
OR/17/09; Final  Last modified: 2017/04/03 15:08 

 

 

  

 
Environmental factors influencing 

pipe failures 

 Base Products Programme 

Open Report OR/17/09 

 

 

 

 

  

CORE Metadata, citation and similar papers at core.ac.uk

Provided by NERC Open Research Archive

https://core.ac.uk/display/82969389?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


OR/17/09; Final  Last modified: 2017/04/03 15:08 

  



OR/17/09; Final  Last modified: 2017/04/03 15:08 

  BRITISH GEOLOGICAL SURVEY 

BASELINE Products PROGRAMME 

OPEN REPORT OR/17/09 

  

The National Grid and other 

Ordnance Survey data © Crown 

Copyright and database rights 
2017. Ordnance Survey Licence 

No. 100021290 EUL. 

Keywords 

Ferrous pipeline failure, Plastic 

pipeline failure, Corrosion, 
Statistical Modelling. 

 

Front cover 

Cover picture details, delete if no 

cover picture. 

Bibliographical reference 

TYE, A.M., KIRKWOOD, C., 

DEARDEN, R., RAWLINS, B.G., 

LARK, R.M., LAWLEY, R.L. & 

Mee, K. 2017.   

British Geological Survey Open 

Report, OR/17/09.  96pp. 

Copyright in materials derived 

from the British Geological 

Survey’s work is owned by the 
Natural Environment Research 

Council (NERC) and/or the 

authority that commissioned the 
work. You may not copy or adapt 

this publication without first 

obtaining permission. Contact the 
BGS Intellectual Property Rights 

Section, British Geological 

Survey, Keyworth, 
e-mail ipr@bgs.ac.uk. You may 

quote extracts of a reasonable 

length without prior permission, 
provided a full acknowledgement 

is given of the source of the 

extract. 

Maps and diagrams in this book 

use topography based on 

Ordnance Survey mapping. 
 

Environmental factors influencing 

pipe failures 

A.M. Tye, C. Kirkwood, R. Dearden, B.G. Rawlins, R.M. Lark, 

R.L. Lawley, D. Entwistle and K. Mee 

 

 

© NERC 2017. All rights reserved Keyworth, Nottingham   British Geological Survey   2017 



OR/17/09; Final  Last modified: 2017/04/03 15:08 

The full range of our publications is available from BGS shops at 

Nottingham, Edinburgh, London and Cardiff (Welsh publications 

only) see contact details below or shop online at 

www.geologyshop.com 

The London Information Office also maintains a reference 

collection of BGS publications, including maps, for consultation. 

We publish an annual catalogue of our maps and other 

publications; this catalogue is available online or from any of the 

BGS shops. 

The British Geological Survey carries out the geological survey of 

Great Britain and Northern Ireland (the latter as an agency 

service for the government of Northern Ireland), and of the 

surrounding continental shelf, as well as basic research projects. 

It also undertakes programmes of technical aid in geology in 

developing countries. 

The British Geological Survey is a component body of the Natural 

Environment Research Council. 

British Geological Survey offices 

 

BGS Central Enquiries Desk 

Tel 0115 936 3143 Fax 0115 936 3276 

email enquiries@bgs.ac.uk 

 

Environmental Science Centre, Keyworth, Nottingham  

NG12 5GG 

Tel 0115 936 3241 Fax 0115 936 3488 

email sales@bgs.ac.uk 

 

Murchison House, West Mains Road, Edinburgh  EH9 3LA 

Tel 0131 667 1000 Fax 0131 668 2683 

email scotsales@bgs.ac.uk 

Natural History Museum, Cromwell Road, London  SW7 5BD 

Tel 020 7589 4090 Fax 020 7584 8270 

Tel 020 7942 5344/45 email bgslondon@bgs.ac.uk 

Columbus House, Greenmeadow Springs, Tongwynlais, 

Cardiff  CF15 7NE 

Tel 029 2052 1962 Fax 029 2052 1963 

Maclean Building, Crowmarsh Gifford, Wallingford   

OX10 8BB 

Tel 01491 838800 Fax 01491 692345 

Geological Survey of Northern Ireland, Colby House, 

Stranmillis Court, Belfast  BT9 5BF 

Tel 028 9038 8462 Fax 028 9038 8461 

www.bgs.ac.uk/gsni/ 

Parent Body 

Natural Environment Research Council, Polaris House, 

North Star Avenue, Swindon  SN2 1EU 

Tel 01793 411500 Fax 01793 411501 

www.nerc.ac.uk 

 

Website  www.bgs.ac.uk  

Shop online at  www.geologyshop.com 

 

BRITISH GEOLOGICAL SURVEY 

http://www.geologyshop.com/


OR/17/09; Final  Last modified: 2017/04/03 15:08 

 i 

Acknowledgements 

The authors would like to thank Yorkshire Water for engaging in this project through data share 

and discussion. The work was funded by NERC grant NE/M008339/1 and NERC grant 

NE/NO13026/1.  

 

Contents 

Acknowledgements ......................................................................................................................... i 

Contents ........................................................................................................................................... i 

Summary ....................................................................................................................................... vi 

1 Introduction ............................................................................................................................ 1 

2 Materials and methodology ................................................................................................... 2 

2.1 GIS based data pre-processing ....................................................................................... 2 

2.2 Data assessment and formatting ..................................................................................... 3 

2.3 Statistical modelling - Outline ...................................................................................... 12 

2.4 Model outputs ............................................................................................................... 15 

3 Results ................................................................................................................................... 17 

3.1 Exploratory data analysis of different pipe materials ................................................... 17 

3.2 Ranking and identifying covariates to be used in models ............................................ 22 

3.3 Additional covariate selection ...................................................................................... 25 

3.4 The clean water cast iron network ................................................................................ 29 

3.5 The clean water plastic pipe network ........................................................................... 45 

3.6 The waste water concrete pipe network ....................................................................... 56 

3.7 The waste water clay pipe network .............................................................................. 66 

4 General Discussion ............................................................................................................... 76 

4.1 The value of the model outputs .................................................................................... 76 

4.2 What we have learnt ..................................................................................................... 77 

4.3 Review of work with Yorkshire Water, Scottish water and Welsh water .................... 79 

References .................................................................................................................................... 83 
 

FIGURES 

Figure 1: Relative frequency of clean water pipe length (metres) in 100 x 100 m grid ............... 18 

Figure 2: The frequency of clean water pipe failure rate (n failures per pipe kilometre) for four 

types of pipe material. Note the y axes have different scales. ................................................ 19 

Figure 3: Age (years) of clean water pipe failure frequency (years) for four pipe types. Note that 

changes in pipe type installed with time exerts a strong influence on the age at failure; for 



OR/17/09; Final  Last modified: 2017/04/03 15:08 

 ii 

example there are few plastic pipes older than 50 years whilst there are many cast iron pipes 

of ages greater than 100 years. Note the y axes have different scales. ................................... 21 

Figure 4: Frequency of clean water pipe bursts (n bursts per cell) for the four pipe material types. 

Note the y axes have different scales. ..................................................................................... 22 

Figure 5: The null model (model 1) for the whole of the Yorkshire Water region where the 

density of bursts is a function of the log density of cast iron pipe in each 100 x 100m cell. 

Red indicates model under prediction and blue over-prediction. ........................................... 29 

Figure 6: Final lurking variable plot for the best fit model (Model 3) based on the expert 

elicitation process where covariates are added in sequential order. The red areas indicate 

where the model under predicts the number of expected pipe bursts per cell, whilst the blue 

over-predicts per 100 x 100m cell. ......................................................................................... 32 

Figure 7: Result of full model (Model 5) or the YW region using sequential addition of 

covariates. Examination of the combined X and Y axis residuals suggest that overall the 

model is under predicting the number of pipe failures per unit length of pipe, with the red 

colours indicating where this is happening to the greatest extent and the blue the least........ 37 

Figure 11 The Null model for the clean water plastic pipe network across the YW region. ........ 46 

Figure 12 Final lurking variable plot for the best fit model based on the expert elicitation process 

where covariates are added in sequential order (Model 3) for the plastic clean water model. 

Red indicates under prediction whilst blue indicates over prediction in the number of 

expected pipe bursts per cell. .................................................................................................. 48 

Figure 13 Result of Model 5 for the YW region using sequential addition of covariates for plastic 

pipe failures. Note the decrease in the cumulative sum of raw residuals compared to the null 

model in Figure 9. Examination of the combined X and Y axis residuals suggest that overall 

the model is under predicting the number of pipe failures per unit length of pipe, with the red 

colours indicating where this is happening to the greatest extent and the blue the least........ 52 

Figure 14 Heat Maps produced from the coefficients of significant co-variables using Model 5 

for the YW clean water plastic pipe network ......................................................................... 55 

Figure 15 Overall heat map showing intensities of hostile environments to plastic pipe network 

across the YW region using the coefficients produced from significant co-variables using 

Model 5 ................................................................................................................................... 56 

Figure 16 The null model for the concrete waste water network for the Yorkshire Water region 

where the density of bursts is a function of the log density of concrete pipe in each 100 x 

100m cell. Red indicates model under prediction (positive residuals) and blue over 

prediction (negative residuals). ............................................................................................... 58 

Figure 17 Final lurking variable plot for the best fit model based on the expert elicitation process 

where covariates are added in sequential order (Model 3) for the concrete waste water 

network. The red areas indicate where the model under predicts the number of expected pipe 

bursts per cell, whilst the blue over-predicts per 100 x 100m cell ......................................... 60 

Figure 18. Result of full model for the YW region using sequential addition of covariates for the 

concrete waste water network (Model 5). Note the decrease in the cumulative sum of raw 

residuals compared to the null model in Figure 9. Examination of the combined X and Y axis 

residuals suggest that overall the model is under predicting the number of pipe failures per 

unit length of pipe, with the red colours indicating where this is happening to the greatest 

extent and the blue the least. ................................................................................................... 63 

Figure 19 Heat Maps for the YW concrete waste water network where coefficients from the 

significant co-variables from Model 5 are plotted on a standardised colour scale ................. 65 



OR/17/09; Final  Last modified: 2017/04/03 15:08 

 iii 

Figure 20 Total Intensity map of YW region for the concrete waste water network showing areas 

which are most hostile to pipe networks produced using significant variables obtained using 

model 5. .................................................................................................................................. 66 

Figure 21 The null model for the whole of the Yorkshire Water region where the density of 

bursts is a function of the log density of clay waste water pipe in each 100 x 100m cell. Red 

indicates model under prediction (positive residuals) and blue over prediction (negative 

residuals). ................................................................................................................................ 67 

Figure 22 Final lurking variable plot for the best fit model based on the expert elicitation process 

where covariates are added in sequential order (Model 3). The red areas (positive residual) 

indicate where the model under predicts the number of expected pipe bursts per cell, whilst 

the blue (negative residual) over-predicts per 100 x 100m cell ............................................. 69 

Figure 23 Result of full model for the YW region using sequential addition of covariates for the 

clay waste water network (Model 5). Note the decrease in the cumulative sum of raw 

residuals compared to the null model in Figure 9. Examination of the combined X and Y axis 

residuals suggest that overall the model is under predicting the number of pipe failures per 

unit length of pipe, with the red colours indicating where this is happening to the greatest 

extent and the blue the least. ................................................................................................... 73 

Figure 24 Individual heat maps for the significant co-variables from Model 5 for the clay waste 

water network placed on a standardized scale ........................................................................ 75 

Figure 25 Total Intensity heat map for the clay waste water network obtained by combining 

significant co-variable coefficients from Model 5. ................................................................ 76 

 

TABLES 

Table 1: Pipe type codes, descriptions and materials used in models ............................................. 4 

Table 2: The continuous variables used in the model and an explanation as to impacts on pipe 

networks.................................................................................................................................... 7 

Table 3 The categorical co-variables used in the model and an explanation as to their impacts on 

pipe networks. ........................................................................................................................... 9 

Table 4: Results of initial Expert Elicitation (EE) process and rank order of variables commonly 

associated with failure for cast iron pipes (1 = high correlation). Included are the co-variates 

included for each rank. ........................................................................................................... 24 

Table 5: Revised ranking list of variables to be used in Expert Elicitation (EE) models after YW 

DMA data became available. .................................................................................................. 24 

Table 6: The correlation (r) matrix for the seven continuous covariates assessed for use in the 

clean water cast iron pipe models for the YW region. ‘Aspect East’ was computed as cosine 

of aspect (compass direction of slope) and ‘Aspect north’ was computed as sine of aspect. 26 

Table 7: Correlations between selected covariates and their principal component scores ........... 26 

Table 8:  Absolute correlation values (r) between twelve categorical covariates and ten 

continuous covariates (see Tables 2 & 3 for covariate descriptions). .................................... 28 

Table 9: Output from spatial point process model fitting with a series of single covariates, added 

to a null model in which cast iron length is included as a covariate (Model 2) ..................... 30 

Table 10 Coefficients for the water source categorical variables when added to the null model as 

a single variable (Model 2) ..................................................................................................... 30 



OR/17/09; Final  Last modified: 2017/04/03 15:08 

 iv 

Table 11 Coefficients of shrink swell clay categorical variables when added to the null model as 

a single variable (Model 2) ..................................................................................................... 31 

Table 12 Coefficients of the compressible ground categorical variables when added to the null 

model as a single variable (Model 2) ...................................................................................... 31 

Table 13: P-value from tests for sequential addition of statistically significant covariates 

identified from the expert elicitation added to the null model. LLr is the log likelihood ratio 

statistic expressing how many times more likely the data are based on addition of this 

covariate in comparison to the previous model. ..................................................................... 31 

Table 14: Full region output from spatial point process model fitting with a series of single 

covariates, added to a null model (Model 4). ......................................................................... 33 

Table 15 Coefficients of the soluble ground categorical variables when added to the null model 

as a single variable (Model 4) ................................................................................................. 33 

Table 16 Coefficients of the soil corrosivity categorical variables when added to the null model 

as a single variable (Model 4) ................................................................................................. 34 

Table 17 Coefficients of the sulphate / sulphide categorical variables when added to the null 

model as a single variable (Model 4) ...................................................................................... 34 

Table 18: Full region P-values based on the log likelihood ratios tested using the Chi-squared 

distribution (testing model 5 with added covariate against the previous model in the 

sequence in which covariates are retained where P<0.001). Aspect was not included because 

it was not a statistically significant predictor across the full region. ...................................... 35 

Table 19 Coefficients for water source from the cast iron clean water network obtained using 

Model 5 ................................................................................................................................... 35 

Table 20 Coefficients for shrink swell clays from the cast iron clean water network obtained 

using Model 5 ......................................................................................................................... 35 

Table 21 Coefficients for compressible ground from the cast iron clean water network using 

Model 5 ................................................................................................................................... 35 

Table 22 Coefficients for soil corrosivity from the cast iron clean water network using Model 536 

Table 23 Coefficients for soluble ground conditions for the cast iron clean network using Model 

5 .............................................................................................................................................. 36 

Table 24 Coefficients for sulphide/ sulphate in soils from the cast iron clean water network using 

Model 5 ................................................................................................................................... 36 

Table 25: Interpretation of the outputs from adding individual covariates to the null model for the 

YW region (Model 2 & 4) ...................................................................................................... 39 

Table 26 Metrics of models consisting of individual predictor variables added to the null model 

independently of each other (Model 2) ................................................................................... 46 

Table 27 Coefficients of shrink swell clay categorical variables for the plastic clean water 

network obtained using Model 2 ............................................................................................ 47 

Table 28 Coefficients of Compressible Ground categorical variables for the plastic clean water 

network obtained using Model 2 ............................................................................................ 47 

Table 29 Metrics of sequential addition of expert elicited predictor variables to the null model 

(Model 3) ................................................................................................................................ 47 

Table 30: Full region output from spatial point process model fitting with a series of single 

covariates, added to a null model in which plastic pipe length is included as a covariate. .... 49 



OR/17/09; Final  Last modified: 2017/04/03 15:08 

 v 

Table 31 Coefficients of Soluble Ground categorical variables for the plastic clean water network 

using Model 4 ......................................................................................................................... 49 

Table 32 Coefficients of Soil Corrosivity categorical variables for the plastic clean water 

network using Model 4 ........................................................................................................... 49 

Table 33 Coefficients of Sulphur/Sulphide categorical variables for the plastic clean water 

network using Model 4 ........................................................................................................... 50 

Table 34: Results of sequential model (Model 5) for the plastic pipe network across the YW 

region ...................................................................................................................................... 50 

Table 35 Coefficients of shrink swell categorical variables for the plastic clean water network 

using Model 5 ......................................................................................................................... 51 

Table 36 Coefficients of Compressible ground categorical variables for the plastic clean water 

network using Model 5 ........................................................................................................... 51 

Table 37 Coefficients of Soluble Ground categorical variables for the plastic clean water network 

using Model 5 ......................................................................................................................... 51 

Table 38 Coefficients of sulphate and sulphide categorical variables for the plastic clean water 

network using Model 5 ........................................................................................................... 51 

Table 39 Interpretation of the outputs from adding individual covariates to the Null model for the 

plastic pipe clean water network in the YW region. ............................................................... 53 

Table 40 Outputs from running the Null model with individual predictor variables (Model 2) ... 59 

Table 41 Coefficients of shrink swell clay categorical variables for the concrete waste water 

network using Model 2 ........................................................................................................... 59 

Table 42 Coefficients of the compressible ground categorical variables for the concrete waste 

water network using Model 2 ................................................................................................. 59 

Table 43 P-value from tests for sequential addition of statistically significant covariates 

identified from the expert elicitation added to the null model (Model 3). LLr is the log 

likelihood ratio statistic expressing how many times more likely the data are based on 

addition of this covariate in comparison to the previous model ............................................. 60 

Table 44 Full region output from spatial point process model fitting with a series of single 

covariates, added to a null model in which plastic pipe length is included as a covariate 

(Model 4) ................................................................................................................................ 61 

Table 45 Coefficients of the Soluble Ground categorical variables for the concrete waste water 

network obtained from using Model 4 ................................................................................... 61 

Table 46 Metrics of sequential addition (Model 5) of expert elicited predictor variables to 

sequential model, starting from null model ............................................................................ 62 

Table 47 Coefficients of the Soluble Ground categorical variables for the concrete waste water 

network using model 5 ........................................................................................................... 62 

Table 48 What the coefficients mean for the concrete waste water network models. .................. 64 

Table 49 Outputs from running the Null model with individual predictor variables for the clay 

waste water network (Model 2) .............................................................................................. 68 

Table 50 Model coefficients for Shrink swell clays for the clay pipe waste water network (No 

Class E present in YW region) obtained using Model 2 ........................................................ 68 

Table 51 Model coefficients for compressible ground conditions for the clay pipe waste water 

network (No pipework in Class E through YW region) obtained using Model 2 .................. 68 



OR/17/09; Final  Last modified: 2017/04/03 15:08 

 vi 

Table 52 Metrics of sequential addition of expert elicited predictor variables to sequential model, 

starting from null model (Model 3) ........................................................................................ 69 

Table 53 Metrics of Model 4 where individual predictor co-variables are added to the null model 

independently of each other .................................................................................................... 70 

Table 54 Model coefficients obtained from Model 4 for Soluble ground conditions for the clay 

pipe waste water network ....................................................................................................... 70 

Table 55 Model coefficients obtained from Model 4 for corrosive ground conditions for the clay 

pipe waste water network ....................................................................................................... 70 

Table 56 P-value from sequential addition of statistically significant co-variables added to the 

null model (Model 5). LLr is the log likelihood ratio statistic expressing how many times 

more likely the data are based on addition of this covariate in comparison to the previous 

model. ..................................................................................................................................... 71 

Table 57 Coefficients of Shrink swell clays obtained from Model 5 for the clay waste water 

network. .................................................................................................................................. 71 

Table 58 Coefficients of Compressible Ground obtained from Model 5 for the clay waste water 

network. .................................................................................................................................. 71 

Table 59 Coefficients of Soluble Ground obtained from Model 5 for the clay waste water 

network ................................................................................................................................... 72 

Table 60 Coefficients of soil Corrosivity obtained from Model 5 model for the clay waste water 

network. .................................................................................................................................. 72 

Table 61 Possible explanations for the nature of model coefficients for the waste water clay 

network where single covariables are added to the Null model. ............................................ 74 

 

Summary 

This report details work carried out under NERC grants NE/M008339/1 and NE/NO13026/1 

which were collaborations between the British Geological Survey and Yorkshire Water, with an 

additional knowledge transfer component involving Scottish Water and Dŵr Cymru Welsh 

Water. The work examines whether models developed using environmental, topographical and 

geohazard information could complement existing management tools, and increase the 

understanding as to how pipe networks of different materials interact with their broader 

environment. This can be seen as a first step in identifying ways in which greater resilience could 

be built into pipe networks.   

 

Broad groups of pipe materials were examined, these being the cast iron and plastic pipe 

networks for clean water and the concrete and clay networks for waste water. Modelling was 

undertaken using the spatial model package ‘SPATSTAT’ in the ‘R’ statistical platform. Initially 

Null Models were established to predict the ‘expected number of bursts’ per unit area (100 x 100 

m cells) for each pipe type (construction material) and water type (clean or waste) of interest 
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based on the density (length) of pipe present in each cell. Single covariates, identified as being 

important in pipe failure obtained through an Expert Elicitation process with YW, were tested 

against the null model. Those significant covariates (P<0.05) were then included in a sequential 

model where covariates were added and kept. In the second part of the modelling exercise, a 

selection of additional environmental and geohazard information were added to the expert 

elicitation model and a similar modelling exercise undertaken.   

 

Overall, the modelling exercise demonstrated that for the YW region, covariates such as roads, 

water source, and number of dwellings (as a likely proxy for pressure changes and use) were of 

greater influence on the pipe network than many geohazard factors. This may be due to the YW 

region being fairly benign to typical factors that are recognised as damaging pipe networks such 

as shrink swell clays and compressible ground. For both of these covariates the highest class of 

hazard wasn’t found in the YW region. However, soluble (gypsum bearing rocks) ground were 

identified as a problem for the concrete waste water network and the potential presence of 

sulphide was important for the cast iron network. In addition, outputs showed that pipe networks 

associated with the coal measures and some areas of lacustrine clay appeared to have greater 

than expected pipe failures, which the covariates used in the model could not explain. Results 

were presented as heat maps, by combining the outputs from each 100 x 100 m cell cell using the 

model coefficients from the final sequential model for each pipe network. This allows a spatial 

assessment of the overall environmental, geological and topographical ‘hostility’ towards the 

pipe network. In addition, individual heat maps for each significant (P<0.05) covariate were 

created, placed on a single scale so that the intensity of each environmental, topographical and 

geohazard covariate could be compared across the YW region. End of project meetings were 

held between BGS and the water companies to disseminate results and discuss the benefits and 

possibilities of the modelling approach used.  

 

 

 



 

1 

 

1 Introduction 

This report details the results from two NERC grants examining the impacts of geological, 

environmental and landscape factors on the resilience of underground pipe networks. Our 

major partner in these Knowledge Exchange grants was Yorkshire Water (YW); one of the 

largest water and sewerage companies in the UK supplying 1.24 billion litres of drinking 

water per day. YW manage 31,300 km of clean water mains and respond to 6000-7000 bursts 

per year. Pipeline failures can result in loss of supply to properties, damage and closure of the 

public highway, closures or other inconveniences to business and the general public. Leakage 

(estimated to be about 275 Ml/day) from the mains water network results in loss of pressure, 

increased demands on water demand and treatment works (increasing carbon emissions) and 

water-related ground instability. YW also operate ~53,000 km of sewage pipe and respond to 

200-300 sewer collapses per year. Sewer failures result in the flooding of homes and 

businesses with foul water and potential increases in insurance premiums for those properties 

affected. Importantly, sewerage leaking from collapsed sewers, also contributes to diffuse 

pollution of rivers and groundwater. Yorkshire Water expect to invest £140m on clean water 

pipe renewal, repair and cleaning in the next 5-year asset management program (AMPs) and 

a similar amount is anticipated to be invested in maintaining and repairing the waste water 

network.  

 

YW currently utilize a Below-Ground Asset Surveyor Predictor (BGASP) model to aid 

maintenance of their clean and waste water pipe networks. The BGASP model uses pipe age, 

material, diameter, previous failure locations, temperature and basic soil properties (i.e. type) 

to assess whether replacement pipe is needed. The overall model assessments are suitable for 

YW's planning of total investment value over the AMP cycle. This project aims to develop 

complementary models to those currently used by YW, with the aim of providing greater 

understanding of how pipe networks interact with their broader environments. Information 

used will include spatial soil characteristics (physical and chemical), landscape analysis, 

geological hazard properties and additional network or environmental factors. The project 

draws on BGS’s wealth of 1:50 000 datasets on soil properties (e.g. texture, depth, and 

chemistry), groundwater depth and geohazards. Algorithms applied to high-resolution digital 

terrain models will be used to predict indices such as local soil wetness (related to local 

topographic position and changes in topography). The project will utilize comprehensive 



 

2 

 

datasets of clean and waste water failures supplied by YW (about 100 000 entries) that 

includes a range of pipe materials (cast iron, plastic, clay and concrete). These data are 

assessed using statistical methods to refine and quantify a conceptual model of the factors 

that control pipe failure. A key aim is to examine how the models developed may yield 

information relevant to water companies that will enhance the maintenance and resilience of 

pipe networks. 

2 Materials and methodology 

The work was based on a (i) GIS based data pre-processing package and (ii) a modelling 

package. The following sections document the GIS process and the general modelling 

outline.  

2.1 GIS BASED DATA PRE-PROCESSING 

2.1.1 2.1.1 Data sources 

The following YW and BGS data sets were used in the project  

 

Yorkshire Water provided the following data 

  

 Clean water network – shapefile (ArcGIS format) 

 Waste water network – shapefile (Excel) 

 Clean water failures – shapefile (Excel) 

 Waste water failures – shapefile (Excel) 

 BGASP sewer failures – shapefile (Excel) 

 Crossings – shapefile (Excel) 

 AZNP – shapefile (Excel) 

 Raw water temperatures – shapefile (Excel) 

 Severe weather dashboard – shapefile (Excel) 

 WTW-DMA connectivity – shapefile (Excel) 

 CCTV data – shapefile (Excel) 

 Drainage area zone – MID/MIF (MapInfo) 

 Leakage control zone-DMA – MID/MIF (MapInfo) 

 Clean water area – MID/MIF (MapInfo)  

 Operational area – MID/MIF (MapInfo) 

 Waste water area – MID/MIF (MapInfo) 

 Distribution Management Area data pertaining to  water source and pipe betwork 

pressure 
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The following BGS and OS data were used in the analysis: 

 

 GeoSure – vector (ArcGIS) 

 Collapsible ground 

 Compressible ground 

 Landslides 

 Running sand  

 Shrink-swell 

 Soluble rocks  

 Sulphide / Sulphate  

 

 Parent material – vector (ArcGIS) 

 Corrosivity – vector (ArcGIS) 

 Digital Terrain Model derived topographic indices (e.g. Slope, aspect, CTI, 

Elevation) – raster (ESRI grids) 

 OS Strategic road/rail – vector (ArcGIS) 

 

2.1.2 Expected outputs for geostatistical analysis  

The objectives of the GIS processing package were to: 

 

 Create a grid across the study area for the analysis. The resolution selected was a 

100 m grid (i.e. each grid cell was 100 m x 100 m). 

 

 The following statistics for each grid cell 

 Length of pipe material in each cell 

 Number of clean water failures for each pipe type 

 Number of waste water failures for each pipe type 

  

 Summarise the following for BGS data in each cell 

 Area covered by each classification for each GeoSure layer 

 Area covered by each classification in soil Corrosivity layer 

 Area covered by selected attributes from the Parent Material layer 

 Summary information for each raster dataset 

 

2.2 DATA ASSESSMENT AND FORMATTING 

2.2.1 Pipe type material 

The clean water failure data lists the different type of pipe material for the pipe that failed 

(NB: this doesn’t apply for the waste water pipes as they are all made from either concrete or 

clay). The clean water pipe failure data was separated into different pipe types for the 
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analysis grouped into similar material categories. There were 30 different pipe types and 

some had no code associated with them. Some of the different pipe types were deemed to be 

of similar composition and were grouped to make analysis simpler (e.g. Plastic). Table 1 lists 

the 30 categories in the original data and how they were grouped. The groups listed as Cast 

iron, Plastic, Asbestos Cement and Clay were used for analysis 

Table 1: Pipe type codes, descriptions and materials used in models 

 

Code Description Type Used in Model 

2 Copper Clean  

16 Dummy Clean  

4 Galvanised Steel Clean  

12 HDPE Clean Plastic Model 

22 HEP30 Clean  

21 HPPE Clean  

10 LDPE Clean  

8 Lead Clean  

11 MDPE Clean Plastic Model 

25 MoPVC Clean  

24 PE100 Clean  

23 PE80 Clean  

14 Pre-Stressed Concrete Clean  

26 PVCa Clean  

20 PVCu Clean  

29 Stone Clean  

6 uPVC Clean  

7 Asbestos Cement Clean/Waste Waste pipe  used in Concrete model 

30 Brick Clean/Waste  

1 Cast Iron Clean/Waste Cast Iron Model 

28 Concrete Clean/Waste  

3 Ductile Iron Clean/Waste  

15 Glass Reinforced Concrete Clean/Waste  

5 Steel Clean/Waste  

AK Alkathene Waste  

BL Bitumen Waste  

CL Cement Waste Concrete Model 

CC Concrete Box Culvert Waste  

CSB Concrete Segments Bolted Waste  

CSU Concrete Segments Unbolted Waste  

GRP Glass Reinforced Plastic Waste  

IS Insituform Waste  

MAC Masonary, coursed Waste  

MAR Masonary, random Waste  

NA Not Applicable Waste  

PF Pitch Fibre Waste  

PL Plastic Waste  

PSC Plastic/Steel Composite Waste  

PE Polyethylene Waste  

PP Polypropylene Waste  

PVC Polyvinyl Chloride Waste Plastic Model 
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RPM Reinforced Plastic Matrix Waste  

RL Resin Waste  

SI Spun Iron Waste  

U Unknown Waste  

VC Vitrified Clay Waste Clay Model 

 

2.2.2 Formatting 

Prior to GIS analysis, the Yorkshire Water data (provided in Excel spreadsheet format) – 

needed to be cleaned and reformatted so that it could be imported into the GIS (ArcGIS 

version 10.0). This involved ensuring that the spreadsheets were in the correct format for 

import into ArcGIS – i.e. column headings must be 10 characters or fewer (made up of 

alphanumeric characters and underscores only).  

2.2.3 Grid creation 

The analysis was carried out in a custom-built grid covering the full extent of all the data. 

Since the clean water and waste water areas vary very slightly, the full Yorkshire Water 

Operational Area was used to define the full extent of the grid. This area was provided by 

Yorkshire Water in shape file format. The first step was to create a rectangular mesh (grid) 

covering the full extent of the YW operational area. Due to the shape of the YW operating 

area (roughly heart-shaped), this meant that approximately half of the cells in the rectangular 

grid contained no data and since the study area was very large (180 km E-W by 160 km N-S), 

this meant creating an unnecessarily large grid. To reduce processing time, any cells that did 

not overlap with the YW operating area were removed from the grid. A comma separated 

values file (csv) was created containing the coordinates of the new grid corners. This was 

used to produce a 100 m x 100 m grid in ArcGIS.  

2.2.4 Length of pipe per grid square 

To calculate the length of pipe per grid square, an IDENTITY tool performed a geometric 

intersection between the pipe network data and the grid. This cuts each section of pipe 

network line at the boundary of each grid square, so that only the portions of pipe line that 

fall into each grid square are selected. The lengths of each section of line are then calculated 

and summed for each grid square.  

2.2.5 Pipe material per failure 

Pipe material per failure is a simple statistical assessment (frequency analysis) of pipe 

material as identified within the burst datasets supplied by Yorkshire Water. Grouping of the 
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various pipe materials broadly followed the following e.g. the pipe groups of Cast/Ductile 

Iron, Plastics, concrete, copper and clay etc. 

2.2.6 Processing BGS/OS vector data 

The aim of processing the BGS/OS data was to summarise, for each grid square, either the 

total area covered by each class (e.g. Class A of GeoSure Shrink-Swell) for each dataset or, 

in the case of the road data, the length of road of each type. The lengths of road of each type 

were calculated in the same way as calculating the length of pipeline per grid square, as 

outlined above.  

2.2.7 Processing BGS/OS raster data 

Raster datasets utilising terrain data were developed from NextMap Digital Terrain Model 

(DTM) data (50 m resolution) held by BGS and processed using ARCGIS and Spatial 

Analyst (elevation, slope, aspect, compound topographic index CTI). Standard ESRI-Spatial 

analysis tools and formulae were used to derive the terrain coefficients of slope and aspect. 

The CTI is a function of both slope and the upstream contributing area per unit width 

orthogonal to the direction of flow and is a steady state wetness index. It was assessed using 

the spatial analyst tool and follows the standard formulae of: 

 

CTI = ln(a/tan B)      Eq. 1 

 

where a = Upstream contributing area (m
2
) and is derived using the standard tools for Flow-

accumulation and B = Slope (radians) .  

 

Back interpolation of all grid data against the h vector asset data was performed using 

MapInfo and Vertical Mapper, providing standard analysis of minimum, maximum, range 

and cell count of terrain coefficients (per object). 

2.2.8 Final GIS results 

The final GIS datasets consisted of separate csv files summarising the area or length of each 

class/road type for each dataset, with the grid cell identifier (ID). These GIS datasets 

summarised the length of pipes per grid cell, number of failures per grid cell and the number 

of pipe failures of each pipe type per grid square. These were provided for geostatistical 

analysis with a file containing the YW grid cell ID’s and the National Grid Easting/Northing 

of the centre point of each cell. 
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2.2.9 Topographic and categorical variables used 

The continuous variables used in the modelling are shown in Table 2 along with an 

explanation of their relevance to pipe network failure. Similarly Table 3 reports on the 

categorical variables used. A continuous variable is a variable that has an infinite number of 

possible values, whereas a categorical value can only take on a certain number of values, and 

in this instance are defined as classes related to a geohazard. 

 

Table 2: The continuous variables used in the model and an explanation as to impacts 

on pipe networks 

 

Variable Description Explanation Source 

Compound 

Topographic Index 

(CTI) or Wetness Index 

This is an index 

determining moisture in 

a 100 x 100 m cell as a 

function of slope, aspect 

and the upstream 

contributory area. It is a 

steady state wetness 

index and is commonly 

used to quantify 

topographic control on 

hydrological processes. 

The CTI should identify areas 

of ground of different potential 

moisture contents by 

examining the paths surface 

water may follow across the 

landscape. Thus cells with a 

high CTI may have a greater 

potential for waterlogging and 

the establishment of corrosion 

cells.   

Calculated using 

Terrain Analysis on the 

NEXTMAP 50 x 50m 

Digital Terrain Model 

Slope Average Slope within a 

100 x 100 m cell.  

Slope steepness may dictate (i) 

drainage rate, (ii) ground 

stability or (iii) pipe movement 

Calculated using 

Terrain Analysis on the 

NEXTMAP 50 x 50m 

Digital Terrain Model 

Elevation Mean Elevation within a 

100 x 100 m cell. 

The effects of elevation might 

indicate the (i) positioning of 

the water table, (ii) effects of 

altitude and related changes in 

temperature.  

Calculated using 

Terrain Analysis on the 

NEXTMAP 50 x 50m 

Digital Terrain Model 

A-road The density of A or 

major road within a 100 

x 100 m cell. 

 A-class roads are likely to 

carry more and heavier traffic 

than other roads, however, they 

are generally built to better 

specifications than B- and C-

class roads. 

Linked to vibrations affecting 

pipe integrity 

Vector map Open OS  

maps at 1:25000 to 

1:50000 

B-road The density of B road 

within a 100 x 100 m 

cell 

Linked to vibrations affecting 

pipe integrity 

Vector map Open OS  

maps at 1:25000 to 

1:50000 

C-road The density of C or 

minor road within a 100 

x 100 m cell. 

 Although C-class roads are 

unlikely to have the quantity of 

traffic of other roads the 

placement of the pipes might 

not be as for the other roads. 

Also linked to vibrations 

affecting pipe integrity 

Vector map Open OS  

maps at 1:25000 to 

1:50000 
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A-Resistivity This data set identifies 

the likely resistivity 

values for the main 

lithological resistivity 

type for a geological 

unit. It includes different 

environmental situation 

such variations in 

porosity and water 

saturation 

. 

Resistivity is a controlling 

factor for the corrosion of 

metal pipes and is linked 

particularly to clay content 

Datasets used are 

DiGMapGB, the 

National Geotechnical 

Database, field 

resistivity values also 

the Berg algorithm and 

expert input. 

Entwisle et al. 2014 

B-Resistivity This data set identifies 

the likely resistivity 

values for the secondary 

lithological resistivity 

type for a geological 

unit. It includes different 

environmental situation 

such variations in 

porosity and water 

saturation 

. 

Resistivity is a controlling 

factor for the corrosion of 

metal pipes and is linked 

particularly to clay content 

Datasets used are 

DiGMapGB, the 

National Geotechnical 

Database, field 

resistivity values also 

the Berg algorithm and 

expert input. 

Entwisle et al. 2014 

Aspect North Northness was 

computed as the sine of 

aspect (compass 

direction of slope) 

The direction a slope faces is 

important as it can affect 

ground thermal regimes and the 

moisture content of soil. A 

negative Aspect North is 

equivalent to Aspect South.  

Calculated using 

Terrain Analysis on the 

NEXTMAP 50 x 50m 

Digital Terrain Model 

Aspect East Eastness was computed 

as the cosine of aspect 

(compass direction of 

slope) 

The direction a slope faces is 

important as it can affect 

ground thermal regimes and the 

moisture content of soil. A 

negative Aspect East is 

equivalent to Aspect West.    

Calculated using 

Terrain Analysis on the 

NEXTMAP 50 x 50m 

Digital Terrain Model. 

Dwellings Number of dwelling per 

100 x 100m cell 

This variable can act as a more 

local proxy for how use can 

cause pressure changes and 

stress in the system 

Data obtained from 

Office of National 

Statistics from 2011 

census  

 

 

 

 

 

 

 

 

 

 

 

 



 

9 

 

Table 3 The categorical co-variables used in the model and an explanation as to their 

impacts on pipe networks.   

 

Variable  Description Explanation Source 

Parent 

Material 

Dominant soil parent material 

type, derived from the DiGMap50 

surface geology (DiGMap50Plus), 

in the 100 x 100m cell.  

Used as a generalised 

description of the geology 

of the parent material e.g. 

granite, sandstone and its 

possible influence on 

corrosivity or pipe failure.    

BGS DiGMapPlus-Parent 

Material 1:50 000 scale 

(previously called the soil 

parent material map 

 

(Lawley, 2011)   

Dominant 

mineralogy 

Dominant bulk mineralogy, 

derived from the DiGMap50 

surface geology (DiGMap50Plus) 

in the 100 x 100m cell (eg 

dominantly carbonate/ siliceous 

etc). 

This is a very simplified 

classification of 

mineralogy and can be 

used to assess whether 

certain mineralogy (e.g. 

silica rich, carbonate rich, 

acid (igneous)) have an 

influence on corrosion or 

pipe failure.  

BGS DiGMapPlus-Parent 

Material 1:50 000 scale 

(previously called the soil 

parent material map. 

 

 (Lawley, 2011)   

G-Grain The typical grain size of soil 

parent materials as from the 

DiGMap50 surface geology 

(DiGMap50Plus), in the 100 x 

100m cell. 

This gives an indication of 

the dominant particle size 

(clay, silt, sand) of the soil 

parent material or subsoil. 

Will provide information 

regarding drainage.   

BGS DiGMapPlus-Parent 

Material 1:50 000 scale 

(previously called the soil 

parent material map  

 

(Lawley, 2011)   

Soil Group The typical grain size of surface 

soils (as predicted from the 

DiGMap50 surface geology 

(DiGMap50Plus),), for the 100 x 

100m cell. 

This gives an indication of 

the dominant particle size 

(clay, silt, sand) of the 

surface soil. Will provide 

information regarding 

drainage.   

BGS DiGMapPlus-Parent 

Material 1:50 000 scale 

(previously called the soil 

parent material map   

 

(Lawley, 2011)   

Engineered-

materials 

Classification of the parent 

material units for use as 

engineering fill (partly based on 

The Highways Agency series 

600). A description) of these 

materials expected within in the 

100 x 100m cell. 

This provides information 

regarding the behaviour of 

the soil with respect to it 

being used as a backfill 

material e.g. presence of 

sulphides or sulphates 

BGS DiGMapPlus-Use as 

Engineered Fill 1:50 000 

scale  

 

(Entwisle et al. 2013 )   

Collapsible 

ground 

.  

Collapsible ground hazard from 

Geosure and applied to DiGMap-

50Plus. 

 

Collapsible ground occurs 

in certain deposits that 

consolidate very rapidly 

when loaded and then 

saturated. Ground resulting 

strain could affect 

pipework  and potentially 

weakening corroded pipe 

leading to failure 

Obtained from the BGS 

collapsible ground dataset 

consisting of 5 hazard 

categories uses the 

DiGMapGB-50, BGS 

documents on the geology, 

the BGS National 

Geotechnical Properties 

Database. It is based on 

known or likely behaviour 

of geological units. There is 

some input of expert 

knowledge.  
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Aldiss, D, Diaz Doce & 

Northmore 2014, Booth et 

al. 2010, Lee and Diaz 

Doce (2010, 2014) 

 

Compressible 

Ground 

Compressible ground hazard from 

Geosure and applied to DiGMap-

50Plus. 

 

Compressible ground is 

highly deformable under 

load or water removal. 

They include very soft clay 

and peat. The differences 

in differential movement at 

the interface between 

compressible ground and 

less compressible ground 

and the variation in 

compressibility within 

compressible ground might 

affect the pipes. 

 

Obtained from the BGS 

compressible ground 

dataset consisting of 5 

hazard categories. The 

dataset was created using 

DiGMapGB-50, Superficial 

Thickness Model, the BGS 

National Geotechnical 

Properties Database and 

expert knowledge.  

Booth et al. 2010, Jones, L 

D, et al. 2015, Lee and Diaz 

Doce (2010, 2014) 

Landslides Landslide hazard from Geosure 

and applied to DiGMap-50Plus. 

 

Ground movement due to 

landslides, could weaken 

or brake pipes including 

corroded pipes.  

 

Obtained from the BGS 

landslide ground dataset 

consisting of 5 hazard 

categories based on the 

geology and their likely 

behaviour, mapped 

landslides and the slope 

angle from a digital terrain 

model (DTM) and expert 

judgement.  

 

Booth et al. 2010, 

Dashwood et al. 2014, Lee 

and Diaz Doce (2010, 

2014) 

Running Sand Running sand hazard from 

Geosure and applied to DiGMap-

50Plus 

 

 

Running sand can occurs 

where saturated sand or 

coarse silt is intercepted by 

an excavation or borehole. 

The flow of sand into the 

excavation can cause 

ground movement 

affecting pipe stability, 

could weaken corroded 

pipe  

 

Obtained from the BGS 

running sand dataset 

consisting of 5 hazard 

categories based on the 

known behaviour of 

geological units and expert 

knowledge. 

 

Booth et al. 2010, Lee and 

Diaz Doce (2010, 2014) 

 

Shrink swell Shrink-swell hazard from Geosure 

and applied to DiGMap-50Plus  

 

This hazard is usually 

identified from .Increases 

in water content causes 

swelling and drying causes 

shrinkage. The ground 

movement can damage 

Obtained from the BGS 

Shrink Swell dataset which 

consists of 5 hazard 

categories based primarily 

on the modified plasticity 

index, which is derived 
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already corroded pipes. 

 

from the liquid limit, plastic 

limit and the percentage of 

particles less than 0.425 

mm. It uses the 

DiGMapGB-50, BGS 

superficial thickness model, 

BGS National Geotechnical 

Properties Database, a 

simplified glacial till layer 

and some input from expert 

opinion.  

 

Booth et al. 2010, Diaz 

Doce et al. 2015, Lee and 

Diaz Doce (2010, 2014) ; 

Jones and Terrington (2011 

Soluble rocks Soluble rocks (karst) hazard from 

Geosure and applied to DiGMap-

50Plus 

 

 

 

Ground movement due to 

dissolution of certain 

geological units can 

damage pipework 

including corroded pipes.  

 

Obtained from the BGS 

soluble rocks dataset that 

consists of 5 categories of 

the likely occurrence of 

dissolution features. It is 

base on the geological units 

(DiGMapGB-50). A digital 

terrain model, superficial 

thickness model, Glacial 

limits dataset, BGS 

superficial permeability 

data, known occurrences of 

solution features. and 

expert opinion. 

 

Booth et al. 2010, Farrant et 

al. 2015, Lee and Diaz 

Doce 2014 

Soil 

Corrosivity 

This is taken from the BGS 

dataset and classifies soils based 

on their corrosive properties. It is 

based on the CIPRA Index and 

applied to DiGMap50Plus The 

corrosion classification occupying 

the greatest area in 100 x 100m 

cell is used.  

 

 

Corrosive ground can, 

potentially, damage some 

types of pipe. 

Obtained from the BGS 

Ferrous Corrosion dataset 

dataset which is based on 5 

categories of soil 

properties. It is based on the 

CIPRA classification 

scheme. . 

 

(Tye et al. 2012  ) 

Sulphide / 

Sulphate  

This is the BGS sulphide / 

sulphate dataset 

The presence of sulphide 

minerals can cause 

corrosion through their 

oxidation and the 

formation of H2SO4. The 

presence of elevated 

sulphate is often associated 

with the dissolution of 

gypsum deposits, thus 

causing subsidence.   
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Distribution 

Management 

Area (data) 

This is YW data and is data for 

water source 

The source of water can 

have an effect on pipe 

networks. This can either 

be through the chemical 

nature of the water or the 

processing that is required 

before entering the system.  

 

 

2.3 STATISTICAL MODELLING - OUTLINE 

The data available after the Pre-Processing (section 2.1) were of two kinds. The first were 

records of pipe bursts for a particular pipe material and for clean or waste water, each with a 

particular location in space. All pipe bursts were considered over the previous 10 years (2004 

to 2014) as the target variable of interest. The second were the potential explanatory factors.  

These were mapped on 100 × 100 m cells and include those data listed previously (Table 3). 

The set of pipe bursts were considered for a particular pipe material and water type as a 

realization of a spatial point process. In particular it is assumed a non-homogeneous Poisson 

spatial point process (Diggle, 2013).  Events of such a process are mutually independent, but 

the expected number of events per unit area (density of the process) might vary spatially.  

The ‘spatstat’ package was used (Baddeley and Turner, 2006) in R programming language 

for this purpose. This allows the estimation of non-homogeneous Poisson models by 

maximum likelihood. The models were fitted with the density of the Poisson process (i.e. the 

expected number of bursts per unit area) and modelled as a function of possible 

environmental explanatory factors. 

 

In order to estimate meaningful models it is necessary to define the domain in two-

dimensional space in which the point process is defined. For this purpose the data on pipe 

distribution were used (density (length) of pipes by material and water type). A burst can only 

be recorded in a 100×100 m cell where the pipe of interest occurs. In the setting of the 

‘spatstat’ package a mask could be defined from the pipe density data to define the domain 

within which events can possibly occur. It was also necessary to consider pipe density as an 

explanatory factor in the model.  Pipe density varies across the Yorkshire Water area, and this 

inevitably induces variations in the density of the modelled spatial point process for bursts, 

even if external risk factors are spatially uniform. A "null" model for the density of the 

Poisson process, therefore, included the log density of the pipe type (construction material) 

and water type (clean or waste) of interest by default. The other explanatory factors could 
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then be considered, and assessment as to whether or not they provide additional information 

on the expected local density of pipe bursts. 

 

Two alternative models for the density of pipe burst events could be compared because, in the 

‘spatstat’ package, they are estimated by maximum likelihood. Two models are said to be 

nested if the simpler model can be regarded as a special case of the more complex. Thus, if 

model A contains only log pipe density as an explanatory factor, and model B contains log 

pipe density and compound topographic index (CTI), then model A is said to be nested in 

model B since model A is equivalent to model B with coefficients for CTI set to zero. The 

evaluation of the null hypothesis could then be evaluated; that CTI is unrelated to the density 

of pipe bursts by comparing the maximized log-likelihood for model A, l  A, with that for 

model B, l  B.  Under the null hypothesis the statistic 

L = 2(l  B – l  A)        (Eq. 2) 

is distributed asymptotically as chi-squared with degrees of freedom equal to the difference 

between the number of parameters estimated for the two models (1 here).  Note that this 

would not be true if model A were equivalent to model B with the coefficient for CTI set at a 

boundary (Cox and Hinkley, 1990). 

A more general comparison between models, not necessarily nested, can be made by 

computing Akaike's information criterion, AIC (Akaike, 1973), which is a measure of the 

relative quality of statistic models for a given set of data.  If a model has P parameters, and 

the maximized likelihood for its fit is then  

AIC = 2P – 2l.       (Eq. 3) 

It can be shown that selecting the model that minimizes AIC in some set of alternative 

models minimizes the expected information loss from the selection process. In this study a 

two-stage approach was taken to the selection of predictor variables for the non-

homogeneous density of burst of pipes for a particular water type (clean or dirty) and made 

from a particular material.  First, a list of potential explanatory factors elicited from experts at 

Yorkshire Water and presented in order of importance according to expert opinion.  We then 

used this list to propose and fit test models as follows. 

1. A "null" model, as described above, where the local density of bursts is a function of 

the log density of pipes of the target type and material in the local 100 × 100-m cell. 
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2. A series of models, each with log density of the pipe type and material and just one 

additional explanatory variable taken from the elicited list. Each model could be 

compared to the null model by means of the log-likelihood ratio. 

3. A sequence of models in which each predictor was added to the set in turn, adding 

predictors in the order that they were presented in the elicited list. The improvement 

to the model achieved by adding each predictor could be tested by comparing it with 

the previous model in the sequence using the log-likelihood ratio statistic L. 

On this basis the predictors, as identified by Yorkshire Water's experts, were examined, and 

an assessment made of the statistical evidence that they are informative about the expected 

density of bursts. Additional predictors not identified with factors identified by the experts 

were then considered.  

Selecting candidate variables to add to those identified by elicitation avoided adding possible 

predictors correlated with variables already in the model. For this reason the correlations 

were examined between all available continuous predictor variables. We also examined the 

principal components of the correlation matrix. This allowed identification of additional 

predictor variables that were not correlated with predictors already in the model from the 

expert elicitation. Measurement of the degree of association between a categorical and a 

continuous predictor variable was undertaken by computing the coefficient of determination 

for a simple linear model in which observations corresponded to different levels of the 

categorical variable having different mean values of the continuous variable.  The square root 

of the coefficient of determination is comparable to the correlations between continuous 

variables. Having identified a subset of additional predictors their potential value in non-

homogeneous Poisson models for the density of bursts was tested in two ways: 

1.  As with variables identified in the expert elicitation, models were produced in which 

the candidate variable was the sole predictor and compared with the null model on the 

log-likelihood ratio. 

2. Starting with the set of predictors identified from among those proposed from the 

elicitation, each of the additional predictors was added in turn, testing the 

improvement to the model on the log-likelihood ratio. 

The ‘spatstat’ package provides a useful diagnostic for assessment of a model once it has 

been fitted. This is a "lurking variable" plot. The expected number of bursts within a local 

sub-region can be computed from the fitted model, and the difference between this number 
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and the actual number of bursts in the sub-region is a residual.  The residuals were plotted as 

a map.  The lurking variable plot shows the accumulated sum of residuals from south to north 

or west to east across the study region.  The accumulated residuals over the whole region are 

zero, but the examination of the fluctuations of the accumulated residuals within the region 

with respect to an envelope shows the local deviation of accumulated residuals from zero, 

which is consistent with random fluctuation. This helps to identify variations in the apparent 

density of the process that the factors included within the model do not account for. 

2.4 MODEL OUTPUTS 

2.4.1 Model coefficients and maps 

The model outputs come in two forms. Firstly the models are composed of a series of 

covariates that are ranked in order of their importance. The ranking is undertaken using log 

likelihood ratio (LLr) for the model with pipe density and the covariate, relative to the null 

model (pipe density the only covariate). Ranking on LLR is equivalent to ranking on the AIC.  

Continuous covariates used in the model will also have either a positive or negative sign. This 

indicates whether it has a positive or negative correlation to the number of pipe failures per 

unit length. Categorical variables are different in that a coefficient will be produced for each 

of the classes for the covariate. These can then be interpreted as to how they may be affecting 

pipe failure.  

 

For interpretation of the coefficients of the continuous and categorical variables and their 

influence on failures the pipe network we use those produced when single covariates are 

added to the Null model. Coefficients are also produced when the covariates are added 

sequentially to the Null model. These coefficients are used when we assess the influence of 

each covariate compared to the others in the production of heat maps (see 2.4.2). These are 

used because in the sequential model there is a common intercept.        

 

The second output comes in the form of maps of the modelled area along with data regarding 

the cumulative sum of raw residuals of the model for the X-Y co-ordinates of the spatial area 

being modelled. These graphs of the cumulative sum of raw residuals are known as Lurking 

Variable plots. Ideally the cumulative raw residuals should be within the limits imposed by 

the elipitical feature at zero which signifies the error in the model that can be considered 

random noise. Where it is beyond this ellipse, the graphs show the extent to which the model 
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is under or over-predicting the number of expected pipe failures per unit length (density) of 

pipe, indicated by the raw sum of residuals. A negative residual suggests that the model is 

over-predicting (blue colour in Figures) whilst a positive residual suggests that the model is 

under-predicting (red colour in Figures). Comparing how the different models are performing 

overall can be undertaken by comparing the sums of the raw residuals from the lurking 

variable plots, with lower values indicating improved model fits.  

Heat maps 

The basic model for the non-homogenous intensity of the pipe failure process takes the form  

𝜆 = exp{𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2…… . }    Eq. 4 

where β0 is a constant intercept, β1 is the coefficient for the first covariate, x1 etc.  For any 

cell in the map this will give an expected intensity of the process.  

The total intensity maps were created by multiplying the individual intensity maps (each of 

the form exp(βi*xi)). The resultant predictions of pipe failure intensity λ are extremely small 

numbers (e.g. 10
-61

), so in order to make them user-friendly, the total intensity maps were 

scaled using the ‘Scale’ function in R, which for each cell subtracts the mean value of the 

output for all the cells and divides by the standard deviation. The scaled output values fall in 

the range of single to double digit numbers and are therefore more easily symbolised, labelled 

and interpreted using GIS software. 

In addition, we can decompose equation 4 into multiplicative components [exp{βixi}]. These 

components can be used to show how any particular covariate contributes to the expected 

intensity of failures across the region in heat maps. Some caution must be exercised in the 

interpretation of these because of the possibility of correlations among the covariates. These 

individual heat maps have been plotted using a standardised scale using the lowest and 

highest model coefficients across all the significant covariates. This enables us to plot 

spatially the impact of each model covariate relative to each other and identify those 

covariates which contribute most to the overall intensity.   

There is a difference between how the values for continuous and categorical covariates are 

obtained for each cell. For continuous covariates (e.g. slope, road type) the model coefficient 

obtained from the final sequential model for each covariate is multiplied by for example, the 

mean slope within a square or the length of a particular road type to give the intensity value. 
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For categorical covariates, the co-efficient for each class obtained from the final model is the 

value of the intensity given to that cell. 

3 Results 

3.1 EXPLORATORY DATA ANALYSIS OF DIFFERENT PIPE MATERIALS 

After completion of the data pre-processing work package, a general analysis of pipe failure 

in the YW pipe network was undertaken. Fig 1 shows the relative frequency of clean water 

pipe length in the 100 x 100 m cells, where those cells in which cast iron pipe = 0 m have 

been omitted. The y-axis shows the probability density function. For each of the lines the sum 

of probabilities under each line will equal 1. So, for example, the probability that a 100 m or 

less of pipe in a cell is equal to the area under the line to the left of 100 m. Plotting the pipe 

data in this manner has the additional benefit in that it represents a check that the GIS 

manipulation of the pipe network was effectively handled. For example, with each cell being 

100 x 100 m, it would be expected that if a cell contained only one cast iron clean water pipe 

and it crossed the whole cell, it’s length would equal approximately 100m in length. Thus the 

peak in the probability distribution function at the 100 m mark suggests that this scenario 

existed for many of the 100 x 100 m cells.   

  

There were also a large number of cells where no pipeline was recorded, these being more 

frequent for asbestos cement, ductile iron and plastic than for cast iron. This reflects the total 

pipe length across the YW region where Cast Iron accounts for 68% of total pipe length. 

Thus, it is likely that Cast Iron will have a fewer number of cells where it is not present. 

Other broad features can be discerned from the data. For example, the maximum length of a 

straight pipe in a cell is (100 x 100)
0.5

 which equals 141.2 m, so where the length of pipe in 

each cell is between 100 - 141 m it suggests it is crossing a cell at an angle or there are two 

parts of the pipe network present. When a single type of pipe has a length > 141 m within a 

cell it is likely that there are more than two parts of the pipe network within that cell.  
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Figure 1: Relative frequency of clean water pipe length (metres) in 100 x 100 m grid 

cells across the Yorkshire Water region for four types of pipe material 

 

 

 

The original dataset on clean water pipe failure provided by Yorkshire Water had a total set 

of 89 687 failures, including a small number of failures in pipe materials comprising steel, 

copper, lead and glass resin. The failures for these pipe types were removed from the dataset 

as it was not possible to account for the proportion of the total pipe length in the 100 x 100 m 

grid cells (computed by BGS) in which they occurred. A small number of other pipe failures 

were also removed where the proportions of pipe types could not be accurately determined in 

each grid cells. After removing these entries there were a total of 87 162 pipe failures in 

46 576 unique cells. The median and mean failure rate per cell are 2 and 3.1 respectively; the 

frequency distribution of failure rate per cell is positively skewed (skewness coefficient=2). 

The frequency distribution of total pipe length by material type per cell (Figure 2) shows that, 

with the exception of cast iron, the pipe types have similar frequency distributions (median 

length = 111-112 m); whilst in the case of cast iron, a larger proportion of cell pipe lengths 

per grid cell are substantially longer (median length = 193 m). 

 

Figure 2 shows frequency of clean water pipe failures per km pipe for the 4 pipe materials. It 

is worth noting that there are a considerable number of variables that will contribute to pipe 

failure (e.g. corrosion, batches of pipe, type, dimensions) and the graphs give an overall 
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impression of the failures in the pipework. Cast Iron has a lower median failure rate (13.3/km 

of pipe) than the three other pipe types (between 17.8 and 20/km of pipe). However, cast iron 

is also the dominant material accounting for 68% of total pipe length; the other materials 

(plastic, asbestos cement and ductile iron) account for 17%, 9% and 6% of total pipe lengths 

(in cells with failures), respectively. This suggests that overall cast iron pipes are the most 

resilient material, considering that much of the network is likely to be of a greater age than 

more modern materials such as the plastics.   

 

Figure 2: The frequency of clean water pipe failure rate (n failures per pipe kilometre) 

for four types of pipe material. Note the y axes have different scales.  

 

Figure 3 shows the distribution of ages when pipe failure occurs for 4 different pipe types. 

Again it is worth noting that cast iron is the dominant pipe type throughout the network. For 

Cast Iron there is a rapid increase in pipe failure after 40 years of installation. For Asbestos 

cement pipes there appears to be a large increase in failure 30 years after installation. For 

plastic it appears that, failure decreases after 10 years, although this might be because it is a 

more recent material (last ~40 yrs)  However, the fact that >50% of failures occur in the first 

10 years might reflect failures associated with the installation of plastic pipes and these will 

become apparent shortly after installation. There are generally mixed reports as to whether 
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Ductile or cast (gray) iron lasts longest. However, within this dataset ductile iron appears not 

to last as long, before leaks are reported. YW have identified a couple of causes for poor 

ductile iron performance. For example, In Bradfield (White Abbey Road) Ductile Iron pipes 

were installed but they contained no magnesium and so this led to failures between 1970 and 

1990. It is also increasingly recognized that ductile iron corrodes in a different way to cast 

iron through both (i) graphitization and (ii) pitting, which means that the thinner pipe used is 

not as corrosion resistant as first considered. Although pitting occurs in a similar manner to 

cast iron, graphitization is a process where the metal constituents of the pipe degrade leaving 

the carbon shell structure of the pipe (Szeliga & Simpson, 2003). Graphitization is often 

overlooked as it may only appear as a subtle change in surface colour and can also occur 

under asphaltic paint pipe covering (Szeliga & Simpson, 2003). Failure often occurs after 

graphitisation through changes in water pressure, external loads or freezing and thawing 

(Szeliga & Simpson, 2003).  
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Figure 3: Age (years) of clean water pipe failure frequency (years) for four pipe types. 

Note that changes in pipe type installed with time exerts a strong influence on the age at 

failure; for example there are few plastic pipes older than 50 years whilst there are 

many cast iron pipes of ages greater than 100 years. Note the y axes have different 

scales. 

 

 

 

Figure 4 shows pipe failure rates (bursts per cell). All distributions show strong positively 

skewed distributions. For each material the greatest frequency of bursts of ‘0’, that is  the 

higher the number of bursts the less frequent they become, but for cast iron, for example, 8 

bursts per cell was still found to occur in nearly 1000 cells.   
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Figure 4: Frequency of clean water pipe bursts (n bursts per cell) for the four pipe 

material types. Note the y axes have different scales. 

 

 

 

3.2 RANKING AND IDENTIFYING COVARIATES TO BE USED IN MODELS 

The modelling process initially focused on clean water pipes (NERC NE/M008339/1) and 

those made only from cast iron and plastic. Cast iron was selected as it makes up the largest 

percentage of the YW pipe network whilst plastic was selected as it is now the most 

frequently used pipe for the clean water network. The first part of the modelling process 

involved an expert elicitation (EE) process with a group of YW employees responsible for 

maintenance and planning of the network. The aim was to identify the factors that they 

considered were most likely to cause pipe failure and was carried out in January 2015. For 

the second grant (NERC NE/NO13026/1) where additional data from the YW DMA relating 

to water source became available, the EE was repeated in Feb 2016. Those factors identified 

from the EE process would make up the covariates used in the initial EE models. The second 
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model involves the statistical selection of additional environmental and topographical factors. 

These would then be added to those covariates identified through the EE process.   

 

3.2.1 Identifying explanatory variables through Expert Elicitation (EE) for predicting 

failures in the Cast Iron pipe network 

 

Generally, YW believe that there are not many cast iron pipe failures within the actual pipe 

length. When these occur it is predominantly caused by corrosion and the creation of pin 

holes, which have a potential to blow out. Ground movement can cause circumferential 

fractures. Larger diameter cast iron pipes are made from very thick metal and the failures 

tend to occur at the joints or to the fittings (cast iron with lead joints). Small diameter pipes 

break more frequently; the metal is thinner and the pipes have more connections, pitting has 

more of an impact as the pipes tend to be of poorer quality. Expert elicitation with YW staff 

identified the factors considered most likely to produce failure in the cast iron pipework, and 

produced a ranking of these factors (Table 4). The identified environmental variables 

available, which could be regarded as proxies for some of the factors elicited from YW staff 

are also shown (Tables 4). There were no variables in the BGS dataset of geohazards, 

topographical or environmental indices that could describe soil moisture deficit or antecedent 

weather conditions. Water source is considered within the YW DMA data. The list of 

covariates used in the Expert Elicitation model and their rank are given in Table 5. 
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Table 4: Results of initial Expert Elicitation (EE) process and rank order of variables 

commonly associated with failure for cast iron pipes (1 = high correlation). Included are 

the co-variates included for each rank.  

 

Rank Variable Notes 

1 Corrosion Particularly in ‘damp’ ground. Compound Topographic Index (CTI) 

used as the predictor as little variation in corrosion class across YW 

region.  

 

2 Pipe Pressure Pipe pressure could be considered within YW DMA data  

 

3 Temperature in pipes No BGS direct covariate available but could be considered within YW 

DMA data  

 

4 Shrink-swell Related to ground shrinkage, garden watering and increased weight of 

pipes. Use Shrink-swell classes as covariates 

 

5 Soil-moisture deficit  No covariate available 

6 Road vibration Used A-road, B-Road and C-road length in each cell as covariates 

 

7 Compressible deposits Use compressible deposits classes as covariates 

 

 

Table 5: Revised ranking list of variables to be used in Expert Elicitation (EE) models 

after YW DMA data became available. 

 

Rank Variable 

1 DMA water source 

2 Shrink Swell 

3 CTI 

4 A road 

5 B road 

6 C road 

7 Compressible Ground 
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3.3 ADDITIONAL COVARIATE SELECTION 

The second series of models examined whether improvements could be made to the EE 

models by including other geohazard, topographical and environmental factors. The 

additional covariates to be added to the EE model were identified after further statistical 

analysis. When choosing further covariates it is important to ensure that the model does not 

become over-parameterised, for example by including factors that might, to some extent, 

describe the same process. Thus, statistical relationships between selected covariates in the 

Yorkshire Water region were examined (Tables 6-8) to select further covariates for the model 

that were not correlated with covariates already selected through the EE and subsequent 

modelling.    

 

Table 6 shows a correlation matrix between the six continuous covariates used in the EE 

model, along with four new continuous covariates (A-resistivity, B-Resistivity, ‘Aspect 

North’ and ‘Aspect East’). The only strong correlation found was between A-resistivity and 

B-resistivity (r=0.83) which are the resistivity for the major and minor lithologies within a 

unit. The remaining covariates showed no strong correlation between each other, which 

suggested that were largely independent.   

 

Table 7 provides information regarding how the explanatory variables might be related by 

reporting the correlations (r) from a principal component analysis. For example in 

Component 1, Av-slope and Av-Elevation, A-Resistivity and B-Resistivity show a reasonably 

strong negative correlation whilst the Compound topographic Index (CTI) has the opposite 

sign suggesting it is negatively correlated to these factors. In Component 2, the A and B 

resistivity are identified as being correlated to each other, demonstrating that a correlation 

existed between the resistivity of the major and minor lithologies within the parent material 

based. Component 3 suggests that the roads might all be important but component 4 identifies 

the B roads as being different from the A and C roads. Finally, component 5 identifies Aspect 

as being important.  Additional data was obtained from the Office for National Statistics with 

respect to the number of people and the number of dwellings in each 100 x 100 m cell. A 

correlation of r=0.93 was found between these potential covariates, and we decided to use the 

number of dwellings within appropriate model formulations.     
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Table 6: The correlation (r) matrix for the seven continuous covariates assessed for use 

in the clean water cast iron pipe models for the YW region. ‘Aspect East’ was computed 

as cosine of aspect (compass direction of slope) and ‘Aspect north’ was computed as sine 

of aspect.  

 

 
CTI 

 

 

Slope Elevation A-Road B-Road C-
Road 

A Res B Res Aspect 
North 

Aspect East 

CTI 1 0.557 0.478 0.005 0.007 0.021 -0.212 -0.207 -0.004 -0.001 

Slope 0.557 1 0.524 0.029 0.012 0.047 0.244 0.243 0.001 -0.003 

Elevation 0.478 0.524 1 0.053 0.026 0.098 0.315 0.300 0.001 -0.001 

A-Road 0.005 0.029 0.053 1 0.004 0.052 -0.003 0.001 0.001 -0.001 

B-Road 0.007 0.012 0.026 0.004 1 0.028 0.001 0.003 0.001 -0.001 

C-Road 0.021 0.047 0.098 0.052 0.028 1 0.023 0.025 -0.001 0.001 

A Resistivity 0.212 0.244 0.315 0.003 0.001 0.023 1 0.832 0.001 -0.001 

B Resistivity 0.207 0.243 0.300 0.001 0.003 0.025 0.832 1 0.001 -0.001 

Aspect North  0.004 0.001 0.001 0.001 0.001 0.001 0.001 0.001 1 -0.001 

Aspect East 0.002 0.003 0.001 0.001 0.001 0.001 -0.001 -0.001 -0.001 1 

 

Table 7: Correlations between selected covariates and their principal component scores 

 
 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

CTI 0.0005 -0.0001 -0.0062 -0.0030 -0.0020 0.0030 0.2528 -0.9674 -0.0034 -0.0006 

Slope -0.0012 0.00016 0.01380 0.00056 -0.0007 -0.0000 -0.9673 -0.2528 -0.0004 -0.0007 

Elevation -0.054 0.02254 0.99703 0.04582 0.0059 -0.0020 0.0150 -0.0027 -0.0000 0.0000 

A-Road 0.00003 -0.00042 -0.00675 0.01728 0.9998 0.0017 -0.0003 -0.0021 0.0000 -0.0000 

B-Road -0.00003 -0.0001 -0.0024 0.00618 0.0016 -0.9999 0.0008 -0.0029 0.0000 -0.0000 

C-Road -0.0013 -0.0009 -0.04591 0.9987 -0.0175 0.0062 0.0006 -0.0025 -0.0000 0.0000 

A Resistivity -0.6864 0.72515 -0.05413 -0.0027 0.00001 0.0005 0.0002 -0.0000 0.0000 -0.0000 

B Resistivity -0.7250 -0.6882 -0.02431 -0.0027 -0.0003 0.00014 0.0004 -0.0000 -0.0000 0.0000 

Aspect North -0.0000 0.0000 0.000002 -0.000003 0.00003 -0.00007 -0.0001 0.0034 -0.9063 -0.4225 

Aspect East 0.000025 -0.00006 -0.000005 0.000008 -0.00002 0.0000 0.0006 -0.0006 0.4225 -0.9063 

 

In Table 8 the correlation values (r) between the 10 continuous covariates and twelve 

categorical covariates that make up the BGS geohazard datasets and properties of the soil 

such as soil type from DiGMap50Plus (PM_Class), dominant mineralogy, grain size and the 

likely fill properties of soil. In this context, the correlation is the square root of the coefficient 

of determination for a linear model in which the continuous covariate is the dependent 

variable with a different mean value for each level of the categorical independent variable.  It 

is evident that the only significant correlations were between resistivity and the soil 
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properties. As soil properties (e.g particle size) are key factors in determining resistivity and 

the calculation of resistivity contains the likely variation of clay percentage, these positive 

correlations are expected. Improved correlations were obtained using A-Resistivity. From this 

statistical analysis, eleven covariates were chosen for including in the models along with 

those covariates selected through EE. The major choice was the selection of A-Resistivity 

instead of both A and B resistivity, as they were strongly correlated. In addition, as CTI was 

related to PM-Code, Soil Group and Fill code it could be seen as a factor which accounted for 

the soil textural properties.  

 

Additional data was obtained from the Office for National Statistics with respect to the 

number of people and the number of dwellings in each 100 x 100m cell. A correlation of r = 

0.90 was found between these potential covariates, and we decided to use the number of 

dwellings within appropriate model formulations 
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Table 8:  Absolute correlation values (r) between twelve categorical covariates and ten continuous covariates (see Tables 2 & 3 for 

covariate descriptions).  

 

 Collapsible 
Ground 

Compressible 
Ground 

Soluble 
Ground 

Shrink 
Swell 

Corrosive 
Sand 

Running 
Sand 

Landslide Parent 
Material 

Dominant 
Mineralogy 

G -
Grain 

Soil 
Group 

Engineered 
Materials 

CTI 0.3000 0.4941 0.0898 0.3377 0.2463 0.4073 0.1415 0.6195 0.3332 0.2084 0.4655 0.5858 

Slope 0.1162 0.3046 0.0593 0.3016 0.2323 0.3077 0.2034 0.5112 0.2249 0.1883 0.4272 0.4808 

Elevation 0.0486 0.4794 0.0845 0.3676 0.2255 0.2738 0.1676 0.6822 0.5045 0.4652 0.5018 0.6005 

A-Road 0.0016 0.0406 0.0166 0.0129 0.0260 0.0118 0.0267 0.0806 0.0581 0.0476 0.0444 0.0574 

B-Road 0.0168 0.0323 0.0123 0.0129 0.0253 0.0136 0.0053 0.0592 0.0325 0.0344 0.0392 0.0452 

C-Road 0.0652 0.0797 0.0541 0.0289 0.0558 0.0695 0.0538 0.2015 0.1447 0.1235 0.1356 0.1497 

A Resistivity 0.1374 0.1793 0.1885 0.3237 0.1815 0.2806 0.0246 0.7862 0.5382 0.3674 0.6417 0.7363 

B Resistivity 0.1448 0.1897 0.1649 0.2634 0.1814 0.2588 0.0380 0.7712 0.5301 0.3215 0.5309 0.6411 

Aspect North 0.0022 0.0029 0.0021 0.0021 0.0032 0.0095 0.0013 0.0132 0.0050 0.0020 0.0064 0.0057 

Aspect East 0.0006 0.0140 0.0138 0.0139 0.0146 0.0153 0.0140 0.0090 0.0032 0.0021 0.0040 0.0044 
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3.4 THE CLEAN WATER CAST IRON NETWORK    

3.4.1 The Null model (Model 1) 

A null model was created for the whole of the Yorkshire region where the density of bursts is a 

function of the log density (length) of cast iron pipes in each 100 x 100m cell (Figure 5). The red 

colours indicate an under prediction (positive residual) of the density of failures whilst the blue 

colours represent where over prediction (negative residual) occurs. The cumulative raw residuals 

on the X and Y axis indicate the total residual on the x or y axis. Thus the null model suggests 

that in particular, an under-prediction of pipe failure per unit area occurs in the central part of the 

YW region moving in a SW-NE direction and an small over-prediction in the SW of the region.    

 

Figure 5: The null model (model 1) for the whole of the Yorkshire Water region where the 

density of bursts is a function of the log density of cast iron pipe in each 100 x 100m cell. 

Red indicates model under prediction and blue over-prediction. 
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3.4.2 Fitting models by addition of single explanatory variables identified from the expert 

elicitation (Model 2) 

A series of models were parametrised each with log density of the pipe type and material and just 

one additional explanatory variable taken from the elicited list. Each model could be compared 

to the null model by means of the log-likelihood ratio (Table 9). The covariates were ranked and 

the density of C road within the 100 x 100 m cells was found to be the most important variable.  

The LLr of the covariates suggested an order of importance of C-Road > water source > shrink 

swell > A Roads > Compressible deposits > CTI > slope > B roads. On this occasion B-roads 

were found not to be a significant factor. Table 9 shows the coefficients and the sign of the 

correlation for the continuous variables whilst Tables 10-12 show the coefficients of the 

categorical variables. In Table 11 it can be seen that there is no Class E for the shrink swell 

ground as none exists in the YW region, whilst in Table 12, the very low coefficient (-25.79) 

found for Class E (generally considered to be peat) is because although there is pipe in this 

category of Compressible ground, no pipe failures have been recorded.  

Table 9: Output from spatial point process model fitting with a series of single covariates, 

added to a null model in which cast iron length is included as a covariate (Model 2)  

 

Order added Model AIC diffAIC logLIK LLr pval coef Rank 

6 C Road 1411950 -5847.93 -705971.9 5849.93 0.001  0.00367 1 

1 Water source 1414721 -3077.01 -707353.4 3087.01 0.001 N/A  2 

2 Shrink swell clay 1417458  -339.67 -708724.0  345.67 0.001 N/A 3 

4 A Road 1417635  -162.97 -708814.4  164.97 0.001 -0.00134 4 

7 Compressible  1417758   -40.03 -708872.9   48.03 0.001 N/A 5 

3 CTI 1417771   -26.43 -708882.7   28.43 0.001 -0.01290 6 

5 B Road 1417799     1.61 -708896.7    0.38 0.537 -0.00008 7 

 

AIC = Akaike's information criterion; diffAIC = difference in AIC between the null and new model 

 

 

Table 10 Coefficients for the water source categorical variables when added to the null 

model as a single variable (Model 2) 

 

Class Coefficient  

Ground Water -14.36613  

Ground waters & Upland IRE -14.19618  

Impounding Reservoir -14.07417  

River Abstraction -14.02787  

Upland IRE & River Abstraction -13.80554  
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Table 11 Coefficients of shrink swell clay categorical variables when added to the null 

model as a single variable (Model 2) 

 

class coefficient  Class Description 

A -14.28562  Ground conditions predominantly non plastic; No action 

B -14.15875  Ground conditions predominantly low plastic; No action 

C -14.34979  Medium plasticity; action required 

D -14.65175  High Plasticity 

 

 

Table 12 Coefficients of the compressible ground categorical variables when added to the 

null model as a single variable (Model 2) 

 

class coefficient  Class Description 

A -14.25815  No indicators of compressible ground – No action 

B -14.28803  Very slight potential of compressible deposits 

C -14.16804  Slight possibility of compressibility problems 

D -14.30661  Significant potential for compressibility problems  

E -25.79313  Very significant potential of compressibility problems 

 

 

3.4.3 Fitting models by sequential addition of explanatory variables identified from the 

expert elicitation (Model 3) 

 

Each statistically significant predictor added as a single predictor to the null model was then 

fitted in turn, in the order that they were ranked in the elicited list to give a final EE sequential 

model with seven covariates (Table 13).  

 

Table 13: P-value from tests for sequential addition of statistically significant covariates 

identified from the expert elicitation added to the null model. LLr is the log likelihood ratio 

statistic expressing how many times more likely the data are based on addition of this 

covariate in comparison to the previous model. 

 

 Model pval LLr 

1 Water Source 0.001 1543.50 

2 Shrink Swell Clay 0.001   86.35 

3 CTI 0.208    0.78 

4 A Road 0.001   83.57 

5 B Road 0.014    3.00 

6 C Road 0.001 2612.37 

7 Compressible  0.001   43.43 
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Figure 6 shows the output of this model. By comparing the cumulative sum of raw residuals with 

the null model (Figure 5) it can be seen that including all the covariates determined from the 

expert elicitation produces a model that improves the description of the data. The positive sum of 

residuals as shown in both the x and y axis appears to suggest that the model continues to under 

predict in the central area of the YW region.  

 

Figure 6: Final lurking variable plot for the best fit model (Model 3) based on the expert 

elicitation process where covariates are added in sequential order. The red areas indicate 

where the model under predicts the number of expected pipe bursts per cell, whilst the blue 

over-predicts per 100 x 100m cell.   

 

 

3.4.4 Fitting models by addition of single explanatory variables identified from the expert 

elicitation and other topographic and environmental indices (Model 4) 

 

The number of variables used in the model was increased following the selection criteria 

outlined in Section 3.3. These were then added to the variables selected through the Expert 

Elicitation procedure. The 14 variables selected are shown in Table 14, which also reports the 

results of this analysis. The major explanatory variables, those with the greatest diffAIC and LLr 
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values, are C roads > number of Dwellings > Water Source > Sulphide/Sulphate > Solubility > 

shrink swell clay > corrosivity > A roads > Compressible ground > A- resistivity > CTI. Three of 

the covariates were found not to be significant at P <0.05, these being Aspect North, Aspect 

East, B-roads and solubility. Each continuous variable also has a sign (+/-) attached to it and 

these represent whether there is a negative or positive correlation to the density of bursts 

expected in a 100 x 100 m cell. The coefficients for the categorical variables, not previously 

reported (Table 10-12) are shown in Tables 15 to 17.  

Table 14: Full region output from spatial point process model fitting with a series of single 

covariates, added to a null model (Model 4). 

  

 Model AIC diffAIC logLIK LLr pval coef rank 

6 C Road 1411950 -5847.93 -705971.9 5849.93 0.001  0.00367  1 

13 Dwellings 1413710 -4087.88 -706851.9 4089.88 0.001  0.01700  2 

1 Water source 1414721 -3077.015 -707353.4 3087.01 0.001 N/A  3 

14 Sulphide/Sulphate 1416125 -1672.95 -708058.4 1676.95 0.001 N/A  4 

11 Solubility 1416797 -1000.47 -708392.6 1008.47 0.001 N/A  5 

2 Shrink swell clay 1417458  -339.67 -708724.0  345.67 0.001 N/A  6 

12 Corrosivity 1417583  -214.87 -708787.4  218.87 0.001 N/A  7 

4 A Road 1417635  -162.97 -708814.4  164.97 0.001 -0.00134  8 

7 Compressible 1417758   -40.03 -708872.9   48.03 0.001 N/A  9 

8 A Resistivity 1417759   -39.21 -708876.3   41.21 0.001 -0.00005 10 

3 CTI 1417771   -26.43 -708882.7   28.43 0.001 -0.01290 11 

9 Aspect East 1417796    -1.52 -708895.1    3.52 0.060 -0.01047 12 

10 Aspect North 1417799     1.29 -708896.5    0.70 0.400 -0.00465 13 

5 B-Road 1417799     1.61 -708896.7    0.38 0.537 -0.00008 14 

 

 

 

Table 15 Coefficients of the soluble ground categorical variables when added to the null 

model as a single variable (Model 4) 

 

class coefficient Ground Classification 

A -14.11959 Soluble rocks not thought to be present 

B -14.65934 Soluble rocks are present but unlikely to cause problems 

C -14.35564 Significant Soluble rocks are present with low possibility of localised subsidence or dissolution related 

degradation of bedrock 

D -14.17672 Very significant soluble rocks are present with a moderate possibility of localised natural subsidence or 

dissolution related degradation of bedrock 

E -14.19376 Very significant soluble rocks are present with a high possibility of localised subsidence or dissolution 

of bedrock 
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Table 16 Coefficients of the soil corrosivity categorical variables when added to the null 

model as a single variable (Model 4) 

 

class Coefficient Ground Classification  

class 1 -14.22632 Unlikely to cause corrosion  

class 2 -14.48361 May cause corrosion  

class 3 -14.29592 Likely to cause corrosion  

 

Table 17 Coefficients of the sulphate / sulphide categorical variables when added to the null 

model as a single variable (Model 4) 

 

class Coefficient  Ground Classification  

HIGH -14.43124  Presence of Sulphate  

LOW -13.93590  Presence of Sulphide  

NONE -14.27611  Background concentrations  

 

 

3.4.5 Fitting models by sequential addition of explanatory variables identified from the 

expert elicitation and other topographic and environmental indices (Model 5) 

 

Following on from the fitting of Model 4 where the null model was fitted with individual 

covariates, a full sequential model was fitted where each previously identified significant 

(P<0.05) covariate was added to the null model. The differences between LLr values in Table 18 

indicate the importance of the covariate. All models showed a significant (P<0.05) improvement 

from the previous model by adding additional covariates. Coefficients for the continuous 

covariates can be found in Table 18. In addition, coefficients for the categorical covariates for 

model 5 can be found in (Tables 19 - 24). These are slightly different numerically to the 

coefficients for the categorical variables obtained when individual categorical variables were 

added to the null model as they all share a common intercept value of the null model. The full 

model based on the sequential model is presented in Figure 7. When examining the sum of raw 

residuals in the lurking variable plot, it can be seen that (i) an area still exists in the middle of the 

YW region where the model under predicts which is still present and (ii) a slight model over-

prediction occurs in the SW region which is heavily urbanised. The sum of the raw residuals is 

again lower than the EE sequential model (Figure 6), demonstrating that the inclusion of other 

environmental factors improves the model parameterisation.   
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Table 18: Full region P-values based on the log likelihood ratios tested using the Chi-

squared distribution (testing model 5 with added covariate against the previous model in 

the sequence in which covariates are retained where P<0.001). Aspect was not included 

because it was not a statistically significant predictor across the full region. 

 

Order Added Model pval LLr coef 

1 Water Source 0.001 1543.50799 N/A 

2 Shrink swell Clays 0.001   86.35445  N/A 

3 A Road 0.001   82.16877  0.3825773 

4 C Road 0.001 2443.65776  0.2662982 

5 Compressible Ground 0.001   43.55864 N/A 

6 A Resistivity 0.001   12.63903 -0.534795 

7 Soluble ground 0.001  213.36582 N/A 

8 Soil Corrosivity 0.001   20.02504 N/A 

9 Dwellings 0.001  417.94804 -4095012 

10 Sulphide / sulphate 0.001  531.43914 N/A 

 

 

Table 19 Coefficients for water source from the cast iron clean water network obtained 

using Model 5 

class coefficient  

 -13.97587  

Ground water -13.67287  

Ground water & upland IRE -13.58593  

Impounding reservoir  -13.53901  

River abstraction -13.39990  

Upland IRE and River abstraction -13.27143  

 

Table 20 Coefficients for shrink swell clays from the cast iron clean water network 

obtained using Model 5 

class coefficient   Class Description 

A -13.97587   Ground conditions predominantly non plastic; No action 

B -13.91232   Ground conditions predominantly low plastic; No action 

C -13.92539   Medium plasticity; action required 

D -14.20621   High Plasticity 

 

Table 21 Coefficients for compressible ground from the cast iron clean water network 

using Model 5 

class coefficient  Class Description 

A -13.97587  No indicators of compressible ground – No action 

B -13.77658  Very slight potential of compressible deposits 

C -13.52180  Slight possibility of compressibility problems 

D -13.85492  Significant potential for compressibility problems  

E -24.93983  Very significant potential of compressibility problems 
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Table 22 Coefficients for soil corrosivity from the cast iron clean water network using 

Model 5 

class coefficient  Ground Classification  

class 1 -13.97587  Unlikely to cause 

corrosion 

 

class 2 -14.03686  May cause corrosion  

class 3 -13.88253  Likely to cause corrosion  

 

 

Table 23 Coefficients for soluble ground conditions for the cast iron clean network using 

Model 5 

class Coefficient Ground Classification  

A -13.97587 Soluble rocks not thought to be present  

B -14.27221 Soluble rocks are present but unlikely to cause problems  

C -14.16169 Significant Soluble rocks are present with low possibility of localised subsidence or dissolution related 

degradation of bedrock 
 

D -13.91201 Very significant soluble rocks are present with a moderate possibility of localised natural subsidence or 

dissolution related degradation of bedrock 
 

E -14.12601 Very significant soluble rocks are present with a high possibility of localised subsidence or dissolution 

of bedrock 
 

 

 

Table 24 Coefficients for sulphide/ sulphate in soils from the cast iron clean water network 

using Model 5 

class coefficient  Ground Classification  

HIGH -13.97587  Presence of Sulphate 

LOW -13.52185  Presence of Sulphide 

NONE -13.81354  Background concentrations 
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Figure 7: Result of full model (Model 5) or the YW region using sequential addition of 

covariates. Examination of the combined X and Y axis residuals suggest that overall the 

model is under predicting the number of pipe failures per unit length of pipe, with the red 

colours indicating where this is happening to the greatest extent and the blue the least.   

 

 

 

3.4.6 Discussion  

3.4.7 Model Performance 

For the Cast Iron clean water pipe network, several models have been produced. The first model 

was the Null model that predicts the number of expected bursts associated with the density 

(length) of pipe in each 100 x 100m cell. This progressed to a sequential model based on 

covariates obtained from an expert elicitation process (Model 3) and a final sequential model 

where other additional environmental and geological factors were included (Model 5). Both 

Model 3 and Model 5 delivered large decreases in total raw residual compared to the Null model 

(Model 1) as demonstrated by the total sum of residuals in the lurking variable plots across the 

YW area (Figures 5, 6 and 7). The modelling process was initially based on the Expert 

Elicitation exercise undertaken with the YW employees. Results demonstrated that the covariates 
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that YW identified were all highly significant with the exception of B roads. In particular, issues 

relating to C roads (e.g traffic volume and vibration, other utilities digging up the road) were the 

strongest predictors. Shrink swell clays and compressible deposits were found to be significant 

geological based predictors, but their LLr values were much lower. In the subsequent models, the 

addition of other environmental predictors such as water source, the number of dwellings per cell 

and the sulphide/sulphate layer were significant (P<0.05) factors in decreasing the model 

residual in the final EE+ model (Model 5). Water source is important as chemicals used to 

reduce the turbidity of water through flocculation (e.g. aluminium sulphate) can increase internal 

pipe corrosion, thereby possibly enhancing the external effects that may contribute to pipe 

failure.  

 

By examining the Lurking Variable Plot in the final sequential model (Model 5) it can be seen 

that there is an area in the centre of the YW region, moving in a roughly SW-NE direction where 

the model under-predicts pipe failure. This area was obvious in each of the models presented 

including the Null model and represents an area where the model has failed to account for a 

process or environmental factor which impacts on pipe failure. Maps of geology and geohazards 

were examined for possible explanation. The first explanation is part of this area lies on the 

Lower Coal Measures. It was considered that the inclusion of the Sulphide / Sulphate layer may 

account for this as there may have been increased sulphide minerals in the soil which when 

oxidised would create H2SO4. Whilst this data proved to be one of the models major covariates, 

some model under-prediction remained in this area, suggesting that this pipe failure may be 

related to issues of ground re-settlement after the removal of coal (Marino, 2000). The second 

area of model under prediction is an area of lacustrine clays deposits from the Glacial Lake 

Humber. Lacustrine clays are typically poor at bearing weight and this may be an influence. 

Thus, for both these areas greater than expected pipe failures may occur because of geological 

type or related properties.       

 

The second output from the model analysis that can be used for improving our understanding of 

the cast iron pipe network, are the model coefficients obtained from models 2 and 4. Table 25 

below, examines the possible reasons for the sign of the correlation for continuous covariates and 

how we may interpret the meaning of the coefficients of the different classes of the categorical 

covariates. Whereas the continuous covariate coefficients are quite explanatory, describing a 

positive or negative correlation between the covariate and the expected number of pipe bursts in 

each cell, greater knowledge of geology, geohazard data and environmental factors is required to 
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understand the categorical variables. For the categorical variables we are comparing the 

numerical value of the coefficients against the different classes of the covariate, with the 

coefficients with the greatest numerical values being of greater influence than lower values.  

 

Initially it was considered, that the model output would offer a relatively simplistic interpretation 

of the categorical variables along the lines of ‘an increasing number of pipe failures would occur 

as the class of each geohazard increased in severity’ (i.e. a linear response). However, this was 

not the case and an understanding of how the dataset for each geohazard was derived (primarily 

for the insurance industry to assess risk to buildings) was required. For example, the low class of 

the Sulphide / sulphate dataset actually represents the sulphide containing soils, whilst the ‘high’ 

class represents the sulphate bearing rocks which when they collapse cause much greater damage 

to buildings, through subsidence. As the geohazard datasets were produced for their effects on 

buildings, it was necessary to understand how the pipe network interacts with the soil in what has 

been described as soil-structure-pipe interactions for settlement and deflection (Olliff et al. 

2001). This reflects how different soil types interact with the pipe type and the load that it may 

be subjected so that the right balance between flexibility and rigidity is achieved. As some of 

these geohazards are connected with clay (shrink-swell, compressible ground), soils will then be 

expected to behave differently according to clay content and type which is why we suggest the 

categorical coefficients do not behave in a linear way in the descriptions below. Thus, if no 

obvious trend in coefficients is seen with the classes of the categorical co-variable than it is 

likely that the categorical coefficients are reflecting the ability of the soil in the categorical class 

to provide improved settlement and deflection, for the pipeline.   

 

Table 25: Interpretation of the outputs from adding individual covariates to the null model 

for the YW region (Model 2 & 4) 

 

Rank Covariate +/- 

coefficient 

Notes 

1 C Road + Positive correlation between the density of C roads in a cell and pipe failure per unit 

length. Pipe failure could be a result of lower quality road construction designed for 

lower frequency and load of vehicles causing greater vibration. Potential for poor 

drainage in the sub-grade of the road. This may also be due to construction activity and 

third party damage.  

2 Dwellings + Indicates that increased pipe failure occurs as the number of dwellings in a cell 

increases, suggesting increased pipe failure could be associated with pressure changes 

within the system and use on the system.   

3 Water Source N/A There is evidence that water source can play a key role in pipe failure and this could be 

through source in the pipe. In the YW region, failure in pipes where water is supplied 

from upland river abstraction or impounding reservoirs is the greatest suggesting that 

some internal corrosion may be taking place as a result of water treatment.  
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4 Sulphate / 

Sulphide 

N/A The highest coefficient is found in the Low class and the lowest in the High class. 

Consulting the BGS geohazard map the Low class is dominantly on the coal measures 

and Oxford clay formations thus representing the possible presence of sulphide. The 

High Class is associated with gypsum bearing rocks where pipes would be buried in 

soils which are likely to have lost SO4 from gypsum via leaching and are unlikely to 

cause increased failure, unless substantial subsidence occurs. This result suggests that 

the presence of increased sulphide is having an effect on the pipe network.        

5 Soluble Ground N/A The results show that the lowest coefficient is found for Class B suggesting that there 

is less pipework failure on the chalk and limestone soluble rocks types. The indication 

is that the soils may be shallow and the pipe may rest on rock thus maintaining greater 

support. Class C, D and E are based on soluble rocks which are likely to have gypsum 

deposits (Permian mudstones). In these rocks the solubility is a lot deeper, so the pipes 

would exist in normal soils and this is reflected by the coefficients being similar to 

Class A (no soluble rocks considered present).   

6 Shrink Swell N/A Results suggest that the coefficient for Class D shrink swell was the smallest, whilst 

the values of the coefficient for Class A-C were similar and were slightly larger. It is 

possible that water leaks in Class D may expand the clays creating a self-sealing effect.    

However, the top Class of shrink swell is not present in the YW region so that the 

potential effects of shrink swell have not been fully tested.  

7 Corrosivity N/A The lowest coefficient was found in the soil corrosivity Class 2 (May cause corrosion). 

By examining coefficient maps, it was found that Class 2 consisted largely of slowly 

permeable chalky till soils, some well drained calcareous soils associated with the 

Chalk Downs in the YW region. The presence of carbonate and high pH is known to 

prevent corrosion. A small area of corrosivity Class 2 soils consisted of a lacustrine 

clays and is perhaps wrongly classified and should be in Class 3, as they are 

predominantly clay and have poor drainage. This however demonstrates the 

complexity of the CIPRA classification in terms of weighting and how the final score 

is calculated. Overall the results are suggesting that pipes in a high pH, high carbonate 

environment appear more resistant to pipe failure. This may also tie in with the soluble 

ground results.     

8 A road - Negative correlation between pipe failure per unit length and the density of A roads in 

a cell. This may be related to improved road construction associated with high vehicle 

numbers and heavier vehicles, better sub grade drainage, with particular reference to 

water table and pipe installation, or pipes being sited next to the road.  

9 Compressible 

Ground hazard 

N/A There weren’t large differences between the Class A-D in the size of the coefficient. 

However, Class E had a much smaller coefficient, and this was because although pipe 

is sited within areas of Class E, no failures were recorded. As Class E generally 

represents peat like deposits, leakages may be hard to spot.   

    

10 A resistivity - Resistivity is the most heavily weighted factor in the corrosion dataset and so to a 

degree resistivity may already have been included. A negative correlation between A-

resistivity and pipe failure was found suggesting that greater pipe corrosion occurred at 

low resistivity which is expected. Could also indicate clay and moisture factors. 

 

11 Compound 

Topographic 

Index 

 

- A negative correlation between CTI and pipe failure indicating greater frequency of 

pipe failure when a soil is potentially dryer. This may suggest that soils that dry out 

maybe slightly more prone to differential ground movement.  

    

 

3.4.8  Using coefficients from the sequential model to produce heat maps 

Heat maps were produced according to section 2.4.2. The Overall coefficient intensity maps, 

based on equation 4, were produced by combining the coefficients for each 100 x 100m cell 

(Section 2.4). This provides an indication, based on the coefficients derived from the final 

sequential model, of the intensity (hostility) of the overall environmental against the pipe 
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network in each cell. This is provided for the whole YW region area is shown in Figure 8 and a 

smaller section is shown in Figure 9. 

Figure 8 Total Intensity map of YW region for the cast iron clean water network showing 

areas which are most hostile to pipe networks produced using significant variables 

obtained using model 5.   
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Figure 9 Close up of section of Total Intensity map (Figure 9) for the YW cast iron clean 

water network based on significant outputs from Model 5     
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Examination of the individual factors (see Section 2.4) that contribute to the overall Heat map 

(Figures 8 & 9) can be examined by producing heat maps of each covariate where all the 

coefficients are placed on the same numerical scale (i.e. from the lowest coefficient value to the 

highest across all the categorical variables) and colour scale. Thus the maps show the spatial 

intensity of each covariate across the YW area, and with the benefit of allowing us to directly 

compare the effect of each coefficient.  

Figure 10 shows the individual heat maps for the significant covariates from Model 5. For cells 

in which A road is present these are mostly in the yellow and red colour range, indicating that 

potentially traffic on these roads may damage nearby pipework. When used as a single covariate 

in Models 2 and 4, A-roads were found to have a negative coefficients (see Table 25). However, 

within the final sequential model (Model 5) A roads have a positive coefficient indicating that 

the inclusion of other variables had an effect on the model residual, and that A-road traffic had 

an effect on pipe network failures. For C roads the highest values (red colours) are found in 

urban areas and crossroads, demonstrating the effect high densities of C-roads can have on the 

pipe network. Outside these urban areas much of the rest of the network is pale yellow, 

indicating the less dense C road network. The C roads in urban areas in particular appear to have 

the most impact on pipe failure, possibly suggesting that increased traffic or other urban 

activities (digging up roads by other utilities) may be the cause. Mapping the water source 

identified large areas where the values were high, with large areas being red or orange. This 

suggests that for much of the YW region, there is a possible contribution to failure caused by 

water source (i.e. treatment of water). The positive coefficient for the number of dwellings 

suggests that higher pipe failure occurs with increased number of dwellings per 100 x 100 m, as 

this is likely to contribute to pressure changes through the network, thus causing corroded pipes 

to fail (e.g. creating pin holes). Whilst much of the area had low values, and impact, being green, 

the highest values (red) were found to identify certain urban areas including parts of Leeds, 

Bradford, Hull and Halifax as well as smaller towns such as Harrogate and Rippon. The other 

major covariate that has a large impact on pipe failure is sulphate and sulphide. In particular the 

areas in red represent the Coal Measures and Oxford clay formations which are likely to have 

sulphide present, which may oxidise and produce H2SO4. Compared to the human influenced 

factors (water source, roads, dwellings), the remaining geohazards (compressible ground, soluble 

ground, soil corrosivity, shrink swell clays) generally had considerably less impact (low values) 

and variability across the area, reflecting the similarity of the categorical coefficients for each 

geohazard.       
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Figure 10 Heat maps produced for the significant variables for the cast iron clean water 

network obtained using results from model 5 
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3.5 THE CLEAN WATER PLASTIC PIPE NETWORK  

3.5.1 Introduction 

Plastic pipe make up ~8 % of YW clean water pipes. The expert elicitation did not provide a 

definitive ranking list for pipe failure mechanisms. However, contaminated ground was 

identified as a major problem, but mechanisms are not understood. Failure mechanisms included 

(i) poor construction methods resulting in joint failure, (ii) PVC may become brittle, but 

insufficient quantities of this pipe type have been installed to identify such issues and (iii) poor 

bedding of the pipes. The joints are created by electro-fusion or are mechanical couples or butt-

fused joints (jointed above ground). When MDPE pipes were first introduced, the electro-fusion 

fittings had a high failure rate failing when the pipes were uncurled. A similar modelling 

procedure was undertaken as for the clean water cast iron pipe network, whereby a null model is 

produced, followed by the addition of factors from an EE exercise and then the inclusion of other 

environmental factors.   

 

3.5.2 The Null Model (Model 1) 

A null model was created for the whole of the Yorkshire region where the density of bursts is a 

function of the log density of plastic pipes in each 100 x 100 m cell (Figure 11). The red colours 

indicate an under prediction (positive residual) of the density of failures whilst the blue colours 

represent where over prediction (negative residual) occurs. The cumulative raw residuals on the 

X and Y axis indicate that an under-prediction of pipe failure per unit area occurs in the central 

part of the YW region as both the total residual on the X and Y axis are both positive.    
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Figure 8 The Null model for the clean water plastic pipe network across the YW region. 

 

3.5.3 Fitting the single variables – expert elicitation (Model 2) 

The 8 variables from the expert elicitation (identified by the Order Added column in Table 26) 

were then added to the null model (Table 26). Only the CTI was found not to be significant at 

P<0.05 and this was omitted from further modelling. The most important parameters were found 

to be C-Roads > Compressible ground > Shrink swell clay > slope > B roads > A roads > 

elevation. Coefficients for the categorical variables are shown in Tables 27 - 28.  

Table 26 Metrics of models consisting of individual predictor variables added to the null 

model independently of each other (Model 2) 

Order Added Model AIC diffAIC logLIK LLr pval coef Rank 

7 C Road 290918.8 -619.60 -145456.4 621.60 0.001 0.0027 1 

8 Compressible 291455.4 -82.94 -145721.7 90.94 0.001 N/A 2 

4 Shrink swell clay 291490.1 -48.24 -145740.1 54.24 0.001 N/A 3 

2 Slope 291512.9 -25.52 -145753.4 27.52 0.001 0.01584 4 

6 B Road 291514.7 -23.67 -145754.3 25.67 0.001 0.00164 5 

5 A Road 291525.7 -12.71 -145759.8 14.71 0.001 0.00098 6 

3 Elevation 291535.2 -3.18 -145764.6 5.18 0.022 -0.00026 7 

1 CTI 291540.1 1.72 -145767.1 0.27 0.602 0.00290 8 
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Table 27 Coefficients of shrink swell clay categorical variables for the plastic clean water 

network obtained using Model 2 

class coefficient Ground Classification  

A -13.65130 Ground conditions predominantly non plastic; No action  

B -13.61929 Ground conditions predominantly low plastic; No action  

C -13.77499 Medium plasticity; action required  

D -13.71920 High Plasticity  

 

 

Table 28 Coefficients of Compressible Ground categorical variables for the plastic clean 

water network obtained using Model 2 

class coefficient Ground Classification  

A -13.63858 No indicators of compressible ground – No action  

B -13.70570 Very slight potential of compressible deposits  

C -12.78644 Slight possibility of compressibility problems  

D -13.77871 Significant potential for compressibility problems  

E -15.12142 Very significant potential of compressibility problems  

 

 

3.5.4 Fitting a sequential model using the covariates from the Expert Elicitation (Model 

3)   

 

The next step involved fitting the EE covariates in the form of a sequential model. The covariates 

were added in the order of the EE exercise. Results are reported in Table 29.  From the LLr 

values it can be seen that the order of importance changes slightly from the Model 2 so that C-

roads > shrink swell clay > Slope > Compressible > elevation > B-roads > A-roads, suggesting 

that some of the residual is being accounted for by different factors. The model output is 

presented in Figure 12 and it can be seen that the model residual is greatly reduced by the 

inclusion of the factors from the Expert Elicitation exercise.  

Table 29 Metrics of sequential addition of expert elicited predictor variables to the null 

model (Model 3) 

Order added Model pval LLr 

1 CTI 0.602   0.13 

2 Slope 0.001  20.35 

3 Elevation 0.001  14.52 

4 Shrink Swell Clay 0.001  30.48 

5 A Road 0.001   6.57 

6 B Road 0.001  13.85 

7 C Road 0.001 392.95 

8 Compressible 0.001  19.73 
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Figure 9: Lurking variable plot for the best fit model based on the expert elicitation process 

where covariates are added in sequential order (Model 3) for the plastic clean water model. 

Red indicates under prediction (+) whilst blue indicates over prediction (-) in the number 

of expected pipe bursts per cell. 

 

 

 

3.5.5 Addition of other environmental parameters to the Null model (Model 4) 

 

Table 30 reports on the addition of the full range of geohazard and environmental factors to the 

null model of the plastic clean water network. In particular the addition of the number of 

Dwellings per unit area, the sulphur/sulphide geohazard dataset and the solubility dataset were 

found to improve the null model compared to other factors from the Expert Elicitation exercise. 

The DMA data was not included as plastic is considered resistant to internal corrosion after 

water treatment. Tables 31 - 33 provide information on the coefficients of the categorical 

variables that were significant in this exercise, that have not already been reported (Table 27 - 

28). It was found that Aspect North and East, ground resistivity and CTI were not significant (P< 

0.05).   
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Table 30: Full region output from spatial point process model fitting with a series of single 

covariates, added to a null model in which plastic pipe length is included as a covariate.   

 

Order Added Model AIC diffAIC logLIK LLr pval coef Rank 

7 C Road 290918.8 -619.60 -145456.4 621.60 0.001 0.00270 1 

14 Dwellings 291065.5 -472.86 -145529.8 474.86 0.001 0.01388 2 

15 Sulphur / Sulphide 291390.4 -147.95 -145691.2 151.95 0.001 N/A 3 

12 Solubility 291430.9 -107.47 -145709.4 115.47 0.001 N/A 4 

8 Compressible 291455.4 -82.94 -145721.7 90.94 0.001 N/A 5 

4 Shrink Swell Clay 291490.1 -48.24 -145740.1 54.24 0.001 N/A 6 

13 Corrosivity 291494.8 -43.53 -145743.4 47.53 0.001 N/A 7 

2 Slope 291512.9 -25.52 -145753.4 27.52 0.001 0.01584 8 

6 B Road 291514.7 -23.67 -145754.3 25.67 0.001 0.00164 9 

5 A Road 291525.7 -12.71 -145759.8 14.71 0.001 0.00098 10 

3 Elevation 291535.2 -3.18 -145764.6 5.18 0.022 -0.00026 11 

11 Aspect North 291536.8 -1.58 -145765.4 3.58 0.058 -0.02462 12 

9 A-Resisitivity 291537.3 -1.12 -145765.6 3.12 0.077 -0.00003 13 

1 CTI 291540.1 1.72 -145767.1 0.27 0.602 0.00290 14 

10 Aspect East 291540.2 1.84 -145767.1 0.15 0.698 -0.00504 15 

 

 

Table 31 Coefficients of Soluble Ground categorical variables for the plastic clean water 

network using Model 4 

class coefficient Ground Classification 

A -13.62546 Soluble rocks not thought to be present 

B -13.92987 Soluble rocks are present but unlikely to cause problems 

C -13.94777 
Significant Soluble rocks are present with low possibility of localised 

subsidence or dissolution related degradation of bedrock 

D -13.95281 
Very significant soluble rocks are present with a moderate possibility of 

localised natural subsidence or dissolution related degradation of bedrock 

E -13.67453 
Very significant soluble rocks are present with a high possibility of localised 

subsidence or dissolution of bedrock 

 

 

Table 32 Coefficients of Soil Corrosivity categorical variables for the plastic clean water 

network using Model 4 

class coefficient Ground Classification 

class 1 -13.64076 Unlikely to cause corrosion 

class 2 -13.74753 May cause corrosion 

class 3 -13.76599 Likely to cause corrosion 
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Table 33 Coefficients of Sulphur/Sulphide categorical variables for the plastic clean water 

network using Model 4 

class coefficient Ground Classification 

HIGH -13.67361 Sulphate containing ground 

LOW -13.42907  Sulphide containing ground 

NONE -13.71043 Background concentrations of sulphate / sulphide 

 

3.5.6 Fitting models by sequential addition of explanatory variables identified from the 

expert elicitation and other topographic and environmental indices (Model 5) 

 

The plastic pipe model was then run as a sequential model with all the significant (P<0.05) 

covariates identified from Table 30. Results can be seen in Table 34. All covariates were 

significant after they were added sequentially with the order being C-Road >> Dwellings > 

Shrink swell clays > Sulphate / sulphide > Soluble ground ~ Compressible ground ~ Elevation ~ 

B roads ~Slope > A-roads. This again was slightly different to the order obtained in Table 17, 

suggesting that some factors were accounting for different parts of the residuals. Coefficients for 

the continuous covariates for the final sequential models can be found in Table 34, whilst 

coefficients for the categorical covariates can be found in tables 35 - 38. The coefficients for the 

continuous and categorical covariates will be used in the heat maps as they all share the same 

intercept. Figure 13 shows the result of Model 5 to predict the spatial density of plastic pipe 

failures across the YW region, and again the lurking variable plot demonstrates that the raw 

residual has decreased compared to Model 3.     

Table 34: Results of sequential model (Model 5) for the plastic pipe network across the YW 

region 

Order added Model pval LLr coef 

1 Slope 0.001  13.76181  0.01584 

2 Elevation 0.001  18.28425  0.01324 

3 Shrink swell clay 0.001  30.04497 N/A 

4 A Road 0.001   6.76801 -0.02339 

5 B Road 0.001  13.99134 -0.01912 

6 C Road 0.001 388.21845  0.01605 

7 Compressible Ground 0.001  18.48142 N/A 

8 Soluble ground 0.001  18.80902 N/A 

9 Dwellings 0.001  36.38143 -0.04924 

10 Sulphate / Sulphide 0.001  27.49916 N/A 
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Table 35 Coefficients of shrink swell categorical variables for the plastic clean water 

network using Model 5   

Class coefficient Ground Classification  

A -13.56305 Ground conditions predominantly non plastic; No action  

B -13.50838 Ground conditions predominantly low plastic; No action  

C -13.55372 Medium plasticity; action required  

D -13.48841 High Plasticity  

 

 

Table 36 Coefficients of Compressible ground categorical variables for the plastic clean 

water network using Model 5 

class coefficient Ground Classification 

A -13.56305 No indicators of compressible ground – No action 

B -13.60241 Very slight potential of compressible deposits 

C -12.70039 Slight possibility of compressibility problems 

D -13.63478 Significant potential for compressibility problems 

E -14.65151 Very significant potential of compressibility problems 

 

Table 37 Coefficients of Soluble Ground categorical variables for the plastic clean water 

network using Model 5 

class coefficient Ground Classification 
 

A -13.56305 Soluble rocks not thought to be present 
 

B -13.72095 Soluble rocks are present but unlikely to cause problems 
 

C -13.79242 
Significant Soluble rocks are present with low possibility of localised subsidence or dissolution related 

degradation of bedrock 

 

D -13.68829 
Very significant soluble rocks are present with a moderate possibility of localised natural subsidence or 

dissolution related degradation of bedrock 

 

E -13.59609 
Very significant soluble rocks are present with a high possibility of localised subsidence or dissolution 

of bedrock 

 

 

 

Table 38 Coefficients of sulphate and sulphide categorical variables for the plastic clean 

water network using Model 5 

 

class coefficient Ground Classification 

HIGH -13.56305 Sulphate containing ground 

LOW -13.39823 Sulphide containing ground 

NONE -13.57022 Background concentrations of sulphate / sulphide 
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Figure 10 Result of Model 5 for the YW region using sequential addition of covariates for 

plastic pipe failures. Note the decrease in the cumulative sum of raw residuals compared to 

the null model in Figure 9. Examination of the combined X and Y axis residuals suggest 

that overall the model is under predicting the number of pipe failures per unit length of 

pipe, with the red colours indicating where this is happening to the greatest extent and the 

blue the least.   

 

 

3.5.7 Discussion of the Plastic pipe network 

3.5.8 Model Performance 

The addition of the co-variables from the Expert Elicitation process (Model 3) to the Null model 

reduced the total raw residual of the model as demonstrated in the Lurking variable plots. Model 

3 was then improved further by the addition of extra environmental co-variables (Model 5). The 

greatest areas of model under-prediction appear to be associated with the Coal Measures and the 

Millstone Grit group, suggesting that subsidence or faulting may have a detrimental effect on 

pipeline stability. Considered explanations for the effects the variable and categorical variables 

may have on the plastic pipe network are shown in Table 39 below. For the categorical variables 

it was found that for shrink swell and compressible ground, the coefficients do not follow a 

linear trend, possibly reflecting the potential for soil-structure-pipe interactions in different soil 
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types.  Although, plastic pipe is considered to be more resistant to ground movements than rigid 

pipes because of their flexibility (Olliff et al. 2001), an important part of their installation is how 

much deflection the soil structure-pipe interaction enables the plastic to undergo before it is 

damaged. It is possibly that this property, which is likely to change with soil type, is determining 

the coefficients in these categorical classes, where there does not appear to be a major effect of 

the geohazard. However, it is possible to link some categorical coefficients to specific geological 

units. For instance, for the compressible ground, the one area which has the highest coefficient 

can be identified as the alluvium of the River Don near Sheffield, suggesting that in this area 

ground conditions may promote plastic pipe failure. As the alluvium is considered to be 

reasonably homogenous, chemical pollution from the steel industry that interacts with the plastic 

could be considered.      

 

Table 39 Interpretation of the outputs from adding individual covariates to the Null model 

for the plastic pipe clean water network in the YW region.   

 

Rank Covariate 
+/- 

coefficient 
Notes 

1 C Road + 

 

Positive correlation between the density of C roads in a cell and pipe failure per unit length. Could 

be a result of lower quality road construction designed for lower frequency and load of vehicles. 

Vibration and resulting friction with the sub grade would appear to be key processes 

 

2 
Number of 

Dwellings 
+ Positive correlation again suggesting a link between possible pipe pressure and use. 

3 Sulphur/Sulphide N/A 

 

The Low Class within the BGS dataset had the highest coefficient and this represents the soils that 

are likely containing sulphide. Thus this largely represents the area related to the coal measures and 
may represent a proxy for old mining subsidence, as the acidity produced via sulphide oxidation is 

not considered a major impact on plastic pipes. However, this effect also appears to be high on the 

Kimmeridge clay near Scarborough. The coefficients for the High Sulphates / sulphides class which 

covers the sulphate bearing soils and the Background class are similar. 

4 
Soluble ground 

conditions 
N/A 

 

The lowest coefficient values are found for Class B and Class C which represent the chalk and 
limestone bedrocks. These soils typically have thin soils so may have something to do with being 

based on the pipes being sited on hard rocks. Class D, E and Class A have similar coefficients and 

may represent deeper soils that behave similarly 

5 
Compressible 

Ground 
N/A 

 

The behaviour of plastic pipe in compressible ground can result in either higher or lower stability 

according to the combination of pipe and ground conditions. The highest coefficient (Class C) 

represents only  the alluvium of the river Don near Sheffield, suggesting pollution effects on the 
plastic. Class E the lowest coefficient represents peat deposits where failures may be difficult to 

detect. The other classes have similar coefficients suggesting that there is no great difference 

between ground conditions. 

6 Shrink - swell N/A 

 

Class C & D have lower coefficients than Class A & B suggesting that the plastic pipe is achieving 

greater support within some deposits capable of ground movements, or possibly self sealing if leaks 
are present. This is recognised as occurring with plastic pipes and some deformable soils. No Class 

E is present in the YW region. 
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7 Soil Corrosivity N/A 

 

The lowest coefficients are found for the Class 2 and Class 3 which are both categories suggesting 

enhanced corrosion for ferrous iron. However, for the plastic pipe network these classes may 

indicate those classes with greater clay content, thus possibly acting as a proxy for ground 
movements which may help accommodate pipe stability. This is a processes indicated by the 

Compressible ground and shrink swell classes. 

8 Slope + 
The role of slope may indicate an effect of sideways pressure on causing pipe movement. This is 

likely to be pressure on joints. 

9 B road + 

 

Positive correlation between the density of B roads in a cell and pipe failure per unit length. Could 
be a result of lower quality road construction designed for lower frequency and load of vehicles. 

Vibration and resulting friction with sub grade would appear to be key processes. 

10 A road + 

 

Positive correlation between the density of A roads in a cell and pipe failure per unit length. Could 

be a result of lower quality road construction designed for lower frequency and load of vehicles. 

Vibration and resulting friction with sub grade would appear to be key processes. However, A-road 
only accounts for a very small diffAIC. 

11 Elevation - 

 

Negative correlation between pipe failure per unit length and elevation suggesting that more failures 

occur at low elevation.  However, this only accounts for a small very diffAIC. This could relate to 
differences in the thermal regime. PVC pipe has thermal expansion up to 5x that of ductile iron 

which may affect pipes. 

 

3.5.9 Using coefficients from the sequential model to produce heat maps 

 

As the coefficients from the sequential model share a common intercept they can be used to 

directly compare their influence within the model through heat maps. Although the heat maps all 

appear largely green there are isolated red values (C-roads) which produce the range that the co-

variable coefficients are standardised on. Figure 14 shows the heat maps for the significant 

variables from Model 5.  
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Figure 11 Heat Maps produced from the coefficients of significant co-variables using 

Model 5 for the YW clean water plastic pipe network 

 

The heat maps demonstrate the spatial effect of the covariates. Thus the greatest effects on the 

plastic pipe network can be seen in the urban areas of Leeds and Bradford as demonstrated by 

the higher coefficients of the C-roads and the spatial distribution of the dwellings. Geological 

based hazards can be seen in the sulphate / sulphide heat map which identifies the coal measure 

areas. Slope appears to be important in the north east and north west of the YW region. 

However, most of the geological coefficients are low (green) and can be considered to have a 

minor influence compared to the anthropogenic influenced factors (roads). The overall 

coefficient intensity maps were also produced by multiplying together the coefficients for each 

100 x 100m cell. This provides an indication where the most hostile environments for the plastic 

pipe network are for the whole YW region area is shown in Figure 15. 
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Figure 12 Overall heat map showing intensities of hostile environments to plastic pipe 

network across the YW region using the coefficients produced from significant co-variables 

using Model 5 

 

 

3.6 THE WASTE WATER CONCRETE PIPE NETWORK 

 
Having developed the methodology for the clean water cast iron and plastic pipe networks, a similar 

approach was applied to the waste water networks where the major materials are concrete and clay. The 

change in materials and quality of water produces a different set of factors that may influence pipe failure. 

One of the most important factors in the failure of concrete pipes is that internally the pipes can be 

corroded through the production of H2S gas from bacterial decomposition of sewage, leading to 

the production of H2SO4. Thus, differential ground movement can then act on the  internally 

corroded concrete pipes leading to failure. A key factor influencing H2S production is the slope 

of the pipes because it determines the speed at which sewage is moved along. A major factor 

externally comes from the presence of sulphate in soils because this can lead to concrete attack 

through the formation of the mineral thaumasite in the concrete, which helps break the concrete 

apart. Thus the first step was to undertake an Expert Elicitation for the concrete pipe network.  
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3.6.1 Expert elicitation for concrete pipework 

An initial EE was undertaken in January 2015 for the original NERC grant. However prior to 

undertaking the modelling exercise it was repeated by e-mail for the current project, where we 

have the potential to include information from the DMA and number of dwelling datasets. The 

expert elicitation produced the following order of factors that the covariates should be tested for 

in the EE model.   

1. External Sulphate / sulphide 

2. Slope  

3. Road vibration (this could be a proxy for depth of pipe) 

4. Differential ground movement – Shrink swell, Compressible ground 

Other contributory factors considered problematic but for which data was not available or 

reasonable proxies could be used were for mining collapse, water depth and the removal of 

external support by water removal of soil.  

3.6.2 The Null model (Model 1) 

For the modelling procedure developed, a null model was produced for the expected number of 

failures per unit area based on the density of pipework (Figure 16).  
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Figure 13 The null model for the concrete waste water network for the Yorkshire Water 

region where the density of bursts is a function of the log density of concrete pipe in each 

100 x 100m cell. Red indicates model under prediction (positive residuals) and blue over 

prediction (negative residuals). 

 

 

3.6.3 Adding single factors from the Expert Elicitation exercise to the Null Model (Model 

2) 

The next stage of the modelling procedure requires the covariates identified through the Expert 

Elicitation process to be added to the null model one at a time to assess the contribution that they 

make to the pipe failure process. Results can be found in Table 40. The table shows the order in 

which they were added and their eventual rank. Results showed that in order of importance the 

factors were Slope > B Roads > Compressible deposits > Shrink swell clay > A Roads > C roads. 

Surprisingly, the sulphate and sulphide dataset was found not to be significant at P < 0.05. 

However, the results showed that the remaining factors picked out in the Expert Elicitation 

process were all found to be highly significant. The continuous covariates all had positive 
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correlations with concrete pipe failure. The coefficients for the categorical covariates can be seen 

in Tables 41 and 42. The very low coefficient in for Class 4 in the shrink swell model is because 

no pipe failures were recorded in this class, although pipe was present.  

 

Table 40 Outputs from running the Null model with individual predictor variables using 

Model 2 

Order Added Model AIC diffAIC logLIK LLr pval coef rank 

2 Slope 17890.80 -28.52 -8942.3 30.52 0.001  0.08033 1 

4 B Road 17900.41 -18.90 -8947.2 20.90 0.001  0.00577 2 

7 Compressible 17911.88  -7.43 -8950.9 13.43 0.003 N/A 3 

6 Shrink swell clay 17915.36  -3.95 -8952.6  9.95 0.018 N/A 4 

3 A Road 17912.54  -6.77 -8953.2  8.77 0.003  0.00288 5 

5 C Road 17913.38  -5.93 -8953.6  7.93 0.004  0.00125 6 

1 Sulphate / Sulphide 17917.77  -1.54 -8954.8  5.54 0.062 N/A 7 

 

 

Table 41 Coefficients of shrink swell clay categorical variables for the concrete waste water 

network using Model 2 

class coefficient Ground Classification 

A -14.92473 Ground conditions predominantly non plastic; No action 

B -15.16688 Ground conditions predominantly low plastic; No action 

C -15.14786 Medium plasticity; action required 

D -26.78188 High Plasticity 

 

 

Table 42 Coefficients of the compressible ground categorical variables for the concrete 

waste water network using Model 2 

class coefficient Ground Classification 

A -14.96005 No indicators of compressible ground – No action 

B -15.38384 Very slight potential of compressible deposits 

C -16.08610 Slight possibility of compressibility problems 

D -15.36875 Significant potential for compressibility problems  

 

3.6.4 Adding the EE covariates sequentially to the Null model for the concrete waste 

water network (Model 3) 

 

The next stage of the modelling process was to add the significant (P < 0.05) variables to the null 

model in sequential order. This produced a slightly different order of importance in the co-

variables where Slope > C road > B- road > Compressible > A road. Shrink swell clay was no 

longer significant (P<0.05). The results can be seen in Table 43, with the completed model in 

Figure 17. Decreases in the residuals can be seen compared the null model.   
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Table 43 P-value from tests for sequential addition of statistically significant covariates 

identified from the expert elicitation added to the null model (Model 3). LLr is the log 

likelihood ratio statistic expressing how many times more likely the data are based on 

addition of this covariate in comparison to the previous model 

 

 Model pval LLr 

1 Slope 0.001 16.70 

2 A Road 0.007  3.61 

3 B Road 0.001  9.76 

4 C Road 0.001 11.37 

5 Shrink swell clay 0.467  1.27 

6 Compressible 0.035  4.29 

 

 

 

Figure 14 Final lurking variable plot for the best fit model based on the expert elicitation 

process where covariates are added in sequential order (Model 3) for the concrete waste 

water network. The red areas indicate where the model under predicts the number of 

expected pipe bursts per cell, whilst the blue over-predicts per 100 x 100m cell 
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3.6.5 Adding other environmental factors to the EE model (Model 4) 

The other environmental factors were then added onto the null model one at a time to assess 

whether they are significant and their importance, as demonstrated by the LLr (Table 44). It was 

found that the new order of ranking was Number of Dwellings > Slope > Solubility > B Road > 

Compressible deposits > Shrink swell > A road > C road. The remaining covariates shown in 

Table 44 were not found to be significant at P < 0.05. There were positive correlations between 

the expected pipe failures and the significant (P < 0.05) continuous covariates. The coefficients 

for the new categorical covariates tested can be seen in Tables 45.  

 

Table 44 Full region output from spatial point process model fitting with a series of single 

covariates, added to a null model in which plastic pipe length is included as a covariate 

(Model 4) 

 Model AIC diffAIC logLIK LLr pval coef rank 

14 Dwellings 17886.76 -32.55 -8940.3 34.55 0.001  0.01755  1 

2 Slope 17890.80 -28.52 -8942.3 30.52 0.001  0.08033  2 

12 Solubility 17904.86 -14.45 -8946.4 22.45 0.001 N/A  3 

4 B Road 17900.41 -18.90 -8947.2 20.90 0.001  0.00577  4 

7 Compressible 17911.88  -7.43 -8950.9 13.43 0.003 N/A  5 

6 Shrink Swell  17915.36  -3.95 -8952.6  9.95 0.018 N/A  6 

3 A Road 17912.54  -6.77 -8953.2  8.77 0.003  0.00288  7 

5 C Road 17913.38  -5.93 -8953.6  7.93 0.004  0.00125  8 

1 Sulphate / Sulphide 17917.77  -1.54 -8954.8  5.54 0.062  N/A  9 

13 Corrosivity 17919.12  -0.19 -8955.5  4.19 0.122 N/A 10 

8 CTI 17918.38  -0.93 -8956.1  2.93 0.086 -0.03869 11 

9 A Resistivity 17920.57   1.25 -8957.2  0.74 0.387  0.00007 12 

10 Aspect East 17921.25   1.92 -8957.6  0.07 0.790  0.01516 13 

11 Aspect North 17921.31   1.99 -8957.6  0.00 0.925  0.00520 14 

 

 

Table 45 Coefficients of the Soluble Ground categorical variables for the concrete waste 

water network obtained from using Model 4 

class coefficient Ground Classification 

A -15.06431 Soluble rocks not thought to be present 

B -15.03381 Soluble rocks are present but unlikely to cause problems 

C -14.98741 
Significant Soluble rocks are present with low possibility of localised subsidence or dissolution related 

degradation of bedrock 

D -13.99384 
Very significant soluble rocks are present with a moderate possibility of localised natural subsidence or 

dissolution related degradation of bedrock 

E -12.32065 
Very significant soluble rocks are present with a high possibility of localised subsidence or dissolution of 

bedrock 

 



 

62 

 

3.6.6 Adding variables sequentially for the concrete waste water network (Model 5)  

The significant environmental covariates were added in a sequential model and the improvement 

in the model output caused by the inclusion of these additional factors is noted. This process is 

reported in Table 46. Within this new model, the order of importance was Slope > soluble 

ground > C-road > Dwellings > B-road > A-road whilst compressible ground and shrink swell 

clay were not significant at P<0.05. The continuous coefficients are found in Table 46, whilst the 

categorical variables are shown in Tables 47.    Figure 18 shows Model 5.   

 

Table 46 Metrics of sequential addition (Model 5) of expert elicited predictor variables to 

sequential model, starting from null model 

Order added Model pval LLr 

1 Slope 0.001 15.26 

2 A Road 0.004  4.00 

3 B Road 0.001  9.53 

4 C Road 0.001 11.37 

5 Shrink swell clay 0.259  2.00 

6 Compressible 0.051  3.87 

7 Solubility 0.001 12.21 

8 Dwellings 0.001  9.78 

 

 

Table 47 Coefficients of the Soluble Ground categorical variables for the concrete waste 

water network using model 5  

 

class coefficient Ground Classification 
 

A -15.70013 Soluble rocks not thought to be present 
 

B -15.56259 Soluble rocks are present but unlikely to cause problems 
 

C -15.26850 
Significant Soluble rocks are present with low possibility of localised subsidence or dissolution related 

degradation of bedrock 

 

D -14.22220 
Very significant soluble rocks are present with a moderate possibility of localised natural subsidence or 

dissolution related degradation of bedrock 

 

E -12.97769 
Very significant soluble rocks are present with a high possibility of localised subsidence or dissolution 

of bedrock 
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Figure 15. Result of full model for the YW region using sequential addition of covariates 

for the concrete waste water network (Model 5). Note the decrease in the cumulative sum 

of raw residuals compared to the null model in Figure 9. Examination of the combined X 

and Y axis residuals suggest that overall the model is under predicting the number of pipe 

failures per unit length of pipe, with the red colours indicating where this is happening to 

the greatest extent and the blue the least.   

 

 

 

3.6.7 Discussion of the Concrete pipe network 

The addition of the covariates from the Expert Elicitation process (Model 3) to the Null model 

reduced the total raw residual of the model as demonstrated in the lurking variable plots. The EE 

model was then improved further by the addition of extra environmental co-variables (Model 5). 

Analysis of the over and under prediction produced by the model is complicated to untangle as 

both appear in the same south western region of the model. This is the area of greatest urban 

density, along with the coal measures that may induce subsidence. Considered explanations for 

the continuous and categorical coefficients obtained when added individually to the Null model 

are shown in Table 48. Positive correlations were found for the continuous variables. In 

particular increasing slope and the possible effects of gravity on heavy pipes, especially when 

full, along with problems associated with pipelines in or close to roads are the major issues. The 
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categorical variables associated with compressible ground may therefore be more related to 

settlement and deflection in different soil types.  

 

Table 48 What the coefficients mean for the concrete waste water network models.   

Rank Covariate 
+/- 

coefficient 
Notes 

1 
Number of 
dwellings 

+ 

 

Positive correlation between number of dwellings and pipe failure suggests that increased use of the 
pipe network has a detrimental effect. For example greater H2S gas production causing internal 

corrosion. 

2 Slope + 

 

A positive correlation between expected pipe failure and slope suggests that the weight of waste in the 

pipe on slopes may cause greater failure. This is not the slope at which the pipes may be laid to increase 

the rate of flow, thus decreasing H2S production, but is indicative of heavy weight causing sideways 
movement. 

3 Solubility N/A 

 

There was an increase in the size of the coefficients suggesting that as solubility of rock conditions 

increased there was greater pipe failure.  Whilst the coefficient values were very similar for Classes A, 
B, and C, they increased considerably for Classes D and E. These two classes take into account the 

gypsum bearing rocks around Rippon, suggesting that subsidence may occur, causing failure but also 

that the presence of sulphate from gypsum may contribute to failure through concrete rot. 

4 B Road + 
 

A positive correlation suggesting that vibration and road effects may increase failure 

5 
Compressible 

Ground 
N/A 

 

The coefficients indicate that the background ground conditions has the larger coefficient than for areas 
where there is an increasing compressible ground problem. The suggestion is that the coefficients from 

classes B-D may be relating to the soil structure – pipe interactions which vary between soils and affect 

pipe rigidity. No concrete pipe was found in Class 5 which is why it is missing. 

6 Shrink Swell N/A 

 

The suggestion from the coefficients is that the background ground condition has the largest coefficient 

compared to areas where there is an increasing shrink swell ground problem. The suggestion is that the 
coefficients from classes B-D may relate more to the soil structure – pipe interactions which vary 

between soils and affect pipe rigidity.  There is a very significant decrease in coefficient size for the 

highest shrink swell class. Some concrete pipe is found in Class 5 but no failures have been recorded 
which explains the very ow coefficient. 

 

7 
A Road + A positive correlation suggesting that vibration and road effects may increase failure 

 

8 
B Road + A positive correlation suggesting that vibration and road effects may increase failure 

 

3.6.8 Using coefficients from the sequential model to produce heat maps 

Coefficients from Model 5 were used to produce individual heat maps (Figure 19). One of the 

reasons why the maps appear largely green, is that there is only one cell which is red (on the 

slope map in the NW corner), thus representing the high coefficient, meaning that the 

coefficients still need to be scaled to this. Whilst most of the heat maps are green, suggesting 

little difference in the low impact of the co-variables, yellow colours indicating greater impact 

can be seen in the slope map and particularly on the solubility maps. The area of greatest impact 
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is associated with solubility on the gypsum bearing rocks around Rippon where ground 

subsidence is likely. This again is highlighted in the total intensity map (Figure 20).    

Figure 16 Heat Maps for the YW concrete waste water network where coefficients from the 

significant co-variables from Model 5 are plotted on a standardised colour scale 
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Figure 17 Total Intensity map of YW region for the concrete waste water network showing 

areas which are most hostile to pipe networks produced using significant variables 

obtained using model 5.   

 

3.7 THE WASTE WATER CLAY PIPE NETWORK 

3.7.1 Expert Elicitation 

The Expert Elicitation process was similar to that for the concrete waste water network, with the 

exception that the presence of sulphide and sulphate are not considered an issue with clay as it is 

with concrete. Thus, after the EE exercise the order that variables should be introduced into the 

model was   

1. Slope or pipe fall (this provides an indication of how quickly sewage will be transported 

thus reducing H2S production). This is also important because of the weight of the full 

pipes 

2. Road vibration (this could be a proxy for depth of pipe) 

3. Differential ground movement – Shrink swell, Compressible ground 

3.7.2 The Null model (Model 1) 

The null model is shown below in Figure 21. The null model shows, that based purely on the 

density of pipes per 100 x 100 m cell the greatest model under performance is in an area in the 
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SW of the YW region, typically coinciding with Carboniferous rocks types such as the Millstone 

Grit and Lower Coal Measures.  

 

Figure 18 The null model for the whole of the Yorkshire Water region where the density of 

bursts is a function of the log density of clay waste water pipe in each 100 x 100m cell. Red 

indicates model under prediction (positive residuals) and blue over prediction (negative 

residuals). 

 

 

3.7.3 Adding single covariates from the EE to the null model (Model 2) 

The next stage was to add single covariates identified in the Expert Elicitation process to the 

Null model (Table 49). Results show that the importance of covariates were in the order Slope 

>> C road >> A road > Compressible ground > Shrink swell clay > B Road. Positive coefficients 

indicating a positive correlation between the continuous covariates (Slope and Road types) were 

found. The coefficients for the categorical covariates are presented in Tables 50 and 51.   
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Table 49 Outputs from running the Null model with individual predictor variables for the 

clay waste water network (Model 2) 

 

Order added Model AIC diffAIC logLIK LLr pval coef rank 

1 Slope 243370.5 -528.37 -121682.3 530.37 0.001 0.07749 1 

4 C Road 243695.3 -203.54 -121844.7 205.54 0.001 0.00177 2 

2 A Road 243793.8 -105.07 -121893.9 107.07 0.001 0.00279 3 

6 Compressible 243807.3 -91.62 -121898.6 97.62 0.001 N/A 4 

5 Shrink Swell Clay 243815.6 -83.24 -121902.8 89.24 0.001 N/A 5 

3 B Road 243853.3 -45.56 -121923.7 47.56 0.001 0.00255 6 

 

Table 50 Model coefficients for Shrink swell clays for the clay pipe waste water network 

(No Class E present in YW region) obtained using Model 2 

 

class coefficient Ground Classification 

A -15.75950 Ground conditions predominantly non plastic; No action 

B -15.74784 Ground conditions predominantly low plastic; No action 

C -16.24323 Medium plasticity; action required 

D -16.69923 High Plasticity 

 

Table 51 Model coefficients for compressible ground conditions for the clay pipe waste 

water network (No pipework in Class E through YW region) obtained using Model 2 

 

class coefficient Ground Classification 

A -15.75234 No indicators of compressible ground – No action 

B -16.65175 Very slight potential of compressible deposits 

C -16.98420 Slight possibility of compressibility problems 

D -16.10494 Significant potential for compressibility problems  

 

 

3.7.4 Adding covariates sequentially to the Expert Elicitation model (Model 3) 

The next stage was to add the covariates identified from the EE exercise to the null model in 

sequential order. Table 52 reports the extent to which each variable improves the model, with 

slope and C roads being the most important. The order of the co-variables with respect to their 

impact is slightly changed in the sequential EE model compared to adding the co-variables 

individually in that the order is Slope > C-road > A-road > B-road > shrink swell > compressible 

ground. The output of the model can be seen in Figure 22 and it can be seen that adding the EE 

variables has reduced the model residuals.  
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Table 52 Metrics of sequential addition of expert elicited predictor variables to sequential 

model, starting from null model (Model 3) 

 

 Model pval LLr 

1 Slope 0.001 265.18 

2 A Road 0.001  45.64 

3 B Road 0.001  26.90 

4 C Road 0.001 187.57 

5 Shrink swell clay 0.001  25.35 

6 Compressible 0.001  17.60 

 

 

Figure 19 Final lurking variable plot for the best fit model based on the expert elicitation 

process where covariates are added in sequential order (Model 3). The red areas (positive 

residual) indicate where the model under predicts the number of expected pipe bursts per 

cell, whilst the blue (negative residual) over-predicts per 100 x 100m cell 

 

 

3.7.5 Adding other environmental factors individually to the Null model (Model 4) 

To assess whether other environmental factors may contribute to the density of pipe failure we 

then added each as a single covariate to the Null model. Out of the new variables added the 
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Number of Dwellings, corrosivity, CTI, solubility and A-Resistivity were found to be highly 

significant (Table 53). The number of Dwellings showed a positive correlation, whilst the CTI 

showed a negative correlation. Coefficients for the categorical variables added to the null model 

individually are shown in Table 54 and 55. Aspect north and East were found not to be 

significant at P<0.05.  

 

Table 53 Metrics of Model 4 where individual predictor co-variables are added to the null 

model independently of each other  

 

Order added Model AIC diffAIC logLIK LLr pval coef rank 

1 Slope 243370.5 -528.37 -121682.3 530.37 0.001 0.07749 1 

13 Dwellings 243452.6 -446.28 -121723.3 448.28 0.001 0.01306 2 

4 C Road 243695.3 -203.54 -121844.7 205.54 0.001 0.00177 3 

12 Corrosivity 243731.8 -167.08 -121861.9 171.08 0.001 N/A 4 

7 CTI 243768.7 -130.24 -121881.3 132.24 0.001 -0.08053 5 

2 A Road 243793.8 -105.07 -121893.9 107.07 0.001 0.00279 6 

6 Compressible 243807.3 -91.62 -121898.6 97.62 0.001 N/A 7 

5 Shrink Swell Clay 243815.6 -83.24 -121902.8 89.24 0.001 N/A 8 

3 B Road 243853.3 -45.56 -121923.7 47.56 0.001 0.00255 9 

11 Solubility 243862.4 -36.47 -121925.2 44.47 0.001 N/A 10 

8 A Resistivity 243885.7 -13.22 -121939.8 15.22 0.001 0.00007 11 

10 Aspect North 243900.1 1.22 -121947.1 0.77 0.378 0.01256 12 

9 Aspect East 243900.8 1.94 -121947.4 0.06 0.821 -0.00322 13 

 

Table 54 Model coefficients obtained from Model 4 for Soluble ground conditions for the 

clay pipe waste water network 

class coefficient Ground Classification 

A -15.79007 Soluble rocks not thought to be present 

B -16.09131 Soluble rocks are present but unlikely to cause problems 

C -16.10745 
Significant Soluble rocks are present with low possibility of localised subsidence or dissolution related 

degradation of bedrock 

D -15.55886 
Very significant soluble rocks are present with a moderate possibility of localised natural subsidence or 

dissolution related degradation of bedrock 

E -15.35128 
Very significant soluble rocks are present with a high possibility of localised subsidence or dissolution of 

bedrock 

 

Table 55 Model coefficients obtained from Model 4 for corrosive ground conditions for the 

clay pipe waste water network 

class coefficient Ground Classification 

class 1 -15.71212 Unlikely to cause corrosion 

class 2 -16.38022 May cause corrosion 

class 3 -16.37824 Likely to cause corrosion 
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3.7.6 Adding other environmental factors sequentially to the null model (Model 5) 

The final stage for the waste water clay network is to add the significant variables from Table 53 

sequentially to the Null model to produce a final model. Table 56 reports how each factor 

improves the model, with slope and C roads improving the model by the greatest extent. The 

final model output can be seen in Figure 23, which again shows that the model residuals are 

reduced compared to the EE model (Figure 21).  Categorical coefficients are shown in Tables 57 

- 60.  

Table 56 P-value from sequential addition of statistically significant co-variables added to 

the null model (Model 5). LLr is the log likelihood ratio statistic expressing how many 

times more likely the data are based on addition of this covariate in comparison to the 

previous model. 

 

 Model pval LLr coef 

1 Slope 0.001 265.18  0.07749 

2 A Road 0.001  45.64  0.03933 

3 B Road 0.001  26.90  0.02714 

4 C Road 0.001 187.57  0.02177 

5 Shrink swell clays 0.001  25.35 N/A 

6 Compressible Ground 0.001  17.60 N/A 

7 Solubility 0.001  11.62 N/A 

8 Soil Corrosivity 0.001  22.51 N/A 

9 Dwellings 0.001  96.382 -0.13615 

 

 

Table 57 Coefficients of Shrink swell clays obtained from Model 5 for the clay waste water 

network. 

class coefficient Ground Classification  

A -15.80660 Ground conditions predominantly non plastic; No action  

B -15.71318 Ground conditions predominantly low plastic; No action  

C -15.83429 Medium plasticity; action required  

D -16.40793 High Plasticity  

 

 

Table 58 Coefficients of Compressible Ground obtained from Model 5 for the clay waste 

water network. 

class coefficient Ground Classification  

A -15.80660 No indicators of compressible ground – No action  

B -16.49140 Very slight potential of compressible deposits  

C -16.91715 Slight possibility of compressibility problems  

D -15.71720 Significant potential for compressibility problems   
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Table 59 Coefficients of Soluble Ground obtained from Model 5 for the clay waste water 

network 

class coefficient Ground Classification 
 

A -15.80660 Soluble rocks not thought to be present 
 

B -15.82645 Soluble rocks are present but unlikely to cause problems 
 

C -15.88758 
Significant Soluble rocks are present with low possibility of localised subsidence or dissolution related 

degradation of bedrock 

 

D -15.49445 
Very significant soluble rocks are present with a moderate possibility of localised natural subsidence or 

dissolution related degradation of bedrock 

 

E -15.26674 
Very significant soluble rocks are present with a high possibility of localised subsidence or dissolution 

of bedrock 

 

 

 

Table 60 Coefficients of soil Corrosivity obtained from Model 5 model for the clay waste 

water network. 

class coefficient Ground Classification  

class 1 -15.80660 Unlikely to cause corrosion  

class 2 -16.29156 May cause corrosion  

class 3 -16.23575 Likely to cause corrosion  
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Figure 20 Result of full model for the YW region using sequential addition of covariates for 

the clay waste water network (Model 5). Note the decrease in the cumulative sum of raw 

residuals compared to the null model in Figure 9. Examination of the combined X and Y 

axis residuals suggest that overall the model is under predicting the number of pipe failures 

per unit length of pipe, with the red colours indicating where this is happening to the 

greatest extent and the blue the least.   

 

 

 

 

3.7.7 Discussion of waste water Clay network  

Improvements to the Null model were obtained with the addition of co-variables from the Expert 

Elicitation and the later inclusion of other environmental co-variables, as demonstrated in the 

reduction of the Total raw residuals presented in the lurking variable plots (Figures 21-23). 

Interpretation of the lurking variable plot suggests that there may be an area of model under -

prediction in the Leeds – Bradford area, possibly associated with subsidence from the coal 

measures. An area of over- prediction also appears to be associated with the Sheffield urban area, 

which is harder to suggest possible reasons for as one or more of the coefficients may be over-

estimating a response. The possible influence of significant covariates added individually to the 

Null model on the pipe network are explained in Table 61.     
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Table 61 Possible explanations for the nature of model coefficients for the waste water clay 

network where single covariables are added to the Null model.   

Rank Covariate 
+/- 

coefficient 
Notes 

1 Slope + 
A positive correlation between expected pipe failure and slope suggests that the weight of waste in the 

pipe on slopes may cause greater failure 

2 

 

Number of 

Dwellings 

 

+ 

 

Positive correlation between number of dwellings and pipe failure suggests that increased use of the 

pipe network has a detrimental effect. 

3 
 

C Road 

 

+ 

 

A positive correlation suggesting some interactions with traffic volume and vibration 

4 Corrosivity N/A 

The coefficients for Class 2 and Class 3 are similar, whilst both are higher than Class 1 where the soils 

are not thought to be corrosive. With resistivity (Clay) being such a dominant part of the CIPRA 
corriosion classification, these results suggest that the corrosivity index is possibly identifying soils 

with clay contents that promote good stability and soil – structure - pipe interactions. 

5 CTI - 

A negative correlation exists between CTI and pipe failure. A possible explanation is that the soils with 

low CTI may have greater variations in their thermal and moisture regimes, potentially leading to 
greater differential ground movement. 

6 
 

A Road 

 

+ 

 

A positive correlation suggesting some interactions with traffic volume and vibration 

7 Compressible N/A 

 

The coefficients for Class B and Class C are similar and are both lower than Class 1 where the soils are 

not thought to be susceptible to ground movements caused by compressible deposits. This suggests that 

soils in the compressible classes are defining their stability and soil – structure - pipe interactions. No 
pipeline was present in Class E 

8 
Shrink Swell 

Clay 
N/A 

 

Coefficients for classes A and B are relatively similar, with class C and D having lower coefficients. 
This could suggest greater stability and improved soil – structure - pipe interactions in class C and D 

because of the presence of clay or that there is a self-sealing occurring if pipes do break. There is no 

Class E in the YW region so the co-variable is not fully tested. 

9 
 

B Road 

 

+ 

 

A positive correlation suggesting some interactions with traffic volume and vibration 

10 Solubility N/A 

 

Class D & E had the highest coefficients suggesting that the soluble rocks they were identifying (e.g. 
gypsum bearing rocks near Ripon) had an influence on increasing pipe failure, possibly through 

subsidence. Class B and C had the lowest coefficients and these areas are more related to chalk and 

limestone suggest that these can provide greater stability to the pipe network. 

11 A resistivity + 

 

The positive correlation suggests that there was increased failure with higher resistivity. Higher 

resistivity is found in soils with lower clay contents, which confirms the suggestion from other 
covariables such as shrink swell and compressible deposits that soils that promote better stability and 

soil – structure - pipe interactions are being identified as having lower failure rates. 

 

 

3.7.8 Individual heat maps 

Individual heat maps for the significant variables from Model 5 for the clay network are 

presented in Figure 24. Based on the pipe failures recorded, these heat maps show spatially 

where the individual co-variables may present a danger to the clay pipe network across the YW 

area. Whilst the road networks are generally a pale yellow, the greatest areas of yellow and red 
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can be seen in the upland areas of the Yorkshire Dales, Peak District and the North York Moors, 

where the slopes are greatest. The effects of solubility (dissolution) are greatest around Ripon.  

Figure 21 Individual heat maps for the significant co-variables from Model 5 for the clay 

waste water network placed on a standardized scale  

 

 

 

3.7.9 Total Coefficient heat map 

The Total intensity heat map is formed by combining the coefficients from the significant co-

variables from Model 5 are shown in Figure 25. This shows clearly the areas which exist in areas 

of greatest hostility to the pipe network across the YW region.  As well as picking out the 

potential for slope to cause failure, the urban areas are also highlighted.   
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Figure 22 Total Intensity heat map for the clay waste water network obtained by 

combining significant co-variable coefficients from Model 5.     

 

 

 

4     General Discussion  

4.1 THE VALUE OF THE MODEL OUTPUTS 

The major aim of the project was to assess whether incorporating geological and environmental 

factors into models of pipe failure, water companies could develop greater understanding of their 

pipe networks. This may enable them to consider ways through which greater resilience can be 

built in, particularly with respect to a changing climate and increasing population. Typically 

water companies assess the current condition of their pipe assets by looking at age and 

increasingly internal camera assessments. Our approach is complementary and looks spatially at 

the distribution of pipe failure with respect to the density of pipe, and links these to geological, 
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topographical and environmental factors. Thus the model produces spatial information of where 

these factors may have the greatest impacts on the pipe network. This is achieved through:   

 

1. Interpretation of lurking variable plots allows an assessment of areas of the YW region 

where the model underperforms, allowing exploration of possible other factors that are 

causing damage to the network. Where under-prediction coincides on both the X and Y 

axes, reasons can be more easily identified. For example, in this work the models for 

different pipe materials consistently under-predicted pipe failure in areas associated with 

the coal measures and for cast iron, one area associated with lacustrine deposits. There 

are valid reasons (subsidence, poor load bearing strength) why these areas may have been 

identified.   

2. The identification of significant model co-variables allows us to understand those factors 

that are having an effect on the network. Whereas the continuous variables produce a ± 

coefficient, greater interpretation is required for the categorical variables as it was not 

always a linear response.  

3. A combined heat map can be produced by combining all the coefficients for each 100 x 

100 m cell to show where the pipe network is at greatest risk.  

4. The coefficients from the significant model co-variables from the final sequential model 

can be used in the production of individual heat maps which can help explain the factors 

contributing to the combined heat map. Thus by combining the coefficient with the 

categorical class or the continuous variable number for each 100 x 100 m cell, the areas 

in which individual covariates could impact the pipe network can be assessed spatially 

across the YW region. In addition, by taking the highest and lowest coefficient from all 

the covariates and standardising the colour scheme we can also compare the impacts of 

the covariates on the pipe network.   

       

4.2 WHAT WE HAVE LEARNT 

Using the approaches outlined above, the following are the key points from analyses of the 4 

pipe networks for YW: 

 

1. For the YW region, non-geological factors generally had the greatest impact on pipe 

network failure including factors associated with road networks, water source and the 

number of dwellings.  
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2. The co-variables identified in the expert elicitation were usually found to be significant at 

P<0.05, demonstrating that YW had good knowledge regarding reasons for failure within 

their pipe network. The inclusion of factors identified through the Expert Elicitation 

exercise always improved the Null model. However the inclusion of further 

environmental and geohazard factors (e.g. dwellings, Sulphide / sulphate) resulted in 

improvements to the Expert Elicitation models.    

3. Where geological and topographic factors were important these included slope for the 

concrete and clay networks which with gravity and weight obviously produces stress on 

the network. Solubility was important for the concrete pipe, suggesting subsidence in the 

Rippon area was a major source of failure. Sulphate and sulphide was important for cast 

iron, identifying partly the coal measures.  

4. Some geological units appeared to cause problems for the pipe network beyond those 

accounted for in the list of co-variables. In particular these included the coal measures 

where subsidence may occur and one area of the lacustrine clays associated with the 

Glacial Lake Humber. Lacustrine clays typically have poor loading capacity. 

5. The continuous variables were relatively easy to interpret as to their role in pipe network 

failure, whereas the use of the geohazard categorical variables did not always provide 

linear responses.  

6. Shrink swell and compressible ground are the two geohazards often cited as having major 

impacts on pipe network failure and both were found to be significant (P<0.05), but the 

categorical coefficients obtained were non-linear. In addition, both datasets were not 

tested sufficiently. The YW region did not have a Class 5 region (Highly plastic soils) for 

shrink swell clays so no estimation of the most extreme shrink-swell clay soils could be 

made. For compressible ground conditions where pipe networks did pass through the 

highest class of risk, no known failures were found, which resulted in very low 

coefficient values. The interpretation of the categorical variables was therefore difficult.  

However, we suggest that the non-linearity of the coefficients obtained for the classes 

within these datasets may indicate broad ranges of different soil types and their specific 

properties which determine the settlement and deflection of different pipe materials in the 

soil. The amount of clay in the soil and it’s type are fundamental to shrink swell and 

compressibility but are also fundamental to processes that enable support to the pipeline. 

This needs to be examined further.  

7. Some of the geohazard datasets needed interpretation because of the way they were 

created (e.g solubility, sulphide / sulphate). For example the solubility dataset could be 

split up into soft rocks that may dissolve (e.g. chalk and limestone) and those that may 
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have soluble horizons causing subsidence (e.g gypsum containing rocks). For the 

sulphate and sulphide they could be split again. Individual datasets could be more 

appropriate and easier to use in some circumstances.  

4.3 REVIEW OF WORK WITH YORKSHIRE WATER, SCOTTISH WATER AND 

WELSH WATER   

 

Presentations of results were made to Yorkshire Water during the course of these two grants. The 

meetings are reviewed here. 

4.3.1 Meeting with Yorkshire Water – 22
nd

 June 2015 

A meeting was held with representatives of YW on June 22
nd

 2015 to gain feedback from the 

initial model results. Discussions focused on the possible causes of pipe failures caused by 

factors that were not included within the model and this particularly applied to the under 

prediction of the model in the SW of the YW region (Leeds-Bradford). These included 

 Surge demand 

 Water pressure changes 

 Water temperature & temperature change 

 Source of water 

 Drainage 

 Climate  

 

The area of model under prediction (Leeds –Bradford) is the largest urban area and this is likely 

to be where surge demand will most regularly occur. In addition, it is also a hilly region within 

the YW region and this may also cause greater changes in water pressure within the pipe 

network to occur. Both these factors are recognised as causing the blow out of pinhole corrosion 

to occur in cast iron pipes. Future data used in the model could include calculated ‘change of 

slope’ within a 100 x 100 m cell as well as mean slope to consider these pressure changes. A 

further possibility for the Leeds –Bradford area is that the source of water is different to the rest 

of the YW region (DWI, 2014). It was suggested that Leeds-Bradford may be served by 

reservoirs whilst much of the rest of the region by groundwater, and YW confirmed. These 

different water sources will have different temperatures and hydro-chemical variations. Ground 

water temperatures should be constant, whereas reservoir water will vary depending on the 

season and weather. In addition the different chemistries (e.g. pH, SO4
2-

, Cl
-
) of the water may 

have an effect on the internal corrosion of pipes.  Data on temperature and pressure is held by 
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YW for the Distribution Management Areas (DMA). There are 2300 DMA’s each serving 

between 800 and 900 properties and these could be included within the model. 

 

The major covariate in the models for pipe failure was linked to ‘C-roads’. YW cited the 

following as possible contributory factors.  The major weaknesses within a pipe network are the 

join between lengths of pipes. The pipe network associated with C roads is usually dominated by 

a greater frequency of connections between the ‘water main’ and the domestic pipe. In addition, 

smaller diameter and thinner pipes may be used in much of this part of the network.  Within the 

C-roads we suggested that poor drainage in the sub grade may encourage anaerobic conditions 

associated with ponding of water can lead to corrosion. YW state that the infill of trenches is 

generally limestone gravel from about 1970 onwards.  However, no comments were made about 

drainage. This suggests that in future modelling different drainage factors such as change of 

slope angle and drainage x geology may be appropriate. Different data and information sets were 

discussed. BGS could use derived data from NextMap to calculate the change of slope and the 

SUDS dataset for drainage get away.   

 

Climate features were also considered. Cast iron and ductile pipes have peak bursts during the 

winter – December to February relating to low temperatures. Plastic pipes tend to fail more often 

during the summer. If the failure data is dated then an assessment of climate on bursts could be 

done within the model. Soil Moisture Deficit (SMD) was also mentioned and this should be 

feasible.   

 

The causes of failure associated with the plastic pipe network appear to be related to vibration, 

slope and clay. All three road types were identified, with C roads > B roads > A roads in the 

ranking, suggesting that the larger better constructed roads have a lower effect. Slope may play 

an effect through gravity distorting the pipes. Interestingly, clay was identified as a proxy of A-

resistivity. The hardness of and rigidity of dry clay or its contributions towards ground 

movements may be significant. Hardness may cause chaffing of the pipeline with vibrations. 

Interestingly there was a negative correlation with compressible ground suggesting that a pipe in 

slightly giving material may be slightly protected. This may also be why there was a negative 

correlation between plastic pipe failure and shrink-swell clays.  
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4.3.2 Meeting with Yorkshire Water – 14
th

 July 2016 

A further meeting was held with YW where improvements in the cast iron and plastic models 

created in Grant NE/NO13026/1 were presented as well as results from the waste water clay and 

concrete models.  Discussions were had regarding explanations of results. Main points regarding 

results of pipe networks were: 

 

1. C-roads more likely to be in road whilst A- and B-roads are in the pavement if possible. 

In addition because of the type of road there will be differences in size and number of 

connections. In C-roads it’s likely to be a ‘distribution’ network whilst larger road we 

have the principal mains.   

2. Unlikely for pipes put in shrink swell soils to be differently engineered – Current YW 

models do not have this differentiation in their models built a basic soil type factor 

3. Extra protection would be given to pipes if peat is present 

4. Pipe depth is a factor that hasn’t been included within the model because of access to 

suitable data. Standard depth for cost and temperature. More variability for concrete 

waste water. There is scope for shallower depth with plastic pipes. It will help to reduce 

carbon footprint (digging) being able to reduce depth to which pipes are laid.  Waste 

pipes often installed using micro-tunnelling technologies these days rather than open cut.   

 

4.3.2 Meeting with Scottish Water – 27
th

 June 2016  

A lot of decisions are currently made according to beliefs rather than evidence. There is a drive 

in Scottish Water to become more data driven / evidence based. They are aware of a correlation 

between pressure and pipe failure – e.g. 10% reduction in pressure results in 14% reduction in 

failure rate (but, it may just prolong inevitable failure by corrosion). In their efforts to reduce 

pipe failure, 50 % of the reduction they have been able to achieve has been as a result of pressure 

management. The rest is mains rehab and operations management. They do not currently 

engineer to account for geological conditions such as shrink swell. Pipe systems are ‘off the 

shelf’, not specific to ground conditions. 

4.3.3 Expert elicitation 

An expert elicitation exercise was undertaken with Scottish Water so that discussion of their 

results would not bias their opinions on what they considered were the principal reasons for 

failure within their pipelines. Compared to YW, Scottish Water there was more slightly more 

focus on weather effects (Scotland generally having longer and colder winters). These are the 

results of the Expert Elicitation process.  
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Cast Iron: 

1. Age (exacerbates all other factors – an interaction effect?)  

2. Pressure (pressure transience rather than constant pressure) 

3. Ground temperature 

4. Weather (seasonality, cold and wet winter vs drying out of ground in summer). 

5. Ground heave (failure by ring splits, ring fractures) 

6. Water source (ground, surface, chemical treatment – internal corrosion > external 

corrosion) 

7. Road vibration (construction sites, building and piling – in theory 600mm of cover makes 

this negligible but they are suspicious) 

8. Contaminated ground (e.g. High rate of corrosion/pitting at Innerleithen due to copper 

contamination?). 

Plastic: 

1. Installation error 

2. Pressure transience 

3. Presence of hydrocarbons possibly (e.g. peat) 

Asbestos Cement: 

1. External factors (e.g. pH, water chemistry, soil types). 

2. Mechanical joint failure – installation problems or corrosion of nuts and bolts (see cast 

iron). 

Pre-stressed Concrete: 

1. Catastrophic join failure 

Clay pipes: 

1. Root infiltration 

2. Ground distortion / disturbance (rubber seals will pop out). 

General additional hazards: 

1. Ground water infiltration may be an issue – they mentioned mining areas and red ochre – 

acid mine drainage? 

2. Peat - pipe buoyancy and mobility, and hydrocarbons. 

3. Running sands an issue for sewers. 

4. Mine collapse an issue but rare. 

4.3.4 Suggestions from Scottish Water during BGS presentation: 

1. They were interested if we had included a flooding layer as a predictor variable in our 

models, with reference being to ground water infiltration of sewer system. 

2. Saline infiltration was an issue on the East Coast, where rising mains are metallic. 

3. They were interested our use of Number of dwellings per cell and mentioned work that 

they had done looking at social demographic /class and sewer blockages.  
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4. C road influence may be due to construction activity and third party damage. Possible 

pipe failures as a result of contrasting ground conditions between made ground under the 

road and natural ground beyond. 

5. We could perhaps use CEH’s land use classification as a predictor (but land use may 

effectively already be explained in what we have used). 

6. With regard to dwellings – is it possible that our burst data includes bursts in minor 

house-feeding pipes, which have been mistakenly appended to the mains? 

7. It was suggested that the model could be validated by splitting the data into blocks of 

different age and comparing the resultant models. 

 

4.3.5 Meeting with Welsh Water – 22nd July 2016  

An expert elicitation process was carried out with the main comments for cast iron being similar 

to those from Scottish Water and Yorkshire Water. Again weather, particularly the autumn 

period when a greater number of failures are reported was mentioned.   

Cast Iron 

For the cast iron network the results are shown below 

1. Climate – winter freezing 

2. Soil moisture deficit 

3. Corrosive soils 

4. Age 

5. Pressure trabnsience 

6. Joints 
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