactose from water has induction times ranging from days to
weeks.26−28 Even with seeded cooling crystallization there are
well-known issues with fines and varied crystal morphology.
Though α-lactose monohydrate is most commonly known to
crystallize in a unique tomahawk crystal habit it has many
alternative morphologies which have shown to affect down-
stream processing29,30 and the final product properties.9,12 By
changing the morphology of α-lactose monohydrate improve-
ments have made its application as an aerosol excipient viable31

and improved the texture of ice cream.32,33

Antisolvent crystallization has been suggested to tackle some
of these issues by providing additional means to control
nucleation control, growth rates, and resulting morphologies.34

For the antisolvent crystallization of α-lactose monohydrate it is
necessary to use water as the solvent. Larhrib et al. (2003)
focused on the crystal growth, solid state, morphology, and
aggregation of lactose crystallized from aqueous solutions using
different amounts of acetone.35 Leviton et al. (1949) added
methanol to create a final 65−75% methanol/water solution at
15 °C to extract lactose from protein whey.36 Crisp et al.
(2011) observed that polymorphic selection is possible when
mixing different compositions of methanol and a solution of
lactose in water.6 By changing the proportion of methanol in
the final mixture, it was possible to crystallize α-lactose
monohydrate (50−60% methanol), mixtures of α-lactose
monohydrate and β-lactose (60−95% methanol), and β-lactose
anhydrous (>95% methanol). Brito et al. (2007) measured the
changes in the metastable zone width resulting from increasing
the acetone mass ratio in lactose solutions of water.37 Machado
et al. (2000) used a modified UNIversal QUAsiChemical
(UNIQUAC)-based model to predict the solubility of lactose in
solutions of water and ethanol at different temperatures.38 This
model was found to compare well with experimental results.
Though the work of Brito et al. (2007) and Machado (2000)
investigated the solubility of lactose in different solvent/
antisolvent mixtures, the solid forms of lactose were not
specified.
Continuous methods of cooling crystallization for lactose

have been popular due to its ability to produce particles with
consistent morphology and size.39,40 Shi et al. (1990) used
water and ethanol as the solvent and antisolvent, respectively,
for the continuous crystallization of lactose.41 A study

conducted by Bund et al. (2007) investigated the effects of
sonication, concentration, and pH, in the extraction of lactose
from buffalo whey using continuous antisolvent crystallization
methods.42 Here it was found that a 90% ethanol in water
solution was the optimal solvent/antisolvent composition for
the recovery of lactose, though the lactose solid state recovered
was not reported. Dong et al. (2010) used antisolvent
crystallization coupled with continuous mixing to co-precipitate
spironolactone and lactose obtaining uniform particle size fit for
aerosol inhalation formulation.43 This study was conducted
using a static mixer and focused on scaling up production from
a 1 to 3 L/min process. The work of Rjabova et al. (2003)
showed the capability of integrating continuous methods to
improve the recovery of lactose.44 Other studies have shown
success in obtaining a greater crystal yield, smaller particles with
a more uniform size distribution when using >90% of
antisolvent giving anomeric mixtures,31 and in some cases
inducing polymorphic change45 indicating that majority of
polymorphic events occur at high concentrations of antisolvent.
DoE has been previously used to optimize antisolvent46 and

combined cooling/antisolvent crystallization47 under batch
conditions. We have recently used DoE to achieve solid form
control in batch co-crystallization and, based on this,
implemented a continuous mixing-induced co-crystallization
process.48 However, we are not aware of any previous work on
direct application of DoE to continuous crystallization
processes. A continuous approach to generating mixing-induced
supersaturation using a static mixer provides well controlled
steady state mixing of inlet solution streams, allowing the
mixing regime to be changed by varying mass flow rates.48 In
this work, we used a concentric capillary static mixer where
undersaturated solutions of lactose were continuously mixed
with an antisolvent. A Design of Experiment was used to obtain
a statistically significant sample set to assess the effects of the
key process parameters of the continuous mixing process on
antisolvent crystallization of α-lactose monohydrate: antisolvent
choice (acetone or isopropanol), lactose solution concen-
tration, mass flow rate ratio, and total mass flow rate. A
crystallization diagram describing solid state outcomes, solid
yield, and induction time was obtained using the key process
parameters (mass flow ratio of solutions, lactose concentration,
total mass flow rate). This was then used to identify optimal
conditions to produce α-lactose monohydrate in antisolvent
crystallization using continuous mixing-induced supersatura-
tion.

Figure 1. Overview of lactose solid states.
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■ METHODS

Materials. Isopropanol (IPA) was supplied form Fisher Scientific
UK Ltd. (99.5%; Lot No. 1562431). Acetone (99.8%; Lot No.
STBF6870V) and α-lactose monohydrate (99%; Lot No.
SLBK0710V) were supplied from Sigma-Aldrich Company UK Ltd.
Water used throughout this work was processed using an Integral 15
Milli-Q water purification system (Merk KGaA) fitted with a Quantum
TEX polishing Cartridge.
Solubility Study. Known weights of water and antisolvents

mixtures at predetermined compositions were added to vials
containing known weights of α-lactose monohydrate. These samples
were left to stir in an incubator set at 25 °C for 5, 7, and 11 days to
ensure the solution was in equilibrium (α-lactose monohydrate and
the solvent solution, and α↔β mutarotation in solution). These time
scales were used in order to ensure that mutarotation of lactose has
reached equilibrium in the mixed solvent solutions investigated.
Stirring was stopped and left to settle for 5 h before taking a sample of
the mother liquor using a syringe filter (0.45 μm pore size). The
filtrate of each sample was weighed, and left to dry in an oven at 60 °C
overnight. The dried samples were weighed to get the weight of the
lactose remaining in solution.
Continuous Mixing-Induced Supersaturation. Continuous

mixing-induced supersaturation experiments were performed using a
concentric capillary mixer (Figure 2). The concentric capillary mixer
consists of a polyether-ether-ketonePEEK ) inner capillary with an
inner diameter of 0.51 mm and outer diameter of 1.588 mm, and a
quartz glass tube with an inner diameter of 3.0 mm. α-lactose
monohydrate was dissolved in water at 55 °C overnight and resulting
solutions were left to cool to room temperature (21 ± 2 °C). The
undersaturated feed solutions were pumped and regulated using gear
pumps coupled with Bronkhorst Mini-Cori 500 flowmeters. The
lactose solution was supplied through the inner capillary, while the
antisolvent was fed through the outer glass tube. As the inner capillary
was continuously washed by an undersaturated lactose solution, inner
capillary blockages were avoided. Under some conditions there was
fouling in the outer glass tube and tapping a stainless steel spatula
against regions of the outer glass tube that showed fouling reduced

subsequent blockages. While some conditions resulted in severe
fouling and blockages, under other conditions it was possible to run
the process for up to 90 min without any significant fouling (see
Tables SI.1 and SI.2 and images in Supporting Information).

The solution exiting from the mixer was sampled 75 cm after the
end of the capillary at run times of 3, 10, 30, and 90 min, unless fouling
or blockage terminated the experiment. In the first set of experiments
(DoE1), when comparing acetone and IPA as antisolvents, samples
were held under mixing using a magnetic stirrer for 30 min after
collection. In the second set of experiments (DoE2), when further
investigating acetone as an antisolvent, samples were held under
mixing using a magnetic stirrer for 30 min after induction time. The
purpose of a uniform holding time for all samples across an
experimental set (DoE1 or DoE2) was to allow for crystal growth of
solid forms present as a result of mixing-induced supersaturation under
given mixing conditions. As the holding conditions were identical, any
differences in solid forms observed would be resulting from effects of
the continuous mixing-induced supersaturation step. After the holding
time these samples were filtered under vacuum and dried overnight in
an oven at 60 °C. Solid yield was calculated as the percentage of the
total lactose mass in the solution prior to crystallization.

Induction times were determined visually on the basis of appearance
of turbidity by reviewing images collected by webcam (see Supporting
Information). Liquid−liquid phase separation resulting in formation of
very fine droplets followed by rapid formation of crystals was noticed
under some conditions in preliminary experiments using in situ video
microscopy probes, so that induction times reported refer to an onset
of phase separation in supersaturated solutions. Induction times were
recorded as zero minutes when turbidity was observed at the sampling
point while longer times correspond to turbidity being observed
during the holding period (see Table 2).

Solid Characterization. Dried solids were analyzed using a Bruker
Tensor II ATR-IR with a diamond sample plate, averaging 16 scans of
the IR region from 4000 to 450 cm−1, with a resolution of 4 cm−1,
using air as a background. The solid states observed were confirmed by
comparing experimental powder X-ray diffraction (PXRD) (Bruker
AXS DS-Advance, Cu Kα1, λ = 1.54056 Å, 4−35° (2θ) with a 0.016°

Figure 2. Schematic diagram of experimental setup.
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(2θ) step size and 5 per step count) patterns to calculated patterns
single-crystal data form the Cambridge Crystal Structural Database
(CSD). Particle sizing was conducted using a Malvern Morphologi G3,
with a ×20 optical zoom, scanning an area of 3.5 cm × 1.5 cm.
Number-based mean particle diameter (D50) and D90 were determined
on the basis of the equivalent circular diameter.
DoE and Multivariate Analysis. All models were created on a

Dell Precision T1650 with an Intel Core i7-3770 CPU (3.40 GHz),
with 8 GB RAM running on a 64-bit operating system of Windows 7
Professional Service Pack 1. Umetrics Modde (Version 11, MKS
Instruments; Umea,̊ Sweden) was used to create a DoE sample set and
to apply multivariate analysis. A D-optimal method was used to create
a sample set that was then analyzed using either multiple linear
regression (MLR) or partial least-squares (PLS) methods to measure
effects of independent variables on the responses. Principle
component analysis (PCA) was used to investigate factor analysis,
done using Simca (Version 14, MKS Instruments; Umea,̊ Sweden).
Two separate DoEs were generated for this study, DoE1 and DoE2.

In both DoE studies the parameters (or factors) chosen were the
concentration of the lactose solution (0.13−0.21 gLac/gH2O), the total

mass flow rate (25−100 g/min), and the mass flow ratio of the lactose
solution and the antisolvent. The first DoE (DoE1) was to compare
the two antisolvents (IPA and acetone), an additional parameter in this
study, and used the mass flow ratios ranging 1:1−1:9 (g/minLacSol:g/
minAntisol.), resulting in antisolvent mass flow fractions between 0.5 and
0.9. The responses analyzed for DoE1 were the solid state of lactose,
the mean particle diameter, D90, and solid yield. Taking samples at
different time intervals produced up to four samples for each
experimental run. All were analyzed using ATR-IR and gravimetry.
Particle sizes were only determined for one sample (at 30 min or the
last sample taken before blockage) for each run. ATR-IR results
showed that the solid state was the same at all sampling times for each

run. Spectra acquired at 30 min were used for PCA analysis (see
Figure 6). Average yields and corresponding errors from up to four
measurements are shown in Tables SI.1 and SI.2 in Supporting
Information. The other DoE (DoE2) work was to generate a higher
resolution of the response surface for the preferred antisolvent
(acetone), and included the mass flow ratios 2:3 and 3:2 (g/minLac.Sol:
g/minAntisol.). DoE2 was designed to better investigate the factors and
design space regions that gave a better model. Using this model an
optimized process was generated to crystallize α-lactose monohydrate.
This optimized process was tested experimentally to validate the
model.

■ RESULTS

Preparation and Characterization of Lactose Solid
States. In this study four solid states of lactose were observed;
α-lactose monohydrate, α-lactose anhydrous, β-lactose, and
amorphous lactose. Though it is possible that the α/β co-crystal
was produced as a transient phase it was not detected from
PXRD or IR data. Reference samples of α-lactose monohydrate
were recrystallized from water and used to collect reference IR
spectra and PXRD patterns.12,48 Amorphous lactose was
prepared via melt quench and used to identify amorphous
content. A 0.3 g sample of α-lactose monohydrate was heated
to 225 °C and cooled to room temperature within 4 min. α-
Lactose anhydrous (stable) was produced by heating α-lactose
monohydrate to 160 °C and left to cool, the IR spectrum of the
dehydrated sample compared well to those in literature.12 The
unstable form α-lactose anhydrous was not detected in this
work. β-lactose was prepared by sonicating a mixture of 2.5 mL
of IPA and 2.5 mL of a lactose solution (0.185 gLac/gH2O) for 60

Figure 3. IR spectra of α-lactose monohydrate (blue), α-lactose anhydrous (green), β-lactose (red), and amorphous lactose (black).

Figure 4. PXRD patterns of recrystallized α-lactose monohydrate and α-lactose monohydrate/β-lactose mixture (left), and calculated powder
patterns (right).
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min at a constant frequency of 80 Hz and 100W of power. β-
Lactose crystallized as small thin needles and was confirmed as
β-lactose using ATR-IR.
Characteristic peaks of each lactose solid state can be seen in

the IR fingerprint region (1500−500 cm−1) as well the first
octave (2717−3588 cm−1), most notably showing a peak shift

from the O−H bond vibrations (Figure 3). This peak shifts
from 3445 cm−1 for β-lactose to 3470 cm−1 for anhydrous
lactose, and 3520 cm−1 for α-lactose monohydrate. The
amorphous phase shows a broadening of all peaks in this
region creating a single broad peak at 3300 cm−1. In the
fingerprint region, amorphous lactose possesses characteristic
peaks at 1370, 1150, and 890 cm−1; β-lactose has a peak at 950
cm−1; α-lactose anhydrous has a noticeable singlet at 1325
cm−1; and α-lactose monohydrate has unique peaks at 1201 and
1167 cm−1. These differences in the spectra make IR an
accurate and robust method to detect and identify the solid
state of lactose.
PXRD confirmed the solids states of the lactose being

crystallized in experiments comparing IPA and acetone as
antisolvents. Powder patterns of experimental samples of α-
lactose monohydrate and a mixed sample of α-lactose
monohydrate and β-lactose were compared to patterns
calculated from their corresponding CIF files obtained from
the Cambridge Structural Database (LACTOS0149 and
BLACT00250 respectively) using Mercury 3.8 (Figure 4).
Pure β-lactose could not be produced in adequate quantities so
comparisons using a mixed sample of α-lactose monohydrate
and β-lactose was done. Peaks for α-lactose anhydrous were
compared to those reported by Platteau et al. in 2004 and 2005
(EYOCUQ51 and EYOCUQ0152), and LAKKEO for the α/β
co-crystal at 20 °C.53 The amorphous hump and an increased
baseline showed the presence of amorphous lactose which at
times contained partial content of α-lactose anhydrous.

Comparing IPA and Acetone as Antisolvents. In Figure
5 we compare the solubility of α-lactose monohydrate
measured in mixtures of water and acetone or IPA. These
curves are the average of equilibrium composition for solutions
that were held for 5, 7, and 11 days. Deviations from the curve
were unbiased with regard to the length of time being held
indicating that equilibrium had been reached.
Using a D-optimal model in the Modde 11 software a sample

set of 27 continuous crystallization experiments containing 3
repeats was generated for DoE1. The parameters investigated
were the choice of antisolvent (acetone or IPA), total mass flow
rate, the mass flow ratio of the lactose solution and antisolvent,
and the concentration of the lactose solution. Varying these
parameters was found to produce either solid state mixtures of
α-lactose monohydrate and β-lactose, α-lactose anhydrous, or
pure α-lactose monohydrate. Though both antisolvents show
similar lactose solubilities, different solid states of lactose were
obtained for similar conditions using different antisolvents.Ta-
ble 1 shows the results of experiments from DoE1.
IR spectral data of the samples were pre-processed using

Standard Normal Variate (SNV) and projected onto a scores
plot using PCA (Figure 6). SNV corrected for baseline offset
and reduced background noise. The SNV transformed data
from regions between 3585 and 2767 cm−1, and between 1505
and 830 cm−1, were projected onto a PCA model clustering
samples with similar spectral information together. Information
from this model created an index relating the coordinates of the
samples to coordinates of commercial α-lactose monohydrate
shown in Figure 6. By determining the center of mass of the
samples and using it as a center point, an angular position of
samples was used to group different solid states of lactose. The
angular position of a sample was used as an index to express the
α-lactose monohydrate content in that sample. This index gives
a single variable running from 0 to 1. Samples that gave results
of 0.8−1 were considered pure α-lactose monohydrate.

Figure 5. Solubility curve of lactose (starting from slurries of α-lactose
monohydrate) in acetone (red) and IPA (blue), and results from
previous literature for acetone (×).

Table 1. Results of DoE1 Runs for IPA and Acetone as
Antisolventa

antisolvent

mass flow
fraction of
antisolvent

concentration
of lactose
(gLac/gH2O)

overall
flow rate
(g/min)

solid
state
index

solid
yield
(%)

IPA 0.9 0.144 25 0.315 80

acetone 0.5 0.118 50 0.953 20

IPA 0.5 0.133 100 0.071 5

IPA 0.5 0.130 25 0.120 15

acetone 0.75 0.132 25 0.057 45

acetone 0.9 0.134 25 0.443 42

acetone 0.9 0.214 25 0.754 80

acetone 0.75 0.161 50 0.692 89

IPA 0.75 0.159 50 0.558 57

IPA 0.75 0.159 50 0.443 40

IPA 0.75 0.159 50 0.434 42

IPA 0.75 0.159 50 0.435 40

acetone 0.50 0.161 25 0.833 8

acetone 0.6 0.161 50 0.761 63

acetone 0.5 0.132 25 0.125 6

IPA 0.9 0.214 25 0.303 90

acetone 0.5 0.134 100 0.914 5

acetone 0.6 0.217 25 0.487 58

acetone 0.6 0.131 100 0.884 35

acetone 0.6 0.217 100 0.807 73

IPA 0.5 0.134 25 0.123 18

acetone 0.5 0.214 25 0.839 15

IPA 0.5 0.214 25 0.851 11

acetone 0.5 0.1367 100 0.910 25

IPA 0.9 0.134 100 0.298 60

IPA 0.9 0.161 100 0.289 78

acetone 0.5 0.214 100 0.851 23

IPA 0.5 0.214 100 0.861 11

IPA 0.9 0.214 100 0.298 50

acetone 0.6 0.131 25 0.877 9
aAdditional information is given in Supporting Information Table SI.1.
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Figure 6. Scores plot of the solid states crystallized from DoE experiments. Dark blue dots indicate commercial α-lactose monohydrate.

Figure 7. Response surface of solid state index (top) and summary of fit (bottom) using data from DoE1.
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Samples with an index from 0.25 to 0.8 contained β-lactose,
with a lower value corresponding to higher β-lactose content,
and samples with an index <0.25 were predominantly α-lactose
anhydrous or amorphous lactose. This index value was used to
create a response surface map using PLS methods.
Based on the results from DoE1, the major parameters found

to affect the solid state were the mass flow rate ratio of the
antisolvent and lactose solutions, and the concentration of the

lactose solution. Total mass flow rate was found to only play a
part in the generation of anhydrous or amorphous lactose, most
likely due to poor mixing at lower total mass flow rates. Though
little change could be observed in the particle size, some change
could be seen in the solid yield. Yield was influenced by mass
flow ratio but not the lactose solution concentration. This data
was analyzed by Modde to create a well fitted model having
high R2 (the amount of the variation of the response explained
by the model) that presented discernible patterns. These
patterns could be modeled using PLS having high R2 but having
a low model validity of >0.25. The Q2 value (the amount of the
variation of the response predicted by the model according to
cross validation) across every factor was at −0.2, showing the
overall model cannot be used to predict outcomes with great
confidence (Figure 7)
The IR data show increased amounts of β-lactose were

crystallized along with α-lactose monohydrate when using
greater mass flow ratio of IPA or acetone, with samples using
IPA showing more β-lactose content than their acetone
counterparts (Figure 8). Pure α-lactose monohydrate was
crystallized from samples from 1:1 mass flow ratios of lactose
solutions and acetone. Amorphous lactose and mixtures of
anhydrous and amorphous lactose were produced in experi-
ments using low concentrations of lactose (0.135 glac/gH2O),

low total mass flow rates (25 g/min), and mass flow ratios of
1:1. Though too little product could be collected from these
samples to carry out PXRD, there was enough for IR analysis.
Amorphous lactose solidified as a hard brittle glass, and α-
lactose anhydrous crystallized as white solid. Samples that
crystallized β-lactose crystallized instantly or within 30 s after
collection. Samples that produced high amorphous content or
α-lactose anhydrous had longer induction times.

Acetone as Antisolvent. From DoE1 when comparing
acetone and IPA as antisolvents, it can be seen that using
acetone near the 1:1 mass flow ratio is most favored to produce
α-lactose monohydrate. Therefore, further analysis focused on
finding an optimized process with acetone as the antisolvent.
The design space was extended to consider using mass flow
ratios near 1:1 to explore conditions to crystallize pure α-
lactose monohydrate. The mass flow ratios chosen were 2:3,
1:1, and 3:2 (g/minLac.Soln.:g/minAntisolv.), and relevant data from
previous experiments were included. Induction time was also

Figure 8. IR spectra of increasing β-lactose content in mixtures with α-lactose monohydrate using the mass flow ratios 1:1 (···), 1:3(---), and 1:9
(−·−) (gLacSoln./min:gAntisolv./min).

Table 2. Results of DoE2 Runs for Acetone as Antisolventa

mass flow
fraction of
acetone

concentration of
lactose solution
(glac/gH2O)

total mass
flow rate
(g/min)

solid
state
index

induction
time
(min)

solid
yield
(%)

0.4 0.213 100 0.832 30 12

0.4 0.132 100 0.857 330 53

0.4 0.169 50 0.875 70 53

0.4 0.217 25 0.857 27 25

0.4 0.132 25 0.858 170 9

0.5 0.215 100 0.876 0.5 20

0.5 0.131 100 0.912 15 31

0.5 0.132 50 0.851 25 10

0.5 0.164 50 0.849 9 22

0.5 0.164 50 0.867 10 26

0.5 0.163 50 0.843 10.5 9

0.5 0.214 25 0.864 9 10

0.5 0.113 25 0.854 75 8

0.5 0.164 25 0.865 19 21

0.6 0.218 100 0.831 0 76

0.6 0.132 100 0.888 0 31

0.6 0.164 100 0.909 0 24

0.6 0.164 100 0.877 0 37

0.6 0.217 50 0.859 0 40

0.6 0.161 50 0.855 12 37

0.6 0.218 25 0.488 3 69

0.6 0.131 25 0.860 5 38

0.6 0.132 25 0.849 6 34

0.75 0.161 50 0.306 0 60

0.75 0.132 25 0.488 0 54

0.9 0.214 100 0.049 0 87

0.9 0.133 100 0.126 0 78

0.9 0.134 50 0.153 0 75

0.9 0.214 25 0.153 0 84
aAdditional information is given in Supporting Information Table SI.2.
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added as a response. Table 2 shows the results of experiments
from DoE2.

Trends were found correlating the antisolvent/lactose
solution mass flow ratio to the induction times observed

Figure 9. Response surface of solid state index (a) and induction time (b), summary of fit (c), and effect of coefficient (d) using data from DoE2.
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(Supporting Information, Figure S2). Due to changes in
induction time samples were filtered 30 min after particles were
visually observed in the images recorded. Induction time was
found to decrease with increased antisolvent and with higher
lactose concentration solution. Changes in induction time
showed variation in yield, but again little change was observed
in particle size. Since the mass flow ratio was found to influence
induction time, yield can be increased by allowing the α-lactose
monohydrate crystals to grow over time.
By removing IPA as an antisolvent and using only acetone

the model became much more accurate and reliable, with a R2

and Q2 above 0.8 for the solid state, increasing the confidence
of the model (Figure 9). It is clear that mass flow ratio is the
most important parameter in crystallization control. Because
calculated validity was low, the model was validated
experimentally.
The model was used to create an optimized set of parameters

to crystallize pure α-lactose monohydrate, having low induction
time and high yield. The optimized process (Figure 10) was
predicted as follows: using a near saturated lactose solution of

0.213 gLac/gH2O, mass flow ratio of 19:21 (g/minLacSol.:g/

minAce), and a total mass flow rate of 85 g/min. Using this
model, the following prediction were made; the solid form
crystallized will be pure α-lactose monohydrate, having an
induction time <7 min, mean particle diameter 19.5 μm, D90 of
50.0 μm, and a solid yield of 35%.
The final product, pure α-lactose monohydrate (Figure 11),

had an induction time of <2 min, a mean particle diameter 38.5
μm (±4.5 μm), D90 of 90.1 μm (±10.7 μm), and yield
averaging 33.2% (±5.6%). The solid state crystallized and yield
agreed very well with the model, and to a lesser extent
induction time, whereas particle size was not predicted
accurately.

■ CONCLUSIONS

Using a multivariate approach to DoE the effects of key process
parameters of continuous mixing-induced supersaturation on
the antisolvent crystallization of lactose were quantitatively
evaluated. Information from the initial set of experiments
(DoE1) comparing IPA and acetone as antisolvents was used to
design the second set of experiments (DoE2) in order to
develop a model to identify conditions that would be best to
crystallize pure α-lactose monohydrate using acetone. The
response surface of the solid state index gave a predictive
crystallization diagram for the solid states of lactose. Based on
this, an optimized set of parameters were found for the
crystallization of α-lactose monohydrate. Predictions from the
model agreed well with those obtained experimentally, with
solid state, yield, and induction time accurately predicted.

■ ASSOCIATED CONTENT

*S Supporting Information

The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.cgd.7b00136.

Detailed results of the DoE models including mean
particle size, D90, and process notes on the experiments;
images showing fouling and blockage, sweet spot and
failure rate of optimized system, and induction time
(PDF)

Figure 10. Sweet spot diagram, with “X” showing the region in the space diagram to produce α-lactose monohydrate with the lowest induction time
and highest yield.

Figure 11. IR spectra of solid samples from optimized process
conditions.
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