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Abstract We propose a novel approach to link solute transport behavior to the physical heterogeneity of
the aquifer, which we fully characterize with two measurable parameters: the variance of the log K values
(r2

Y ), and a new indicator (HR) that integrates multiple properties of the K field into a global measure of
spatial disorder or geological entropy. From the results of a detailed numerical experiment considering
solute transport in K fields representing realistic distributions of hydrofacies in alluvial aquifers, we identify
empirical relationship between the two parameters and the first three central moments of the distributions
of arrival times of solute particles at a selected control plane. The analysis of experimental data indicates
that the mean and the variance of the solutes arrival times tend to increase with spatial disorder (i.e., HR

increasing), while highly skewed distributions are observed in more orderly structures (i.e., HR decreasing) or
at higher r2

Y . We found that simple closed-form empirical expressions of the bivariate dependency of
skewness on HR and r2

Y can be used to predict the emergence of non-Fickian transport in K fields
considering a range of structures and heterogeneity levels, some of which based on documented real
aquifers. The accuracy of these predictions and in general the results from this study indicate that a
description of the global variability and structure of the K field in terms of variance and geological entropy
offers a valid and broadly applicable approach for the interpretation and prediction of transport in
heterogeneous porous media.

1. Introduction

Solute transport in geological formations is primary controlled by the spatial distribution of hydraulic con-
ductivity (K), which reflects the variability in the textural properties (i.e., grain size, sorting, and particle
shape) of the sediments. Stochastic theories have been developed to predict solute behavior in heteroge-
neous formations characterized by random fluctuations of K [e.g., Shapiro and Cvetkovic, 1988; Dagan, 1989;
Gelhar, 1993; Rubin, 2003; Dagan and Neuman, 2005; Neuman and Tartakovsky, 2009]. Despite promising
results in recent years from the application of multiple methods [e.g., Willmann et al., 2008; Fiori and
Jankovic, 2012; Flach, 2012; Engdahl et al., 2013; Zhang et al., 2014; Swanson et al., 2015], a general approach
has yet to be developed to uniquely link measurable geological properties to input parameters in stochastic
models able to predict transport behavior in highly heterogeneous aquifers.

Analytical solutions derived from classical Fickian stochastic theories [e.g., Gelhar and Axness, 1983; Dagan,
1984] do not seem to be universally applicable [e.g., G�omez-Hern�andez and Wen, 1998]. A possible reason
for their poor predictability is that classical stochastic theories rely on a multi-Gaussian representation of
the spatial distribution of log K, a model that tends to maximize spatial disorder through a minimization of
the spatial continuity of extreme values [Journel and Deutsch, 1993]. A great body of work has stressed the
impact of the presence and continuity (i.e., connectivity) of extreme K values (high or low) on solute trans-
port in a variety of depositional environments and at different scales [Fogg, 1986; Anderson, 1989; LaBolle
and Fogg, 2001; Klise et al., 2009; Vassena et al., 2009; Ronayne et al., 2010; Bianchi et al., 2011b; Pedretti et al.,
2013].

One important result from numerical experiments of transport in synthetic aquifers characterized by the
presence of a well-connected structure is that the simulated temporal distribution of concentrations
detected over time at control sections (i.e., breakthrough curves, BTCs) show non-Fickian or ‘‘anomalous’’
features even for small values of the variance of the log K field (r2

Y , where Y5ln K) [G�omez-Hern�andez and
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Wen, 1998; Wen and G�omez-Hern�andez, 1998; Zheng and Gorelick, 2003; Zinn and Harvey, 2003; Liu et al.,
2004; Teles et al., 2004; Willmann et al., 2008; Fiori et al., 2010]. These anomalous features include faster-
than-expected breakthrough of concentrations at controlling sections, asymmetric and multipeaked BTCs,
and pronounced postpeak (late-time) behavior or tailing. Experimental evidences of anomalous BTCs in
laboratory and field experiments were reported for instance by Bianchi et al. [2011a], Boggs et al. [1992],
Cherubini et al. [2013], Molinari et al. [2015], and Pedretti et al. [2016].

We contend in this work that a description of the structure of the K field in term of spatial disorder offers a
valid and broadly applicable approach for the interpretation and prediction of transport in heterogeneous
porous media. In specific, transport is more closely adherent to the Fickian interpretation in K fields charac-
terized by a high degree of spatial disorder (high geological entropy), while non-Fickian features emerge in
more orderly structures (low geological entropy). The validity of this hypothesis is evaluated in this paper
with a stochastic numerical experiment in which we compare fundamental characteristics of solute trans-
port behavior, such as the temporal moments of BTCs, to heterogeneous aquifer scenarios in which geolog-
ical complexity is fully controlled by two measurable parameters: a new index of spatial disorder (HR) of the
structure of Y and its global variance (r2

Y ). The experiment focuses on alluvial aquifers with intermediate
(orders of few meters) to moderately large (order of few tens of meters) spatial scale of K variations. As a
working approach, it is assumed that this variability is the result of the spatial distribution of hydrofacies
associated with the depositional elements of a typical alluvial aquifer. Therefore, the K fields considered
here are mapped on the basis of stochastic realizations of the spatial distribution of hydrofacies generated
with a transition probability/Markov Chain approach [Carle and Fogg, 1996, 1997]. With this approach, the K
structure of the aquifer is consistent with the geological and sedimentological setting [e.g., Fogg, 1986;
Anderson, 1989; Allen-King et al., 1998; Fogg et al., 1998; Riva et al., 2008; Zhang et al., 2013; Bianchi and
Zheng, 2016].

We consider several testing scenarios with different level of K heterogeneity and spatial disorder including
five scenarios that mimic the conditions of real alluvial aquifers known in the literature [LaBolle and Fogg,
2001; Zhang et al., 2013; Bianchi and Zheng, 2016; Terrenghi et al., 2016]. Based on analysis of the ensemble
of results obtained from the numerical experiment, our goal is to prove that simple closed-form expressions
could be derived to relate (HR, r2

Y ) pairs to metrics describing transport behavior in different settings of
aquifer heterogeneity. In this regard, we focus on the third central moment or skewness of the BTCs, which
is a descriptor of non-Fickian transport on the basis of the degree of tailing.

This paper is structured as follows. Section 2 introduces the concept of geological entropy with an illustra-
tive example. Section 3 describes methodology for calculating the indicator HR. Here we also describe the
numerical experiment to assess the impact of HR on solute transport behavior. Section 4 analyses and dis-
cusses the main results from the experiment, focusing on empirical relationships between the temporal
moments of the simulated BTCs and HR. Section 5 focuses on the ability of these relationships to predict
anomalous transport. A discussion is presented in section 6 to explore the analogies and differences
between the concepts of geological entropy and connectivity. The conclusions drawn from this study are
presented in section 6.

2. An Illustrative Example

Before venturing into the derivation of geological entropy indicators and the explanation of the testing
methodology, we first present a simple and explanatory example to introduce the concept behind this
work. The example is graphically illustrated in Figure 1. Two 2-D flow and transport simulations based on a
particle-tracking approach were generated and analyzed. Both aquifers are confined with groundwater
flowing from left to right according to the same mean hydraulic gradient as imposed by identical specified
head boundary conditions and model geometry for the two systems. We discretized a solute mass M into a
number of particles np, which were instantaneously injected at time t0 along a vertical line located at a cer-
tain position in the aquifer (identical in the two systems). Solute BTCs in the two aquifers were analyzed in
the form of cumulative density functions (CDFs) of particles’ arrival times measured at a control section
downgradient of the injection line. For this illustrative example, we assume that particles moves only by
advection, and exit the system when they reach the right boundary.
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The two systems are characterized by identical proportions of two hydrofacies and embed the same
bimodal K distribution (K contrast equal to 102). The only difference is the spatial organization of the hydrof-
acies, which in turn is associated with a different degree of geological entropy. This entropy is larger for the
disorderly or chaotic system at the top of Figure 1 than in the orderly or less chaotic system at the bottom.
Note that in both systems, the proportion of the facies with higher conductivity (Facies 2) is lower than the
percolation threshold [Stauffer and Aharony, 1994; Harter, 2005], meaning that there are not continuous
high-K features (channel or block) spanning the entire system from left to right. Visual inspection of Figure
1 also suggests that Facies 2 does not appear to be significantly ‘‘more connected’’ in the orderly system. In
fact, although the number of clusters of this facies is smaller in the orderly system, clusters are generally
small and isolated within lower K matrix (Facies 1) in both systems.

Notwithstanding these similarities, the distributions of the particles’ arrival times differ significantly between
the two systems. In particular, the CDF in the orderly system shows that the arrival times distribution is
more skewed to the right (i.e., the median arrival time of the particles is lower than the mean arrival time t )
and displays stronger tailing effects than that in the disorderly system, where arrival times are more sym-
metrically distributed around t . Readers familiar with stochastic theories may intuitively associate this differ-
ence in CDF scaling to the different homogenization of the system. Compared to the orderly system,
particles experienced a larger number of heterogeneity transitions in the disorderly system, which promote
mixing and dispersion of the particles arriving at the controlling section.

The key point here is that, differently from traditional stochastic theories and previous investigations focus-
ing solely on connectivity of extreme K values, we relate transport behavior in the two systems to their geo-
logical entropy. In the next sections, we will define a unique indicator (HR) to quantify this property of the
medium. By elaborating on more complex examples than those presented in Figure 1, we will also define
empirical relationships describing the dependency of transport on this measurable metric.

3. Methods

3.1. Quantification of Geological Entropy and Derivation of HR

The proposed indicator of geological entropy is based on the concept of Shannon information entropy
[Shannon, 1948], which has been used in the past to quantify complexity and randomness in various scien-
tific fields including statistical mechanics and fluid dynamics [Jaynes, 1957; Ottino, 1990], hydrology [Martina

Figure 1. Solute transport in two binary systems characterized by different degrees of spatial disorder. Snapshots of particle locations in
the two systems (left) are shown for the same time after injection. Cumulative density functions (CDF) of the arrival times are shown on
the right. tmin is the arrival time of the fastest particle. tmax is the arrival time of the slowest particle. t is the mean arrival time.
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and Entekhabi, 2006; Singh, 2011; Castillo et al., 2015], image processing [Barba et al., 1989; Wu et al., 2013],
geography and spatial statistics [Batty et al., 2014; Leibovici et al., 2014], and landscape ecology [Vranken
et al., 2015], just to name a few. Information entropy concepts have also been applied to quantify the uncer-
tainty of geological models [Elfeki and Dekking, 2005; Huang et al., 2012; Wellmann and Regenauer-Lieb,
2012; Bianchi et al., 2015], and to describe the spatial and temporal variability of solute plumes [Woodbury
and Ulrych, 1993; Kitanidis, 1994; Gotovac et al., 2010; Chiogna et al., 2012], as well as of infiltration processes
in unsaturated heterogeneous soils [Mays et al., 2002]. Journel and Deutsch [1993] used a bivariate entropy
index to measure and compare the spatial disorder of stochastic realizations of a permeability field based
on multi-Gaussian, sequential indicator, and mosaic geostatistical models. Simulations of fluid flow showed
that the model with the maximum spatial disorder (i.e., the multi-Gaussian), which in principle should be
preferable from a Bayesian point of view [Christakos, 1990], does not provide maximum entropy responses
from the flow model (e.g., effective K values).

We start by defining the global entropy of a discrete random variable F representing a set of N hydrofacies.
From the definition of Shannon information entropy, this can be expressed with the following:

HG52
XN

n51
pG;n ln pG;n

� �
(1)

where pG are the volumetric proportions of the hydrofacies over the domain of interest. The number and
the volumetric proportions of the hydrofacies can be estimated from the analysis of geological data (e.g.,
borehole logs). HG ranges from a minimum of 0, when N51, to a maximum value when pG51=N for every
outcome value of F (i.e., uniform distribution). This maximum value (HMAX) is given by:

HMAX 52
XN

n
pG;n ln pG;n

� �
52N

1
N

ln
1
N

� �
5ln N (2)

Let us now assume that the spatial distribution of F has been defined over a grid covering the domain of
interest. For each grid block, we can calculate the local entropy HL according to the following:

HL lð Þ52
XN

n51
pl;n ln pl;n
� �

(3)

where pl are the marginal probabilities of the outcome values of F calculated within a subdomain of length
l centered around the grid block. Similarly to HG, HL(l) is defined within the interval 0; HMAX½ � where HMAX is
given by equation (2). Local entropy values depend on the dimensions of the subdomain. The average of these
values over the entire domain tends to rapidly increase (more disorder) with l, and asymptotically approaches
HG regardless of the structure of the F field (see supporting information Figure S1 accompanying the paper).
Therefore, we focus on spatial disorder at the local scale to characterize the geological entropy of the F field,
and we use a length l equal to three times the dimension of the grid blocks in each direction. With this choice,
the marginal probabilities pl are calculated over a set of 27 blocks for a 3-D grid (this number would reduce to
9 for a 2-D grid). The definition of local entropy highlights the difference between our approach and the bivari-
ate entropy of Journel and Deutsch [1993]. In particular, in the calculation of the marginal probabilities pl in
equation (3), the occurrences of the outcomes of F within the subdomain are considered as independent
events, while in the definition of bivariate entropy these probabilities are treated as joint probabilities of the
outcomes of the two random variables F(u) and F(u 1 h), where u and u 1 h are position vectors.

By combining the definitions of global and local entropy, we define the relative entropy index HR with the
following equation:

HR5
�HL

HG
(4)

where HL is the average of the local entropy over the entire domain. For a 3-D grid with I, J, and K numbers
of elements along Cartesian axes, HL is given by

�HL 5
1

I3J3K

XK

k51

XI

i51

XJ

j51
HL i; j; kð Þ (5)

The relative entropy index HR, which belongs to the interval [0, 1], provides a quantitative measure of the
spatial disorder of F. In particular, HR values close to 1 (i.e., HL � HG) indicate that the marginal probabilities
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pl of the outcome values of F at the local scale are similar to the global probabilities or volumetric propor-
tions pG over the entire domain. This is indicative of a disorderly structure as the one shown on the top left
plot of Figure 2, which was generated by randomly assigning three possible hydrofacies (i.e., A, B, and C) to
the blocks of a 2-D grid. As a result of the high level of disorder, HL values are close to the maximum value
(i.e., ln[3]) in the vast majority of the domain (bottom left plot), and consequentially the HR index for this
field is equal to 0.85. Conversely, low values of HR (i.e., HL � HG) indicate that one of the hydrofacies is gen-
erally more frequent over the others at the local scale. This is indicative of an orderly structure such as
when there are large volumes (in 3-D) or areas (in 2-D) of the domain characterized by the same hydrofa-
cies. An example of such structure characterizes the field in the top right plot of Figure 2, which has a very
low HR index (0.09).

Two key aspects of the index HR are as follows. The first is that HR is directly related to measurable aquifer
properties including the number and volumetric proportions of the hydrofacies over the domain of interest.
All these properties can be measured by conventional methods of geological investigation. The second
aspect is that, HR is a global metric that takes into account multiple properties of the K field (e.g., connectiv-
ity, volumetric proportions of the different hydrofacies, correlation lengths, etc.). In particular, because HR is
a function of the global entropy, it provides unbiased estimations of disorder even if a category is signifi-
cantly more frequent than the others. HR is also sensitive with respect to spatial correlation structure of the
variable of interest, as well as to the connectivity and spatial continuity of certain K values. A more specific
discussion highlighting similarities and differences between geological entropy and connectivity concepts
is presented in section 5.

3.2. Testing Methodology
Our aim is to explore the existence of a quantitative link between geological entropy and transport in het-
erogeneous K fields. To this end, we developed a Monte Carlo (MC) framework based on the solution of

Figure 2. Local and relative entropy calculation for (left) disorderly and (right) orderly systems consisting of three categories A, B, and C
and global entropy HG equal to 1.030. Dashed rectangles indicate an example of subsets of nine adjacent cells used to calculate the local
entropy HL. For the disorderly system, the marginal probabilities of the categories within the area indicated by the dashed rectangle are
equal to 2/9 (A), 3/9 (B), and 4/9 (C) corresponding to a HL value of 1.061. This is very close to maximum value, which is equal to
ln(3) 5 1.099. On the other hand, for the orderly system, the marginal probabilities of the categories within the rectangle are equal to 0/9
(A), 4/9 (B), and 5/9 (C) corresponding to a HL value of 0.687.
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flow and transport in independent and identically distributed realizations of the spatial distribution of three
hydrofacies, representing a wide range of realistic geological structures.
3.2.1. Scenarios of Aquifer Heterogeneity
The adopted conceptual model of aquifer heterogeneity considers the spatial distribution of three hydrofa-
cies chosen to represent the main deposits typically encountered in alluvial aquifers. These include fine-
grained and generally low conductivity floodplain deposits (hydrofacies LK), coarse-grained and generally
high conductivity channel fills (hydrofacies HK), and deposits with intermediate characteristics such as lev-
ees and/or crevasse splays (hydrofacies IK). The nomenclature for the hydrofacies is simply based on their
hydraulic conductivity, and in particular ‘‘L’’ stands for low, ‘‘I’’ stands for intermediate, and ‘‘H’’ stands for
high. Accordingly, KLK, KIK, and KHK indicate the characteristic hydraulic conductivity of hydrofacies LK, IK,
and HK, respectively.

Random realizations of the spatial assemblage of the three hydrofacies are generated with a transition
probability/Markov chain approach (T-PROGS) [Carle, 1999]. This established geostatistical method has
been applied to simulate the distribution of geological units in a variety of depositional environments
[Fogg et al., 1998; Weissmann et al., 1999; Lee et al., 2007; Bakshevskaia and Pozdniakov, 2015; Bianchi et al.,
2015; Siirila-Woodburn and Maxwell, 2015; Zhu et al., 2015; Bianchi and Zheng, 2016]. With the transition
probability approach, realistic representations of the hydrofacies architecture are generated on the basis
of measurable geological properties such as the number and the volumetric proportions of the hydrofa-
cies, their mean lengths along specific directions, and their juxtapositional tendencies. All these proper-
ties are in fact considered in the implementation of a Markov chain model of the spatial structure of the
categorical variable representing the different hydrofacies. Unlike variogram-based geostatistical meth-
ods, the spatial structure in T-PROGS is defined on the basis of a set of transition probabilities between
hydrofacies, each defining the conditional probability of one hydrofacies to occur adjacent another along
a particular direction. Implemented Markov chain models are used by a stochastic simulation algorithm in
which a preliminary spatial configuration of the hydrofacies, based on sequential indicator simulation
(SIS) [Deutsch and Journel, 1998] is modified in a successive optimization step to improve the match
between measured and simulated transition probabilities. A comprehensive description of the T-PROGS
algorithm for generating stochastic simulations of categorical variables is provided by Carle and Fogg
[1996, 1997] and Carle [1999].

We consider six groups of scenarios of aquifer heterogeneity (summed up in Table 1). For each scenario,
100 MC realizations of the spatial distribution of the three hydrofacies are generated considering a Cartesian
3-D grid with dimensions of 200, 300, and 40 m in the x, y, and z directions, respectively. The size each grid
block is equal to 1 m in the x and y directions, and to 0.5 m in the vertical (z) direction, for a total about
4.8 3 106 grid blocks. Transition probabilities between hydrofacies for the development of the Markov
chain models for all the groups are chosen to favor a fining-upward tendency commonly observed in fluvial
deposits [e.g., Miall, 2014] while cross-transition probabilities in the horizontal directions (x and y) are
assumed equal to the corresponding probabilities in the z vertical direction in accordance with Walther’s
Law [Fogg et al., 1998]. Examples of generated MC realizations are presented in supporting information
Figures S2–S5 accompanying the paper.

Table 1. Summary of the Parameters for the Considered Scenarios of Aquifer Heterogeneitya

Group

Volumetric Fractions Mean Lengths K Heterogeneity Parameters

pHK pIK pLK Lh Lz KHK/KIK KHK/KLK r2
Y HG HR

1 0.20 0.20 0.60 Figure 3a 1 102 103 7.3 0.950 Figure 3a
2 0.60 0.20 0.20 Figure 3a 1 102 103 8.6 0.950 Figure 3a
3 0.33 0.33 0.33 2.5 1 10 Figure 3b Figure 3b 1.099 0.676
4 0.33 0.33 0.33 7.5 1 10 Figure 3b Figure 3b 1.099 0.385
5 0.33 0.33 0.33 20 2 10 Figure 3b Figure 3b 1.099 0.288
6 0.33 Figure 3c Figure 3c 15 1 102 103 Figure 3c Figure 3c Figure 3c

ap represents the global volumetric proportion of a hydrofacies within the considered domain. Subscripts ‘‘HK,’’ ‘‘IK,’’ and ‘‘LK’’ indicate
three hydrofacies with high, intermediate, and low conductivity, respectively. Lh and Lz indicate the mean length (m) of the facies in the
horizontal plan and in the vertical direction, respectively. Ki is the hydraulic conductivity for the facies ‘‘i.’’ r2

Y is the variance of the log-
transformed K values with Y 5 ln(K). HG is the global entropy and HR is relative entropy index. For each group, one or more properties
are varied as graphically described in Figure 3.
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Group 1 considers nine scenarios representing
an alluvial-like aquifer characterized by the pre-
dominance of low K sediments (volumetric frac-
tion of hydrofacies LK is equal to 0.6). Hydrofacies
IK and HK are embedded in the lower K matrix,
and have similar volumetric proportions (0.2). On
the basis of these proportions among hydrofacies,
the global entropy HG of all the scenarios in this
group is equal to 0.950 (equation (1)). It is also
assumed that there is a difference of three orders
of magnitude between KHK and KHL, and of two
orders of magnitude between KHK and KIL. Accord-
ingly, all the K fields in this group are character-
ized by a three-modal distribution of the K values
with the same fixed variance r2

Y 5 7.3. The nine
scenarios in Group 1 differ with respect to the iso-
tropic horizontal mean length of hydrofacies HK
and IK (i.e., Lx5Ly5Lh), which ranges from 1 up to
30 m. By changing the facies length, we impose
variations in geological entropy for each scenario
as shown by the relative entropy HR values
reported in Table 1.

Scenarios in Group 2 consider similar variations
in Lh. However, K fields in this group are domi-
nated by the highly conductive sediments of
hydrofacies HK (0.6 in volumetric fraction), with
lower fractions of less conductive material
embedded (0.2 for both hydrofacies LK and IK).
Contrasts in K between the hydrofacies in this
group are the same as those in Group 1, result-
ing in variance r2

Y 58.6 for all the scenarios.

Groups 3, 4, and 5 assume scenarios with identi-
cal volumetric proportions for the three hydrofa-
cies (pG 5 1/3), a condition that maximizes
global entropy HG for a system with three cate-
gories. Within each group, we evaluate five dif-
ferent values of r2

Y (i.e., 1.7, 4.7, 10.1, 17.9, 28.0)
by changing the contrast in K between hydrofa-
cies HK and LK from a minimum of 2 up to a
maximum of 2 3 105 (Figure 3b), while the K
contrast between hydrofacies HK and IK is kept
constant and equal to one order of magnitude
in all the scenarios.

The last group (Group 6) consists of five scenar-
ios in which the volumetric proportion of hydrof-
acies HK, the mean lengths of hydrofacies HK and
IK, as well as the K contrasts between hydrofacies
are kept constant, while we change the volumet-

ric proportions of hydrofacies IK and LK. This generates scenarios in which both variance and HR change by
pairs (Figure 3c). More details about this group are provided in supporting information.
3.2.2. Flow and Solute Transport Simulations
Saturated groundwater flow in the generated synthetic K fields is simulated with the three-dimensional
finite-difference code MODFLOW-2005 [Harbaugh, 2005] under steady state conditions. The location and

Figure 3. Descriptive parameters for the groups of scenarios of aqui-
fer heterogenity. (a) Variation of HR with Lh in Groups 1 and 2. (b) Var-
iation of r2

Y with K contrast (KHK/KLK) in Groups 3–5. (c) Variations of
HG, HR, and r2

Y with volumetric proportion of hydrofacies IK (pIK)and
LK (pLK) in Group 6.
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size of the blocks in numerical grid cor-
respond to those of the geostatistical
grid. Dirichlet (specified head) bound-
ary conditions are assigned to two
sides of the domain, and no flow con-
ditions to the other sides (Figure 4).
Accordingly, the mean flow direction is
approximately parallel to the y axis.
Specified head values are set up to
generate a mean hydraulic gradient I
equal to 0.001.

Conservative solute transport is simu-
lated using the advection dispersion
equation, resolved in a Lagrangian
scheme using the random-walk parti-
cle-tracking code RW3D, a well-known
code used in multiple applications

involving transport in heterogeneous media [Fern�andez-Garcia et al., 2005; Salamon et al., 2006]. We
assumed constant porosity for all the hydrofacies (0.1), an isotropic small local dispersivity of 0.01 m, and an
effective molecular diffusion coefficient equal to 5.2 3 1025 m2/d, which is the same as the value used in
previous studies considering K contrasts between hydrofacies within the range of values assumed in this
study [e.g., LaBolle and Fogg, 2001; Zhang et al., 2007, 2013]. These assumptions are made to avoid a possi-
ble bias in the interpretation of the results due to overlapping of complex transport mechanisms (e.g., the
impact of transversal dispersion). Our primary goal is indeed to explore the response of the transport solu-
tion to the random variability of the seepage velocity vector due to the variability and entropy-controlled
structure of the K field. The analysis of the impact of different P�eclet numbers and transversal dispersion on
the relationships between geological entropy and anomalous transport is left open for a future
development.

The adopted injection scheme mimics a natural gradient field test in which a pulse of a conservative solute
is injected in the aquifer through a fully penetrating passive borehole. Particles were instantaneously
released in the domain along an injection line located at a point of coordinates 100 m (x) and 50 m (y), as
shown in Figure 4. The vertical profile of K along the injection line is shared by all the scenarios within in
each group. This was done by conditioning the T-PROGS simulations to the same vertical distribution of
hydrofacies for all the scenarios within each group. The number of particles entering the domain is propor-
tional to the local velocity flux to better represent flux-averaged conditions. After a sensitivity analysis, we
found that 104 is a suitable number of particles for computationally efficient and accurate solutions of the
transport equations.

We measured the temporal moments of the distribution of travel times of the ensemble of released par-
ticles crossing the outflow boundary of the flow model domain, which is located at a distance of 250 m
(downgradient) from the injection line. The resulting residence cumulative distribution functions (CDFs)
were transformed into resident solute BTCs using the adaptive kernel density estimator described by
Pedretti and Fern�andez-Garcia [2013].

4. Results and Analysis

4.1. Geological Entropy of the Synthetic K Fields
Using the indicators described in section 3.1, geological entropy was measured for the considered scenarios
of aquifer heterogeneity. Plots of the spatial distribution of the local entropy HL (equation (3)) for selected K
fields are presented in supporting information Figures S2–S5. By comparing the distributions of HL and the
corresponding spatial distribution of the hydrofacies, it is clear that this parameter is effective in identifying
3-D sectors of the domain characterized by different degrees of spatial disorder. The relative entropy index
HR integrates this information about the structure of the fields into a single metric, which allows to make
comparisons between fields with different structures.

Figure 4. Numerical model setup. Specified hydraulic heads (h1 and h2) boundary
conditions are applied at the grey-shaded sides. Particles are injected along the
vertical line shown in red and exit the domain at the outflow boundary with
head 5 h2.
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An example of this type of comparison is shown in Figure 3a for the scenarios of Groups 1 and 2. In both
groups, HR decreases with the isotropic mean length of the hydrofacies (Lh) according to a relationship that
can be best described as:

HR5aLb
h (6)

where the constant a is positive and the exponent b is negative. Accordingly, the K field structure becomes
more organized or less chaotic as the mean length of hydrofacies increases. The difference in the values of
HR between the two groups indicates that the relationship between HR and Lh depends the volumetric pro-
portions of the hydrofacies, and therefore on the type of aquifer.

In a way similar to the first two groups, the geological entropy of the scenarios in Groups 3, 4, and 5 is con-
sistent with the assumed hydrofacies architecture, with HR values equal to about 0.7, 0.4, and 0.3, respec-
tively (Table 1).

4.2. Linking Geological Entropy and Transport Behavior
In this work, we used two measurable parameters (i.e., HR and r2

Y ) to describe the heterogeneity of a K field.
The new index HR provides information about the structure of the field, while the variance r2

Y measures the
variability of the K values. We now show that these two parameters are linked to the results of our numeri-
cal experiment. We first analyze the groups of scenarios with variable HR and constant r2

Y (Groups 1 and 2),
and then the group of simulations with constant HR and variable r2

Y (Groups 3, 4, and 5). Results for the
group of scenarios in which both HR and constant r2

Y are variable (Group 6) are documented in supporting
information as further validation of the results obtained in the previous groups.
4.2.1. Scenarios with Variable HR and Constant r2

Y

The ensemble of solute BTCs for two scenarios of Groups 1 and 2 is plotted in Figure 5, while the arithmetic
mean values of the ensemble BTCs for five selected scenarios in each group are presented in supporting
information Figures S6 (Group 1) and S7 (Group 2). In all the figures, BTCs are plotted in log-log scale to
emphasize the presence of power-law-like patterns on the distribution tails. BTCs in supporting information
Figures S6 and S7 are also normalized by the mean arrival times (tm) to highlight the asymmetry in the

Figure 5. Ensemble of 100 arrival time probability density functions (PDFs) for two scenarios of (a, b) Group 1 and (c, d) Group 2. Grey
curves represent individual realizations. Black curves indicate ensemble means.
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shape of the BTCs. BTCs are unequivocally more asymmetric and right-skewed for scenarios characterized
by low HR values. In these scenarios, the late-time portions of the BTCs also show a power-law-like scaling
(Figures 5b and 5d), while BTCs calculated for fields with higher HR show a relatively symmetric shape and
less pronounced tailing (Figures 5b and 5d).

These qualitative considerations about the relationship between HR and solute transport behavior are con-
firmed by the analysis of the first three central temporal moments of the BTCs representing the mean (lt),
the variance (rt

2), and the skewness (skt) of the distribution of arrival times at the control plane. Boxplots of
the distributions of the moments calculated for each of the generated K fields are presented in supporting
information Figure S10.

The median values of the distributions of calculated moments are presented in Figure 6, which suggests
clearly identifiable dependencies between the moments and HR. In particular, three empirical relationships
seem to best to describe these dependencies:

elt 5a HR½ �b (7)

er2
t 5a1b ln HR½ � (8)

fskt 5a HR½ �b (9)

where the symbol � indicates the median value of the distributions of temporal moments. The values of
parameters a and b differ for each moment. Best fit curves of these equations are plotted as dashed lines in
Figure 6. For both Group 1 and Group 2, the mean and variance of the arrival times tend to increase mono-
tonically with spatial disorder (i.e., HR increasing). This is because in a disorderly structure particles travel
within a certain K zone for short distances after which they undergo to transitions into a different K zone.
The number of these transitions becomes larger with higher spatial disorder also causing higher dispersion
in the particle arrival times. Moreover, spatial disorder also increases the probability of the particles to travel

Figure 6. Median values of the moments of the BTCs for Group 1 and 2. R2 values for the best fitted lines are: (a) 0.996, (b) 0.989, (c) 0.997,
(d) 0.913, (e, Group 1) 0.980, and (e, Group 2) 0.999.
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through low-K zones, which explains the increasing delay in the mean arrival times with HR. The increment
in median skewness values as HR decreases indicates that the tailing of the BTCs becomes heavier as the
structures of the K fields become more orderly. In orderly structures, the presence of preferential flow paths
within high K zones, as well as of large low K areas where particles can linger for long times, result in asym-
metrical arrival time distributions. Conversely, particle paths mix more frequently in disorderly structures
with the result of producing symmetric distributions.
4.2.2. Scenarios with Constant HR and Variable r2

Y

The ensemble BTCs for the scenarios in Groups 3, 4, and 5 are plotted in supporting information Figure S8.
By comparing the shape of the BTCs within each group (i.e., for a fixed HR value), it is clear that the shape of
the BTC becomes progressively more asymmetric and irregularly shaped for larger r2

Y values. This result sug-
gests that a characterization of the structure solely in terms of geological entropy is not sufficient to charac-
terize transport behavior. However, the comparison of BTCs from scenarios with identical r2

Y further
confirms of the high impact of HR on transport. In fact, we observe systematically heavier tails in the BTCs
for the scenarios in Group 5 (HR 5 0.29), while more symmetric distributions and less pronounced tailing are
associated with the two groups with higher geological entropy. It is significant that, while power-law like
scaling in the tails of the BTCs is observed for scenarios in Groups 4 and 5, this behavior is never attained
for the highly disorderly scenarios in Group 1 (HR 5 0.68) regardless of variance r2

Y . By recalling that the
multi-Gaussian structure is a spatial configuration that maximizes disorder, this result provides an explana-
tion for the absence of anomalous features in BTCs from simulations considering multi-Gaussian K fields,
unless some artificial conditioning is done to enhance system’s connectivity and therefore spatial order
[e.g., Zinn and Harvey, 2003; Willmann et al., 2008].

Median values of the temporal moments for the three groups are plotted in Figure 7 for different r2
Y values,

while boxplots of the distributions of the moments are provided in supporting information (Figure S11). In
all the groups, median values of lt and rt

2 increase with the variance of the K field, according to relation-
ships that can be best described by exponential functions in the form:

elt

teq
5exp ar2

Y

� �
(10)

er2
t 5exp a r2

Y

� �b
h i

(11)

where a and b are the positive parameters and teq is the arrival time of the particles in an homogenous
field with constant K equal to the equivalent conductivity (Keq) of the heterogeneous field [Renard and de
Marsily, 1997; Sanchez-Vila et al., 2006]. For the domain of interest, the equivalent conductivity is defined by
Keq52QL=ADh where Q is the total flow rate crossing the outflow boundary, L is the distance between

Figure 7. Median values of the moments of the BTCs for Groups 3–5. R2 values for the best fitted lines are in the range (a) 0.987–0.992,
(b) 0.963–0.993, and (c) 0.929–0.975.
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sided with prescribed heads, Dh is the head difference, and A is cross-sectional area. It is noteworthy that
very similar values of er2

t are obtained for all the groups suggesting that, for a given set of volumetric frac-
tions of the hydrofacies, the median variance of the distribution of arrival times is not very sensitive to the
structure of the K field (Figure 7b).

Our results show that empirical exponential functions can also be fitted to data to describe the relationship
between rY

2 and skt. These can be written as:

fskt 5a 12exp br2
Y

� �� �
(12)

where parameter a is positive and b is negative. The goodness of fit of the best-fitted functions (Figure 7c)
is adequate as indicated by the values of the coefficient of determination (R2) between 0.929 and 0.975.

We also found from our experimental data sets that the best-fitted values of the exponent b in equation
(12) are actually very similar for all the groups (mean 20.10, variance � 1025), while the values of the
parameter a strongly correlate with the HR values of the three groups of scenarios (supporting information
Figure S13). The correlation between a and HR (R250:998) is best described by the following:

a51:99 HR½ �21:54 (13)

Substituting (13) into (12), and taking the exponent b as a constant, we obtained the following closed-form
expression:

fskt 51:99 12exp 2
r2

Y

10

� �� 	
HR

21:54 (14)

which allows us to predict the median skewness of solute BTCs solely from geological entropy HR and the
total ln K variance rY

2. This empirical solution is highly valuable because it is free of any fitting parameter,
since depends exclusively on two measurable parameters to describe the heterogeneity of the K field. For
any aquifer, values of these parameters can be obtained from (hydro)geological data and a representation
of the spatial distribution of the hydrofacies or K classes over the domain of interest.

Figure 8. Curves skt5fðHR; r2
Y Þ for different r2

Y and HR values (equation (12)). Validation data based on transport simulations from Groups
1, 2, and 6 are plotted in blue. Data from documented case studies are plotted in red. Vertical lines indicate the interquantile range of the
distributions of simulated skewness values. See text for details.
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4.3. Testing the Predictability of Equation (14)
To test the predictability of equation (14), we considered validation data from a number of scenarios of
aquifer heterogeneity. Because the empirical parameters in equation (14) were obtained only from the anal-
ysis of Groups 3–5, a first set of validation data includes the results from Groups 1, 2, and 6. A second set of
validation data is based instead on the results of additional transport simulations in K fields representing
real and synthetic aquifers described in the literature. To provide a unique framework to compare the pre-
dictive ability of equation (14), we built a set of curves expressing the relationship between r2

Y and skt for a
number of HR values, ranging from 0.1 to 1. On top of these curves, shown as grey-dashed lines in Figure 8,
we overlapped the first set of validation data (Groups 1, 2, and 6) as blue symbols and the second set (docu-
mented case studies) as red symbols.

The real and synthetic aquifers used for generating the second set of validation data include:

1. the aquifer at the MADE site [Zheng et al., 2011], as per the lithological model presented by Bianchi and
Zheng [2016];

2. the aquifer at the Lawrence Livermore National Laboratory (LLNL P18), as per the statistical parameters
of the hydrofacies models presented by Fogg et al. [1998], LaBolle and Fogg [2001], and Zhang et al.
[2013];

3. the alluvial fan of the River Brenta near the Venice Lagoon (VL) in northeastern Italy [Beretta and Terren-
ghi, 2016], as per the lithofacies model by Terrenghi et al. [2016];

4. two synthetic aquifers (LLNL P48 and LLNL P48_05), as per the hydrofacies models by Zhang et al. [2013]
based on a modification of the original parameters of the LLNL aquifer.

For each case study, hydrofacies models were generated according to site-specific T-PROGS input parame-
ters (e.g., number of hydrofacies, transition probabilities, and mean lengths) extracted from relevant biblio-
graphic references, and then 100 stochastic transport simulations were performed using the previously
described numerical framework. Due to the similarity between the scales of the domain of our modeling
framework and the average scale of the analyzed case studies, we did not perform an upscaling or down-
scaling of the mean lengths of the hydrofacies.

Calculated HR values for these case studies indicate a range of geological entropy in the K field structures
between low and high, while r2

Y values are representative of variable degrees of heterogeneity in the K dis-
tributions (Table 2). In particular, K fields representing the type of heterogeneity observed at the aquifers at
the MADE site and at LLNL are characterized by a very orderly structure (HR � 0.3), although the values of
r2

Y for the two case studies are very different. The K fields based on the synthetic aquifers of Zhang et al.
[2013] have the same very high variance r2

Y , but differ in terms of HR values (0.42 versus 0.74), as the struc-
ture for LLNL P48_05 is much more chaotic. The K fields for the case similar to the VL aquifer are character-
ized by intermediate HR and r2

Y values with respect to the other analyzed case studies.

BTCs resulting from transport simulations are extremely skewed (fskt 5 12.5) for the LLNL P18 case study,
highly skewed (fskt � 7) for LLNL P48, and skewed (fskt � 3) for all the remaining case studies regardless of
the large differences in r2

Y . These results highlight once again the impact of HR on transport behavior, along
with r2

Y . This is particularly evident from the analysis of the BTCs in the K fields representing the MADE site
aquifer, which are quite skewed (fskt 5 3.11) despite the relatively small r2

Y . This skewness value not only
qualitatively agrees with the anomalous transport conditions observed at this site, it also suggests that such
conditions may be mainly the effect of the low geological entropy of the aquifer. This is consistent with the

Table 2. Summary of Parameters and Calculated Values for the Documented Case Studies

Aquifer Type Description HG HR r2
Y

~skt Bibliographic Reference

MADE Five hydrofacies with relatively small K contrasts resulting in a binomial K distribution 1.53 0.36 3.35 3.11 Bianchi and Zheng [2016]
VL Three lithofacies with comparable proportions (sand, clay, silt) and significant K contrasts 1.09 0.52 15.02 5.20 Terrenghi et al. [2016]
LLNL P18 Four hydrofacies with significant K contrasts. Predominance of the low K hydrofacies (56%) 1.14 0.32 24.90 12.47 Fogg et al. [1998],

LaBolle and Fogg [2001], and
Zhang et al. [2013]

LLNL P48 Four hydrofacies with significant K contrasts. Predominance of the high K hydrofacies (48%) 1.20 0.42 23.30 7.01 Zhang et al. [2013]
LLNL P48_05 Similar to P48, but shorter mean lengths of the hydrofacies 1.20 0.74 23.30 2.64 Zhang et al. [2013]
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presence of connected structures and organized features as suggested by several previous studies [Dogan
et al., 2014; Bianchi and Zheng, 2016; Zheng et al., 2011, and references therein].

From Figure 8 and the comparison between skewness values from numerical simulations and correspond-
ing predicted values (supporting information Figure S14), we can demonstrate good predictability of the
developed expressions skt5fðHR; r2

YÞ (equation (14)) for both sets of validation data. Indeed, the large
majority of estimated points fall at the expected locations in the graph, especially if we take into account
the interquartile range of the distributions of the median skewness values (vertical lines). This range is par-
ticularly large for case studies considering K fields characterized by small HR values. The error in the predic-
tions of skt is generally acceptable. For instance, the calculated median value of skt for the scenario with
HR 5 0.57 and r2

Y 5 8.6 (Group 2) is equal to 1.6, while the predicted value from the graph is around 1.8. For
the first set of validation data, the mean absolute error is equal to 0.4. The highest discrepancy between cal-
culated and predicted skt values is for the scenarios with the lowest HR (0.76 and 0.87) for which the calcu-
lated median skt values are about 1.5 times smaller than corresponding predicted values. On average, the
error for the second set of validation data considering documented case studies, the errors between simu-
lated and predicted skt values are in the range between about 0.2% (LLNL P48_05) and 20% (VL aquifer).
Overall, the mean percentage error of the predictions is around 10% with a tendency to underestimate the
skewness.

Overall, these results prove the ability of the developed expressions (equation (14)) as a simple and suffi-
ciently accurate predictive tool based solely on measurable aquifer properties. We argue that the predict-
ability of our approach could be even improved in the future considering that these expressions are based
on an empirical parameterization: Future research will be aimed at understanding the physical nature and
mathematical derivation of the parameters in equation (14).

5. Discussion: Geological Entropy and Connectivity

The concept of connectivity has been widely recognized as an important factor controlling flow and trans-
port in geological media [e.g., Fogg, 1986; Fogg et al., 2000; Bianchi et al., 2011b; Pedretti et al., 2013; Molinari
et al., 2015], and therefore several indicators have been developed with the intent to define this concept in
quantitative terms. In a recent review, Renard and Allard [2013] classified these indicators into static indica-
tors, measuring the probability of having connected structures in the K field, and dynamic indicators, mea-
suring the degree of flow channeling and presence of fast preferential paths responsible for earlier than
expected particle travel times [e.g., Knudby and Carrera, 2005, 2006; Willmann et al., 2008; Bianchi et al.,
2011b].

Although connectivity concepts have been the focus of multiple investigations and analyses in the last two
decades, some open questions remain regarding the applicability of connectivity indicators for predictive
purposes in solute transport problems. Renard and Allard [2013] showed for instance that static indicators
do not provide values that allow a univocal ranking in terms of connectivity, and therefore the use of multi-
ple indicators is strongly suggested. The flow and transport simulations in heterogeneous well-connected K
fields presented by Knudby and Carrera [2005] provided evidence of a poor correlation between certain
dynamic and static connectivity indicators, including the bivariate entropy index of Journel and Deutsch
[1993]. An improved correlation have been found using static indicators based on mathematical morphol-
ogy [Tyukhova et al., 2015; Tyukhova and Willmann, 2016a]. However, these recent results have been only
validated for 2-D K fields, while few studies have shown that connectivity strongly increases in 3-D field
compared to 2-D fields. For instance, Fiori and Jankovic [2012] showed that flow channeling is significantly
enhanced in 3-D fields compared to 2-D fields. The larger connectivity of 3-D systems was also used by
Pedretti et al. [2013] to explain the formation of non-Fickian transport features not observed in equivalent 2-
D K fields. Other studies have also shown that the emergence of non-Fickian transport features do not
require fully connected zones of relatively homogeneous high-K [Bianchi et al., 2011b; Fiori and Jankovic,
2012].

Although the relative entropy index HR can be seen somewhat similar to a static connectivity indicator since
in general the geological entropy of a well-connected K field is expected to be lower than a poorly con-
nected one, there is a fundamental difference. In particular, while static connectivity indicators focus only
on the spatial continuity of a specific hydrofacies or class of K values, the index HR takes into account the
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spatial distribution of all the classes of K field. Therefore, HR can be compared to a global metric that takes
into account the overall structure of the K field, which is influenced by several aquifer properties (e.g., volu-
metric proportions of the hydrofacies or K classes), and not just by connectivity of a particular hydrofacies.
We argue that geological entropy shall not be seen as an alternative to connectivity, but rather a comple-
ment to this concept since it provides a more comprehensive description of the structure of the K field.
Because of the broader range of information about the spatial structure of the K field considered in the
quantification of HR, we are able to overcome some of the limitations and open issues regarding the appli-
cation of connectivity indexes in transport problems, and most importantly link the structural information
to the corresponding solute transport behavior in 3-D K fields.

6. Conclusions

We presented a novel approach to explain solute transport behavior from the physical heterogeneity of the
aquifer, here fully described by the two measurable metrics. The first (HR) is a new index based on informa-
tion entropy concepts, which quantifies spatial disorder in the structure of K field, while the second (r2

Y ) is
the log-K variance of the univariate K distribution. Both metrics can be obtained from data collected during
conventional hydrogeological characterization of the aquifer and from the analysis of a representative
model of the spatial distribution of K classes or hydrofacies over the domain of interest. Detailed numerical
simulations of conservative solute transport in several realistic scenarios of aquifer heterogeneity were used
to investigate the relationships between these metrics and transport behavior, as characterized by the first
three moments of the distribution of arrival times of solute particles.

Two major findings can be drawn for our numerical investigation: (1) there is a clearly identifiable depen-
dency between transport and the degree of disorder in the K field and (2) the Fickian or non-Fickian (i.e.,
‘‘anomalous’’) character of transport can be predicted solely from knowledge of the values of the two met-
rics HR and r2

Y . More specifically, comparisons between results of numerical simulations in K fields with dif-
ferent degrees of geological entropy and ln K variance lead to the following specific observations:

1. For scenarios considering constant r2
Y and variable HR, the mean and the variance of the distribution

of arrival times tend to increase with spatial disorder (i.e., HR increasing) according to power-law and
logarithm functions, respectively. The distribution also becomes progressively more skewed as the
structure of the K field becomes more orderly (i.e., HR decreasing). The relationship between HR and
the skewness is best described by a power-law function. These results, which are valid for both high-K
and low-K dominated aquifers, confirm the importance of a site specific characterization of the struc-
ture of the K field emphasized by the results of recent studies [e.g., Zech et al., 2015; Bianchi and
Zheng, 2016].

2. For a given degree of spatial disorder in the K field structure, the first three temporal moments of the dis-
tribution of arrival times increase with the variance r2

Y .
3. While the dependency of the variance of the arrival times is not particularly sensitive to the structure of

the K field, the values of the parameters in the empirical functions describing the relationship between
r2

Y and the skewness differ with respect to the degree of disorder, and therefore of HR. This result con-
firms that structural information is not sufficient to fully predict all the different features of transport
behavior [e.g., Edery et al., 2014; Tyukhova and Willmann, 2016b].

4. Empirical expressions relating the skewness of the BTCs to the two parameters HR and r2
Y (equation (14))

can provide reasonable predictions of Fickian and non-Fickian transport behavior simply from knowl-
edge of aquifer heterogeneity without fitting parameters. In recent years, the link between non-Fickian
transport features and measurable aquifer properties has also been successfully defined by Zhang et al.
[2007, 2013, 2014]. However, while their approach is mainly applicable for aquifers systems with signifi-
cant K contrasts between high-K and low-K sediments, we have shown that our approach is valid virtually
in any combination of structure and degree of variability of the K field.

These are remarkable findings because they show that geological entropy is the fundamental aquifer prop-
erty to link heterogeneity and transport behavior. Moreover, they provide motivation for future develop-
ment of a new upscaled transport approach based on input transport parameters that are directly
correlated to values of HR.
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A final note regards the transferability of our approach. Although, in this work, we focused on K fields based
on stochastic distributions of hydrofacies in alluvial systems, the concept of geological entropy is applicable
for predicting solute transport behavior in any conceptualization of the spatial distribution of K, regardless
of the dimensionality of the domain or of the geological setting. However, the application to continuous
distributions of K (e.g., multi-Gaussian representations) requires a preliminary discretization into homoge-
nous categories, and further investigation is needed to evaluate the dependency of HR on the criteria used
for the discretization.
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