
SIAM J. DISCRETE MATH. c© 2014 Jessica Enright
Vol. 28, No. 4, pp. 1675–1685

ON LIST COLORING AND LIST HOMOMORPHISM OF
PERMUTATION AND INTERVAL GRAPHS∗

JESSICA ENRIGHT† , LORNA STEWART‡ , AND GÁBOR TARDOS§

Abstract. List coloring is an NP-complete decision problem even if the total number of colors
is three. It is hard even on planar bipartite graphs. We give a polynomial-time algorithm for solving
list coloring of permutation graphs with a bounded total number of colors. More generally, we give
a polynomial-time algorithm that solves the list-homomorphism problem to any fixed target graph
for a large class of input graphs, including all permutation and interval graphs.

Key words. homomorphism, interval graph, permutation graph, list coloring

AMS subject classifications. 05C15, 68R10, 05C85

DOI. 10.1137/13090465X

1. Introduction. A proper coloring of a graph assigns colors to the vertices such
that adjacent vertices receive distinct colors. (In this paper we deal only with vertex
colorings.) The k-coloring problem asks whether a given graph has a proper coloring
with at most k colors. For k ≥ 3 this is NP-complete.

In the list coloring problem, each vertex of the input graph comes with a list of
allowed colors and we ask whether a proper coloring exists where each vertex receives
a color from its list. As a generalization of ordinary coloring, it is NP-complete [10].
List coloring remains hard even on interval graphs [1], as well as split graphs, cographs,
and bipartite graphs [9]. It is solvable in polynomial time on graphs of fixed treewidth
[9].

Kratochv́ıl and Tuza [11] showed that list coloring is NP-complete even if the size
of each list assigned to a vertex is at most three, each color appears in at most three
lists, each vertex in the graph has degree at most three, and the graph is planar.
However, they gave polynomial-time algorithms to solve list coloring on a graph if the
maximum list size is at most two, or each color appears in at most two lists, or each
vertex has degree at most two.

Let k-list coloring stand for the list coloring problem where the total number of
colors is bounded by the constant k. This is a generalization of k-coloring, and thus
for k ≥ 3 it is NP-complete. It remains NP-complete on planar bipartite graphs [11],
but is solvable in polynomial time on cographs [9], P5-free graphs [8], and graphs of
fixed treewidth [9]. See [6] for several related results, including a polynomial-time
algorithm for k-list coloring for a graph class that the paper calls treed graphs, which
contains cographs.

∗Received by the editors January 3, 2013; accepted for publication (in revised form) July 7, 2014;
published electronically October 9, 2014.

http://www.siam.org/journals/sidma/28-4/90465.html
†University of Glasgow, Glasgow G12 8QQ, UK (jessica.enright@glasgow.ac.uk). This author’s

research was supported by an iCORE ICT Graduate Student Scholarship and a University of Alberta
Dissertation Fellowship.

‡Department of Computing Science, University of Alberta, Edmonton T6G 2E8, Canada (lorna.
stewart@ualberta.ca). This author’s research was supported by an NSERC Discovery grant.

§Alfred Rényi Institute of Mathematics, Rényi Institute, H-1053 Budapest, Hungary (tardos@
renyi.hu). This author’s research was supported by an NSERC Discovery grant, grant OTKA NN-
102029, and the “Lendület” project of the Hungarian Academy of Sciences.

1675

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Stirling Online Research Repository

https://core.ac.uk/display/82969084?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.siam.org/journals/sidma/28-4/90465.html
mailto:jessica.enright@glasgow.ac.uk
mailto:lorna.stewart@ualberta.ca
mailto:lorna.stewart@ualberta.ca
mailto:tardos@renyi.hu
mailto:tardos@renyi.hu

1676 JESSICA ENRIGHT, LORNA STEWART, AND GÁBOR TARDOS

Note that 2-list coloring is solvable in polynomial time. Indeed, 2-coloring is
solvable in polynomial time and has at most two (complementary) solutions on each
connected component. Thus, for the 2-list coloring problem it is enough to check that
one of these is compatible with the lists on each component.

A graph homomorphism from a graph G to another graph H is a function f :
V (G)→ V (H) satisfying that f(x) and f(y) are adjacent in H whenever x and y are
adjacent in G. Note that here we allow the graphs to have loops.

Let H be a fixed graph. The H-coloring problem takes a graph G as input and
asks whether there is a G to H homomorphism. In the list H-coloring problem, each
vertex of the input graph comes with a list of vertices of H and we ask whether a G
to H homomorphism exists that maps each vertex to a member of its list. Clearly,
k-coloring is a graph homomorphism to the complete graph Kk, so list H-coloring
is a generalization of k-list coloring. Polynomial-time algorithms are known for H-
coloring [14] and list H-coloring [5] for graphs of fixed treewidth. The complexities of
the H-coloring and list H-coloring problems for arbitrary input graphs are completely
characterized in terms of the structure of H [7].

Permutation graphs are comparability cocomparability graphs (see definitions in
the next section). List coloring is NP-complete on permutation graphs since cographs
are permutation graphs [9]. The k-list coloring problem is NP-complete for com-
parability graphs for k ≥ 3 since bipartite graphs are comparability graphs. The
complexity of k-list coloring of cocomparability graphs remains open.

In this paper we give a polynomial-time algorithm for the k-list coloring of per-
mutation graphs for any fixed k. More generally, we give a polynomial-time algorithm
that solves the list-homomorphism problem to any fixed target graph for permutation
graphs. The same algorithm also works for interval graphs and more.

Subsequent to this work, Valadkhan [15] gave another polynomial-time algorithm
for k-list coloring (or, more generally, the list-homomorphism problem) for permuta-
tion and interval graphs. His approach is somewhat simpler and has a lower exponent
in the polynomial running time, but it applies only to interval and permutation graphs.

Our algorithm is based on what we call a multichain ordering (see definition in
the next section), a notion related to chain graphs [16] and to a characterization
of bipartite permutation graphs given in [4]. The algorithm applies to every graph
with all connected induced subgraphs having a multichain ordering, among them all
permutation graphs and all interval graphs. We also remark that since adding loops
to a graph does not have any effect on the multichain ordering, our algorithm also
applies to interval and permutation graphs with loops added to some vertices. The
running time for k-list coloring, or, more generally, for list H-coloring for a graph H
on k vertices, is O(nk2−3k+4), where n stands for the number of vertices of the input
graph.

Hoàng et al. [8] give an algorithm for k-list coloring P5-free graphs in polynomial
time. Their algorithm, like ours, is based on how coloring of one side of the bipartition
of a chain graph can restrict the coloring of the other side and noticing that there are
only a polynomial number of possible such restrictions.

We mention here that a polynomial-time k-list coloring algorithm for interval
graphs cannot be considered new. Indeed, as previously mentioned, a polynomial-
time algorithm already exists for list coloring graphs with bounded treewidth. The
treewidth of an interval graph is one less than the size of its largest clique. Thus,
unless it is bounded, one does not have a proper coloring with a bounded number of
colors. The same cannot be said about permutation graphs though. Even bipartite

ON LIST COLORING AND LIST HOMOMORPHISM 1677

permutation graphs have unbounded treewidth.
Multichain orderings are based on distance from a starting vertex. They give

insight into the structure of permutation or interval graphs and may lead to algorithms
for other problems on these or similar graphs.

2. Definitions and preliminaries. We consider only finite graphs with no
multiple edges. We allow for loop edges connecting a vertex to itself and call a graph
simple if it has no such edge. (Loop edges in the input graph make sense for the
list H-coloring problem only if H has at least one loop, so, in particular, it does not
make sense for k-list coloring.) We represent graphs as a pair G = (V,E), where
V = V (G) is the vertex set and E = E(G) is the edge set. We denote the edge
connecting x to y by xy, so xy = yx. In a directed graph we have ordered pairs of
vertices as edges and denote such an edge as −→uv, saying it leaves the vertex u and
is oriented toward the vertex v. A sink is a vertex that no edge leaves. A directed
graph is transitive if the presence of the edges −→uv and −→vw implies the presence of
−→uw. An orientation of the simple graph G = (V,E) is a directed graph G = (V,

−→
E),

where
−→
E is obtained by replacing each edge uv ∈ E by one of its orientations: −→uv

or −→vu but not both. A comparability graph is a simple graph that admits a transitive
orientation. Equivalently, a graph is a comparability graph if there is a partial order
on the vertices with exactly the adjacent (distinct) vertices being comparable. The
complement of the simple graph G = (V,E) is G = (V,E), where E contains all
possible nonloop edges on V not in E. We sometimes call the edges of G the nonedges
of G. A cocomparability graph is a graph whose complement is a comparability graph.
Graphs that are simultaneously comparability and cocomparability graphs are known
as permutation graphs. Permutation graphs are exactly the graphsG = (V,E) that are
obtained from a permutation π : {1, . . . , n} → {1, . . . , n} by setting V = {x1, . . . , xn}
and E = {xixj | i < j, π(i) > π(j)}. A simple graph is an interval graph if one can
identify its vertices with real intervals such that two vertices are adjacent if and only
if the corresponding intervals intersect. Such intervals can always be chosen to have
distinct endpoints. The graph Cn is the cycle with n vertices and n edges. Weakly
chordal graphs are simple graphs with no induced Cn or Cn for n > 4. Three vertices
form an asteroidal triple in a graph if, between each pair, there is a path that avoids
the neighborhood of the third vertex. A graph is asteroidal triple–free or AT-free if it
has no asteroidal triple. For further information about these graph classes and other
graphs mentioned in this paper, the reader is referred to [3].

Let G = (V,E) be a graph. A list mapping of G is a mapping that assigns a
set (list) of colors to each vertex in G. A coloring of G obeys a list mapping if it
assigns every vertex a color from its list. More generally, if the graph H is fixed, a list
mapping of G assigns a subset of V (H) (a list) to every vertex of G. A homomorphism
from G to H obeys the list mapping if each vertex is mapped to a member of its list.

A chain graph is a bipartite graph that contains no induced 2K2 (the complement
of C4). This name was introduced by Yannakakis [16]. The following characterization
is easily seen to be equivalent to the definition. A bipartite graph with sides (partite
sets) A and B is a chain graph if and only if for any two vertices in A the neighborhood
of one of them contains the neighborhood of the other. As a consequence we see that
if we order the vertices of B according to decreasing degree (breaking ties arbitrarily),
then the neighborhood of any vertex in A is an initial segment in this ordering.

Let G = (V,E) be a connected graph. The distance layers of G from a vertex v0
are {v0} = L0, L1, . . . , Lz, where Li consists of the vertices at distance i from v0 and
z is the largest integer for which this set is not empty. These layers form a multichain

1678 JESSICA ENRIGHT, LORNA STEWART, AND GÁBOR TARDOS

L0

L1

L2

L3

Fig. 1. A graph with a multichain ordering as shown. The subgraph induced by the vertices of
L3 does not have a multichain ordering.

ordering ofG if for every two consecutive layers Li and Li+1 the edges connecting these
two layers form a chain graph. Note that a graph that has a multichain ordering may
contain an induced subgraph that does not have a multichain ordering. For example,
see Figure 1.

Theorem 2.1. Let H be a fixed graph. The H-coloring problem is polynomial-
time solvable for input graphs G satisfying that every connected induced subgraph of
G admits a multichain ordering.

We prove this theorem in the next section by presenting an algorithm, proving its
correctness, and estimating its running time. Our algorithm processes each connected
component of the input graph separately. It is based on multichain orderings of the
components and uses the following simple properties of such orderings: (a) H-coloring
of one layer in a multichain ordering has a limited effect on the coloring of the next
layer and no direct effect on subsequent layers, and (b) each layer has a vertex that
is adjacent to all vertices in the next layer; thus if this vertex is mapped to c, then all
nonneighbors of c will be missing from the H-coloring of the next layer, practically
reducing the size of H . Note that (b) does not apply if H has a vertex c that is
adjacent to every vertex of H including itself. Fortunately this easy special case can
be handled by alternate methods.

In the remainder of this section we show that permutation and interval graphs do
satisfy the requirement of the theorem. We also show that there are graphs beyond
these two categories that also satisfy the same requirements.

Lemma 2.2. Let
−→
G = (V,

−→
E) be a transitive orientation of a connected compara-

bility graph G = (V,E). Let v0 ∈ V be a sink in
−→
G , and let L0, . . . , Lz be the distance

layers of G from v0. Then for 0 ≤ i < z all edges of
−→
E between the vertices of two

consecutive layers Li and Li+1 are oriented toward Li if i is even and all these edges
are oriented toward Li+1 if i is odd.

Proof. We proceed by induction on i. For i = 0 the statement of the lemma holds
since v0 is a sink. Each u ∈ Li for i > 0 has a neighbor u′ ∈ Li−1, and an edge
between u and Li+1 oriented “the wrong way” would imply the presence of an edge
between u′ and Li+1 by transitivity, a contradiction.

Lemma 2.3. Let
−→
G = (V,

−→
E) be a transitive orientation of the complement of

a connected cocomparability graph G = (V,E). Let v0 ∈ V be a sink in
−→
G , and let

L0, . . . , Lz be the distance layers of G from the vertex v0. Then for every pair of layers

Li, Lj where 0 ≤ i < j ≤ z all edges of
−→
G between Li and Lj are directed toward Li.

ON LIST COLORING AND LIST HOMOMORPHISM 1679

Proof. We proceed by induction on i. For i = 0 the statement follows from v0
being a sink. Let us consider i > 0 and assume for contradiction that −→uv is an edge of−→
G with u ∈ Li and v ∈ Lj, j > i. Now v is not adjacent in G to any vertex u′ ∈ Li−1,

so by the induction hypothesis we have
−→
vu′ ∈

−→
E and by transitivity

−→
uu′ ∈

−→
E . But

this contradicts the fact that u has a neighbor u′ ∈ Li−1 in G, so no orientation of an

edge between u and this neighbor should be present in
−→
G .

Theorem 2.4. Every connected permutation graph has a multichain ordering.

Proof. Let G = (V,E) be a permutation graph, and let
−→
G be a transitive orien-

tation of G and
−→
G a transitive orientation of the complement of G.

Let v0 be a vertex that is a sink in both of the graphs
−→
G and

−→
G , the existence

of which is shown in [13]. We claim that the distance layers L0, . . . , Lz of G from
v0 form a multichain ordering. To see this assume for a contradiction that u, v ∈ Li

and u′, v′ ∈ Li−1 are vertices of two neighboring layers and u is adjacent with u′ but
not with v′ in G and v is adjacent with v′ but not with u′. We distinguish two cases
according to whether u and v are adjacent in G.

Assume first that u and v are adjacent, and assume without loss of generality that

this edge is oriented toward v in
−→
G . By Lemma 2.2, either both the edge between u

and u′ and that between v and v′ are oriented toward Li, or both are oriented toward

Li−1. In the former case we should have
−→
u′v ∈ −→E by transitivity, contradicting our

assumption that v is not adjacent with u′ in G. In the latter case we similarly have−→
uv′ ∈ −→E , again a contradiction.

Now assume that u and v are not adjacent in G, and assume without loss of

generality that this nonedge is oriented toward v in
−→
G . By Lemma 2.3, the nonedge

between v and u′ is oriented toward u′ in
−→
G . By transitivity we have

−→
uu′ ∈

−→
E ,

contradicting our assumption that u and u′ are adjacent in G.
Not every graph with a multichain ordering is a permutation graph. Further ex-

amples are given by interval graphs, as shown by the next theorem. In addition, Cn

and Cn, where n > 4, and the graph T defined as the star K1,3 with each edge sub-
divided once do not have multichain orderings. Therefore, there are cocomparability
graphs, weakly chordal graphs, and even trees that do not have multichain orderings.
Moreover, any graph such that all induced subgraphs have multichain orderings must
be a weakly chordal graph. We also note that each connected induced subgraph of
the complement of any forest admits a multichain ordering (start with a vertex of
largest degree, and L1 will be the only layer with more than a single vertex). These
complements-of-forests are cocomparability graphs, but some of them, including the
complement of the tree T , are neither permutation nor interval graphs. The graph of
Figure 2 gives an example of a graph that contains an asteroidal triple and still has
the property that every connected induced subgraph has a multichain ordering.

Theorem 2.5. All connected interval graphs admit multichain orderings.
Proof. Consider an interval representation in which all interval endpoints are

distinct. We can choose v0 to be the vertex with the leftmost left endpoint. One
can find reals x0 < x1 . . . such that the layer Li of G at distance i from v0 consists
of the vertices with their left endpoint in (xi−1, xi]. To see that these layers form
a multichain ordering of G, take two vertices (intervals) in Li and let u be the one
with its left endpoint more to the left, and v the other. Clearly, all intervals in Li−1

intersecting v must also intersect u.
Our list H-coloring algorithm works for every graph whose connected induced

1680 JESSICA ENRIGHT, LORNA STEWART, AND GÁBOR TARDOS

Fig. 2. The 3-sun contains an asteroidal triple, and every connected induced subgraph has a
multichain ordering.

subgraphs all have multichain orderings, and it runs in polynomial time as long as
H is fixed. The last two theorems show that this class includes all permutation
and interval graphs (and the graphs obtained from them by adding some loops).
Restricting our attention to complete graphs H = Kk we get polynomial-time k-list
coloring algorithms.

Given a connected graph G and vertex v of G, we can check whether the distance
layers from starting vertex v form a multichain ordering in O(m) time, where m is
the number of edges of G. The algorithm for doing so uses breadth-first search to
generate the distance layers from v. It then uses bucket sort to order the vertices of
each layer by decreasing the size of their neighborhood in the previous layer. Finally
it checks that for each vertex it holds that its neighbors in the next layer appear in
the beginning of that layer before the nonneighbors. Each step can be accomplished
in O(m) time.

As a naive algorithm to check whether a connected graph has a multichain order-
ing, and to generate it if it does, we can start a breadth-first search from each vertex
and check to see whether that search has given us a multichain ordering in O(nm)
time overall. In some classes, for example, permutation graphs, this can be done more
quickly. In the case of permutation graphs, we can use the output of the linear-time
recognition algorithm provided by McConnell and Spinrad [12] to identify a vertex
that is a sink in some transitive orientation of both the graph and its complement.
We can then generate the distance layers from this vertex in O(m) time, which is a
multichain ordering, as the proof of Theorem 2.4 shows. Similarly, several linear-time
algorithms exist to find a “leftmost” vertex in a interval graph, the earliest one being
in [2]. The distance layers can be constructed from there in linear time. As the proof
of Theorem 2.5 shows, this is a multichain ordering.

3. The algorithm. In this section we present our algorithm to list H-color
any graph with the property that all connected induced subgraphs have multichain
orderings. The algorithm runs in polynomial time if H is fixed. Since the algorithm
handles connected components separately, we consider only connected graphs in the
following description.

Let G = (V,E) be a connected graph, and let L0, . . . , Lz form a multichain
ordering of G. For x ∈ Li we introduce d−(x) for the number of neighbors of x in
Li−1 (or 0 if i = 0) and d+(x) for the number of neighbors of x in Li+1 (or 0 if i = z).
We fix an ordering of the vertices within each layer according to decreasing d− values,
breaking ties arbitrarily. As observed in the definition of chain graphs, this ordering
ensures that the neighbors of a vertex x ∈ Li among the vertices of the next layer
Li+1 must be the first d+(x) vertices in that layer.

Let us fix the target graph H with vertex set C = V (H). Let P be a list mapping
of G, so P(x) ⊆ C for every vertex x ∈ V .

ON LIST COLORING AND LIST HOMOMORPHISM 1681

A configuration is a pair (i, B), where 1 ≤ i ≤ z and B : C → {0, 1, . . . , |Li|},
satisfying that B takes both 0 and |Li| as values. We introduce two more special
configurations: S0 = (0, B0) and Sz+1 = (z + 1, B0), where B0 : C → {0} is the
constant zero function.

These configurations form the vertices of the configuration graph. This is a di-
rected graph that contains the edge from (i, B) to (i′, B′) if i′ = i+ 1, and there is a
homomorphism χ from the subgraph Gi of G induced by the layer Li to H providing
for this edge, i.e., satisfying the following three conditions:

1. χ obeys P , i.e., for x ∈ Li we have χ(x) ∈ P(x).
2. χ does not assign c ∈ C to the first B(c) vertices in Li (recall that Li is

ordered).
3. For each x ∈ Li and c ∈ C with c not adjacent to χ(x) in H we have

B′(c) ≥ d+(x).

We call a vertex of the graph H universal if it is connected to every vertex of H .
In particular, a universal vertex must be connected to itself too. The importance of
the configuration graph is shown by the following theorem.

Theorem 3.1. Assume H has no universal vertex. Then G has a homomorphism
to H obeying P if and only if there exists a directed path from S0 to Sz+1 in the
configuration graph.

Proof. Assume χ : V → C is a homomorphism from G to H obeying P . For
1 ≤ i ≤ z define the function Bi on C by setting Bi(c) to be the largest integer
0 ≤ Bi(c) ≤ |Li| satisfying that χ does not map any of the first Bi(c) vertices of Li to
c. Clearly, Bi takes the value 0 on χ(x) for the first vertex x of Li. We know that the
vertices in the layer Li have a common neighbor y in Li−1. As χ(y) is not universal
in H , there must exist c ∈ C not adjacent to χ(y), and thus χ cannot take the value
c on any neighbor of y making Bi(c) = |Li|. Thus Si = (i, Bi) is a configuration. We
claim that S0S1 . . . SzSz+1 is a directed path in the configuration graph. Indeed, for

0 ≤ i ≤ z the restriction of χ to Li provides for the edge
−−−−→
SiSi+1. Conditions 1 and

2 are satisfied trivially; to see condition 3, one has to use our observation that the
neighbors in Li+1 of any vertex x ∈ Li are the first d+(x) vertices of that layer.

Conversely, let us assume that there is a directed path from S0 to Sz+1 in the
configuration graph. By the layered structure of the configuration graph this path
must be of the form S0S1 . . . SzSz+1 with Si = (i, Bi) and appropriate functions Bi.

For 0 ≤ i ≤ z, let χi : Li → C be a homomorphism providing for the edge
−−−−→
SiSi+1

and let χ : V → C be the union of these maps. We claim that χ is a G to H
homomorphism obeying P .

The function χ obeys P since all its parts χi do so by condition 1.

To see that χ is a homomorphism we have to show that the image of every edge
xy ∈ E is an edge in H . Clearly, x and y have to come from the same or neighboring
layers. If they are in the same layer Li, then χ(x)χ(y) = χi(x)χi(y) ∈ E(H) because
χi is a homomorphism. Now assume that for some 0 ≤ i < z we have vertices x ∈ Li

and y ∈ Li+1 such that their images χ(x) = χi(x) and χ(y) = χi+1(y) are not adjacent
in H . By condition 2, χi+1 does not map the first Bi+1(χ(y)) vertices of Li+1 to χ(y).
Thus y is not among the first Bi+1(χ(y)) vertices of Li+1. By condition 3 on χi we
have Bi+1(χ(y)) ≥ d+(x), so y is not among the first d+(x) vertices of Li+1, so it is
not adjacent to x as needed.

Our next theorem tells us how to construct the configuration graph, more pre-
cisely, how to decide whether an edge is present. Let us fix two configurations
S = (i, B) and S′ = (i+1, B′). Let Gi be the subgraph of G induced on the layer Li,

1682 JESSICA ENRIGHT, LORNA STEWART, AND GÁBOR TARDOS

and let us define a list mapping P ′ on Gi as follows. For 1 ≤ j ≤ |Li|, let xj stand
for the jth vertex in the layer Li and let us set P ′(xj) = {c ∈ P(xj) | B(c) < j and
∀c′ ∈ C either d+(xj) ≤ B′(c′) or cc′ ∈ E(H)}.

Theorem 3.2. With S, S′, Gi, and P ′ as above there is an edge from S to S′ in
the configuration graph if and only if Gi has a homomorphism to H obeying P ′.

Proof. Any homomorphism providing for
−−→
SS′ obeys P ′ by conditions 1–3. Con-

versely, any homomorphism from Gi to H that obeys P ′ provides for this edge.
We now present our algorithm for the list H-coloring problem for graphs with all

connected induced subgraphs having a multichain ordering.

We are given a fixed graph H , an input graph G, and the list mapping P . We
start with very simple reductions.

If H has a universal vertex c, then consider the subgraph G′ of G induced by the
vertices whose lists do not contain c. Clearly, G has a homomorphism to H obeying
P if and only if G′ has such a homomorphism, as the vertices outside G′ can “freely”
be mapped to c.

Let H ′ stand for the subgraph of H induced by all the vertices that appear in
the lists in P . Clearly, G has a homomorphism to H obeying P if and only if G has
a homomorphism to H ′ obeying P .

G has a homomorphism to H obeying P if and only if all connected components
of G have homomorphisms to H obeying P .

We use these reductions (repeatedly if necessary) until we arrive at a problem in
which G is connected, H has no universal vertex, and each vertex of H appears on a
list of P .

Start by constructing the layers L0, . . . , Lz of a multichain ordering of G with
the corresponding ordering of the vertices within the layers according to decreasing
d− degrees. Construct the configurations for this multichain ordering, including S0

and Sz+1. Construct the edges of the configuration graph using a recursive call to
check for the presence of each possible edge using the equivalent condition, as given
in Theorem 3.2. Return TRUE if there is directed path from S0 to Sz+1 in the
configuration graph, and return FALSE otherwise.

Note that the recursive calls to determine the presence of an edge from the con-
figuration (i, B) to (i + 1, B′) is simpler than the original problem instance. Indeed,
it is a list H-coloring problem for Gi and Gi has a single vertex for i = 0, while for
i > 0 we have a vertex c of H with B(c) = |Li| and this vertex does not show up
in any of the lists—basically decreasing the number of vertices in the target graph
H . To give base to this recursion we solve the trivial instances directly: If either G
or H has a single vertex, deciding the list H-coloring problem for G becomes trivial.
We can also handle the case where H has two vertices directly. If the two vertices
are not adjacent in H , we must map each connected component of G to one or the
other vertex. If the two vertices of H are connected and there is no loop in H , we
face a 2-list coloring problem already discussed in the introduction. Finally if the two
vertices of H are connected and there is also a loop in H , then H has a universal
vertex and list H-coloring reduces to list H ′-coloring with H ′ having a single vertex.

Using Theorems 3.1 and 3.2 it is straightforward to see that the algorithm below
correctly answers the question of whether G has a homomorphism to H obeying P .

It is a bit more involved to estimate the running time. Let k and n stand for the
number of vertices in H and G. We claim that the running time of the algorithm is
O(nk2−3k+4) (the constant of proportionality depends on k). We prove this statement
by induction on k. For k ≤ 2 the algorithm clearly finishes in time O(n2). Let us

ON LIST COLORING AND LIST HOMOMORPHISM 1683

Algorithm 1 LH(G, P , H).

Input: Graphs G, H , list mapping P where every connected induced subgraph of
G must have a multichain ordering
Output: TRUE if there is a homomorphism from G to H obeying P ; FALSE
otherwise

Let H ′ be the subgraph of H induced by vertices that appear in at least one list of
P .
if H ′ �= H then return LH(G, P , H ′)
end if
if H has a universal vertex c then

Let G′ be the subgraph of G induced by the vertices x with c /∈ P(x),
and let P ′ be the restriction of P to this subgraph. return LH(G′, H , P ′)

end if
if G has a single vertex then

if H has a loop or G has no loop and H has at least one vertex then return
TRUE

else return FALSE
end if

end if
for each connected component D = (V,E) of G do

if H has at most two vertices then
Find all (at most two) homomorphisms from D to H .
if at least one of the homomorphisms obeys P then

cD ← TRUE
else

cD ← FALSE
end if

else
Find a multichain ordering L0, . . . , Lz of D, and order the vertices of

each layer by decreasing size of neighborhood in the next layer.
Initialize the directed configuration graph to have a vertex for each

configuration of this multichain ordering, including S0 and Sz+1.
for i← 0 to z do

Let Di be the subgraph of D induced by Li.
for each pair of configurations S = (i, B) and S′ = (i+ 1, B′) do

Construct a list mapping P ′ for Di as follows.
for j ← 1 to |Li| do

Let xj stand for the jth vertex in the layer Li.
P ′(xj)← {c ∈ P(xj) | B(c) < j
∀c′ ∈ V (H)(d+(xj) ≤ B′(c′) or cc′ ∈ E(H))}

end for
if LH(Di, P ′, H) = TRUE then

Add edge
−−→
SS′ to the configuration graph

end if
end for

end for

1684 JESSICA ENRIGHT, LORNA STEWART, AND GÁBOR TARDOS

Algorithm 1 LH(G, P , H) (continued).

if there is a directed path from S0 to Sz+1 in the configuration graph then
cD ← TRUE

else
cD ← FALSE

end if
end if

end for
if cD = TRUE for all components D of G then return TRUE
else return FALSE
end if

assume k > 2. If H has a universal vertex, our reduction reduces list H-coloring to a
single list H ′-coloring instance with H ′ having fewer vertices. If H has no universal
vertex, we split G into connected components, find the multichain ordering of each
component, and build the configuration graphs corresponding to them. The number
of configurations for a fixed layer Li of a single component is O(|Li|k−2) because
the value of the function B in a configuration (i, B) is arbitrary for k − 2 vertices
of H , but it has to be either 0 or |Li| for two vertices of H . So the number of
configurations for all connected components together can be bounded by O(nk−2)
and the number of potential edges (the number of recursive calls on the top level)
is O(n2k−4). In a recursive call to test the presence of an edge in the configuration
graph one uses a list mapping that avoids at least one vertex of H completely, so the
inductive hypothesis can be used for k − 1. The only exception to this rule is the
test for an edge leaving the configuration S0 of one of the components, but there the
recursive call is for a trivial graph on |L0| = 1 vertices. These trivial recursive calls

take constant time, and the other recursive calls take O(n(k−1)2−3(k−1)+4) time, so

all recursive calls finish in O(n2k−4n(k−1)2−3(k−1)+4) = O(nk2−3k+4) time. This huge
time bound clearly dominates the time of the nonrecursive part of the algorithm.

4. Conclusion. We have given a polynomial-time algorithm to solve the list H-
coloring problem for fixed H if every connected induced subgraph of the input graph
has a multichain ordering. Graphs satisfying this property form a subclass of weakly
chordal graphs that contains all interval graphs and all permutation graphs, and even
some graphs that have asteroidal triples.

REFERENCES

[1] M. Biro, M. Hujter, and Z. Tuza, Precoloring extension. I. Interval graphs, Discrete Math.,
100 (1992), pp. 267–279.

[2] K. S. Booth and G. S. Lueker, Testing for the consecutive ones property, interval graphs, and
graph planarity using PQ-tree algorithms, J. Comput. System Sci., 13 (1976), pp. 335–379.

[3] A. Brandstädt, V. B. Le, and J. P. Spinrad, Graph Classes: A Survey, SIAM, Philadelphia,
1999.

[4] A. Brandstädt and V. V. Lozin, On the linear structure and clique-width of bipartite per-
mutation graphs, Ars Combin., 67 (2003), pp. 273–281.

[5] J. Dı́az, M. Serna, and D. M Thilikos, Counting H-colorings of partial k-trees, Theoret.
Comput. Sci., 281 (2002), pp. 291–309.

[6] S. Gravier, D. Kobler, and W. Kubiak, Complexity of list coloring problems with a fixed
total number of colors, Discrete Appl. Math., 117 (2002), pp. 65–79.

ON LIST COLORING AND LIST HOMOMORPHISM 1685

[7] P. Hell and J. Nešetřil, Graphs and Homomorphisms, Oxford University Press, Oxford,
UK, 2004.

[8] C. Hoàng, M. Kamiński, V. Lozin, J. Sawada, and X. Shu, Deciding k-colorability of P5-free
graphs in polynomial time, Algorithmica, 57 (2010), pp. 74–81.

[9] K. Jansen and P. Scheffler, Generalized coloring for tree-like graphs, Discrete Appl. Math.,
75 (1997), pp. 135–155.

[10] T. R. Jensen and B. Toft, Graph Coloring Problems, John Wiley & Sons, New York, 1994.
[11] J. Kratochv́ıl and Z. Tuza, Algorithmic complexity of list colorings, Discrete Appl. Math.,

50 (1994), pp. 297–302.
[12] R. M. McConnell and J. P. Spinrad, Modular decomposition and transitive orientation,

Discrete Math., 201 (1999), pp. 189–241.
[13] A. Pnueli, A. Lempel, and S. Even, Transitive orientation of graphs and identification of

permutation graphs, Canad. J. Math., 23 (1971), pp. 160–175.
[14] J. A. Telle and A. Proskurowski, Algorithms for vertex partitioning problems on partial

k-trees, SIAM J. Discrete Math., 10 (1997), pp. 529–550.
[15] P. Valadkhan, List Matrix Partitions of Special Graphs, Ph.D. thesis, School of Computing

Science, Simon Fraser University, Burnaby, BC, Canada, 2013.
[16] M. Yannakakis, The complexity of the partial order dimension problem, SIAM J. Algebraic

Discrete Methods, 3 (1982), pp. 351–358.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

