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Abstract 7 

The effects of atmospheric nitrogen (N) deposition are evident in terrestrial ecosystems worldwide, 8 

with eutrophication and acidification leading to significant changes in species composition. 9 

Substantial reductions in N deposition from nitrogen oxides emissions have been achieved in recent 10 

decades. By contrast, ammonia (NH3) emissions from agriculture have not decreased substantially 11 

and are typically highly spatially variable, making efficient mitigation challenging. One solution is to 12 

target NH3 mitigation measures spatially in source landscapes to maximize the benefits for nature 13 

conservation. The paper develops an approach to link national scale data and detailed local data to 14 

help identify suitable measures for spatial targeting of local sources near designated Special Areas of 15 

Conservation (SACs).  The methodology combines high-resolution national data on emissions, 16 

deposition and source attribution with local data on agricultural management and site conditions. 17 

Application of the methodology for the full set of 240 SACs in England found that agriculture 18 

contributes ~45 % of total N deposition. Activities associated with cattle farming represented 54 % of 19 

agricultural NH3 emissions within 2 km of the SACs, making them a major contributor to local N 20 

deposition, followed by mineral fertilizer application (21%). Incorporation of local information on 21 

agricultural management practices at seven example SACs provided the means to correct outcomes 22 

compared with national-scale emission factors. The outcomes show how national scale datasets can 23 

provide information on N deposition threats at landscape to national scales, while local-scale 24 

information helps to understand the feasibility of mitigation measures, including the impact of 25 

detailed spatial targeting on N deposition rates to designated sites. 26 

Keywords: ammonia; dry deposition; emission abatement; nitrogen; UK 27 

 28 

1. Introduction 29 

Atmospheric nitrogen (N) deposition is an international issue, with effects of eutrophication and 30 

acidification evident worldwide. Throughout Europe, increases in N deposition have resulted in 31 

changes to species composition, with declines in N-sensitive species at the expense of a smaller 32 

number of fast growing species that favour high N supply (Dise et al., 2011). Thresholds of N 33 

deposition are currently exceeded in > 50 % of Europe, and will continue to be exceeded under 34 

current projections of N emissions (Hettelingh et al., 2008). In the UK, N deposition is estimated to 35 

have almost doubled throughout the 20
th

 century (Fowler et al., 2004), with increased emissions of 36 

nitrogen oxides (NOx, mainly from motorised transport, power generation and other combustion 37 

sources) and ammonia (NH3, mainly from agricultural sources). Although substantial efforts in UK 38 

and European policies in recent decades have led to a considerable reduction in NOx emissions 39 

(RoTAP, 2012), much less has been achieved in reducing NH3 emissions. Around 82 % of UK NH3 40 

emissions are estimated to derive from agriculture (Misselbrook et al., 2013). As these are typically 41 

diffuse sources, it has sometimes been argued that it is much harder to implement emission 42 

controls, compared with NOx, which is often associated with point sources (RoTAP, 2012). However, 43 

in the UK there has also been a low political willingness to implement NH3 control measures in 44 
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agriculture, compared with other countries, such as the Netherlands and Denmark, which have 45 

made more progress in reducing emissions (Sutton et al. 2003; Bleeker et al. 2009, e.g. Jimmink et 46 

al., 2014; NERI, 2007). 47 

 48 

A wide range of potential mitigation measures exists to reduce NH3 emissions from agricultural 49 

sources. Measures to reduce N deposition include both source-oriented technical measures, which 50 

aim to minimise emissions at source (e.g. covering slurry stores; Bittman et al., 2014) and landscape-51 

oriented measures. Landscape-oriented measures aim to optimise spatial relationships between 52 

emission sources and sensitive habitats. Such measures include minimising agricultural activity 53 

around sites (e.g. controlling spreading within buffer zones close to the sensitive habitat areas) or 54 

planting trees to recapture and disperse emissions (e.g. Dragosits et al., 2006; Bealey et al., 2016). 55 

Under current rates of N deposition, it is estimated that around 60 % of SACs (European 56 

Commission, 2016) remain under substantial threat, with thresholds for atmospheric N pollution 57 

effects exceeded both in the case of critical loads for total nitrogen deposition (Hall and Smith, 2015) 58 

and for critical levels for NH3 concentrations (e.g. Hallsworth et al., 2010; Vogt et al., 2013). 59 

 60 

Concentrations of NH3 (and subsequent deposition of reactive N) from agricultural sources are highly 61 

spatially variable (e.g. Vogt et al., 2013; Dragosits et al., 2002; Sutton et al., 1998) making it 62 

challenging to avoid critical load and critical level exceedance across all designated sites at a national 63 

scale. This highlights the need to interface national level and local level strategies. In particular, to 64 

reduce N deposition effectively at designated sites, areas of high NH3 concentrations need to be 65 

reliably identified, which can allow NH3 mitigation measures to be targeted spatially to the most 66 

critical locations (e.g. Dragosits et al., 2002; Theobald et al., 2004; Dragosits et al., 2006; Hallsworth 67 

et al., 2010).  68 

 69 

This paper presents an approach for identifying the main sources of N deposition at Natura 2000 70 

sites and ascertain the most effective measures to target local decreases of deposition at each site. It 71 

focuses on where to apply NH3 mitigation measures rather than an analysis of the different 72 

abatement measures themselves. This paper’s focus is on the case of protecting Special Areas of 73 

Conservation (SACs), but the approach is generally applicable to other regions and natural habitat 74 

designations. The methodology is first applied to all 240 SACs in England by applying national 75 

datasets. It is then applied by combining national and local datasets for seven example SACs to 76 

provide insights on how local information can help refine the assessment.  77 

 78 

2. Methods 79 

The main emission sources contributing to N deposition were identified for each SAC in England, 80 

which are part of the European Union’s Natura 2000 network. NH3 emissions were also estimated in 81 

areas up to 2 km surrounding each site, and in more detail for agricultural sources, which are the 82 

largest contributor of NH3 emissions. In addition, seven sites were assessed in more detail, to 83 

establish whether supplementary local data (e.g. the direction of prevailing winds) and refinements 84 

to the methodology could lead to improved targeting of measures. Figure 1 illustrates the draft 85 

framework devised to assess designated sites for N threats. 86 

<< FIGURE 1 >> 87 

Figure 1. Draft framework for assessing N threats at designated sites (adapted from Dragosits et al., 2015a)  88 
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The datasets used to determine the threat of atmospheric N input to sensitive protected features at 89 

SACs include: i) modelled atmospheric concentration and deposition data; ii) high-resolution 90 

agricultural statistics for livestock numbers and crop areas; iii) farm management and practice 91 

information; iv) aerial images; and v) meteorological data. A draft framework for the approach used 92 

is summarised in Figure 1. The following sub-sections outline how this framework may be applied 93 

and how national and local information sources have been used to assess N deposition threats to 94 

designated sites in England.  95 

2.1. Data sources 96 

National data sets 97 

The main emission sources contributing to N deposition at each SAC were estimated using modelled 98 

source attribution data. Source attribution data are derived by performing multiple model runs of an 99 

atmospheric transport and deposition model, with each source type removed in turn. N deposition 100 

attributed to individual emission source categories (such as agriculture, road transport etc.) or 101 

individual large point sources (such as power stations) can then be calculated as a proportion of total 102 

deposition to each model grid square.  103 

In this study, N deposition estimates for the year 2005 were produced at a 5 km grid resolution using 104 

the Fine Resolution Atmospheric Multi-pollutant Exchange model (FRAME, e.g. Dore et al., 2014; 105 

Bealey et al., 2014). FRAME is a Lagrangian atmospheric chemistry transport model with the relevant 106 

atmospheric processes (vertical diffusion, chemical transformation, wet and dry deposition) 107 

calculated in a moving vertical column of air comprising 33 layers with a variable layer depth from 1 108 

m at the surface to 200 m for the upper layer. The model utilises emission estimates of NH3, NOx and 109 

SO2, to calculate atmospheric concentrations of gases. Chemical reactions include both aqueous and 110 

dry phase oxidation and the conversion of gases to form particulate matter (ammonium sulphate 111 

and ammonium nitrate). Long range transport is driven by year specific wind direction and wind 112 

speed frequency roses (Dore et al, 2006) The model uses a resistance analogy within a ‘big leaf 113 

model’ to calculate the dry deposition velocity of gases and particulates to vegetation (Smith et al, 114 

2000). Wet deposition is calculated using scavenging coefficients combined with annual precipitation 115 

estimates based on the UK Met Office national precipitation monitoring network. Deposition 116 

estimates are calculated for different vegetation types including forest, moorland, grassland, arable, 117 

urban and water. The boundary conditions for the concentrations of pollutants in air used to 118 

initialise a UK simulation were calculated with a larger scale European simulation using a 50 km grid 119 

resolution and emissions from the EMEP database (http://www.ceip.at). The model has been used 120 

to calculate historical and future trends in sulphur and nitrogen deposition as well as the exceedance 121 

of critical loads (Matejko et al, 2009). Source-receptor relationships generated by the model were 122 

used in integrated assessment modelling to determine cost-effective emission abatement strategies 123 

to protect natural ecosystems and human health (Oxley et al, 2013) 124 

Comparison of the modelled concentrations of gases and particulates in air and of sulphur and 125 

nitrogen compounds in precipitation with measurements from the national monitoring networks 126 

demonstrated that the model was ‘fit for purpose’ and performed well in comparison with other 127 

atmospheric chemical transport models (Dore et al., 2015). These data incorporate UK estimates of 128 

NOx and NH3 emissions (National Atmospheric Emission Inventory (NAEI), www.naei.org.uk), with 129 

agricultural emissions distributed using the AENEID model (e.g. Dragosits et al. 1998). N deposition 130 

estimates from 160 source categories (e.g. including agriculture, road transport, shipping, industry) 131 

were used in this study. 132 
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In addition, high-resolution agricultural census data were used to provide information on livestock 133 

numbers and crop areas for characterising key local emission sources and emission densities in the 134 

vicinity of SACs. The English agricultural census contributes to the EC Farm Structure Survey (FSS), 135 

which gathers information on livestock numbers and crop areas from individual agricultural holdings 136 

for each of the 27 EU member states every 10 years. The 2013 agricultural census data used here 137 

were supplied at a holding level by the Department for Food and Rural Affairs (Defra) and is based 138 

on a survey of between ~50,000 holdings a year, with a full census carried out every 10 years (Defra, 139 

2013). For holdings where no survey is carried out, values are imputed based on the survey data 140 

received and corresponding trends derived from these and previous data available for these 141 

holdings. 142 

Data on the occurrence of large pig and poultry farms were available from the register of permits 143 

under the Industrial Emissions Directive (IED; European Comission, 2016b), which applies to farms 144 

with > 40,000 places for poultry, > 2,000 places for production pigs (> 30 kg) or > 750 places for 145 

sows. In contrast to the agricultural census data (at the holding level), the location and capacity of 146 

these farm is freely available to the public. Ordnance Survey “Strategi” data were used to determine 147 

the proximity of SACs to major roads (https://www.ordnancesurvey.co.uk/business-and-148 

government/products/strategi.html).  149 

 150 

Local data sources 151 

Seven sites were further assessed, using more detailed local data sets. These sites were Birklands 152 

and Bilhaugh SAC (53.204 N, 1.075 W), Culm Grasslands SAC (50.980 N, 3.647 W), Ingleborough 153 

Complex SAC (54.160 N, 2.373 W), Mole Gap to Reigate SAC (51.265 N, 0.280 W), North York Moors 154 

SAC (54.409 N, 0.904 W) and Walton Moss SAC (54.990 N, 2.775 W).  155 

At these sites, Google Earth imagery was used to identify potential additional sources and provide 156 

further information on the sources already identified. Areas with high NH3 concentrations were 157 

identified using 1 km grid resolution NH3 concentration data (1 km grid version of FRAME). Wind 158 

statistics taken from weather stations nearby to each of the sites (windfinder.com) were used to 159 

assess local wind conditions (where available). Findings from a parallel study by Misselbrook et al. 160 

(2015) were used to assess agricultural management practices in the areas surrounding some of the 161 

sites. 162 

2.2. Identifying main emission sources contributing to N deposition at a site 163 

All SACs were assessed to determine the main sources of N deposition received by a given site.  The 164 

source attribution dataset was used to help characterise sites, based on the origin of the N 165 

deposition they were estimated to receive. At SACs that intersect multiple 5 km source attribution 166 

grid squares, the intersecting grid square with the highest total N deposition estimate was used 167 

based on the requirement of the Habitats Directive to adopt a precautionary approach, as there is 168 

no dataset available with the location of designated features within UK SACs. The emission sources 169 

used in the FRAME model were aggregated into the following broader source categories: 170 

 171 

a) Lowland agriculture (many diffuse sources): Emissions associated with livestock farming 172 

and mineral fertiliser application were considered a main source of N deposition where 173 

deposition from all agricultural sources contribute > 20 % of total N deposition. 174 

b) Vicinity of Large intensive pig and poultry farms: Intensive agriculture was considered a 175 

main potential source of N deposition at sites within 2 km of an intensive pig/poultry farm 176 

above the threshold for the Industrial Emissions Directive and where > 20 % of N deposition 177 

originated from agricultural activities.  178 
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c) Non-agricultural (point) source(s): Non-agricultural emissions were considered a main 179 

source of N deposition where deposition from such sources contributes > 20 % of total N 180 

deposition. These sources include emissions from point combustion sources (such as energy 181 

production, refineries), international shipping, non-road transport (i.e. rail, local shipping, air 182 

travel), and non-agricultural NH3 sources (such as pets, wild animals, sewage sludge, 183 

composting, household products, humans, and landfill).   184 

d) Vicinity of major roads:  Road traffic was considered a main contributor to N deposition if it 185 

accounted for > 10 % of total N deposition to the relevant grid square and if a main road 186 

(motorway, primary or A-road) was within 200 m of the SAC boundary.  187 

e) Remote (upland) sites affected by long-range N input: N deposition was considered a 188 

regional issue when wet deposition was > 40 % of total N deposition received by a site.  189 

 190 

The 200 m road threshold was based on the findings in Cape et al. (2004), who suggest that local 191 

enhancement of NOx and NH3 concentrations near roads is limited to within 200 m. A threshold of 10 192 

% of total N deposition was used for road transport, rather than the 20 % threshold used for other 193 

sources, as deposition from road transport does not typically account for a large proportion of the 194 

total N deposition to a 5 km grid square, due to their linear nature.    195 

 196 

2.3. Quantifying high-resolution agricultural emissions  197 

In an additional analysis, agricultural NH3 emissions were estimated for the area surrounding each of 198 

the designated sites, using 2012 agricultural census data. Buffer zones around each of the SACs were 199 

created to estimate the agricultural NH3 emission density for the immediate area surrounding all the 200 

SACs in England, indicating the average intensity of the N-emitting agricultural activities, and to 201 

determine all major agricultural sectors contributing to emissions within this zone. A buffer zone of 2 202 

km has been used in this study, to quantify agricultural emissions around each site. The value of 2 203 

km was selected, as it is the approximate distance from a medium-large poultry farm (e.g. 400,000 204 

laying hens) beyond which the contribution of the poultry farm was marginal compared with the 205 

contribution of other sources in a mixed agricultural landscape (Dragosits et al. 2006). Additionally a 206 

2 km buffer zone is used when regulating (IED) farms in the UK, with farms required to conduct a 207 

detailed impact assessment when they are within 2 km of a designated site (Environment Agency, 208 

2005).  209 

 210 

UK average NH3 emission factors (EFs) from the agricultural emission inventory (Misselbrook et al., 211 

2013) were applied at the holding level data to estimate emission densities surrounding each SAC. 212 

Agricultural NH3 emissions were estimated separately for mineral fertiliser and livestock sources. 213 

Emissions from livestock sources include all emissions associated with livestock and manure 214 

management (i.e. housing, grazing, manure storage and spreading). In order to comply with the data 215 

license agreement for this study model results were aggregated to show results that refer to at least 216 

five agricultural holdings. In extensive agricultural regions, where this requirement was not met with 217 

the standard 2 km buffer zone, the zone around the SAC boundary was increased in size to include 218 

additional agricultural holdings until the disclosivity criterion was met. The 2 km zone of influence 219 

had to be extended for 9 % of the SACs studied, to a maximum of 5 km. 220 

 221 

2.4. Detailed, site-level analyses  222 

Seven example SACs were assessed in more detail, in addition to the modelling carried out for all 223 

SACs (as discussed in previous sections). This more detailed analysis was carried out to establish 224 

whether supplementary data (e.g. the direction of prevailing winds) and further refinement of the 225 
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methodology (e.g. considering constituent parts of each site individually) could lead to improved 226 

targeting of measures. In summary, the following methodological refinements were made: 227 

 228 

- As some SACs are very large (> 1,000 km
2
) and complex (consisting of multiple spatially 229 

separate parts, sometimes separated from each other by 10s of kilometres), sites were re-230 

assessed at the sub-site level, using individual 5 km
 
grid source attribution estimates, which 231 

intersect the SAC. 232 

- Detailed management information from nearby IED pig/poultry units (<2 km away) was used 233 

to estimate the contribution of individual IED farms to N deposition and NH3 concentrations 234 

at the sub-sites. 235 

- High spatial resolution (1 km grid resolution) NH3 concentration data allowed source areas 236 

(e.g. dominated by diffuse agriculture) to be separated from semi-natural NH3 sink areas 237 

more successfully than at the 5 km grid resolution. This therefore allowed a more realistic 238 

quantification of NH3 concentrations at a site. 239 

- Arial imagery was used in conjunction with the national datasets, to estimate distances of 240 

sources from the site boundary and to make a visual assessment of local conditions. 241 

- Local prevailing wind conditions were determined, to give a higher weighting to sources 242 

upwind of a site. 243 

- Local information on agricultural management practices was used to compare site-specific 244 

emission estimates (based on local data) to those allocated using UK average EFs. This 245 

additional information on farming practice included livestock housing systems and duration 246 

of housing season, locations and properties of manure storage systems and land spreading 247 

methods used. This information was collected for farms surrounding two of the sites, Culm 248 

Grasslands and Cerne & Sydling Downs and was used to produce more detailed emission 249 

estimates than by applying national average emission factors that include a mix of systems 250 

present  251 

In addition to the methodological refinements listed above, results for these sites were also 252 

validated by the site-officers responsible for each site.  253 

3. Results 254 

The source attribution analysis indicates that the majority of SACs in England receive a substantial 255 

amount of their atmospheric N deposition from diffuse agriculture and non-agricultural (point) 256 

emission sources (Figures 2 and 3); with nearly all sites affected by these, two source types. Of the 257 

sites that receive substantial amounts of N deposition from agricultural sources, approximately 20% 258 

of English SACs are within 2 km of an IED-regulated intensive pig/poultry farm. Road transport is 259 

estimated to be a main source of N deposition at ~13 % of sites with low growing semi-natural 260 

features and ~30 % of sites with woodland features. Long-range transport of N deposition is 261 

estimated to be a main source at ~60 % of sites with low-growing semi-natural features and ~30 % of 262 

sites with woodland features.  263 

<< FIGURE 2 >> 264 

Figure 2 – Main contributors to N deposition at Special Areas of Conservation (SACs) in England (n = 240) from 265 

national scale source attribution data (5 km grid) using N deposition estimates to semi-natural features and 266 

proximity of sites to IED poultry farms data (2 km radius) and major roads (200 m radius).  The category 267 

‘non-agricultural (point) source(s)’ shown in this map does not include a local distance criterion.  268 

 269 

<< FIGURE 3 >> 270 
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  271 

Figure 3 – Histogram showing the main source sectors contributing to N deposition at every SAC site in 272 

England (n = 240), derived from source attribution output from the FRAME model. Results are shown 273 

separately for low-growing semi-natural features (light grey) and woodland features (black) due to 274 

different N deposition velocities. 275 

 276 

3.1. Agricultural NH3 emissions 277 

A substantial proportion (66 sites) of SACs in England are estimated to be subject to NH3 emission 278 

densities of > 10 kg N ha
-1

 yr
-1

 originating from agricultural activities close to their site boundary (< 2 279 

km, Table 1). The largest contributor to agricultural NH3 emissions within the 2 km buffer zone of 280 

sites, on average, is cattle farming (~52 %). Sites with high emission densities (> 10 kg N ha
-1

 yr
-1

) 281 

tend to be associated with emissions from dairy farming, in particular.  282 

 283 

The spatial correlation between cattle farming areas and locations of SACs is also apparent from the 284 

analysis of agricultural source categories shown in Table 1. The 2 km areas surrounding England’s 285 

SACs, appear to have higher emissions associated with cattle farming, when compared with 286 

agricultural emissions for England as a whole. This may be because a large proportion of SACs are 287 

situated in lowland regions, which typically are associated with cattle farming.  Apart from cattle, the 288 

application of mineral fertilizers (especially urea) is the next most important source category (Table 289 

1), both for England as a whole and within 2 km distance of SACs. Only if a much higher emission 290 

threshold is used do pig and poultry contribute to a larger proportion to the emissions. For example, 291 

for locations with >30 kg N ha
-1

 yr
-1

 (~3 % of England’s SACs), pigs contribute 12.5 % and poultry 292 

contribute 18.1 % of the emissions. 293 

 294 

Table 1 – Proportion of agricultural NH3 emissions by sector 2012 (using emission factors from Misselbrook et 295 

al. 2013). Sectors that are estimated to exceed 15% of total emissions are shown in bold (N.B. percentages 296 

may not add up to 100 % due to rounding). 297 

  

n 

Proportion of estimated agricultural NH3 emissions (%) 

Emission Area 

Dairy 

Cattle 

Other 

Cattle Sheep Pigs Poultry 

Fertiliser 

Application 

Other 

Livestock 

England NA 25 21 3 10 15 24 2 

Within 2 km of England’s 

SACs 
240 27 27 5 8 10 21 2 

Within 2 km of England's 

SACs, with agricultural NH3 

emission density < 10 kg N 

ha-1 yr-1 

174 16 29 8 7 8 29 3 

Within 2 km of England's 

SACs, with agricultural NH3 

emission density > 10 kg N 

ha-1 yr-1 

66 35 25 3 9 11 15 1 

Within 2 km of England's 

SACs, with agricultural NH3 

emission density > 30 kg N 

ha-1 yr-1 

6 44 16 0 13 18 9 0 

 298 

The northwest and southwest of England especially appear to have high agricultural emission 299 

densities, originating from activities associated with cattle farming near designated sites (Figure 4). 300 

In contrast, the southeast and east of England, where much of England’s intensive pig and poultry 301 

farming is situated, cattle farming contributes to a smaller fraction of total agricultural emissions. 302 

<< FIGURE 4 >> 303 
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Figure 4 – Estimated agricultural NH3 emission source apportionment for all SACs in England. The size of each 304 

pie chart is proportional to the estimated local NH3 emission density surrounding each site (< 2 km from SAC 305 

boundary).  The category ‘other agriculture’ refers to fertiliser and livestock sources other than cattle. At sites 306 

with fewer than five cattle holdings within the 2 km buffer zone surrounding the site boundary, the category 307 

‘total agriculture’ is used to show the estimated emission density from all agricultural sources in order to 308 

maintain farm anonymity.   309 

 310 

3.3. Local scale assessment 311 

The local scale analysis shows sub-site variability in N deposition at sites that intersect multiple 312 

model grid squares (Table 2). The proportion of N deposition originating from agricultural sources is 313 

also highly variable across sites. In this paper, the results for Culm Grasslands SAC are presented in 314 

full and results from the other six sites summarised in Section 3.4. 315 

 316 

Table 2 – Summary statistics for the SACs selected for local scale assessment (further details given in Dragosits 317 

et al. 2015b) 318 

SAC name 
Total N Deposition  

kg N ha
-1

 yr
-1

 

Proportion of N deposition 

from agricultural sources (%) 

Emissions from cattle  

(% of total agricultural NH3 emissions) 

Birklands and Bilhaugh 34.4 34 
43 

Cerne and Sydling Downs 24.2 – 26.7 52 – 57 27 

Culm Grasslands 21.0 - 28.4 52 - 66 88 

Ingleborough Complex 22.7 - 33.3 43 – 51 55 

Mole Gap to Reigate 17.8 - 20.3 21 - 23 59 

North York Moors 16.7 - 26.2 46 - 52 61 

Walton Moss 17.1 - 19.8 61- 69 90 

       

The Culm Grasslands SAC is situated in an intensive agricultural region of southwest England. The 319 

site comprises of several isolated parts separated by distances of up to 60 km.  For the detailed 320 

analyses, the five clusters of the SAC that were distant from one another were assessed individually 321 

as sub-sites (Figure 5). Local wind information gathered from the nearest station (Holsworthy 322 

weather station, < 5 km from the boundary of sub-site E) suggests a south-westerly prevailing wind. 323 

Estimates of N deposition to low-growing semi-natural features at the site range from ~21 kg N ha
-1

 324 

yr
-1

 at sub-site C to ~28 kg N ha
-1

 yr
-1

 at sub-site D (FRAME 5km grid model output for 2005). Given 325 

the large spatial variability of N at the landscape scale, the modelled N deposition values are likely to 326 

be an underestimation where there are N sources situated close to the site boundary (such as animal 327 

housing and manure spreading).  328 

 329 

<< FIGURE 5 >> 330 

Figure 5 – Estimated total N deposition (including oxidized and reduced N) to semi-natural grasslands in the 331 

vicinity of the Culm Grasslands Special Area of Conservation (SAC) (FRAME model output 2010), noting the 332 

sub-areas of this SAC used for local-scale analyses (cases A – E). The map also shows the locations of 333 

pig/poultry units above the threshold for the Industrial Emissions Directive (IED) that are within 10 km of 334 

the boundaries of Culm Grasslands SAC. 335 

 336 

Further analysis of the source attribution data shows that agricultural sources are the main 337 

contributor to N deposition received by the site, comprising between 52 % (sub-site C) to 66 % (sub-338 

site D) of N deposited (values taken from relevant grid squares covering each sub-site). The average 339 

NH3 emission density across the whole site was estimated at 16 kg N ha
-1

 yr
-1

, with emissions ranging 340 
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from ~9 - 30 kg N ha
-1

 yr
-1 

between sub-sites (Figure 6). Dairy farming was found to be the largest 341 

contributor to agricultural NH3 emissions in the 2 km buffer zone surrounding the majority of sub-342 

sites, apart from sub-site C. Ammonia emissions associated with dairy farming are particularly 343 

variable in the area surrounding the entire site, with estimated emission densities from activities 344 

associated with dairy farming ranging between 1.2 kg N ha
-1

 yr
-1

 (sub-site C) and 22.7 kg N ha
-1

 yr
-1

 345 

(sub-site E).  346 

 347 

<< FIGURE 6 >> 348 

Figure 6 – Estimated agricultural emission densities in a 2 km buffer zone surrounding the whole site and, 349 

separately, all sub-sites of Culm Grasslands Special Area of Conservation (SAC), with respect to the 350 

agricultural emission source sectors. The shading labelled “Other Livestock” refers to categories that are 351 

disclosive or contribute less than 5 % of total agricultural emissions. 352 

 353 

A large poultry unit near sub-site C (Figure 6) is estimated to produce ~11 t NH3-N yr
-1

 and contribute 354 

30 % of agricultural NH3 emissions in the area surrounding the sub-site. High-resolution (1 km grid) 355 

estimates of NH3 concentrations show ‘hot-spots’ surrounding a number of IED units upwind 356 

(southwest) of sub-site D (where sub-site estimates of N deposition are highest).  357 

Google Earth imagery (imagery date 31/12/2010) indicates agricultural emission sources close to the 358 

site boundaries of sub-site B and D, with cattle grazing in fields adjacent to the sites. There also 359 

appears to be an uncovered slurry lagoon next to sub-site D, though discussions with the site officer 360 

responsible for the SAC confirmed that the lagoon was no longer active. 361 

At sub-sites D and E, local management data from site officers were used to produce more detailed 362 

site-specific emission estimates, for comparison with the estimates produced using national data 363 

and average UK EFs from Misselbrook et al. (2013). The two sets of emission estimates were very 364 

similar, with estimated emissions being 3 % and 1 % smaller than the UK average estimates at sub-365 

sites D and E, respectively. The modest difference between the estimates was due to a shorter 366 

housing period than the UK average (i.e. resulting in lower emissions), offset by limited opportunity 367 

for rapid incorporation of manures due to the predominantly grassland-based agriculture (i.e. 368 

resulting in increased land spreading emissions). 369 

3.4. Comparison between Culm Grasslands SAC and other local scale assessments  370 

 371 

One of the sites assessed in more detail is North York Moors SAC, a large site (440 ha) that Intersects 372 

forty-seven 5 km by 5 km source attribution grid squares. The source attribution dataset estimates 373 

that agricultural sources contribute ~46 - 52 % of the total N deposition received by the site. The 374 

estimate in the national scale analysis is given as 52 %, which corresponds to the single grid square 375 

with the highest estimate of N deposition, rather than providing a range for the whole site, to assess 376 

spatial variability. The source attribution dataset also indicates that a high proportion of the N 377 

deposition received by Mole Gap to Reigate Escarpment SAC and Ingleborough Complex SAC are 378 

from agricultural emission sources. However, the analysis of agricultural emission densities for the 379 

immediate area around these sites shows relatively low values. This would suggest that agricultural 380 

N deposition received by the sites is coming from  further afield, therefore targeting local 381 

agricultural sources at such sites is not likely to substantially reduce N deposition at the site, and 382 

efforts to reduce N deposition regionally/nationally/internationally are therefore needed to achieve 383 

lower N deposition. 384 

 385 
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In the same way as for Culm Grasslands SAC, agricultural emissions at Cerne & Sydling Downs SAC 386 

(situated in SW England) were also estimated using local management practice data rather than 387 

national average data. At this site, agricultural emissions were overestimated by 11 % using UK 388 

average EFs, compared with emissions estimated with local management data. The overestimate 389 

from average UK EFs can be attributed to a shorter than average housing period for beef cattle in 390 

the area (associated with lower housing emissions). The lower emissions from beef cattle are partly 391 

offset by higher emissions from dairy cattle in the area, due to a greater proportion of slurry being 392 

stored in slurry lagoons (associated with higher emissions due to larger emitting surface areas) 393 

rather than slurry tanks or weeping-wall storage than on average across the UK. 394 

 395 

4. Discussion 396 

4.1 National scale approaches 397 

This study showed that it is possible to identify the main source categories contributing to N 398 

deposition using the national scale UK source attribution dataset (e.g. Bealey et al. 2014). However, 399 

this dataset did not allow for the differentiation between deposition that originated from local 400 

emission sources (i.e. those within 2 km of the site boundary) and those located further afield (> 2 401 

km from the site boundary). In the source attribution dataset, agriculture is given as a single 402 

category (due to data confidentiality and disclosivity issues), so that more detailed sector-specific 403 

analysis of agricultural NH3 emission estimates was necessary to identify key agricultural activities, 404 

(such as dairy farming) around each site.  405 

The national scale analyses described here provide useful information that could be used by site 406 

officers to select potential NH3 mitigation at designated sites. There are however, certain limitations 407 

with a national scale analysis, which need to be taken into account when interpreting the data on an 408 

individual site basis. For example, in the present implementation of this approach, the UK source-409 

attribution dataset is valid for the year 2005 and consequently does not include emission sources 410 

that postdate the analysis and sources that have since been included into the emission inventories 411 

(e.g. anaerobic digestion). The relative contributions to N deposition may therefore have changed 412 

over the recent decade, with e.g. current agricultural activities intensified/extensified in some areas 413 

since 2005. The national scale methodology also assumes N threats are homogenous across sites, 414 

however it is important to note that some English SACs have an expansive site area (with some > 400 415 

km
2
), and therefore N threats will be highly variable across such sites. For example, agricultural 416 

emission densities and dominant agricultural sectors are likely to vary substantially over such large 417 

areas. The average N deposition estimates and agricultural emission densities for these sites should 418 

therefore be treated with caution, as substantial emissions across parts of the surrounding areas 419 

may have been compensated with very low emissions elsewhere.  420 

Spatial variability of N deposition within a 5 km grid square may be very large, for different reasons, 421 

which may result in grid square estimates over- or under estimating true deposition. Firstly, this may 422 

be due to high spatial variability in local emissions and dry deposition. For example, local emission 423 

hotspots in a lowland landscape (e.g. farms) may lead to large concentration and dry deposition 424 

gradients away from the source (also depending on land use-related surface roughness, canopy 425 

compensation point i.e. relative N concentrations of the plant surfaces vs atmosphere). Secondly, 426 

this may be due to high spatial variability in wet deposition. In the UK, wet N deposition across a 5 427 

km gridsquare (potentially originating from distant sources) may vary substantially, depending on 428 

topography, with altitude/rain shadow effects influencing deposition, but less related to local 429 

sources. 430 

The spatial location of the farm data used are in some cases derived from postcodes and therefore 431 

may be several 100 m (in some rarer cases up to 1-2 km) away from the true source location. In 432 
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terms of uncertainty, agricultural holdings were treated as point sources, rather than area sources, 433 

which means emissions from an entire farm are attributed to a single spatial location. A farm’s main 434 

livestock housing may therefore be situated away from the given point location and incorrectly 435 

included/excluded from emission estimates. However, given the number of farms included in the 436 

calculations at each SAC, this is not thought to contribute substantially to the uncertainty in emission 437 

density estimates. Such issues could easily be resolved locally at a detailed consultation. 438 

For countries where source attribution estimates do not currently exist, these can be derived with 439 

openly available emission maps. Emission data (separate for source categories such as agriculture, 440 

industry, road transport) are available from open source international data collections such as the 441 

Centre on Emission Inventories and Projections data portal (http://www.ceip.at/webdab-emission-442 

database). Deposition can then be estimated from these emission maps using an atmospheric 443 

transport model. In this study, the FRAME model has been used for the UK, which can be set up 444 

relatively easily for other domains (e.g. Poland, China – Werner et al., 2016; Zhang et al., 2011). 445 

 446 

4.3. Combination of national and local-scale information 447 

The detailed site-level analysis indicated that the source attribution dataset was able to characterise 448 

the main source sectors contributing to N deposition successfully. This is in spite of relatively large 449 

known uncertainties associated with the modelled deposition estimates (e.g. Dore et al. 2012). The 450 

input data used to produce the source attribution data are relatively coarse: the modelling uses UK 451 

average meteorological conditions (e.g. precipitation rates and wind direction) and emission 452 

estimates at a 5 km grid resolution. One limitation of the source attribution dataset is that it is not 453 

possible to distinguish between N deposition threats from local sources, or from medium/long-range 454 

transport. Sites may therefore be estimated to receive a substantial proportion of N deposition from 455 

a particular source category (e.g. agriculture), but this may originate from a range of distances from 456 

local to transboundary. The detailed site-level assessment is therefore necessary to determine if 457 

local measures can provide reductions in atmospheric N input to a site. 458 

In terms of quantifying agricultural NH3 emissions, the use of average EFs in agricultural emission 459 

estimates also forces the assumption that every farm follows average management practice, in this 460 

case for the whole of England, which may lead to under/over estimates of NH3 emissions at a local 461 

level. This was investigated in more detail for a small number of SACs where local agricultural 462 

practice information was available, with an estimated margin of error of +/- 3% at Culm Grasslands 463 

SAC and 11% at Cerne and Sydling Downs SAC. If mitigation measures are already implemented in an 464 

area, the associated reductions in local emissions are unaccounted for in the analysis, which again 465 

emphasises the need for further information from and discussion with local stakeholders, following 466 

initial national-level screening. Given the uncertainties associated with the national scale 467 

assessment, further site-specific analyses are therefore considered essential for selecting and 468 

targeting specific and locally relevant NH3 measures. 469 

The identification of the main agricultural sources contributing to N deposition and elevated NH3 470 

concentrations at a site is a first step towards pinpointing the most effective locally suitable N 471 

mitigation measures. As individual mitigation measures may only be appropriate to certain 472 

agricultural sectors, or only for suitable soil conditions, assessing geographically separate areas 473 

individually is expected to lead to improved targeting of measures. The results of the detailed site 474 

analyses provided useful information to supplement the national scale analyses. For example, 475 

examining NH3 concentrations and aerial imagery for each site, in combination with statistics on 476 
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wind direction, allowed sources upwind of site boundaries to be identified and prioritised for 477 

potential spatial targeting of measures. Further steps towards implementation of such measures 478 

could then prioritise targeting in collaboration with the local community and stakeholders, as has 479 

been proposed by Natural England, the relevant conservation agency (Site Nitrogen Action Plans, 480 

SNAPS, Natural England, 2015).  481 

 482 

2. Conclusion 483 

The results of this study demonstrate that by using a combination of national datasets (e.g. 484 

atmospheric N concentrations and deposition maps), and high-resolution agricultural census/survey 485 

data, it is possible to identify suitable measures to reduce N deposition from agricultural sources. 486 

The present assessment was conducted for the example of England, accounting for 240 Special Areas 487 

of Conservation (SACs) in the Natura 2000 network, demonstrating the wider relevance of the 488 

approach, which is applicable to other regions. Although national scale datasets can provide 489 

information on general N deposition threats at the landscape scale, we have also shown that 490 

additional local-scale information is required to understand the feasibility of proposed mitigation 491 

measures and their impact on N deposition at this scale. Incorporating local agricultural 492 

management data, such as animal housing systems, duration of housing periods, and existing 493 

mitigation measures into emission estimates, is shown to be especially important for quantifying the 494 

main agricultural emission sources close to designated sites. For example, local information on cattle 495 

housing periods at one of the study sites improved emission estimates by 3 to 11%, compared with 496 

national average estimates.  The approaches developed here provide a foundation to support 497 

conservation officers and government agencies in identifying of suitable mitigation measures to 498 

reduce atmospheric N deposition received by sensitive habitats. 499 
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• An approach to identify suitable NH3 mitigation measures is proposed 

• The methodology combines emission, concentration and deposition data 

• Agriculture contributes ~45 % of total N deposition received by SACs 
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