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A B S T R A C T

Norovirus (NoV) is a significant cause of gastroenteritis globally, and the

consumption of oysters is frequently linked to outbreaks. Depuration is the

principle means employed to reduce levels of potentially harmful agents or

toxins in shellfish. The aim of this thesis was to construct mathematical models

which can describe the depuration dynamics of water-borne pathogens and

specifically examine the dynamics of NoV during depuration for a population

shellfish. Legislation is currently under consideration within the EU by the

Directorate-General for Health and Consumers (DG SANCO) to limit the max-

imum level of NoV that consumers are exposed to via this route. Therefore it

was important to the utility of the thesis that any models constructed should

incorporate control measures which could be used to implement maximum

NoV levels. Doing so allowed calculation of minimum depuration times that

would be required to adhere to the control measures incorporated into the

models.

In addition to modelling the impact on pathogens during the depuration,

we wished to gain some insight into how the variability, and not just the

mean levels, of water-borne pathogens can be as important with respect to

the length of depuration required to minimise any food safety risks to the

consumer. This proved difficult in the absence of any data sets that can be

used to calculate variability measures, as little data is currently available to

inform these values for NoV. However, our modelling techniques were able to

calculate an upper limit on the variability of water-borne pathogens that can
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be well approximated by lognormal distributions.

Finally we constructed a model which provided linkage between the depur-

ation process and the accretion of pathogens by shellfish while still within

farming waters. This model proposed that the pulses of untreated waste wa-

ters released by sewage treatment works due to high levels of rainfall would

be transmitted into shellfish whilst filter-feeding. We carried out analysis of

economic trade-offs with regards to the costs incurred by water treatment

companies, shellfish farmers and the wider human community who could be

impacted by an outbreak of NoV-induced gastroenteritis.

This research was supported by the University of Stirling via a PhD Impact

Collaborative Studentship (Agreement Number DP227R), and the Centre for

Environment, Fisheries and Aquaculture Science (CEFAS).
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and unobservable (ȳt) loads for varying STW capacities . 191

Figure 6.15 Plot of STW capacity versus pre-depuration observable

NoV load xt. Plot shows pathogen values of xt at which

the NoV assurance levels of φ = 0.90, 0.95, 0.99 are

already fulfilled . . . . . . . . . . . . . . . . . . . . . . . . 193

Figure 6.16 Plot of STW capacity versus MDT’s. Plot reports MDT val-

ues for NoV assurance levels set at φ = 0.90, 0.95, 0.99

to achieve load limit value Ψ = 200 copies . . . . . . . . . 195

Figure D.0 2006–2015 England and Wales rainfall density histograms

with fitted Gamma distribution curves using parameters

from Table D.1 . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure D.1 Boxplots of 1986–2015 and 2006–2015 England and Wales

rainfall, for days with rainfall > 1 mm . . . . . . . . . . . 38

xix

[ 6th June 2017 at 8:47 ]



L I S T O F TA B L E S

Table 1.1 Table of infectious causes of seafood-related illness . . . 2

Table 1.2 2012 Bivalve shellfish production in the UK, broken down

by species. Also included are estimated farm gate prices,

averaged across the constituent UK nations [3]. . . . . . 4

Table 1.3 Shellfish harvest site classifications - Scotland 2015/16.

*Transitory sites are defined as sites which have a dual

classification due to seasonal fluctuations in E. coli levels 7

Table 1.4 Table of water classification criteria according to EU Reg-

ulations (EC) No. 854/2004 and No. 2015/2285. Class A

waters are limited in availability in the U.K. and so in

many instances further treatment of farmed shellfish is

required [4, 5]. MPN — Most Probable Number . . . . . 12

Table 1.5 U.K. Shellfish industry enterprise and employment in-

formation for 2012 [3]. . . . . . . . . . . . . . . . . . . . . 15

Table 2.1 Comparison of characteristics of normal and lognormal

distributions. (Table reproduced from Limpert et al [6,

p.346] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Table 3.1 NoV load calculated means for class B and C sites at low

and high temperature points throughout study duration,

measured in cpg . . . . . . . . . . . . . . . . . . . . . . . . 63

Table 3.2 Depuration decay rates derived from data in Doré et al

(2010) [7, p. 2]. . . . . . . . . . . . . . . . . . . . . . . . . . 65

xx

[ 6th June 2017 at 8:47 ]



Table 3.3 Impact of changes in depuration efficiency on minimum

depuration times (hrs) and simulated quantitative NoV

tests of ten oyster homogenates, which had undergone

depuration using each parameter set (φ,b, TWCV) . . . . 71

Table 3.4 Genotypes I & II location and scale parameters for lognor-

mal distribution calculated from bioaccumulation data

in Section 3.3.1 . . . . . . . . . . . . . . . . . . . . . . . . 74

Table 4.1 Table of location and scale parameters applicable to trun-

cated normal model, developed using worst case vari-

ability approach, to maintain an arithmetic mean value

of ET(x0) = x̄0 = 1064 cpg. Coloured row indicates the

parameters used as standard in the Results section below 94

Table 4.2 Table of parameters applied to truncated normal model,

derived from literature and numerical calculations. . . . 94

Table 4.3 Comparison of probability densities within sections between

truncated normal and lognormal pre-depuration distri-

butions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Table 4.4 Comparison of probability densities within sections between

truncated normal and lognormal models during the de-

puration process. Red values indicate when the lognor-

mal model exhibits a greater probability density for a

particular range and time, with green figures showing

when the truncated normal model has a higher density

value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Table 5.1 Table of parameters and values derived from literature

and non-linear least squares regression. The salient times

impacted by changes in parameters values are also noted. 139

xxi

[ 6th June 2017 at 8:47 ]



Table 5.2 Probabilities of an oyster having a NoV load within a

particular range of values. Parameters used are x̄0 = 1064

cpg, φ = 0.95, A = 0.461 . . . . . . . . . . . . . . . . . . . 143

Table 5.3 Results of varying proportion of pre-Depuration total

NoV load which is observable (A). Fixed parameters are:

b = 0.01339, k = 0.07453, x̄0 = 1064, Ψ = 200, φ = 0.95,

p = 0.99. Impacted salient times (τi) and values (in hrs)

are highlighted in bold . . . . . . . . . . . . . . . . . . . . 152

Table 5.4 Results of varying sufficient proportion (p) expelled from

unobservable compartment yt. Other fixed parameters

are: b = 0.01339, k = 0.07453, x̄0 = 1064, Ψ = 200, φ =

0.95, A = 0.5. Impacted salient times (τi) and values (in

hrs) are highlighted in bold . . . . . . . . . . . . . . . . . 154

Table 5.5 Results when depuration/excretion rate (b) is varied.

Other fixed parameters are: p = 0.99, k = 0.07453, x̄0 =

1064, Ψ = 200, φ = 0.95, A = 0.5, b = 0.01339. Impacted

salient times (τi) and values (in hrs) are highlighted in bold155

Table 5.6 Results when internal transfer rate (k) is varied. Other

parameters applied to model are: k = 0.07453, b =

0.01339, x̄0 = 1064 cpg, Ψ = 200, φ = 0.95, A = 0.5,

p = 0.99. Impacted salient times (τi) and values (in hrs)

are highlighted in bold . . . . . . . . . . . . . . . . . . . 155

Table 6.1 Parameters and units used in stochastic environmental

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Table 6.2 Parameters used in simulation results from stochastic

environmental model . . . . . . . . . . . . . . . . . . . . . 180

Table 6.3 Parameters used to obtain depuration results based val-

ues from stochastic environmental model . . . . . . . . . 190

xxii

[ 6th June 2017 at 8:47 ]



Table 6.4 Parameters used to obtain depuration results based val-

ues from stochastic environmental model . . . . . . . . . 192

Table 6.5 Observable pathogen load values at pre-depuration stage

for increasing STW capacity C. Values shown are where

φ % of the xt samples have pathogen loads less than that

value for each capacity C . . . . . . . . . . . . . . . . . . 194

Table C.1 NoV load cpg for class C sites at low and high tem-

perature points throughout study duration, along with

calculated means. a NoV loads recorded as < 40 cpg

are designated as having value = 20 cpg (the midpoint

between 0 and 40), b while < 100 cpg are quantified as 70

cpg (the midpoint between 40 and 100). c Nearest data to

Jan ’11 was Oct ’10. . . . . . . . . . . . . . . . . . . . . . . 30

Table C.2 Genotype II NoV load cpg for class B sites at low and high temperat-

ure points through study duration, as well as calculated means. a

NoV loads recorded as < 100 cpg are designated as having value = 70

cpg (midpoint between 40 and 100), b while < 40 cpg are quantified

as 20 cpg (the midpoint between 0 and 40). c Nearest data to Jul ’10

was Jun ’10. d Midpoint of 100-500 cpg. e Nearest date to Jan ’10

was Feb ’10. f Nearest date to Jul ’09 was Aug ’09. g Nearest date to

Jan ’11 was Oct ’10. h Nearest date to Jan ’11 was Feb ’11. i Nearest

date to Jul ’10 was Aug ’10. j Nearest date to Jan ’10 was Dec ’09. k

Nearest date to Jan ’10 was Feb ’10. . . . . . . . . . . . . . . . 32

Table D.1 Rainfall 2006–2015 data — Gamma distribution’s Kolmogorov-

Smirnov goodness of fit ranking, with distribution para-

meters describing each year’s rainfall. Final column re-

ports the number of days with recorded rainfall > 1 mm 34

xxiii

[ 6th June 2017 at 8:47 ]



Table D.2 Rainfall 1986–2015 data — 30 years of England and Wales

rainfall data for days with rainfall > 1 mm . . . . . . . . 37

xxiv

[ 6th June 2017 at 8:47 ]



L I S T O F A C R O N Y M S

cefas Centre for Environment, Fisheries and Aquaculture Science — UK gov-

ernment agency responsible for regulation and monitoring of marine

and freshwater environments

nov Norovirus — a single-stranded RNA virus comprising the Norwalk or

Norwalk-like virus, which can cause acute gastroenteritis in humans

stw Sewage Treatment Works — a processing station whose purpose is to

remove all contaminants within the public water system

uk United Kingdom of Great Britain and Northern Ireland — a north-western

European island nation

rrv real, randomly distributed variable

pdf A probability density function

cdf Cumulative distribution function of a distribution

pcr Polymerase chain reaction — enzymatic procedure which allows in vitro

amplification of DNA

cpg copies per gram — quantification of pathogen loads in biological samples

mdt minimum depuration time — minimum depuration time required for a

population of shellfish to conform to the control parameters Ψ and φ

eu European Union — an economic and political union between 28 European

countries

xxv

[ 6th June 2017 at 8:47 ]



wcv Worst case variability — an estimate of the measure of the spread of

water borne pathogens based upon the depuration model which returns

a maximum minimum (maximin) depuration time

xxvi

[ 6th June 2017 at 8:47 ]



1
A N O V E RV I E W O F N O R O V I R U S W I T H I N T H E

S H E L L F I S H I N D U S T RY

1.1 introduction

“Never eat oysters unless there is an ‘R’ in the month..."

This quote is from an article in a book entitled "Strange Stories, Amazing Facts"

published by Reader’s Digest in 1975 [8]. The book was one of those that every

house seemed to have in the late 1970’s and early 1980’s: your parents bought

in the hope that it would be of interest to someone in the family. Our copy was

of huge interest to me when I was young, and I read it from cover to cover

many times. It contained articles on a wide range of subjects, from science to

tales of the supernatural, from history to myths and legends.

The quote shown above is from a section entitled “Hard to Swallow — Be-

liefs about food that are completely unfounded", and goes on the say that

before the widespread use of refrigeration, it may have been risky to consume

oysters during the hotter summer months, which coincidently have no ‘R’ in

their names. This phrase has stayed with me since I first read it, probably more

for the fact that it had pointed out that the last four and first four months of

the year each contained an ‘R’ in their names than anything to do with the

consumption of oysters. The article does go on to say that there was no issue

with eating oysters whatever the month is, at least this was the thinking at

Reader’s Digest in 1975. Evidence in the current literature shows that oysters

1
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Viruses Bacteria Parasites

Norwalk-like viruses Vibrio parahaemolyticus Nematodes

Human calcioviruses Vibrio cholerae Trematodes

Sapporo viruses Escherichia coli Liver/Lung/Intestinal

flukes

Hepatitis A,E virus Campylobacter jejuni Protozoa

Campylobacter coli Cestodes

Table 1.1: Table of infectious causes of seafood-related illness

may still contain higher pathogen levels during the summer months (without

an ‘R’ in their name) [2, 9], but still can present some food safety issues to the

consumer and the industry.

Food safety issues within the shellfish industry provide the impetus for the

work in this thesis, with particular focus placed on the issues presented by the

consumption of oysters, which are more often than not consumed raw. As the

cooking process can render many pathogens in-viable that may be present in

raw oysters, then these could be readily transferred to the human population

once consumed. Many articles in the current literature identify consumption

of oysters as being the most prevalent cause of food poisoning associated with

bivalve shellfish, with many instances attributed to raw osyter consumption

[10, 11, 12].

As shellfish are bivalve filter feeders, they can bioconcentrate any pathogens

that are present in their immediate waters [13, 14, 15, 16, 17]. This exposes

shellfish to a wide ranging list of potential pathogens from viruses, bacteria,

biotoxins and parasites shown in Table 1.1 [18].
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1.2 a brief history of norovirus

One pathogen of particular concern that is associated with oyster consumption

is norovirus NoV, and is one of the dominant causes of global food-borne

illness [18, 19, 20]. In 2011 in the United States alone, an estimated 58% of

9.4 million cases of food-borne illness were attributed to NoV [20]. A global

increased prevalence of NoV has been reported [21], with children under 5

years old in developing countries deemed to be particularly vulnerable to the

effects of acute gastroenteritis [19].

The virus was first identified in 1972 after an outbreak of gastroenteritis in

an elementary school in Norwalk, Ohio and so became to called Norwalk virus.

Its later genotype variations that were identified were classed as Norwalk-like

viruses, and eventually the contraction to norovirus NoV became the most

common label for these virus types [22].
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1.3 shellfish industry economic data

The UK bivalve shellfish industry was worth an estimated £33 million in 2012

at farm gate prices, employing 750 people. This excludes any fleet catches

of offshore shellfish species of crabs, scallops and nephrops, and refers to

aquacultural farm bivalves only. Bivalve shellfish species that are predomin-

antly farmed in the UK are mussels, oysters and clams (see Table 1.2).

Shellfish tonnes price per tonne

(£) — UK

average

value (£)

Mussels (M. edulis) 26,021.3 1.048.8 27,282,020

Pacific oyster (C. gigas) 1206.3 4,071.6 4,911,600

European oyster (O. edulis) 110.9 7,602.4 843,106

Northern quahog (hard

clam)

8.6 3,090.2 26,576

Japanese carpet shell

(Manila clam)

5.0 3,100.0 15,500

Great Atlantic scallop 7.0 14,300.0 100,100

Queen scallop 0.4 2,500.0 1,000

TOTAL 27,359.5 33,189,902

Table 1.2: 2012 Bivalve shellfish production in the UK, broken down by species. Also

included are estimated farm gate prices, averaged across the constituent UK

nations [3].

Shellfish farm locations are predominantly located in coastal waters, and

so are leased to operators by the Crown Estate. Each farm location is given
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a classification based on quantitative test results of coliforms present in the

water [4, 5] and are restated here:

• Class A — site where local authority testing has recorded at least 70% <

230 E. coli/100g and 100% < 700 E. coli/100g. No depuration or relaying

treatment is required.

• Class B — site where recorded tests must not exceed 4600 E. coli 100g in

10% of tests. Purification by either relaying, depuration or an approved

cooking method is required.

• Class C — site where 100% of tests must not exceed 46000 E. coli/100g.

Relaying in either class A or B sites for extended periods or approved

cooking method is required.

• Prohibited — site where any tests recorded > 46000 E. coli/100g. No

harvesting is permitted.

The testing frequency is, in most cases, once every month, but previous testing

history can be factored into the classification. Some class B sites in England

and Wales have been designated with a Long Term classification (B-LT) [23].

This status is conferred when at least 30 results are available for the previous

5 years, and the site must have had 90% or better compliance with < 4600 E.

coli/100g over that period. This allows some sites to have a smoothed approach

to their classification, as fluctuations of coliform counts can be accounted for

by e.g. sewage treatment works failures or extraordinary rainfall events. In

these events, further testing and investigations are carried out by Local Action

Groups to ensure public health measures are maintained.

Within the UK in 2015/16, 425 distinct shellfish harvest sites were classified

by government agencies and operated by shellfish enterprises. Of these sites,

154 were located in coastal waters with an A rating, 245 with a B rating and

26 sites with a C rating [24, 25, 26]. Of the class A sites, 60 had both A and
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B classifications due to seasonal fluctuations in E. coli measurements, and so

would need to depurate/relay any harvests collected during the time the site

was stipulated as B classification. Additionally, there were 22 class B sites with

seasonal B and C ratings, and would need to follow the correct procedure

dependent upon which rating applied at any particular time.
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Classification No. Sites % No. Transitory* Adjusted %

England

& Wales

A 2 0.96 0 0.96

B 185 88.94 11 86.30

C 21 10.10 0 12.74

Totals 208 100.00 11 100.00

Scotland

A 147 83.05 60 66.10

B 30 16.95 9 31.36

C 0 0 0 2.54

Total 177 100.00 69 100.00

Northern

Ireland

A 5 12.50 0 12.50

B 30 75.00 2 72.50

C 5 12.50 0 15.00

Totals 40 100.00 2 100.00

United

Kingdom

A 154 36.24 60 29.18

B 245 57.65 22 62.12

C 26 6.12 0 8.81

Totals 425 100.00 82 100.00

Table 1.3: Shellfish harvest site classifications - Scotland 2015/16. *Transitory sites are

defined as sites which have a dual classification due to seasonal fluctuations

in E. coli levels
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1.4 industry supply chain dynamics

The production and distribution of shellfish within the UK can be broken

down into the following stages:

(a) Harvest — This refers to the actual cultivation of live shellfish from

aquacultural fisheries, wild shellfish commercial collection, or wild col-

lection by individuals for private consumption or ’black market’ sale

directly to retailers.

(b) Depuration — This stage is where shellfish will be cleansed by clean

water, removing any bacteria and/or sand in the shellfish, as well as

potentially reducing the level of other pathogens that may be present.

(c) Wholesale — Primary link between fisheries and retailers of shellfish e.g.

Colchester Oyster Fishery Ltd, River Roach Oyster Company.

(d) Imports — Some importing of shellfish into the U.K. does exist, although

levels have not been quantified.

(e) Retail — Retail incorporates supermarkets, fish markets, restaurants, fish-

mongers as entities that sell shellfish to the consumer.

(f) Consumer — The end consumer; a population comprised of individual

entities that purchase and consume shellfish.
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Figure 1.1: Flow diagram of UK shellfish industry’s main components and their

interactions

The trade connections between these stages are shown in Figure 1.1, with

connections described as:

1) Harvest → Depuration Depending upon the water classification of the

fishery where the shellfish are produced, shellfish may be depurated at

the farm site, or removed to a specialist depuration plant off-site.

2) Harvest → Wholesale Farms with ‘A’ classification are not required by

current legislation to depurate their harvests, therefore product may be

sent directly to wholesale markets.
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3) Harvest → Retail This link in the supply chain refers to both the ‘black

market’ in shellfish production, mainly referring to private individuals

who collect wild molluscs for their own sale at, for example, local fish-

mongers and restaurants; and Class ‘A’ product sold straight to retail

establishments such as fishmongers, restaurants.

4) Harvest → Consumer This link refers to consumers who collect wild

shellfish for their own consumption.

5) Harvest→ Imports Shellfish harvests can be exported directly from source

to markets outside the U.K. These levels will vary dependent on nu-

merous factors such as home and foreign product demand; seasonality

leading to variations in production numbers; and other externalities such

as logistic costs.

6) Depuration → Wholesale Most of the UK farmed shellfish stock is from

class B/C waters [24, 25, 26], therefore most of the UK shellfish harvest

is either depurated at the harvest site, or transported live to depuration

facilities.

7) Imports→ Depuration Shellfish can be imported into the U.K. for depura-

tion purposes, and then exported again or join the U.K. oyster supply

chain at this point. This link is bi-directional, as oysters can be exported

after depuration.

8) Imports→Wholesale Imports can join the U.K. supply chain at the whole-

sale stage if their provenance is from an (equivalent) class A water loca-

tion in the country/region of harvest, or have already been depurated

before import.

9) Depuration→ Retail This link in the supply chain is mainly for direct sup-

ply to large retailers by individual fisheries. For example, supermarkets
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such as Waitrose may have direct safe-sourcing agreements with fisheries

and these arrangements would bypass the wholesale stage as a matter of

economy.

10) Wholesale → Retail Establishments such as restaurants and fishmon-

gers will source their supply of oysters most likely from a wholesaler.

Wholesalers may still do business by open market (Billingsgate market

in London being a good example of this), or sell to retailers via online

business.

11) Retail→ Consumer The product is consumed by a member of the general

population via either purchase at a supermarket or consumption at a

restaurant.

1.5 u.k. water quality classification

One pathway identified for NoV to pass into the human population is the con-

sumption of bivalve shellfish [27, 28]. Shellfish filter-feed nutrients from their

surrounding waters which, in addition to food, can concentrate contaminants

and infectious agents often associated with faecal contamination into their

digestive system [28, 16, 29, 30, 10]. The potential exists for transmission of

such agents into the human population if the shellfish are consumed while

they still contain such pathogens.

This is of special concern when shellfish are eaten raw, which is commonly

the case for oysters such as the Pacific cupped oyster (Crassostrea gigas) and

the American cupped oyster (Crassostrea virginica) [31]. To protect against the

accumulation of pathogens in shellfish, farms should ideally be situated in

waters with low pollution levels. However due to socio-geographic reasons this

is not always possible, as many farms are located close to population centres
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Harvest Area

Classification

Classification Criteria Treatment Required

A 80% 6 230 E. coli/100g &

100% 6 700 E. coli/100g

None

B MPN tests carried out

must not exceed 4600 E.

coli/100g in more than

10% of test samples

Purification by either

relaying or depuration,

or cooking by

approved method

C MPN tests must not

exceed 46000 E. coli/100g

of test samples

Relaying for a long

period, depuration or

cooking by approved

method

Prohibited > 46000 E. coli/100g of

test samples

Harvesting not

permitted

Table 1.4: Table of water classification criteria according to EU Regulations (EC) No.

854/2004 and No. 2015/2285. Class A waters are limited in availability in

the U.K. and so in many instances further treatment of farmed shellfish is

required [4, 5]. MPN — Most Probable Number

[32, 33, 34]. Recently, there have been increases in the volumes of most farmed

fish species via aquaculture processes, however global mollusc production has

remained relatively constant since 1990. Oyster production has exhibited a

slight downward trend over the same time period [35], with NoV outbreaks

linked to oyster consumption more frequently identified in recent times [36].

12

[ 6th June 2017 at 8:47 ]



Figure 1.2: Map of Chichester harbour showing shellfish farm sites and water classi-

fications [1]

In most industrialised countries, legislation has been put in place to minimise

levels of faecal contamination found in shellfish, and thus reduce health

risks to the consumer. European levels of faecal contaminants in shellfish are

legislated for by EU Regulation (EC) No 854/2004, which states that “live
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bivalve molluscs must come from: (a) a class A production area; (b) a relaying

area; (c) a purification centre..." [4]. Shellfish harvest sites are classified as A, B,

or C based on levels of the faecal indicator organism Escherichia coli detected

in the shellfish [4]. A relaying area is a class A or B rated site where shellfish

harvested from class B and C waters are respectively relocated for a time

sufficient to reduce faecal contamination to acceptable levels based on E. coli

counts. Class A waters can be limited in availability, and so in many instances

an alternative to farming or relaying in these areas is required [37, 4].
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1.6 uk production & employment data

The U.K. shellfish industry is dominated by two main species, mussels and

the pacific oyster, which comprised over 95% of the market in 2012. More

niche species comprised the remainder (Table 1.2). Geographically, the pro-

duction values are reasonably equal amongst the constituent U.K. nations,

with England holding 30% of the market, Wales with 27%, Scotland with 26%,

and Northern Ireland with the remaining 17%. The value of the market is

predominantly driven by fluctuating prices rather than production variations,

with the rise from 2011 to 2012 driven by the imputed price per tonne [3].

The employment data for U.K. shellfish farms have been estimated, stating

that in 2012 shellfish farming activity directly employed 705 people (Table 1.5).

This excludes sites which are depuration plants only. These sites purchase

shellfish at the farm gate from multiple Class B sites, and depurate in larger

and more cost-effective facilities.

No. of en-

terprises

Active

farm sites

FT PT Male Female Total

England 68 — 166 92 250 8 258

Wales 10 — 31 3 32 2 34

Scotland 153 330 171 187 313 45 358

N.

Ireland

17 — — — — — 55

U.K.

Total

248 — — — — — 705

Table 1.5: U.K. Shellfish industry enterprise and employment information for 2012 [3].
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This results in any retained water being discharged into the immediate

waters [38]. This discharge from the oyster may increase any NoV present

in the tank water, exposing the oyster batch being depurated to potential

cross-contamination of NoV. However, the levels involved are not significant

enough to account for detected NoV levels increasing during the initial hours

of depuration carried out in experiments conducted in 2013 [39].

Consideration of the limitations of polymerase chain reaction (PCR) testing

should be made, PCR being the current standard assay used to detect the

presence of NoV within shellfish [15]. The main limitation is PCR can only

quantify the levels of NoV within specific parts of the digestive system of

oysters species. This is due to the presence of enzymes within oysters which

inhibit the effectiveness of the test [40, 19, 30]. The digestive glands are the

main repository for NoV within molluscs, with the rest of the pre-gland system

accounting for an equal or smaller NoV load [41]. This specific accumulation

of NoV in the digestive glands is attributed to the NoV’s preferential molecular

binding to the diverticulae of the animal’s digestive system [42].
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1.7 depuration

From an industry standpoint, ensuring that shellfish reach the consumer

pathogen-free (or at least virtually free) is important to the reputation of the

producers, suppliers and the shellfish industry as a whole. From a societal

position this is also of huge importance. A consumer may become ill after

consumption of a shellfish which may contain pathogens, which can then lead

to an epidemiological outbreak for the wider community. The consequences of

an outbreak of gastroenteritis within the human population which have been

linked to the consumption of shellfish (conclusively or otherwise) have been

previously documented in both the literature and the general media [43, 10].

A loss of reputation to the retail establishment, supplier, and the producer

always results from such incidents, and translates into a certain, short term

economic cost to all the businesses involved, but can also translate into a long

term loss of revenues and profits.

The implementation of correct processes also plays a vital part in maximising

the effectiveness of depuration. The stacking configuration within the tank of

the trays holding the animals is also important in ensuring the effectiveness of

the depuration process is maximised [44, 45, 46]. At the end of a depuration

cycle, a layer of excreted material from the shellfish will have been deposited

on the bottom of the tank which will contain high levels of bacterial, viral and

particulate contaminants that were excreted during depuration by the shellfish.

It is important that this layer of detritus is not disturbed during the removal

of the shellfish trays, as it would be re-suspended within the water of the

depuration tank. Consequentially there would be a high risk that any animals

still present in the tank would either re-ingest the contaminants, or at least
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have them present on the exterior of their shells. Ensuring that the depuration

tanks are thoroughly cleaned after each batch is also crucial in minimising the

possibility of cross-contamination from one batch to the next. These criteria

are maintained to ensure that the effectiveness of depuration is maximised,

and thus the rate of contaminant and pathogen removal will be maximised.

1.7.1 Criteria for Effective Depuration

Depuration is a process which places harvested shellfish into tanks containing

clean water, where they remain submerged for a period of time sufficient for

the animals to excrete any contaminants that they may contain [47, 48, 44, 16,

31]. The efficacy of depuration relies on a number of criteria including but not

restricted to:

(i) water temperature,

(ii) salinity,

(iii) oxygenation,

(iv) water flow rates,

(v) Water disinfection.

Water temperature and salinity should closely match the harvest location’s

conditions to minimise stress to the shellfish; the oxygen levels in the water

should be sufficient for the density of shellfish held in the tank to allow normal

metabolic activity to resume for all the animals within the depuration tank. In

addition to its importance in terms of animal welfare, the water temperature

is also an important factor in removing NoV from oysters. Recent studies by

Neish (2013) and Doré (2010) indicate that increased water temperatures can
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increase the rate of NoV excretion [7, 39].

The rate of pathogen removal for a population of shellfish due to depuration

will clearly have a significant impact upon the actual pathogen loads within

individual oysters, and thus upon the depuration time required to minimise

any potential risk to consumers. Since depuration can incur significant costs to

the shellfish industry [10, 44, 39], minimising any costs while at the same time

minimising NoV levels in shellfish would be beneficial to both the industry

and the consumer. This is due to the absence of any legislated depuration time

for specifically viral contaminants (beyond the current 42 hours instigated for

E. coli), and in tandem with the indicators within the current literature that

NoV is particular food safety concern for shellfish which is consumed raw.
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2
M AT H E M AT I C A L M O D E L L I N G

2.1 introduction

This chapter provides a short insight into the applications of mathematical

modelling and how it is a relevant and appropriate tool to be used in under-

standing the dynamics of a water-borne pathogen, especially with regards to

the depuration process. A summary of techniques and probability distribu-

tions which will form the foundations for the work carried out later in this

thesis is also provided. Finally, we will discuss some of the previous modelling

which has been carried out with regards to shellfish depuration and propose

methods that will extend the current literature’s findings.
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2.2 fundamentals

There have been many attempts to sum up the field of applied mathematics

in a single, succinct yet insightful phrase. One attempt which has resonated

with me was written by G.G. Hall — “The goal of applied mathematics is

to understand reality mathematically" [49]. Another by Edna Kramer is a

more comparative and mathematical summation — “A mathematical model

is an abstract idealization of various features of a real situation, in the same

sense that pure Euclidean plane geometry is the abstract counterpart of the

surveyor’s or the engineer’s conception of physical points..." [50].

Indeed, to be able to describe only a small part of reality using mathematical

techniques requires a reasonable level of mathematical ability. It took the (not

inconsiderable) skills of first Newton and then Einstein to derive mathemat-

ical descriptions of gravitational fields; Schrodinger, Dirac, Heisenberg and

Feynman produced equations describing the nature of light. The obvious ques-

tion therefore is why go to the considerable effort to produce mathematical

descriptions that describe some aspect of the natural, or real, world?

Mathematical models can provide an alternative method to understand

something about the real world. Often, when compared to obtaining exper-

imental results, mathematical models can provide much more cost effective

results and can sometimes provide additional understanding of the system in

question beyond that which can be obtained from experimental measurements

alone.

One possible example is in the field of prophylactic vaccination of children

against any of a range of diseases such as measles. Constructing a math-
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ematical model of the problem can give an insight into how many children

should be inoculated, at what age to inoculate and spatial information on the

places to concentrate your vaccination efforts. In the absence of modelling,

only previous experience could be applied to consider a best approach to the

problem. Only after several years would you know whether you had succeeded

or not; if your efforts had failed then the results could be disastrous from a

humanitarian viewpoint, as well as an ethical one.

Of course, you would only know how successful your modelling approach

would have been after the same number of years. However, constructing a

logical and reasonable mathematical facsimile of the real world problem would

provide additional decision making tools to any legislators who would be

required to make and implement programs that can have such an impact on

the world at large.

2.2.1 Systems of Differential Equations

Producing such mathematical descriptions provides two vital insights into the

system being described:

• a deeper understanding of the system;

• the ability to make predictions of the behaviour of the system.

The process of constructing a simulacrum of some facet of the real world is

known as mathematical modelling.

A mathematical model will only ever be a simplification of the actual

situation, no matter whether it is mechanical, biological or even financial in

nature. However, any simplified model should describe the most important
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aspects of the system being modelled. A well known mathematical description

of a natural process is the predator-prey model, which describes the predation

of one species by another. The model was first developed by Alfred Lotka

and then independently by Vito Volterra to describe the fluctuations in the

catch sizes of fish species in the North Atlantic. Thus, it is known as the

Lotka-Volterra model, and is described by a system of differential equations:

dN

dt
= N(a− bP) (2.1)

dP

dt
= P(cN− d) , (2.2)

where N(t) describes the population of the prey at time t, and P(t) the

population of the predator at time t. The parameter terms describe:

a — prey population growth rate;

b — effect of predation on the prey population;

c — prey’s contribution to the growth of the predator population;

d — mortality rate of the predator

[51]. This system does not and cannot fully describe all of the environmental

and biological factors that could also influence the population numbers of a

particular predator-prey dynamic. However, the Lotka-Volterra model does

provide a simplified description of the interactions between predator and prey

that allows certain analyses of the model to be carried out. These have shown

that, dependent upon the parameter values of a, b, c and d, the system can

result in oscillatory behaviour of the population numbers for the predators

and the prey. The system can also be used to determine equilibria points for

the two population values, but again these are dependent upon the parameter

values applied to the model.

23

[ 6th June 2017 at 8:47 ]



As mathematical models are often constructed to describe how a particular

system changes over a period of time, they can also provide predictions for

the future. This is one of the most powerful benefits that can be obtained from

modelling. The ability to predict future behaviours, results or outcomes using

applied mathematical models is (when you stop and think about it) a fantast-

ically powerful tool. Of course, this is dependent upon how representative the

model is of the system it is based upon.

2.2.2 Increasing the Realism, Increasing the Complexity

The Lotka-Volterra model described by Equations 2.1–2.2 is an example of

a system of differential equations, one of the primary tools of mathematical

modelling. As previously stated, these equations are a simple representation of

the interconnectivity between the populations of a predator-prey relationship.

These can be adapted to take into account other aspects of the relationship,

thus providing a more realistic portrayal of the system. The Lotka-Volterra

system shown above is a basic example of its type. It can be adapted to

include other aspects of a predator-prey system such as carrying capacity of

the environment (K) with regards to the prey population:

dN

dt
= aN(1−

N

K
) − bNP

dP

dt
= cNP− dP .

This model is also predicated on the unrealistic assumption that the preda-

tion level increases linearly as the number of prey increases. The model can

be adapted to take into account a non-linear description of this interaction
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between the predator and prey numbers by introducing a functional response

that more accurately describes the number of prey caught per predator:

dN

dt
= aN(1−

N

K
) − P f(N,P) (2.3)

dP

dt
= cP f(N,P) − dP . (2.4)

The form that the functional response f(N,P) takes will depend upon any

pre-existing data or knowledge derived from previous studies or models.

We have adapted Equations 2.1–2.2 to incorporate two additional considera-

tions of a predator-prey system. Comparison of Equations 2.1–2.2 with 2.3–2.4

shows that it is apparent that the complexity of the model has increased. This

increased complexity should provide more realistic results from an analysis

of the model; however, any analysis will itself be more complex to carry out.

Therefore, a balance is to be found when constructing a mathematical model

of any system. The level of complexity of the model should not be such that

any analysis that can be obtained is either too complex, or requires too much

resource to carry out the analysis.

Any modelling work carried out should be representative of the system in

question. Once construction of the model is completed, analysis and results

should be obtained. The validity of the model is only confirmed when results

conform to the current and future behaviours observed and recorded in the

real world (see Figure 2.1) [52]. Continual refinement of a model based on new

observations or insights will provide results which give greater understanding

of the system as well as improved predictive capabilities.
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Mathematical 

Model 

Mathematical 

Results 
Real World 

Interpretation/ 

communication 

Figure 2.1: Mathematical modelling cycle
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2.3 probability distributions

In this section we lay some foundations with regards to probability distribu-

tions that are used in the construction of the mathematical models further on

in this thesis. We provide here some of the fundamental definitions of distri-

bution types, looking at the normal and lognormal distributions in greater

length than others discussed. This is carried out based on the current literat-

ure which states that water-borne pathogens are well-described by lognormal

distributions, itself a close variant of the normal distribution [53, 44, 54, 55, 56].

2.3.1 The Normal Distribution

The normal distribution is often described as the most important probability

distribution, as it and its related distribution family can describe behaviour of

many interesting random variables [57, 58]. The normal distribution is known

also as the Gaussian distribution due to the work carried out by Carl Friedrich

Gauss in the early nineteenth century; it is also referred to as the “bell curve”,

due to its symmetric and convex unimodal shape.

2.3.1.1 Probability Density Function

The normal distribution is often described by the notation X ∼ N
(
µ,σ2

)
, where

µ is the measure of location and σ2 describes the variance of the distribution,

with X = x being a distribution which spans all real numbers, i.e. x ∈ R. The

probability density function of a normally distributed, real, random variable

(RRV) is defined by

P(x) =
1

σ
√
2π

exp

{
−(x− µ)2

2σ2

}
. (2.5)
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This describes the probability density function (PDF) of a normally distributed

RRV, and provides a mathematical definition of X ∼ N
(
µ,σ2

)
.

The total area under the curve of any continuous PDF must be equal to 1

and, furthermore, any probability value derived from a PDF must be in the

range [0, 1]. These two conditions must be satisfied by a probability density

function, and are restated in mathematical terms as (1): 0 6 P(x) 6 1 and (2):∞∫
−∞

P(x)dx = 1.

The standard, normal distribution has arithmetic mean µ = 0 and standard

deviation σ = 1, and its PDF is often defined as ϕ(x), where

ϕ(x) =
1√
2π

exp
{
−x2

2

}
. (2.6)

This is extended for the general, normal distribution as

ϕ

(
x− µ

σ

)
=

1√
2π σ

exp
{
−(x− µ)2

2σ2

}
. (2.7)

2.3.1.2 Cumulative Density Function

A cumulative distribution function (CDF) describes the probability that some

RRV will have a value less than or equal to some limit. In other terms, a CDF

calculates the area under a specific PDF’s curve up to some upper bound value:

P(x 6 a) =

a∫
−∞

P(x)dx , (2.8)

where P(x) is the PDF describing the distribution, and a is the limit which we

require the RRV to be less than or equal to. The CDF of the standard, normal

distribution (where µ = 0, σ = 1) is defined as

Φ(x) =

x∫
−∞

1√
2π

exp
{
−t2

2

}
dt . (2.9)
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Compare this with the definition of the error function which is defined as [58]

erf(x) =
2√
π

x∫
0

exp{−t2} dt . (2.10)

We see that Equation 2.9 can be restated in terms of erf(x), and thus the CDF

of the standard normal distribution (Φ(x)) is

Φ(x) =
1

2

[
1+ erf

(
x√
2

)]
.

Thus the CDF of the general, normal distribution can therefore be stated as

Φ

(
x− µ

σ

)
=
1

2

[
1+ erf

(
x− µ√
2σ

)]
. (2.11)

Many random variables can be approximated by a normal distribution. The

Central Limit Theorem states that, for independent and identically distributed

random variables with a finite variability, then the sum of the of the distribu-

tions will be approximately normally distributed. Alternatively, if X1, X2, ..., Xn

are identically distributed random variables, then X1 +X2 + ... +Xn is approx-

imately normally distributed, providing n is large [59].

2.3.2 Lognormal Distribution & Its Properties

Not all RRVs conform to being described by a normal distribution. Some

biological systems will often combine the independent effects of processes

which can be individually described by normality, however these processes

interact multiplicatively, i.e. as products of each other, rather than by additive

methods. Limpert et al provide an example of this, explaining "...for instance,

exponential growth is combined with further symmetrical variation: with a

mean concentration of, say, 106 bacteria, one cell division more - or less - will

lead to 2× 106 - or 5× 105 - cells. Thus, the range will be asymmetrical; to

be precise, multiplied or divided by 2 around the mean." [6]. This type of

interaction will result in a distribution of cell counts across multiple cultures,
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which can be described as a positively skewed distribution with a low mean

in comparison to its variance, and which also has all variates greater than zero.

The best known distribution of this type is the lognormal distribution.

This type of distribution describes some RRV X where X = ln(Y), with

Y ∼ N
(
µ,σ2

)
, and is defined as

P(x) =
1√
2π σ x

exp
{
−(ln(x) − µ)2

2σ2

}
. (2.12)

The arithmetic Mean (m) and arithmetic variance (v) for log-normal distri-

butions are defined as:

m = exp
{
µ+

σ2

2

}
(2.13)

v =
(

exp
{
σ2
}
− 1
)

exp
{
2µ+ σ2

}
(2.14)

Thus, the standard deviation of the lognormal distribution, which is equivalent

to
√
v, can be stated as

√
v =

√
(exp {σ2}− 1) exp {2µ+ σ2}

⇒
√
v =

√
exp {σ2}− 1 exp

{
µ+

1

2
σ2
}

. (2.15)

The coefficient of variability (or coefficient of variation) is
√
v/m therefore

cv =
(

exp{σ2}− 1
)1/2

. (2.16)

The properties of the normal and lognormal distributions are shown in Table

2.1 for comparison.
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Property Normal Distribution Lognormal Distribution

Effects (Central Limit Theorem) Additive Multiplicative

Shape of distribution Symmetrical Positively skewed

Triangle shape Isosceles Scalene

Effects at each decision point x x± c x×/c a

Mean x̄, Arithmetic x̄∗, Geometric

Standard deviation s, Additive s∗, Multiplicative

Measure of dispersion cv = s/x̄ b s∗

Confidence Interval:

68.3% x̄± s x̄∗ ×/ s

95.5% x̄± 2s x̄∗ ×/ s2

99.7% x̄± 3s x̄∗ ×/ s3

Table 2.1: Comparison of characteristics of normal and lognormal distributions. (Table

reproduced from Limpert et al [6, p.346]

a ×/ = times/divide, corresponding to plus/minus for the established sign ±

b cv = coefficient of variation

2.3.3 Gamma and Binomial Distributions

The two distributions defined next are less prominent in our subsequent

modelling; however, providing definitions for them here simplifies the model

construction carried out later in Chapter 6.

2.3.3.1 Gamma Distribution

A random variable X = x has a gamma distribution if its PDF is defined as

PG(x) =
1

θk Γ (k)
x(k−1) exp

{
−x

θ

}
, (2.17)
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where x ∈ (0,∞) [58, p. 166], and Γ (k) is the gamma function. The gamma

function is defined as

Γ(k) =

∫∞
0
z(k−1) exp {−z}dz (2.18)

[60, p. 255].

The shape (k) and scale (θ) parameters of the Gamma PDF can be defined in

terms of the arithmetic mean (x̄) and the variance (σ2), where

x̄ = kθ (2.19)

σ2 = kθ2 . (2.20)

These allow definitions for the parameters k and θ in terms of the arithmetic

mean and the variance:

k =
x̄2

σ2
(2.21)

θ =
σ2

x̄
. (2.22)

2.3.3.2 Binomial Distribution

The binomial distribution is a discrete probability distribution with paramet-

ers N, k and p. Formally, if a random variable T conforms to the binomial

distribution, then the likelihood of obtaining k successes from N independent

Bernoulli trials is described by the probability mass function1 defined as

PB(K = k) =

(
N

k

)
pk qN−k [61]. (2.23)

1 As this is a discrete distribution, it does not have a PDF
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2.4 current modelling of water-borne pathogens in depuration

This section reviews the current literature that provides mathematical models

of the dynamics of water-borne pathogens during the depuration process.

There is a dearth of mathematical modelling with regards to the shellfish

depuration process, and especially where viral contaminants are the subject

of the work. However, two papers have been published in the last three years

which have produced mathematical descriptions of viral contaminants within

shellfish and the impact which depuration has on the virus levels present.

2.4.1 Polo, Feal, Varela, Monteagudo and Romalde 2014 Model

A 2014 paper in the Food Research International journal proposed a mathem-

atical description of the “Depuration kinetics of murine norovirus in shellfish"

based on experimental evidence the authors had obtained. The data pertained

to the depuration induced reduction of murine norovirus (a “human norovirus

surrogate") within Manila clams and Mediterranean mussels.

The authors proposed an equation which describes the viral load decay over

time due to depuration as

c(t) = α exp {−βt}+ δ , (2.24)

where c(t) describes the viral concentration at time t, relative to the initial

viral concentration at t = 0. The parameter β describes the depuration decay

rate per time period (in the case of this paper, per day is the unit of β), and δ

is some residual viral load which is a constant level of contamination of the

individual oyster.
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The authors quantify the parameters based on experimental data, and

conclude that murine norovirus is an effective analogous pathogen for human

NoV. They also state that further studies are required to ascertain differences in

depuration decay rates for combinations of different viruses and/or shellfish

species [62].

2.4.2 Polo, Feal and Romalde 2015 Model

The paper “Mathematical model for viral depuration kinetics in shellfish: An

useful tool to estimate the risk for the consumers" by similar authors expands

upon their 2014 model. The paper constructs a mathematical model of the

viral kinetics within an individual shellfish which incorporates some of the

depuration criteria discussed in Section 1.7.1, most specifically including a

term describing the filtration rate of the depuration process.

Again, the authors consider the total viral load within an individual an-

imal as being split between a time-dependent compartment and a constant

background viral level of pathogen that will be constant ∀t, t ∈ R+:

n(t) = nd(t) +nr , (2.25)

where n(t) is the total viral load at time t. The constant background viral level

is denoted by nr and the viral load impacted by depuration nd(t). The authors

go on to derive an expression of the total viral load at t as

n(t) = nr + (n0 −nr) exp {−λt} , (2.26)

where n0 is the initial, total load and λ is the decay rate due to depuration.

The difference of n0−nr describes the amount of pathogen present per animal

that can be impacted by the depuration process. The rate of pathogen removal
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due to depuration is defined as λ; the authors provide a breakdown of this

rate as

λ =
αf

vd
, (2.27)

where α is described as “the ratio of filtration rate" entering the digestive

tissue, f is the filtration rate and vd is the volume of the tracts of the digestive

tissue [63]. Therefore the authors describe the depuration rate λ as being a

consequence of only the flow rate of the depuration process being employed.
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2.5 thesis overview

The papers summarised in Sections 2.4.1 and 2.4.2 present a logical and reason-

able modelling approach to depuration dynamics. However, the models only

describe how an individual shellfish’s viral load is reduced during depuration.

The models do not take into account the wide variability observed in viral

loads present across a batch of shellfish which are being depurated at the same

time.

This thesis is primarily focussed in the construction of mathematical models

that describe how pathogen loads within populations of oysters are impacted

by the depuration process. In Chapter 3, we build a mathematical model that

incorporates both the decay of pathogen loads within an individual shellfish,

and how this individual decay effects pathogen levels across a population

of shellfish undergoing depuration simultaneously. We go on to incorporate

pathogen control parameters into the model, parameters which would allow

legislators to enforce control measures for pathogen levels across a shellfish

population before they pass to either the wholesale or retail markets. This

model is used to obtain estimates of the variability of pathogens across a pop-

ulation of shellfish, as well as provide guidance on the length of depuration

required for a batch of shellfish based on previously obtained data from the

harvest location of the shellfish in question.

Chapter 4 serves as a comparison between the application of using different

probability distributions as the descriptors of the pathogen loads within the

model constructed in Chapter 3, and how any differences observed impact

resultant depuration times obtained from the different distribution types.
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The work carried out in Chapter 5 extends the model from Chapter 3,

incorporating a compartmentalised model of an individual oyster into the

model. The Chapter goes on to examine how this compartmentalisation of

pathogen loads within an individual mollusc can have consequences for, not

only depuration times, but also for testing protocols currently employed.

Chapter 6 considers the question of how pathogens resulting from sewage

treatment works discharges can drive up the levels of pathogens transmitted

into shellfish farms in close proximity to the treatment plants. The model

constructed here includes a mechanism to increase the total treatment capacity

of a sewage treatment works, and how increasing and decreasing this capacity

impacts the levels of pathogens in shellfish nearby. This Chapter also examines

how this variable capacity can alter the length of depuration times required

by industry stakeholders to ensure that clean shellfish are passed further into

the supply chain, and analyses the trade-offs between capacity levels and

minimum depuration times.

Finally, we propose further work on the back of this thesis, looking at open

questions from the modelling carried out and what further research would be

required to validate the mathematical models constructed.

37

[ 6th June 2017 at 8:47 ]



3
M AT H E M AT I C A L M O D E L O F D E P U R AT I O N P R O C E S S

3.1 introduction

This chapter explains in detail the construction of a mathematical model of

depuration, and how it can be used as a pathogen mitigation tool within the

shellfish industry. In particular this chapter considers the following questions:

(i) How are pathogen loads distributed across a shellfish population before

depuration?

(ii) How do the pathogen loads decay due to the depuration process?

(iii) What is the probability that a pathogen load in a randomly sampled

oyster from that population may exceed some legislated, threshold value?

(iv) What minimum length of time must a batch of oysters be depurated for

to ensure they present a negligible food safety risk to consumers?

Answering these four questions allows us to construct a mathematical model

which describes the dynamics of pathogen reduction due to depuration. The

answers provided in this chapter are based upon robust evidence within the

current literature, as well as mathematical processes that realistically describe

the impact of depuration on pathogens within shellfish. The construction of the

model is fully explained, with each step clearly explained. Parameterisation

of the model is based upon available data and industry literature, and the

results obtained from the model are presented. How these results pertain to

the shellfish industry within the UK and further afield is discussed, and the
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advantages that a population model of depuration brings to both the industry

and regulators are also emphasised.
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3.2 purposes of depuration

Bivalve shellfish use a filter feeding process to gain nutrients from their sur-

rounding waters, and this feeding process can concentrate contaminants into

the digestive system of the shellfish [10, 16, 28, 29, 30]. Therefore the potential

exists for shellfish to contain bacterial, viral or particulate contaminants, any

of which can transmit pathogens into the human population once eaten by

a consumer. Thus, minimising any potential exposure to contaminants is of

critical importance to both the industry and the consumer, as any illness which

stems from the consumption of shellfish would result in, not only illness in the

human population, but also damage to the reputation of the shellfish industry

as a whole.

Ideally shellfish should be farmed in waters with very low levels of pollution,

however this is not always possible due to economic and socio-geographic

reasons, with many farms located close to population centres [32, 33, 34]. The

issue of shellfish farming in waters which are not rated as Class A was high-

lighted in Chapter 1 and is not discussed further in this chapter. Modelling

which describes how pathogens are transmitted into shellfish from pollution

events is discussed later in Chapter 6.

The rating system of UK coastal waters is currently based upon the detection

and quantification of the presence of the bacterium E. coli (see Section 1.5).

Though E. coli is a reliable indicator for the presence of faecal pollution and is

the industry metric used when classifying water quality, it is a poor indicator

of viral and chemical contamination. Several current studies have shown that

there is a poor correlation between levels of E. coli and other contaminants

such NoV [29, 64, 65], and as such any viral pathogens present in shellfish
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could reach the consumer in notable quantities due to this low correlation.

This is of especial concern, as pathogens such as NoV are not currently con-

trolled under any national or E.U. legislation [40]. As detailed in Section 1.5, to

ensure any pathogenic transmission to the consumer is minimised, only class

A sourced shellfish can pass straight into the wholesale and retail markets.

Class B shellfish harvests are required by law to undergo a minimum of 42

hours of depuration before re-entering the supply chain. Section 1.7 discusses

the technical details on the depuration process, and the criteria that must be

considered when implementing efficient depuration practices.

The shellfish industry as a whole is and has been pragmatic to self-regulate

for pathogens and other contaminants over and above the current coliform

mitigation requirements. At present, NoV levels within shellfish are reduced

only by methods put in place to mitigate other contaminants, despite posing

a potential risk to consumer health [14, 18, 28]. Although several countries

conduct monitoring for viral contamination, thus far no producer countries

have implemented legislative standards [13, 17, 66]. Rather legislators control

harvesting from sites which are adversely impacted by pollution events that

mainly emanate from adjacent sewage treatment works. Harvest sites which

do not attain the top classification of A require the pathogen controls to be

implemented as discussed previously, one of which is depuration.

In the rest of this chapter, we employ mathematical techniques to construct

a model of the depuration process by determining how NoV levels in shellfish

populations change over time when the initial NoV load in each oyster, and

the way in which the initial loads evolve over time are considered.
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3.3 model construction

3.3.1 Pre-Depuration Pathogen Distribution

To construct our model of depuration we are first required to mathematically

describe the distribution of pathogens across the batch or population of shell-

fish before they undergo the depuration process. This can be achieved by the

analysis of a data set that records pathogen loads detected in a population of

shellfish before they have been cleaned using depuration.

3.3.1.1 Experiment

A data set of NoV loads within a population of Pacific oysters (Crassostrea

gigas) was provided to me by Dr James Lowther of CEFAS, who carried out the

following steps to obtain the data.

Six hundred oysters were sourced from a class B site and, immediately upon

receipt, ten oysters were randomly selected and tested for the presence of NoV

using a standardised, Reverse Transcription Polymerase Chain Reaction (PCR)

method [15]. The remaining oysters were divided between four commercial

oyster sacks and split between two depuration/recirculation tanks in the ex-

perimental facility at the CEFAS Weymouth laboratory, each containing 500L of

filtered seawater and set to a temperature of 18
◦C. The animals were left for

four days with ultraviolet irradiation of the recirculated water to aid in the

removal of any residual, undetectable virus and to allow restoration of filter

feeding activity.

A bioaccumulation method [31] was then used in order to ensure that the

oysters contained high levels of NoV at the outset of the subsequent study to
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ensure detection and a high base line of load values. This involved adding

10ml of influent, municipal sewage collected from a large local water treatment

works (population equivalent to 30,000), and was supplemented with 500µl

of a suspension of GI and GII positive human faecal material (containing

approximately 1.25 ×10
8 viral genome copies for each genogroup), which was

added to each of the tanks. Oysters were then left to bioaccumulate virus for

16 hours. After removal from the tanks, the oysters were removed from their

holding sacks and thirty oysters from each were randomly selected for testing

for each genotype.

3.3.1.2 Analysis

The results from these samples were used as the foundation for determining

the distribution type that reasonably describes NoV across an oyster population.

Test results with less than 10 NoV cpg obtained as part of the depuration study

described above were removed from the data sets, as these were below the

limit of quantitation for NoV [2]; this affected less than 2% of data points for

genotype I and none for genotype II.

The NoV counts for both genotypes are plotted as histograms in Figure 3.1,

firstly as unlogged data in Figures 3.1a and 3.1b , and as log-transformed

in Figures 3.1c and 3.1d. The unlogged data obtained from the experiment

are characterised by highly skewed distributions (genotype I : mean = 6323

cpg, standard deviation = 11520 cpg; genotype II : mean = 10921 cpg, standard

deviation = 17577 cpg). However the log-data can be well described by a nor-

mal distribution (Kolmogorov-Smirnov test; genotype I: p = 0.124, n = 116;

genotype II: p = 0.104, n = 113). Figures 3.1c and 3.1d both have fitted normal

distribution curves added for comparison.
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(d) Genotype II histogram — logged data

Figure 3.1: Histograms of bioaccumulation data supplied by Dr James Lowther of

CEFAS. Figures (a) and (b) show the unlogged data for genotypes I and II

respectively, while Figures (c) and (d) show the log norovirus loads cpg.

Genotype I data has n = 116 and genotype II has n = 113

Figure 3.2 shows the goodness of fit plots for both genotypes using the

Kolmogorov-Smirnov test methodology. These plots demonstrate that both

genome types conform closely to a lognormal description, although they do

indicate that there are some outliers at the lower and higher values, departing

from the straight line which signifies full lognormality. These plots reinforce

our assertion that NoV loads across a population of shellfish can be well

described by a lognormal distribution, an assertion which is backed up by
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(a) Genotype I (b) Genotype II

Figure 3.2: Goodness of fit lognormal Kolmogorov-Smirnov Test plots

the literature where many water-borne pathogens have been previously been

described as log-normal [44, 53, 54, 55, 56].

3.3.2 Pre-Depuration Model

We can now describe the distribution of NoV loads across a population of

oysters by a lognormal distribution. We define the probability density distri-

bution of NoV loads within a population of shellfish, X0 = x0, at depuration

time t = 0 as P(x0) and so

P(x0) =
1√

2π σ0 x0
exp
{
−(ln(x0) − µ0)2

2σ20

}
, (3.1)

where µ0 is the location parameter of the lognormal distribution, and σ0 is the

scale parameter [6, 58].

Echoing the definition from Equation 2.15, we also state here that the

expected value of x0 is E(x0) = exp{µ0 + σ20/2}. This is equivalent to the

arithmetic mean value of the distribution P(x0), therefore we also define

x̄0 = exp
{
µ0 +

1

2
σ20

}
. (3.2)

45

[ 6th June 2017 at 8:47 ]



Again based on definitions in Section 2.3.2, we state the standard deviation of

P(x0) as

SD(x0) =
√

exp {σ20}− 1 exp
{
µ0 +

1

2
σ20

}
, (3.3)

This formula can be rewritten as

SD(x0) = x̄0

√
exp {σ20}− 1 (3.4)

and

SD(x0) = CV(x0) x̄0 , (3.5)

where CV(x0) is the coefficient of variation of the lognormal distribution [6].

3.3.3 Maximum Likelihood Estimation of Parameters

Current testing protocols provide a measure of the arithmetic mean of a

sample, obtained from a ten oyster homogenate. However, if future techno-

logical advances allowed a robust and cost effective test procedure to be

employed which could provide sufficiently large data sets of single oyster NoV

loads from harvest locations, then lognormal distribution location and spread

parameters could be obtained using maximum likelihood estimation methods.

Estimates of µ0 and σ0 parameters can be derived for Xi (i ∈ {1, 2, ...,n}),

a set of n independent samples drawn from a lognormal distribution. For

simplicity of calculation, an estimate of σ20 will be derived. The parameter
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estimates are obtained using the log-likelihood function of the lognormal

distribution P(Xi) which is defined as [67, 68]

L(µ0,σ20|X) = ln

(
n∏
i=1

[P(Xi)]

)

⇒ L(µ0,σ20|X) = ln

 n∏
i=1

1√
2πσ20Xi

exp

[
− ln(Xi − µ0)2

2σ20

]
⇒ L(µ0,σ20|X) = ln

 1(√
2πσ20

)n n∏
i=1

1

Xi
exp

[
n∑
i=1

− ln(Xi − µ0)2

2σ20

]
⇒ L(µ0,σ20|X) = ln

(
(2πσ20)

−n/2
n∏
i=1

1

Xi
exp

[
n∑
i=1

− ln(Xi − µ0)2

2σ20

])
. (3.6)

Using the laws of logarithms, Equation 3.6 can be rearranged into

L(µ0,σ20|X) = −
n

2
ln(2πσ20) −

n∑
i=1

ln(Xi) −
∑n
i=1 (ln(Xi) − µ0)

2

2σ20
,

and further simplified into

L(µ0,σ20|X) = −
n

2
ln(2πσ20)−

n∑
i=1

ln(Xi)−
∑n
i=1 ln(Xi)2

2σ20
+

∑n
i=1 ln(Xi)µ0
σ20

−
nµ20
2σ20

.

(3.7)

We use first order derivatives of Equation 3.7 with respect to µ0 and σ0 to

obtain estimates of these parameters. Starting with µ0, we set ∂L/∂µ0 = 0 and

solve for an estimate of µ0:

∂L

∂µ0
=

∑n
i=1 ln(Xi)
σ20

−
2nµ̂0

2σ̂20
= 0

⇒ µ̂0 =

∑n
i=1 ln(Xi)
n

. (3.8)

For an estimate of σ̂20, we follow a similar process, this time differentiating

with respect to σ20:

∂L

∂σ20
= −

n

2σ̂20
+

∑n
i=1 (ln(Xi) − µ̂0)

2

2σ̂40
= 0

⇒ σ̂20 =

∑n
i=1

(
ln(Xi) −

∑n
i=1 ln(Xi)
n

)2
n

. (3.9)
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To show that the estimators of µ̂0 and σ̂20 maximize the log-likelihood function

L(µ0,σ0|X), we must consider the second order derivatives of the function.

The Hessian matrix, H(µ0,σ20), of L(µ0,σ20|X) can be shown to be

H(µ0,σ20) =

 ∂2L
∂µ20

∂2L
∂σ20∂µ0

∂2L
∂µ0∂σ

2
0

∂2L
∂(σ20)

2

 =

− n
σ20

0

0
−
∑n
i=1(ln(Xi)−µ̂0)

2

2(σ20)
3

 (3.10)

The determinant of H(µ0,σ20) is greater than zero and the top left entry of

H(µ0,σ20) is always negative as n, σ20 > 0. Therefore both the estimators µ̂0 and

σ̂20 maximize the likelihood function L(µ0,σ20|X) [67].

Thus, parameter values to accurately estimate the shape of a pre-depuration

lognormal distribution can be obtained from single oyster data samples using

Equations 3.8 and 3.9.

3.3.4 Evolution Of The Depuration Distribution Over Time

Let xt be a NoV load in a single oyster at a time t. A probability distribution

P(xt) can be derived for xt, i.e. a PDF that describes the distribution of patho-

gens across a population of shellfish for any time t > 0 during the depuration

process. To accomplish this we must first define how depuration changes each

individual mollusc’s pathogen load over time. We assume here that there is a

constant, proportional removal of a mollusc’s pathogen load for each defined

time unit, and thus can be described by an exponential decay of pathogen

loads in individual shellfish due to the depuration process [69, p. 418]:

xt = x0 exp{−bt} , (3.11)

where b quantifies the depuration decay rate per unit of time. Unlike the

models summarised in Chapter 2, we do not assume a constant residual patho-

gen load that remains in the shellfish, no matter the length of depuration
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undertaken [62, 63].

As x0 is related to xt by a continuous function, this enables the change of

variables process to be applied to P(x0) to obtain a PDF for any time t during

depuration [70, p. 66]. This change of variables process is shown here as

P(xt) dxt = P(x0)dx0

⇒ P(xt) = P(x0)

(
dx0

dxt

)
⇒ P(xt) = P(x0)

(
dxt

dx0

)−1

. (3.12)

Substituting in our definition of P(x0) from Equation 3.1 and subsequently the

inverse of the derivative of Equation 3.11:

P(xt) =
1√

2πσ0 x0
exp
{
−(ln(x0) − µ0)2

2σ20

}(
dxt

dx0

)−1

⇒ P(xt) =
1√

2πσ0 x0
exp
{
−(ln(x0) − µ0)2

2σ20

}
exp {bt}

⇒ P(xt) =
exp {bt}√
2πσ0 x0

exp
{
−(ln(x0) − µ0)2

2σ20

}
.

The change of variables is completed by replacing x0 with xt exp{bt} (from a

rearrangement of Equation 3.11) to yield

P(xt) =
exp{bt}√

2π σ0 xt exp{bt}
exp
{
−(ln(xt exp{bt}) − µ0)2

2σ20

}

⇒ P(xt) =
1√

2π σ0 xt
exp
{
−(ln(xt) + bt− µ0)2

2σ20

}
. (3.13)

Thus Equation 3.13 describes the distribution of pathogen loads across a

population of shellfish during depuration for any time t > 0. P(xt) also de-

scribes a lognormal distribution, with the same measure of spread, σ0, as P(x0).

However the measure of location is now described by µ0 − bt. Descriptions of

µt and σt are discussed further in the next section.
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3.3.5 Measures of Location and Spread of P(xt)

A corollary on the measures of location and scale of the distribution describing

depuration is shown here. Definitions of these measures will prove to be of

significant use in interpreting results later.

3.3.5.1 Measures of Location of P(xt)

We have already stated that the arithmetic mean of P(x0) is as follows (Equation

3.2)

x̄0 = exp
{
µ0 +

1

2
σ20

}
. (3.14)

This formula needs to be extended to describe the arithmetic mean for any

time point during depuration, x̄t, and so we require definitions for both µt

and σt.

To ascertain the value of the location parameter µt, we need to consider the

equation of the depuration distribution P(xt) (Equation 3.13), where

P(xt) =
1√

2π σ0 xt
exp
{
−(ln(xt) + bt− µ0)2

2σ20

}
, (3.15)

and to compare it with the definition of the general lognormal distribution as

defined by Equation 2.12:

P(x) =
1√
2π σ x

exp
{
−(ln(x) − µ)2

2σ2

}
. (3.16)

This equation is the PDF of P(x0) less the subscripts of 0, thus we are compar-

ing the pre-depuration and during depuration PDFs. The exponent in both

equations performs the Z-score correction, with the numerator in the exponent

being corrected by −(bt− µ0). Thus the location parameter at any time t > 0

can be calculated from

µt = µ0 − bt . (3.17)
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Following the same process for σt, it is apparent that the measure of spread

is the same for both P(X0 = x0) and P(Xt = xt). Thus, we can state that

σt = σ0 . (3.18)

Hence, substituting Equations 3.17 and 3.18 into Equation 3.14 will provide

a definition of the arithmetic mean of P(Xt = xt):

x̄t = exp
{
µ0 − bt+

1

2
σ20

}
⇒ x̄t = exp

{
µ0 +

1

2
σ20

}
exp{−bt}

⇒ x̄t = x̄0 exp{−bt} . (3.19)

Thus the value of x̄t across the population decreases as depuration pro-

gresses, with a decay gradient of exp{−bt} after time t.

This result also follows from Equation 3.11 which defined how an individual

NoV load decayed due to depuration:

xt = x0 exp{−bt} .

This describes a linear relationship between xt and x0, with the decay gradient

fixed for the whole population at exp{−bt} after a time t. Therefore each

individual NoV load will have decayed by exp{−bt}, and so the arithmetic

mean value x̄0 will also have decayed by exp{−bt}.

3.3.5.2 Measures of Spread of P(xt)

Equation 3.3 in Section 3.3.2 states that the standard deviation of P(x0) is

SD(x0) =
√

exp {σ20}− 1 exp
{
µ0 +

1

2
σ20

}
.
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(a) Depuration decay of expected value of xt
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(b) depuration decay of std. deviation of xt

Figure 3.3: Decay of expected value and standard deviation of xt due to individual

exponential decay. Inset plots show log vertical axes. Both plots obtained

from x0 = 1064 NoV cpg. Dotted line in Figure 3(b) corresponds to σ0 =

1.645, while solid line has σ0 = 1.282. All vertical axes in NoV cpg

Thus the variance of P(x0) is

V(x0) = [SD(x0)]
2

⇒ V(x0) =
(
exp
{
σ20
}
− 1
)

exp
{
2µ0 + σ

2
0

}
.

We can obtain the variance and standard deviation of xt by substitution of

Equations 3.18 and 3.17:

V(xt) =
(
exp
{
σ2t
}
− 1
)

exp
{
2(µ0 − bt) + σ

2
t

}
⇒ V(xt) =

(
exp
{
σ2t
}
− 1
)

exp
{
2µ0 − 2bt+ σ

2
t

}
⇒ V(xt) =

(
exp
{
σ2t
}
− 1
)

exp
{
2µ0 + σ

2
t

}
exp {−2bt}

⇒ SD(xt) =
√
(exp {σ2t }− 1) exp {2µ0 + σ2t }︸ ︷︷ ︸

SD(x0)

exp {−bt} ,

(3.20)

and so

SD(xt) = SD(x0) exp {−bt} . (3.21)
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Thus, both the arithmetic mean (x̄t) and the standard deviation (SD(xt))

decline to zero at the same rate as each individual oyster load.

Note that, as the coefficient of variation of the lognormal distribution is

independent of the arithmetic mean (see Equation 2.16) and dependent only

on σ0, then the value of CV(x0) will hold constant for any change to the mean

of the distribution for any t > 0.
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3.3.6 Tail Analysis

Equation 3.13 describes the distribution of a water-borne pathogen across a

population of shellfish at time t during the depuration process. The efficacy of

the depuration process is described by the decay rate parameter b. We now

introduce two control parameters:

Ψ : NoV load level — below which an individual shellfish is deemed to not

constitute a risk to the consumer;

φ : NoV assurance level — acceptable proportion of the shellfish population

which has a NoV level below that of Ψ.

Both of these parameters allow implementation of food safety controls within

our model. Figure 3.4 demonstrates how these parameters split the distribu-

tion of into 2 parts. The diagram presents the general shape of a lognormal

distribution, with the parameter Ψ shown on the horizontal axis.

The green area to the left of Ψ constitutes the proportion of the shellfish

population with pathogen loads xt < Ψ, and can be called as the body of

the distribution. The red area corresponds to the probability of a randomly

selected shellfish having a pathogen load xt > Ψ, and is called the tail of the

distribution. The tail of the distribution is of particular interest as it quantifies

the risk of marketing ‘non-compliant’ oysters, i.e. oysters containing pathogen

loads exceeding a certain value, Ψ. At time t, the probability in the tail of the

distribution is given by

P(xt > Ψ) =

∞∫
Ψ

1√
2πσ0 xt

exp
{
−(ln(xt) + bt− µ0)2

2σ20

}
dxt . (3.22)

This describes a PDF, and so its value must be in the range 0 6 P(xt > Ψ) 6 1.
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Figure 3.4: Probability distribution plot, P(xt). The red section corresponds to total

probability that a randomly selected shellfish has a pathogen load xt

greater than the threshold limit Ψ. The green zone denotes the total prob-

ability that a random shellfish will have a pathogen load xt < Ψ

Conversely, we describe the body of the distribution as the area under the

curve from zero to Ψ (as shown as the green area in Figure 3.4) by

P(xt < Ψ) =

Ψ∫
0

1√
2πσ0 xt

exp
{
−(ln(xt) + bt− µ0)2

2σ20

}
dxt . (3.23)

The value of P(xt < Ψ) will never be equal to 1 (at least mathematically) due

to the inherent nature of the lognormal distribution, with the tail continuing

towards∞ along the horizontal axis. The consequence of this is that the red

area of Figure 3.4 will never disappear completely, i.e. P(xt > Ψ) 6= 0.1

Therefore we deploy a second control parameter, φ, the area under the

curve of the PDF between 0 and Ψ. This is a proportion of the total shellfish

1 In reality, xt does not extend to∞, and so the “tail” in principle could disappear.
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population with NoV loads less than Ψ, and so this threshold value will also be

in the range 0 6 φ 6 1. We wish to maximise the number of shellfish which

have pathogen NoV loads less than Ψ, therefore ideally φ . 1 to ensure that

almost all shellfish would have a pathogen load below Ψ.

Thus we can now state that the depuration model with pathogen controls

incorporated is described by

P(xt < Ψ) =

Ψ∫
0

1

xtσ0
√
2π

exp
{
−(ln(xt) + bt− µ0)2

2σ20

}
dxt = φ , (3.24)

which is a definition of φ, given Ψ. These two parameters are independent of

each other, and varying their values will allow legislators to tailor the level of

pathogen control according to their own requirements.
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3.3.7 Minimum Depuration Time

The aim of constructing a model of depuration is to provide the industry with

a tool to minimise any food safety risks to the consumer, while maximising

profitability for stakeholders within the industry itself. The inclusion of the

control parameters as described in the previous section will provide a signi-

ficant level of food security when they are conformed to by the depuration

process. However, when does a depurator know they have achieved this?

Solving Equation 3.24 for t allows us to determine the minimum depuration

time required to attain the assurance level φ with the maximum allowable

pathogen load level Ψ being enforced. A solution can be obtained by applying

the substitution

z =
ln(xt) + bt− µ0√

2σ0
⇒ dxt = xt

√
2σ0 dz

and appropriately changing the limits of the integral:

1

xtσ0
√
2π

W∫
−∞

exp{−z2} xt
√
2σ0 dz = φ

⇒ 1√
π

W∫
−∞

exp{−z2} dz = φ , (3.25)

where:

W =
ln(Ψ) + bt− µ0√

2σ0
.

The left hand side of Equation 3.25 closely resembles the definition of the

standard, normal distribution with x̄ = µ = 0 and σ = 1 (cf. Equation 2.6):

1√
π

+∞∫
−∞

exp{−z2} dz = 1 ,

and which is shown in Figure 3.5. As both are PDFs, then the total area under

the curve of their distributions are equal to 1. As they are also both symmetric
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Figure 3.5: Probability density plot of standard, normal distribution with x̄ = 0

about zero, then the area under the standard normal distribution curve in the

range [−∞, 0) is equal to 1
2 ,

1√
π

0∫
−∞

exp{−z2} dz =
1

2
.

Subtracting this from Equation (3.25) results in

1√
π

W∫
0

exp{−z2} dz = φ−
1

2
.

Multiplying both sides of this equation by 2 and applying the erf function

which was previously defined by Equation 2.10 as

erf(x) =
2√
π

x∫
0

exp{−t2} dt (3.26)

allows us to further derive:

erf(W) = 2φ− 1 . (3.27)
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Applying the inverse error function (erf−1) to both sides of Equation 3.26

provides

W = erf−1 (2φ− 1)

⇒ ln(Ψ) + bt− µ0 =
√
2 σ0 erf

−1 (2φ− 1)

⇒ bt =
√
2 σ0 erf

−1 (2φ− 1) − ln(Ψ) + µ0 ,

and finally solving for time t yields

T = t = b−1
[√
2 σ0 erf

−1 (2φ− 1) − ln(Ψ) + µ0
]

. (3.28)

Equation 3.28 calculates the MDT, T = t, required to ensure that the probability

that a randomly chosen oyster has a NoV load which is less than some selected

NoV threshold limit Ψ is equal to φ.

3.3.8 Estimating Variability of the Distribution

The MDT depends not only on φ and Ψ, but also on µ0 and σ0. The two

control parameters φ and Ψ would either be determined by legislators, or

self-imposed by the industry stakeholders. Obtaining realistic estimates for

µ0 and σ0 is more problematic however, especially for NoV. Although we

were able to obtain σ0 for the data described in Section 3.3.1, this experiment

involved so many measurements that it would be impractical and expensive to

consider that it can be carried out on a regular basis with regards to NoV load

monitoring for all harvests. The current standard assay for NoV detection is

carried out on homogenates of 10 oysters [15], and so provides an arithmetic

mean in terms of NoV cpg (x̄0) of the 10 oysters sampled.

We can convert the arithmetic mean of the lognormal distribution into the

geometric mean (in this case µ0) by applying the relationship between the
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arithmetic mean and geometric mean of a lognormal distribution which is

described by

µ0 = ln(x̄0) −
1

2
σ20 , (3.29)

[6]. However, to obtain a value of µ0 we need to have a measure of the variab-

ility of the pathogen across the population, σ0. Obtaining estimates of σ0 from

experimental data would require multiple tests to be performed, which is both

time-consuming and costly [39]. However, modelling can be used to provide

a ‘worst case scenario’ value of the variability of the pathogen’s distribution.

This, in turn, will provide a maximum estimate of the MDT.

To achieve this, Equations 3.28 and 3.29 are combined to provide the MDT in

terms of the variability and the arithmetic mean of the distribution:

T(σ0, x̄0) = b−1
[
−
1

2
σ20 +

√
2erf−1 (2φ− 1)σ0 + ln

(
x̄0

Ψ

)]
, (3.30)

where we explicitly note the dependence of T on µ0 and σ0.

Equation 3.30 is a concave quadratic function in terms of the variability scale

parameter σ0, confirmed by the negative value of its second derivative, where

∂T

∂σ0
= b−1

(
−σ0 +

√
2erf−1 (2φ− 1)

)
⇒ ∂2T

∂σ20
= −b−1 < 0 .

As b > 0, Equation 3.30 will have a maximum value for T(σ0, x̄0) when

∂T

∂σ0
= 0

⇒ −σ0 +
√
2erf−1 (2φ− 1) = 0

⇒ σ0 =
√
2erf−1 (2φ− 1) (3.31)

Thus, when σ0 =
√
2erf−1 (2φ− 1), the variability of the system is such that the

MDT is maximised. This ‘worst case scenario’ variability is a consequence of
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the flattening of the distribution curve as σ0 increases, forcing the area under

the distribution curve into higher NoV load values, while simultaneously

displacing area into the lower value ranges.
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Figure 3.6: Generic plots showing impact of increasing assurance level φ. (a) shows

log-transformed normal distributions for φ = 0.90, 0.95, 0.99, whereas (b)

shows the equivalent unlogged distributions

Figure 3.6a displays three log-transformed normal PDFs, corrpesonding to

three values of φ. This figure shows that increasing the value of φ (and con-

sequentially increasing σ0) flattens the shape of the log transformed PDF curve.

This flattening increases the area under the curve at the extreme left and right

of the plots, displacing area towards −∞ and∞.

Figure 3.6b represents the same three PDFs without any log-transformation.

This plot shows that increasing φ displaces area under the curve towards zero,

while at the same time displacing area under the curve towards ∞. As the

lognormal distribution has a domain restriction of x > 0, any increase in area

towards zero results in an increase in the PDF’s kurtosis. However there is no

upper limit on the value of the domain, and so displacing area towards ∞
results in an increase in the weight of the tail of the distribution.
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We can rearrange Equation 3.30 by excluding the variability parameter σ0,

and substituting in Equation 3.31 to obtain TWCV, the maximum (worst case

scenario) minimum depuration time:

TWCV = b−1
[
−
1

2
σ20 +

√
2erf−1 (2φ− 1)σ0 + ln

(
x̄0

Ψ

)]
⇒ TWCV = b−1

[
−
1

2

(√
2erf−1 (2φ− 1)

)2
+
(√
2erf−1 (2φ− 1)

)2
+ ln

(
x̄0

Ψ

)]
⇒ TWCV = b−1

[
−
(
erf−1 (2φ− 1)

)2
+ 2

(
erf−1 (2φ− 1)

)2
+ ln

(
x̄0

Ψ

)]
Thus the minimum depuration time based on a (WCV) approach can be calcu-

lated from

TWCV = b−1

[(
erf−1 (2φ− 1)

)2
+ ln

(
x̄0

Ψ

)]
(3.32)

This equation will return a maximum MDT, having applied a worst case

variability to the calculation of the MDT.

Thus, to obtain the WCV estimate for the MDT, the only parameters we re-

quire are the arithmetic mean x̄0 and the control parameters φ and Ψ, as well as

the depuration decay rate b. As the current testing protocols provide arithmetic

mean values from homogenates of 10 shellfish, and the control parameters

can be set exogenously by authority bodies, then MDT’s can be calculated with

little or minimal change to current test methodologies. Determining a value for

the decay rate of the process would need be determined for each depuration

facility, based upon further experimental data or an assessement of the criteria

listed in Section 1.7.1.
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3.4 results

3.4.1 Pre-Depuration Data

The data used to inform our selection of a lognormal distribution in Section

3.3.1 was obtained from an experiment where six hundred oysters had been

artificially seeded with high levels of NoV. The mean values for the two geno-

types from this bioaccumulated data are presumed to be much higher than

that which would be found from standard shellfish harvest sites, and would be

especially greater than expected from any class B site harvests. In the absence

of at harvest/pre-depuration data, parameter values for x̄0 for our model must

be sourced from the literature.

SITE CLASSI-

FICATION

Jul ’09 Jan ’10 Jul ’10 Jan ’11

B - x̄0 40 1062 38 1064

C - x̄0 < 100 a
13272 < 40 b

15369

Table 3.1: NoV load calculated means for class B and C sites at low and high temperat-

ure points throughout study duration, measured in cpg

a NoV loads recorded as < 40 cpg are designated as having value = 20 cpg (the midpoint

between 0 and 40) b while < 100 cpg are quantified as 70 cpg (the midpoint between 40

and 100) [2]

Lowther et al analysed NoV loads in oysters (C. gigas) from 39 UK harvest

sites, with samples collected each month over a two year period in 2011-12 [2].

The 39 sites were comprised of 6 class A, 31 class B and 2 class C sites from

around mainland Britain. Class A sites exhibited low NoV loads, Class C sites

must use relaying rather than depuration to reduce contaminants, so only the
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class B data were analysed to obtain estimates of arithmetic mean values (x̄0)

of NoV. Appendix C contains full details on analysis of the data set, with a

summary of the values obtained from the data shown in Table 3.1.

The observations recorded in winter months exhibited higher NoV levels,

with Class B Jan ’10 average x̄0 = 1062 NoV cpg, and Jan ’11 x̄0 = 1064 NoV

cpg. As only class B harvests are legally allowed to proceed to depuration, we

will use the winter 2011 month value as the parameter for our model. As no

estimate of σ0 is available from harvest data, we base our results on WCV, so

Equations 3.31 and 3.28 are used throughout the results.
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Figure 3.7: Plot of pre-Depuration probability distribution P(x0), with x̄ = 1064 NoV

cpg (Class B, Jan ’11) and σ0 = 1.645. This variability corresponds to the

worst case scenario (Equation 3.31) with assurance level set as φ = 95%
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The pre-depuration distribution, P(x0), of Class B Jan ’11 sampled oysters

(x̄0 = 1064 NoV cpg) is shown in Figure 3.7. Assuming that φ = 0.95 and using

x̄0 = 1064 NoV cpg yields σ0 = 1.645 under the WCV approach (Equation 3.31).

The distribution was assessed for the probability that a randomly sample

oyster’s NoV load fell within a certain range of values, and are shown as

probability values in Figure 3.7. The range values have been set at 200, 500,

1000 NoV cpg, and are arbitrary. However, in the next section, we parameterise

Ψ = 200 NoV cpg from the literature, and so choose to split the PDF at this

value, and others close to Ψ.

For these pre-depuration parameters, it was calculated that there was only

a 42.3% likelihood that a randomly sampled oyster would have a NoV load

below Ψ = 200 NoV cpg. Thus before being depurated 57.7% of a batch of Class

B oysters with an average NoV load of x̄0 = 1064 cpg would have NoV loads

above 200 cpg. Also note that there is a 21.6% probability that an oyster before

depuration would have a NoV load greater than 1000 cpg.

3.4.2 Model Parameterisation

3.4.2.1 Depuration Decay Rate Parameterisation

Pre-Dep. During Dep. Post-Dep.

NoV cpg x̄0 = 492 x̄96 = 136 x̄144 = 99 (max.)

Total duration (hrs) 0 96 144

Decay rate, b — 0.01339 0.01113

Table 3.2: Depuration decay rates derived from data in Doré et al (2010) [7, p. 2].
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The literature can be used to derive further parameters for the model. In

2010, Doré et al [7] carried out a NoV survey of an Irish farm which had re-

cognised they were selling oysters with greater than expected NoV levels. The

farm voluntarily applied additional NoV mitigation methods to reduce any

potential risk to their consumers. In the published report, the authors provide

pre-depuration and during depuration data on NoV levels detected in oysters

using PCR assay (Table 3.2).

Based on the exponential decay equation (cf. Equation 3.19)

x̄t = x̄0 exp {−bt} , (3.33)

the depuration decay parameter b can be established for 96 hours and 144

hours. For example, the depuration decay rate for 0–96 hours is derived using

Equation 3.19:

x̄t = x̄0 exp {−bt}

⇒ x̄96 = x̄0 exp {−96 b}

⇒ 136 = 492 exp {−96 b}

⇒ −96 b = ln
{
136

492

}
⇒ b = ln

{
136

492

}
÷−96

⇒ b = 0.01339 (to 5 d.p.) .

This value is consistent with other values in the literature with regards to

depuration decay rates.

Polo et al state several depuration decay rates of pathogens within shellfish

due to depuration. They provide an average reduction rate of 0.56 day−1 of

murine norovirus within Manila clams, equivalent to 0.0233 hours−1; and a

depuration decay rate equivalent to 0.0471 hours−1 for Mediterranean mussels
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[62]. In their later paper, Polo et al provide equivalent decay rates of 0.0454

hours−1 for Hepatitis A virus in mussels, and 0.0179 in clams for the same

virus [63]. Even though these are not exact comparisons to NoV within oysters,

they provide a level of confirmation in our approach to the parameterisation

of the decay rate shown above.

3.4.2.2 Pathogen Load Limit Ψ Parameterisation

The same report also states “Since 19 March 2010 more than 50,000 oysters

have been placed on the market and no reports of illness have been received.

NoV levels in these batches were less than 200 viral genome copies per g” [7].

This can be used to inform our selection of a value for the NoV load limit, and

so we set our parameter Ψ = 200 cpg.

3.4.3 NoV Dynamics During Depuration

The dynamics of the Class B Jan ’11 data are analysed using the model, apply-

ing the depuration decay rate derived from Doré (2010) (b = 0.01339 hours−1)

[7] for a reasonable depuration time period (0 — 100 hours). Thus the expo-

nential decay of NoV loads in individual oysters induces the dynamics of the

population during the process, and is characterised by P(xt) and shown in Fig.

3.8. The peak of the highly-skewed distribution moves towards lower values of

xt, creating a distribution that is increasingly skewed and with greater kurtosis.

Setting the NoV threshold limit at Ψ = 200 NoV cpg, the model calculates

that, after t = 50 hours, 58.4% are below Ψ; after t = 100 hours, this increases

to 73.2%.
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Figure 3.8: P(xt) dynamics during depuration, with decay rate b = 0.01339. Main plot

shows probability distributions at t = 0 hrs ( ), t = 50 hrs ( ), t =

100 hrs (· · · ), using the same parameters and threshold values as Fig. 3.7.

Inset bar plot shows the respective changes in section probabilities for each

time point, with different shade bars representing values of xt up to 200

(light grey), 500 (darker shade), 1000 (dark grey), and above 1000 (black)

3.4.4 Minimum Depuration Time

Equation 3.32 is used to calculate minimum depuration times for Class B

’Jan 11 data (x̄0 = 1064 NoV cpg). Applying φ = 90%, 95% and 99% assurance

levels, MDTs were achieved after 186, 226, and 327 hours respectively. Note

that the WCV approach was used here, and so these are maximum estimates

of the MDTs. Figure 3.9 shows how MDTs change when the NoV load limit

is in the range 0 < Ψ 6 16000 cpg. As expected MDTs are seen to be short

when Ψ is very high. Increasing the load limit reassigns more of the tail of the

distribution into the body, and so less depuration time would be required to
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Minimum depuration time, TWCV (hrs)
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Figure 3.9: Plot of MDT versus NoV load level Ψ. MDTs with assurance level φ = 0.90

plotted with ( ) ; MDTs with assurance level φ = 0.95 by ( ); and

φ = 0.99 by (· · · ). Note that the response variable is on the horizontal axis

and the independent parameter on the vertical axis, which is due to ease

of display

achieve the desired assurance level φ. It can also be seen that as φ→ 1, MDTs

also increase. As the inverse error function has an asymptote at 1, increasing

φ beyond 0.99 will result in greatly increased MDTs.

Figure 3.10 shows the same information except on a log-Ψ scale. The dy-

namics are shown to be log-linear, so confirming that the decay in Figure 3.9

is exponential. A line at Ψ = 200 cpg is shown, with the perpendicular lines

highlighting the MDTs for each value of φ stated above.
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Minimum Depuration Time, TWCV (hrs)
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Figure 3.10: Plot of minimum depuration versus NoV load level Ψ on a log-Ψ scale

3.4.4.1 Sensitivity Analysis: Depuration Decay rate

The MDTs obtained from Equation 3.32 were then analysed by increasing the

depuration decay rate. The depuration rate obtained from Doré (2010) [7]

was used as a baseline, and b+10%, b+25%, b+50%, b+100% were used to

calculate minimum depuration times for each increased value of b. The values

obtained shown in Table 3.3 demonstrate that increasing the depuration rate

has a significant impact upon the MDT. These results are a consequence of

Equation 3.32, and show that the minimum depuration time is reduced by a

factor of ρ/(1+ρ) if depuration efficacy is altered by a proportion ρ. Increasing

depuration efficacy by 10% provided a 9.09% decrease in depuration time;

b+ 25% decreased time required by 20.01%; b+ 50% decreased time required

by 33.30%; and doubling depuration efficacy halved the required depuration

time. It is worth noting here that if depuration efficacy falls by (e.g.) 25%, then
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minimum depuration times would be increased by 33.33%.

φ = 90% φ = 95% φ = 99%

b = 0.01339 186 226 327

b+ 10% 169 205 297

b+ 25% 149 181 262

b+ 50% 124 151 218

b+ 100% 93 113 163

Test pass % 96 98 99

Table 3.3: Impact of changes in depuration efficiency on minimum depuration times

(hrs) and simulated quantitative NoV tests of ten oyster homogenates, which

had undergone depuration using each parameter set (φ,b, TWCV)

3.4.4.2 Simulation of Current Testing Methods

The model was run again using the Class B Jan ’11 data (x̄0 = 1064 NoV cpg)

and with a parameter set of (φ, b, TWCV) as per values in Table 3.3. For example,

a parameter set of (φ = 0.90, b+ 10%, MDT=169) was used in conjunction with

other parameters fixed at x̄0 = 1064 cpg and Ψ = 200 cpg.

Measures of spread and location for each parameter set’s distribution after

each specific MDT were obtained, and 10 random variates were selected from

each distribution and averages calculated. This method synthesised the current

NoV test protocols using homogenates of 10 oysters [15]. Each simulated test

was deemed a ‘pass’ if it’s average deviate value was less than Ψ = 200 NoV

cpg. The average pass rate shown was calculated from 10 000 iterations of each

parameter set. 10,000 iterations of each parameter set were run, and the propor-

tion of test passes are shown at the bottom of Table 3.3. For each value of φ the
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trade-off between minimum depuration time and b results in approximately

the test same pass rate. This is due to the fact that the measure of location,

µt, will be fixed by varying both b and the MDT. For each column in Table

3.3, the value of µt will be (approximately) constant when calculated from the

same base value of µ0, and the pairwise values of b and MDT (cf. Equation 3.17).

Using assurance levels of φ = 90%, 95% and 99%, pass rates of approxim-

ately 96%, 98% and 99% were achieved for ten oyster homogenates. This is in

contrast to pass rates for single oyster simulated testing, which returned pass

rates equal to the value of φ being applied. By our definition (cf. Equation

3.24), when φ = 0.90 the probability of sampling an oyster with NoV loads

greater than Ψ will be 0.90. Within a sample of ten oysters, only one will be

expected to have an pathogen load greater than the designated value. However,

if the other nine oysters have loads much less than Ψ, the mean load obtained

from the homogenised sample will likely have a load value less than Ψ also.

Testing of the ten oyster homogenates thus can result in any oysters with NoV

loads greater than Ψ often being masked within the homogenate sample.

With this in mind, the option of using φ = 90% is not recommended as

the pass rate is much greater than that of the actual assurance level. A higher

rate of either φ = 95% or φ = 99% would be more appropriate to minimise

the probability that a shellfish with a pathogen load significantly greater than

that of Ψ would be masked by the homogenisation of the PCR assay. Ideally

φ = 99% would provide a much greater level of food safety; however, this

value results in greatly increased lengths of MDT required to conform to both

control parameters Ψ and φ. With φ = 95%, a high level of food safety is

ensured, as well as a reduced length of MDT in comparison to when φ = 99%.

72

[ 6th June 2017 at 8:47 ]



3.5 discussion

This chapter has proposed a model of the depuration process, and its impact

on the pathogen levels across a population or batch of shellfish. We have

parameterised the model based on data pertaining to NoV within oysters. This

combination of pathogen and mollusc will most often result in the transmis-

sion of pathogen into the human population via shellfish ingestion due to

two factors: the prevalence of raw consumption of oysters compared to other

molluscs; and the preferential binding of NoV that occurs within an oyster’s

digestive system, thus slowing down this pathogen’s expulsion due to depura-

tion.

However, the model can be applied for any mollusc/pathogen combination,

assuming that the initial distribution is well approximated by lognormality.

To accommodate different combinations of shellfish and pathogen, a reas-

sessment of the value of the depuration decay rate b must be considered

as well as changes to the values of the control parameters Ψ and φ. For ex-

ample, evidence shows that E. coli is excreted much quicker by shellfish and

so would require a larger value of b in comparison to NoV. Indeed, this is

the case as the minimum 42 hour depuration time for Class B harvests is

based on E. coli, and is deemed to be more than sufficient from a food safety

standpoint to reduce any levels of E. coli to negligible levels [71]. In 2016 the

Food Standards Agency relaxed the minimum 42 hour depuration time for

depuration provided that the operators could justify the reduction [72]. The

implications and justifications of this are not covered by the scope of this thesis.

It is apparent from the paucity of available data that further experimentation

is required to better parameterise this model, as well as to test and validate
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Genotype I Genotype II Model Parameter

µ0 (location) 7.645 8.628 5.617

σ0 (scale) 1.787 1.257 1.645

x̄0 (arithmetic mean) 10318 12308 1064

Table 3.4: Genotypes I & II location and scale parameters for lognormal distribution

calculated from bioaccumulation data in Section 3.3.1

the assumptions used in its construction. Of most note is the need to quantify

the variability of a pathogen across a batch of oysters. Due to the lack of any

pre-depuration or harvest field data that can be used to calculate variability,

we have applied our concept of a “worst case variability". The value of the

WCV in this model is an increasing, monotonic function calculated solely on

the value of φ, which is the NoV assurance level either enforced on or adopted

by the depurator (cf. Section 3.3.8).

Using the WCV approach, the model showed that significantly longer depur-

ation times than the minimum 42 hours are required to achieve the levels set

out by the control parameters as shown in Table 3.3. Depuration decay rates

ranged from 96—327 hours, depending upon which assurance level was adop-

ted and the depuration decay rate used. Previous results from experimentation

in the literature have stated that 120 hours(5 days) of depuration would be

required to remove quantifiable levels of human viruses from shellfish [16].
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This is in line with the range of our results. As our results are based on a

worst case approach to variability, then the MDT results shown are at the upper

end of depuration times that may be required to provide adequate levels of

food safety. A more accurate measure of σ0 of NoV across harvested batches of

shellfish would be expected to reduce the variability and so the depuration

times.

The bioaccumulated data returned spread parameters of σ0 = 1.787 for

genotype I and σ0 = 1.257 for genotype II (see Table 3.4), sandwiching the

value of σ0 = 1.645 obtained from our WCV approach. Note that the measure

of location parameter used in our results is significantly less than that which

can be obtained from the bioaccumulation data discussed in Section 3.3.1. As

previously stated, the bioaccumulation data was intentionally seeded with

high levels of NoV, and so would not be a useful basis to provide results

pertaining to actual batches of harvested shellfish from coastal or farm waters.

This chapter goes further than previous work by extending the model of

depuration across a population of shellfish rather than to describe an indi-

vidual animal. This model also incorporates control parameters which would

allow legislators to enforce legislative limits on the levels of NoV (and other

pathogens). Thus the model provides a mathematical framework that could

be used by industry and regulatory bodies to help determine the minimum

depuration times required to reduce NoV levels to below a desired threshold.

The crux of this model has been the use of lognormality to describe the

dispersal of a water-borne pathogen across a shellfish population. We have

used a lognormal distribution as the basis for our model, informed by experi-

mental data and the literature, and where most of the samples were close in

75

[ 6th June 2017 at 8:47 ]



value to zero cpg. The tail of the distribution (as we defined it in Section 3.3.6)

is the concern from a food safety perspective, and the weight of this tail is

a consequence of the variability across the lognormal distribution of pathogens.

Comparison between the lognormal distribution and another distribution

type is carried out in the next chapter.
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4
L O G N O R M A L V E R S U S T R U N C AT E D N O R M A L

D I S T R I B U T I O N

4.1 introduction

Although the lognormal distribution is the most widely accepted type used to

describe pathogen loads within shellfish populations, the paucity of available

data does not preclude that other distributions may also be valid. Therefore

this chapter considers another distribution type: the truncated normal dis-

tribution. We apply the same or similar model construction techniques (as

used in Chapter 3) to a truncated normal distribution, and compare the results

between it and the results obtained using the lognormal distribution in the

previous Chapter.

The truncated normal distribution has been chosen as it meets the specific

criteria to describe the variability of water-borne pathogens:

(1) all variates must be non-negative;

(2) distribution exhibits a strong, positive skewness;

(3) continuous domain with no upper bound.

The truncated normal distribution is a variant of the normal distribution, with

the difference being that (as the name suggests) the domain of the truncated

normal’s PDF is restricted at either a lower or upper bound, or both. For

our modelling needs, we truncate the normal distribution (fully described in
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Section 2.3.1) at a lower bound of zero, thus fulfilling the three requirements

listed above.
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4.2 types of truncated normal distribution

The truncated normal distribution can be configured as one of three different

distribution types:

(1) lower truncated normal (single truncation);

(2) upper truncated normal (single truncation);

(3) upper and lower truncated normal (double truncation).

We are interested in the lower truncated normal type, and this is shown in

Figure 4.1, providing a comparison of the shapes of a normal and a lower

truncated normal distribution1.

Figure 4.1a) shows a normal distribution with mean (and median and mode)

located at x = 3, with standard deviation σ = 2. This distribution evidently

does not meet all three of the requirements to describe water-borne pathogen

variability, as part of its domain is in −∞ < x < 0. This will be the case no

matter the value of the parameters µ and σ (> 0).

However we can be restrict the PDF of the normal distribution to a specific

domain on R in one of the three ways mentioned above using either lower,

upper or both types of domain truncation. Figures 4.1b shows how the shape

of the density function changes when the distribution is truncated at a lower

(x = 0) value 2.

1 These plots have been generated using the ‘msm’ package in “R" software (see Section A.1.2

in Appendix A for the code)
2 The selected lower bound could also have been set at 10, the limit of quantitation of NoV cpg

for PCR
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(a) Normal: x̄ = µ = 3, sd = σ = 2
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(b) Truncated lower at x = 0: µ = 3, sd = σ = 2

Figure 4.1: Plots of normal and truncated normal probability density functions. Plot

(a) shows a normal distribution with mean (and median and mode) located

at x̄ = µ = 3, and standard deviation σ = 2. Plot (b) shows a truncated

normal distribution with the same values of µ = 3 and σ = 2 with a lower

truncation at x = 0

As the total area under the curve of the PDF must be equal to 1 to satisfy the

conditions listed in Section 2.3.1.1, the area of Figure 4.1a in the range [−∞, 0)

(i.e. the area that has been sliced off by the truncation) is proportionally redis-

tributed across the curve in Figure 4.1b in [0,∞].

The peak of the distribution is maintained at the same location before and

after any truncation, i.e. the mode of both the normal and truncated normal

PDFs are located at x = µ, the location parameter of both distribution types.

However, where the mean of the normal distribution was also found at x = µ,

this will not be the case for the truncated distribution.
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4.2.1 Truncated Normal Distribution Definition

Letting PT(x) denote a truncated normal distribution, Johnson & Kotz state

that:

PT(x) =
1

σ
√
2π

exp
{
−(x− µ)2

2σ2

} 1

σ
√
2π

b∫
a

exp
{
−(t− µ)2

2σ2

}
dt

−1

⇒ PT(x) =
1

σ
√
2π

exp
{
−(x− µ)2

2σ2

} [
Φ

(
b− µ

σ

)
−Φ

(
a− µ

σ

)]−1
(4.1)

applicable when a < x < b, where a and b are the respective lower and

upper truncation points of the distribution; otherwise PT(x) = 0 [58, p. 81].

The function Φ (cf. Equation 2.3.1.2) is defined as

Φ(x) =
1

2

[
1+ erf

(
x√
2

)]
. (4.2)

It can be shown that when b =∞
Φ

(
b− µ

σ

)
=
1

2

[
1+ erf

(
b− µ√
2σ

)]
= 1 , (4.3)

and when a = −∞
1

2

[
1+ erf

(
a− µ√
2σ

)]
= 0 . (4.4)

Thus, when a = −∞, b =∞ Equation 4.1 would be equivalent to the general

normal distribution.

The distribution PT(x) has location parameter µ and spread parameter σ.

However, unlike the normal distribution, E(x) 6= µ and V(x) 6= σ2. Definitions

for the mean and variance are derived in Section 4.3.2.1 below.
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4.2.2 Truncator Constant — T

From Equation 4.1, we can define T as the truncator term of a truncated normal

distribution, where

T =

[
Φ

(
b− µ

σ

)
−Φ

(
a− µ

σ

)]
. (4.5)

This allows us to rewrite the PDF of the truncated normal distribution as

⇒ PT(x) =


1

Tσ
√
2π

exp
{

−(x−µ)2

2σ2

}
when a < x < b

0 otherwise .

(4.6)

The value of T is constant for a truncated distribution, and now can be seen as a

component of the normalisation coefficient for a truncated normal distribution.

Referring back to the discussion of Figure 4.1 above, we can now state that the

specific role of T is to redistribute the area of the normal distribution (defined

by X ∼ N
(
µ,σ2

)
) which is outside the domain of the truncation across the

domain a < x < b.
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4.3 truncated normal model construction

Adopting a similar approach to the construction of our lognormal model as

carried out in Section 3.3.2, we assume that the pre-depuration distribution

of NoV loads within a population of shellfish can be reasonably described by

a truncated normal distribution, with a lower truncation point equal to zero

which restricts the domain of the PDF to non-negative values.

4.3.1 Pre-Depuration Truncated Normal Model

We assume the distribution of NoV across a population of shellfish is well

described by a truncated normal population, with a lower truncation point

at zero, so satisfying the third condition listed in Section 4.1. Thus we define

the probability X0 = x0 of a shellfish bearing a NoV load before depuration as

PT(X0 = x0).

First, we carry forward Equation 4.3 to adapt Equation 4.5, allowing us to

define the truncator term T for PT(x0) where a = 0 and b =∞:

1−
1

2

[
1+ erf

(
0− µ0√
2σ0

)]
=
1

2

[
1− erf

(
−µ0√
2σ0

)]
= T . (4.7)

Combining Equations 4.6 and 4.7, the PDF of PT(x0) is defined as

PT(x0) =
1

Tσ0
√
2π

exp
{
−(x0 − µ0)

2

2σ20

}
, (4.8)

where x0 > 0.
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4.3.2 Evolution Of The Depuration Distribution Over Time

As carried out in the previous chapter, we model the effect of depuration

on NoV levels within a population of shellfish, describing the dynamics of

pathogens during depuration by the truncated normal PDF PT(xt), ∀t > 0.

We assume the same exponential decay across time t of individual shellfish

NoV loads as according to Equation 3.11 in Section 3.3.4:

xt = x0 exp{−bt} , (4.9)

where b is the depuration decay rate for the specific depuration processes

being employed. This allows us to develop the PDF for PT(xt) using the same

change of variables process as used in Section 3.3.4.

Again we apply the change of variables for Equation 4.8, shifting from vari-

able x0 to xt as the variate of the distribution. This is achieved by simplification

of the following equation (cf. Equation 3.12):

PT(xt) = PT(x0)
dx0

dxt

⇒ PT(xt) =
exp {bt}

Tσ0
√
2π

exp
{
−(xte

bt − µ0)
2

2σ20

}
(4.10)

As exponential decay of NoV loads occurs across the whole population, then

the location and scale parameters of the PDF will also decay exponentially.

Thus

µt = µ0e
−bt , (4.11)

σt = σ0e
−bt . (4.12)
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This allows Equation 4.10 to be simplified further:

PT(xt) =
ebt

Tσtebt
√
2π

exp
{
(xte

bt − µte
bt)2

2σ2te
2bt

}
⇒ PT(xt) =

1

Tσt
√
2π

exp
{
(xt − µt)

2

2σ2t

}
(4.13)

When x0 > 0, so also will xt > 0; therefore the resulting distribution for xt will

also be of a truncated normal form.

The truncator term T will be impacted by the exponential decay of the

system. For t > 0, T can be rewritten as

T =
1

2

[
1− erf

(
−µte

bt

√
2σtebt

)]
T =

1

2

[
1− erf

(
−µt√
2σt

)]
, (4.14)

as µt = µ0e−bt and σt = σ0e−bt (Equations 4.11 and 4.12). It is apparent that

the value of the truncator T will remain constant, as the ratio of −µt/
√
2σt

will remain constant ∀t > 0.

4.3.2.1 Expected Value of Truncated Normal Distribution

We have stated that the value of the location and scale parameters will decay

in accordance with the depuration decay parameter b. Consideration of how

the mean or expected value of the distribution behaves over time will also be

useful in examining the behaviour of the distribution.

The expected value of x of a truncated normal distribution PT(x) is defined

as

E(x) = µ+ σ
Z
(a−µ
σ

)
−Z

(
b−µ
σ

)
Φ
(
b−µ
σ

)
−Φ

(a−µ
σ

) , (4.15)

where

Z(α) =
1√
2π

exp
−α2

2
, (4.16)
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µ and σ are the location and shape parameters of PT(x), a and b are the lower

and upper bounds of any truncation, and Φ is as defined earlier by Equation

4.2 [58, p. 81].

We have set our lower truncation when a = 0 and, as previously stated,

when b =∞
Φ

(
b− µ

σ

)
= 1 .

We also note that for b =∞,

Z

(
b− µ

σ

)
=

1√
2π

exp
−(b− µ)2

2σ2
= 0 . (4.17)

Incorporating these into Equation 4.15, the expected value of the pre-depuration

distribution PT(x0) can be stated as

ET(x0) = µ0 + σ0
Z
(
−µ0
σ0

)
1−Φ

(
−µ0
σ0

) (4.18)

⇒ ET(x0) = µ0 + σ0

1√
2π

exp
{
−

(−µ0)
2

2σ20

}
1− 1

2

(
1+ erf

(
−µ0√
2σ0

))
⇒ ET(x0) = µ0 + σ0

1√
2π

exp
{
−

(−µ0)
2

2σ20

}
1
2

(
1− erf

(
−µ0√
2σ0

)) . (4.19)

Substituting in µ0 = µte
bt and σ0 = σte

bt derived from Equations 4.11 and

4.12 where appropriate and simplifying:

ET(x0) = µte
bt + σte

bt

1√
2π

exp
{
−

(−µte
bt)2

2(σtebt)2

}
1
2

(
1− erf

(
−µtebt√
2σtebt

))

⇒ ET(x0) = e
bt

µt + σt 1√
2π

exp
{
−

(−µt)
2

2(σt)2

}
1
2

(
1− erf

(
−µt√
2σt

))


⇒ ET(x0)e
−bt = µt + σt

1√
2π

exp
{
−

(−µt)
2

2(σt)2

}
1
2

(
1− erf

(
−µt√
2σt

)) (4.20)
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The righthand side of Equation 4.20 now describes the expected value of

PT(xt), therefore

ET(xt) = ET(x0)e
−bt . (4.21)

Thus the expected value of our truncated normal distribution will also decay

in accordance with our depuration rate b.

4.3.2.2 Variance of Truncated Normal Distribution

Similar methods are applied to obtain the variance (and standard deviation)

of PT(xt). Johnson and Kotz provide a definition of the variance of a truncated

normal distribution [58, p. 83]. Beginning with the pre-depuration distribution,

the variance of PT(x0) is defined as

VT(x0) = σ
2
0

1+ (
a−µ0
σ0

)
Z
(
a−µ0
σ0

)
−
(
b−µ0
σ0

)
Z
(
b−µ0
σ0

)
Φ
(
b−µ0
σ0

)
−Φ

(
a−µ0
σ0

) −

{
Z
(
a−µ0
σ0

)
−Z
(
b−µ0
σ0

)
Φ
(
b−µ0
σ0

)
−Φ

(
a−µ0
σ0

)
}2 . (4.22)

Substituting in Equations 4.3, 4.17 and a = 0 results in

VT (x0) = σ
2
0

1+
(
−µ0
σ0

)
Z
(
−µ0
σ0

)
1−Φ

(
−µ0
σ0

) −

 Z
(
−µ0
σ0

)
1−Φ

(
−µ0
σ0

)

2
 . (4.23)

Previously we have stated that µ0 = µtebt and σ0 = σtebt (cf. Equations 4.11,

4.12). Thus we can state that

−µ0
σ0

=
−µt
σt

, (4.24)

and substitute this result into Equation 4.23 (along with σt = σ0e
−bt). This

provides a definition of the variance of PT(xt), where

VT (xt) = σ
2
t

1+
(
−µt
σt

)
Z
(
−µt
σt

)
1−Φ

(
−µt
σt

) −

 Z
(
−µt
σt

)
1−Φ

(
−µt
σt

)

2


⇒ VT (xt) = σ
2
0e

−2bt

1+
(
−µ0
σ0

)
Z
(
−µ0
σ0

)
1−Φ

(
−µ0
σ0

) −

 Z
(
−µ0
σ0

)
1−Φ

(
−µ0
σ0

)

2
 . (4.25)
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4.3.2.3 Standard Deviation of Truncated Normal Distribution

Generally speaking, standard deviation is often defined as SD(x) =
√
V(x).

Thus we can also state that, from Equation 4.23, the standard deviation of the

pre-depuration distribution is

SDT (x0) = σ0

√√√√√√
1+

(
−µ0
σ0

)
Z
(
−µ0
σ0

)
1−Φ

(
−µ0
σ0

) −

 Z
(
−µ0
σ0

)
1−Φ

(
−µ0
σ0

)

2
 . (4.26)

From Equation 4.25, we can also state that

SDT (xt) = σ0e
−bt

√√√√√√
1+

(
−µ0
σ0

)
Z
(
−µ0
σ0

)
1−Φ

(
−µ0
σ0

) −

 Z
(
−µ0
σ0

)
1−Φ

(
−µ0
σ0

)

2


⇒ SDT (xt) = SDT (x0)e
−bt , (4.27)

Thus the standard deviation of the truncated normal model of depuration also

decays according to the depuration rate parameter b.
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4.4 minimum depuration time — truncated normal model

4.4.1 Inclusion of Control Parameters

As with the lognormal model in Chapter 3, we must incorporate two additional

parameters to our truncated normal model. Section 3.3.6 introduced and

defined these as:

Ψ — NoV load level — below which an individual shellfish is deemed to

not constitute a risk to the consumer;

φ — NoV assurance level — acceptable proportion of the shellfish popula-

tion which has a NoV level below that of Ψ.

These two parameters implement the food safety requirements of legislators

into our model.

Applying these two parameters to constrain a contaminant’s level within a

population of shellfish splits the population into two parts: the body of the

population and the tail. Again following the processes used in Chapter 3, we

define the body of the distribution as

PT(xt < Ψ) =

Ψ∫
0

1

Tσt
√
2π

exp
{
(xt − µt)

2

2σ2t

}
dxt 6 φ , (4.28)

with the required tail defined by Equation 4.28’s complement:

PT(xt > Ψ) = 1−

Ψ∫
0

1

Tσt
√
2π

exp
{
(xt − µt)

2

2σ2t

}
dxt > φ . (4.29)

This can be equivalently stated as

PT(xt > Ψ) =

∞∫
Ψ

1

Tσt
√
2π

exp
{
(xt − µt)

2

2σ2t

}
dxt > φ .
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4.4.2 Minimum Depuration Time

In Section 3.3.7, we were able to obtain an analytical solution to Equation 3.24

for t, allowing us to determine the minimum depuration time required to

attain the assurance level φ. To obtain the minimum depuration time required

to satisfy Equation 4.28 for the truncated normal model here, no analytical

solution for t can be obtained. This is due to the multiple occurrences of time

t within Equation 4.28, and the fact that they cannot be cancelled down to

only one instance of t.

Therefore, numerical solutions must be employed to obtain results regarding

minimum depuration times of the truncated normal model. Computer code

which can be implemented in ‘R’ which obtains numerical solutions for MDT’s

from the truncated normal model is provided by Appendix A.1.4.
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4.5 results

In this section we examine the dynamics of water-borne pathogens within a

shellfish population using the truncated normal model developed above. The

same parameters (where possible and appropriate) that were derived from

the literature in Section 3.4 will be used to inform this model, thus allowing

a more direct comparison of the dynamics of the lognormal and truncated

normal distributions. Any different parameters that are required are obtained

in the next section. We also differentiate between the truncated normal and

lognormal PDFs by subscripts L and T . Thus PT(xt) refers to the truncated

normal distribution and PL(xt) to the lognormal model’s PDF.

4.5.1 Parameterisation of Truncated Normal Model

Only some of the parameters that were used in the lognormal model in Section

3.4 are appropriate for use with the truncated normal model. The values of

the control parameters are set again at Ψ = 200 cpg and φ = 0.95. These are

not dependent upon the distribution type used as the basis for the model. We

can also use the depuration decay rate of b = 0.01339 hr−1 can also be used

from the literature [7], as well as x̄0 = 1064 cpg [2].

Thus, only values for the pre-depuration location (µ0) and scale (σ0) para-

meters of the truncated normal distribution need to be obtained. To carry out

an “apples to apples" comparison between the lognormal model in Chapter

3 and the truncated model in this Chapter, we must use the same or similar

parameters in both distribution types that inform their location and variability

measures. However the values used in the lognormal model are not appropri-
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ate here, as they are both defined specifically for the lognormal model and so

we must find appropriate values for µ0 and σ0 by other methods.

4.5.1.1 Scale Parameter σ0

We can parameterise σ0 for the truncated normal model by assuming that

the variability of both the lognormal and truncated normal models are the

same and based upon our hypothesis of ‘worst case variability’ as described

in Section 3.3.8. In that section we were able to estimate a worst possible

variability parameter as stated in Equation 3.31:

σ0 =
√
2erf−1 (2φ− 1) (4.30)

for the lognormal distribution. Assuming that φ = 0.95, this results in a value

of σ0 = 5.617. This is the scale parameter for the pre-depuration lognormal

distribution; therefore it is not appropriate for our truncated normal model

which does not operate on a log scale.

However we can still use the worst case variability approach to calculate a

value for σ0. Re-defining the left hand side of Equation 4.30 as the lognormal

scale parameter LN-σ0 =
√
2erf−1 (2φ− 1), its result can be used (alongwith

the value of x̄0) to obtain an unlogged value for the scale parameter. This is

obtained from the equation

σ0 = x̄0

√
exp
{
LN-σ20 − 1

}
⇒ σ0 = x̄0

√
exp
{
(
√
2erf−1 (2φ− 1))2 − 1

}
(4.31)

which itself is derived from the equation for the standard deviation of the

lognormal distribution (Equation 3.3).

Thus the value of the scale parameter σ0 can be calculated for the truncated

normal distribution. Assuming a fixed value of x̄0 in our parameterisation, we
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can obtain values for σ0 based on the value of the NoV assurance level φ being

applied. See Table 4.2 for values of σ0 used in this section.

4.5.1.2 Location Parameter µ0

Obtaining an appropriate value of µ0 for our truncated normal model is

more difficult than for our lognormal model. In Section 3.3.2 we stated the

equation relating arithmetic mean to both the location and scale parameters

for a lognormal distribution as

x̄0 = exp
{
µ0 +

1

2
σ20

}
,

for the lognormal distribution. However this equation is not applicable for a

truncated normal distribution.

Equation 4.19 above describes the pre-depuration relationship between arith-

metic mean (expected value) and the location and scale parameters of our

truncated normal distribution, and is reproduced below for ease of reference:

x̄0 = ET(x0) = µ0 + σ0

1√
2π

exp
{
−

(−µ0)
2

2σ20

}
1
2

(
1− erf

(
−µ0√
2σ0

)) . (4.32)

We have values for both x̄0 and σ0 but, due to the error function term on the

denominator containing µ0, we cannot obtain an analytical value solely for µ0.

Again we must turn to numerical approaches to obtain a value for the location

parameter µ0 that is appropriate for our model. The code executed in ‘R’ to

achieve this is included in Section A.1.3 of Appendix A, and pairwise values

for µ0 and σ0 are shown in Table 4.1 for differing values of the NoV assurance

level φ, which drives the worst case variability.

It can be seen in Table 4.1 that, as the variability of the truncated normal

distribution increases (due to increasing the value of φ), we must shift the

value of µ0 further down the number line to maintain an expected value

of ET(x0) = x̄0 = 1064 cpg. If the value of µ0 is outside the domain of the

truncation(s) of the distribution, then the mode of the distribution will be
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NoV assurance level, φ Worst case variability, σ0 Location parameter, µ0

0.90 1467 -312

0.925 1819 -1315

0.95 2496 -3957

0.975 4405 -16209

0.985 5317 -24518

Table 4.1: Table of location and scale parameters applicable to truncated normal

model, developed using worst case variability approach, to maintain an

arithmetic mean value of ET(x0) = x̄0 = 1064 cpg. Coloured row indicates

the parameters used as standard in the Results section below

located at the truncation value closest to µ0. The value of µ0 shown in Table

4.1 used in Figure 4.2a is negative and so outside the domain of the truncated

normal distribution, therefore the mode is found at x0 = 0 cpg. The negative

value of µ0 is a consequence of equation 4.32. Applying the value σ0 = 2496

and x̄0 = 1064 cpg (Table 4.1) in Equation 4.32 provides a numercial solution

value of µ0 = −3957 cpg. Therefore, if we imagine that a normal distribution

with parameters µ0 = −3957 cpg and σ0 = 2496 cpg had not been truncated at

x0 = 0 cpg, we would observe a symmetric, unimodal distribution centred at µ0.

Parameter b x̄0 φ µ0 σ0 Ψ

Value 0.01339 1064
b

0.95 -3957
c

2496
c

200

Table 4.2: Table of parameters applied to truncated normal model, derived from literat-

ure and numerical calculations.

a [7] b [2] c value based on φ = 0.95
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4.5.2 Pre-Depuration: Truncated Normal versus Lognormal Model Comparison

The shape and probability densities for specific NoV ranges of PT(x0) (pre-

depuration distribution using truncated normal), and PL(x0) (pre-depuration

distribution using lognormal) is shown in Figure 4.2a. The plot of PT(x0) has

been constructed using the pre-depuration parameters indicated in Table 4.2.

Figure 4.2b shows the pre-depuration distribution of NoV obtained from

the lognormal model described in Chapter 3. Identical (where appropriate)

parameters were used to allow a close comparison between the pre-depuration

shapes.
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Figure 4.2: Shape parameters are based on x̄0 = 1064 NoV cpg (derived from Lowther

data — Class B, Jan ’11 [2]), φ = 0.95

It is apparent that there is a marked difference between the shapes of the

distributions. The lognormal version exhibits a notable peak away from zero,

whereas the truncated normal version’s maximum is at zero NoV cpg. Note

that the vertical scales of the two plots differ, with the truncated normal plot

exhibiting a greater peak than the lognormal plot.
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More important to observe are the differences in the size areas highlighted

by the different sections under each curve. The legend in each plot’s top right

corner detail the total probability density within each section, and are restated

in Table 4.3 below for easy comparison.

NoV cpg range Truncated Normal Model Lognormal Model Difference

0 < x0 6 200 0.151 0.033 0.118

200 < x0 6 500 0.192 0.067 0.125

500 < x0 6 1000 0.240 0.095 0.145

x0 > 1000 0.417 0.805 -0.388

Table 4.3: Comparison of probability densities within sections between truncated nor-

mal and lognormal pre-depuration distributions

The differences between the values for the models show that, even though

we have employed the same worst case variability approach to inform the

spread of both distributions, the lognormal model’s pre-depuration shape

has a much larger tail density than the truncated normal’s shape. This is

especially highlighted by the densities of both distributions when x0 > 1000.

The lognormal model returns a density 0.388 greater than the truncated normal

in this range. In plainer language, this difference can be interpreted as there

being 38.8% greater likelihood that a randomly sampled shellfish from the

pre-depuration lognormal population will have a NoV count greater than 1000

cpg.

4.5.3 During Depuration: Truncated Normal versus Lognormal Model Comparison

Figure 4.3 shows the dynamics of the truncated normal model at four time

snapshots during depuration — 0, 50, 100, 150 hours, and based on a depura-

tion decay rate for the system of b = 0.01339hr−1. It can be seen that as the
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Figure 4.3: PT(xt) dynamics during depuration, with decay rate b = 0.01339. Main

plot shows probability distributions at t = 0 hrs ( ), t = 50 hrs ( ),

t = 100 hrs (· · · ), t = 150 hours ( · ) using the same parameters and

threshold values as Figure 4.2a. Inset bar plot shows the respective changes

in section probabilities for each time point.

depuration process progresses, there is a marked shift of densities towards

zero, resulting in an increase in the peak’s height at zero.

The behaviour of the lognormal model during depuration using the same

depuration rate is shown in Figure 4.4. In this plot we also observe a shift

towards greater positive skewness and increased peak height close to zero, as

we did with the truncated normal distribution model.

The main feature of these two plots are the barplots included as insets

in both diagrams. The height of each individual bar within each time point

represents the probability density of a particular NoV range, as per the ranges
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Figure 4.4: PL(xt) dynamics during depuration, with decay rate b = 0.01339. Main

plot shows probability distributions at t = 0 hrs ( ), t = 50 hrs ( ),

t = 100 hrs (· · · ), t = 150 hours ( · ) using the same parameters and

threshold values as Figure 4.2b. Inset bar plot shows the respective changes

in section probabilities for each time point.

and grey colours used in Figures 4.2a and 4.2b. The densities for both barplots

are enumerated for comparison in Table 4.4. We again define the body of

a distribution as being the area under its curve which is less than the NoV

assurance level Ψ, i.e. PL/T(xt) < Ψ. Conversely, the tail of the distribution is

reiterated as PL/T(xt) > Ψ. We have set the value of the at Ψ = 200 NoV cpg,

and the assurance level at φ = 0.95 (Table 4.2) The values in Table 4.4 show

that the lognormal model maintains a much larger tail during depuration,

with only 26.8% of its distribution density below 200 NoV cpg even after 150

hours of depuration. The body of the distribution of the truncated normal

model is measured as 0.742 compared to the 0.268 of the lognormal model.

However, even after 150 hours, the density of the body is still less than the
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Time, t 0 hrs 50 hrs 100 hrs 150 hrs

Range Trunc. Log. Diff. Trunc. Log. Diff. Trunc. Log. Diff. Trunc. Log. Diff.

0 < xt 6 200 0.151 0.033 0.118 0.278 0.076 0.202 0.481 0.153 0.328 0.742 0.268 0.474

200 < xt 6 500 0.192 0.067 0.125 0.296 0.115 0.181 0.353 0.167 0.186 0.239 0.207 0.032

500 < xt 6 1000 0.240 0.095 0.145 0.268 0.134 0.134 0.150 0.162 -0.012 0.018 0.165 -0.147

xt > 1000 0.417 0.805 -0.388 0.159 0.675 -0.516 0.016 0.518 -0.502 0.000 0.359 -0.359

Table 4.4: Comparison of probability densities within sections between truncated

normal and lognormal models during the depuration process. Red values

indicate when the lognormal model exhibits a greater probability density for

a particular range and time, with green figures showing when the truncated

normal model has a higher density value

NoV assurance level of 0.95.

These results do provide some insight into a comparison between the

minimum depuration times of the two models, and this is explored in the next

section.

4.5.4 Minimum Depuration Time Comparison

Summarising Section 4.4, we restate that the minimum depuration time of a

particular population of shellfish with individual pathogen loads levels xt is

defined as the solution for time t of

PL/T(xt < Ψ) 6 φ , (4.33)

and applies to the distributions of both models., PL(xt) and PT(xt). The analyt-

ical solution as stated by Equation 3.32 has been used to calculate MDT’s for the

lognormal model, however only numerical methods for the truncated normal

can be used (see Section 4.4.2). The crux of this chapter is the analysis and

comparison of the minimum depuration times between the truncated normal
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Figure 4.5: Plot of NoV load limit Ψ versus minimum depuration time. MDT’s calcu-

lated using parameter values of φ = 0.95, x̄0 = 1064 NoV cpg

and lognormal models constructed in this thesis. We have shown that the

distribution shapes of the two models have significantly different tail values

throughout the depuration process (Section 4.5.3), and understanding what

impact this has on the minimum depuration time required by both models to

achieve the NoV assurance level is critical.

Figure 4.5 plots MDT’s for a range of values of the NoV load limit Ψ. For

all values of Ψ, the MDT of the lognormal model is greater than that of the

truncated normal model, with both plots following a monotonic, decreasing

pattern. Figure 4.6 shows the same information with the notable exception

that the horizontal axis has been transformed to a log-scale.

It is apparent that the MDT’s for both plots follow the same negative, log-
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Figure 4.6: Plot of NoV load limit Ψ versus minimum depuration time (hrs). Note the

log scale used on the horizontal axis. MDT’s calculated using parameter

values of φ = 0.95, x̄0 = 1064 NoV cpg

scale gradient as one another. The equation which describes the MDT for the

lognormal model (Equation 3.32 states

MDTWCV = b−1

[(
erf−1 (2φ− 1)

)2
+ ln

(
x̄0

Ψ

)]
.

This can be rewritten as

MDTWCV = b−1
(
erf−1 (2φ− 1)

)2
+ b−1 ln

(
x̄0

Ψ

)
⇒MDTWCV = b−1

(
erf−1 (2φ− 1)

)2
+ b−1 ln

(
x̄0

Ψ

)
⇒MDTWCV = b−1

(
erf−1 (2φ− 1)

)2
+ b−1 ln (x̄0) − b

−1 ln (Ψ) . (4.34)

Thus MDTWCV depends linearly on ln(Ψ), with a gradient equal to −b−1 and a

y-intercept of b−1
(
erf−1 (2φ− 1)

)2
+ b−1 ln (x̄0).
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Figure 4.6 shows that all MDTs for the truncated normal model are less than

that of the lognormal model. For a NoV load threshold level of Ψ = 200 NoV

cpg, 200 hours depuration time is required by the truncated model, whereas

this is much higher at 225 hours for the lognormal model.
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4.6 discussion

In this chapter we examined the impact of applying a different statistical

distribution other than lognormal as the basis for our depuration model. We

selected a truncated normal distribution, based on the main requirements of

non-negativity and positive skewness, to describe the dispersal of pathogens

across a population of shellfish. The truncated normal distribution is a variant

of the normal distribution, and we showed how a lower, singly-truncated

normal distribution can be derived from the normal or Gaussian type. We then

adopted the same methodology as was used in Chapter 3 in the construction

of a mathematical depuration model based on a truncated normal distribution.

Parameters that had been used with the lognormal model were deployed

within the truncated normal where appropriate, and others which could not be

reused were derived by mathematical means. As previously discussed, there

is a paucity of available data which could inform a reasonable approximation

of the variability of water-borne pathogens across a shellfish population. Thus

the ‘worst case variability’ approach which was developed in Section 3.3.8

demonstrates its worth, as it fills this gap in our parameterisation require-

ments, and so also allows a worst case variability MDT to be calculated for the

truncated normal distribution.

Crucially, the pathogen control parameters Ψ and φ were again incorporated

into our model, allowing us to calculate MDT’s for the truncated normal model.

This allowed us to compare the depuration times between the models, and

we noted that the lognormal model requires greater depuration periods to

achieve the desired NoV assurance levels.
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This is a consequence of the differing shapes described by the two distri-

butions, with the lognormal model exhibiting a significantly “heavier”tail in

comparison with the truncated normal model. More succinctly, the lognormal

model describes a shellfish population that will have a greater number of

individual molluscs with a high pathogen load. This occurs even though the

variability for both models is driven by the same parameter value.

This comparison between lognormal and truncated normal distributions

in our modelling has highlighted an important aspect of pathogen control

for the shellfish industry, especially where NoV is concerned. All evidence in

the literature points towards a lognormal distribution as the best fit shape to

describe pathogen loads across a population of shellfish, and consequentially

there exists the probability of a small number of shellfish with a NoV load

much greater than the rest of the batch being harvested. Our model enforces

a pathogen assurance level φ where, when the value of φ is very close to 1,

provides a greater level of food safety for the consumer; however, this is offset

by the resulting extended depuration times required to achieve the increased

assurance levels.

The consideration of increased food safety versus reasonable implementation

of pathogen mitigation practices would be of primary importance if and when

future legislation was introduced to monitor and control NoV. By using the

lognormal distribution as the basis for our model, and not the truncated

normal distribution, we additionally adopt a more cautious approach with

regards to the MDTs required to conform to Ψ and φ as MDTs for the lognormal

model are greater than those for the truncated normal model (see Figures 4.5

and 4.6).
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5
M O D E L 2 — C O M PA RT M E N TA L O Y S T E R D E P U R AT I O N

M O D E L

5.1 introduction

Chapter 3 introduced a mathematical model of NoV dynamics during depura-

tion founded on two main premises:

1. The pathogen is lognormally distributed across a molluscan population;

2. Each mollusc’s NoV load decayed exponentially at the same rate.

This model is also predicated on the assumption that each mollusc stores

any NoV present in one compartment within its anatomy, namely its digestive

glands. However, some recent studies have shown that molluscs compart-

mentalise NoV loads within biological tracts that are not currently tested for

the presence of NoV. Evidence shows that molluscs internally sequester and

transfer pathogen levels sequentially through their whole digestive system;

passing through their gills, labial palps, mouth, oesophagus and intestines

before reaching their stomach/digestive glands (Figure 5.1)[29, 30].

Special consideration must be made for oysters due to the fact that only their

digestive glands are currently tested for NoV. As previously stated in Chapter

3, only the digestive glands of the oyster are currently tested for NoV using

quantitative PCR assay, and thus only a proportion of the NoV burden present

in an oyster is measured [41, 28], with the rest of the shellfish discarded. This

includes the tract of the oyster’s digestive system which precedes the digestive

105

[ 6th June 2017 at 8:47 ]



glands [15, 73].

Based on this internal sequestration of NoV, we extend the lognormal de-

puration model from Chapter 3 and incorporate this compartmentalisation

of water-borne pathogens within oysters into the model. This facilitates the

development of a description of the dynamics of the compartmentalised patho-

gen loads across a population of oysters. The rest of the chapter examines

the differences between the two modelling approaches, looking at the impact

that the compartmentalised NoV approach would have upon NoV levels and

minimum depuration times. Other implications for testing protocols are also

considered and discussed.
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5.2 oyster specific nov testing limitations

accutor muscle
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Figure 5.1: Digestive system of the oyster species

The most common assay employed for the detection of NoV within shell-

fish is polymerase chain reaction (PCR); however this only quantifies the NoV

load within the digestive glands of the oyster [28]. The digestive glands only

comprise one section of an oyster’s overall digestive system, with the rest of

the oyster unable to be tested for NoV and so are excluded in the PCR test.

This includes the tract of the oyster’s digestive system which precedes the

digestive glands [15, 73]. As these sections of the animal comprise a significant

proportion of the oyster’s digestive system, the possibility exists that they may

contain significant levels of NoV which cannot be measured by the current PCR

assay.

As previously stated, evidence in the literature indicates that pathogens can

be sequestered away from the digestive glands. In 1995, Dore and Lees carried

out experiments analysing depuration effects on FRNA+ bacteriophage (a

common NoV test surrogate) within oysters and mussels. They reported that

107

[ 6th June 2017 at 8:47 ]



FRNA+ bacteriophage was still detected in approximately 60% of the digestive

glands and 40% elsewhere within mussels. Wang carried out a similar study,

analysing the sequestration of NoV in suminoe oysters (Crassostrea ariakensis)

using immunohistochemical analysis [30]. They also reported that significant

NoV levels were discovered out with the digestive glands of the animals.

Therefore, it follows that a mathematical model of NoV dynamics during

depuration should incorporate a presumption of pathogen loads sequestered

out with the digestive gland, and consequentially outwith the capacity of PCR

to quantify any pre-gland NoV burden.
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5.3 experimental depuration data

A study was carried out in 2013 by Dr Anna Neish from the Weymouth labor-

atory of CEFAS, with the aim of determining whether variations in depuration

water temperature and water treatment would have a significant impact upon

the removal rate of NoV from shellfish. The data have been provided by Neish

and presented here with permission [39]. The study compared the effective-

ness of depuration water temperatures of 8
◦C versus 16

◦C, and ultraviolet

radiation versus ozone as disinfectants of depuration tank water. The results

obtained showed that depuration water temperature of 16
◦C was statistically

more effective than water at 8
◦C, although still only showed a slight improve-

ment in NoV levels after 330 hours. The study also noted that ozone did not

significantly improve NoV mitigation compared with the use of ultraviolet

irradiation. In this thesis, we concentrate on an aspect that was not analysed

in great depth in [39], namely the depuration time dependence of NoV levels.

Figure 5.2 shows the data from one of the experiments carried out using

ultraviolet radiation water treatment and tank water with a temperature of

16
◦C. Neish’s data was obtained by carrying out PCR testing of four sets of

10 homogenates of C. gigas, at seven time points across a period of depura-

tion. The first time point was a pre-depuration measure, with the second NoV

sample taken after 42 hours — the minimum depuration time required by

regulation for class B harvested shellfish. Beyond this, samples were taken

at 90, 162, 210, 258 and 330 respectively and PCR quantitative analysis was

carried out on all time samples.

Figure 5.2 shows that an increase between the geometric means of NoV

levels between 0 and 42 hours was recorded by the study for the 16
◦C data.
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Figure 5.2: Plot of during depuration data set. Four homogenates , each com-

prised of ten oysters were tested for genogroup II and NoV loads at

t = 0, 42, 90, 162, 210, 258, 330 hours are shown on the plot as black

points. Red points are geometric means of each time point’s data

This increase can be attributed to an internal transfer of NoV load from a

compartment of the oyster that currently cannot be assayed, into the digestive

glands of the oyster, the only section of the oyster which is currently tested by

PCR.
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5.4 model construction

5.4.1 Internal NoV dynamics

Farm or tank

water
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Figure 5.3: Representation of NoV transit through an oyster’s digestive system during

relaying/depuration

Once an oyster is placed into a depuration tank, any NoV present in the

unmeasurable, pre-gland sections would recommence traversing through the

animal’s digestive system, finally passing into the digestive gland (see Figure

5.3). A compartmental model can be used to describe the flow of NoV through

an oyster’s digestive system. The total NoV count of the oyster at time t is

defined as zt, and is divided into two compartments, xt and yt, where

zt = xt + yt . (5.1)

The compartment labelled xt in Figure 5.3 represents the NoV load within

the section of the oyster’s digestive system which can be currently measured

using PCR assay, referred to as the observable NoV load. The NoV load in

the remaining parts of the animal’s digestive system which are not currently

measured by PCR assay are denoted by yt, also known as the unobservable

NoV load per oyster. We assume that xt and yt, as continuous functions of

time, satisfy a set of differential equations where

dxt

dt
= kyt − bxt , (5.2)
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dyt

dt
= −kyt . (5.3)

Here the parameter k quantifies the internal transfer rate of NoV from the

unobservable compartment into the observable section. The parameter b

describes the rate at which NoV is removed from the digestive gland by

excretion during depuration.

It is assumed that at t = 0, the animal’s total NoV load is split across these two

compartments, with the observable load described by

x0 = Az0 (5.4)

and the unobservable load at t = 0 defined as

y0 = (1−A)z0 , (5.5)

where A determines the proportion of an oyster’s total, initial NoV load (z0)

present in the observable part of the digestive gland, with 0 < A 6 1.

5.4.2 Obtaining Analytic Solutions for Compartmental Model

The first order, homogeneous equations describing the compartmentalisation of

NoV are simple enough to allow analytic solutions to be obtained for Equations

5.1, 5.2 and 5.3. Solutions are obtained below, beginning with Equation 5.3.

5.4.2.1 Analytical Solution for Unobservable NoV Load

Using the method of separation of variables, from

dyt

dt
= −kyt

we obtain

yt = B exp{−kt} , (5.6)
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where B is an arbitrary constant. Setting t = 0 and using the initial condition

of Equation 5.5), we obtain

y0 = B

⇒ B = (1−A)z0 .

Substituting this into Equation 5.6 gives an analytical solution for the unob-

servable compartment yt:

yt = (1−A)z0 exp{−kt} . (5.7)

Rearranging Equation 5.4 as z0 = x0/A and substituting into Equation 5.7

restates yt in terms of the observable NoV load:

yt =
(1−A)

A
x0 exp{−kt} . (5.8)

5.4.2.2 Analytical Solution for Observable NoV Load

The analytical solution for the unobservable load (yt) can be used to obtain an

analytical solution for xt. Substituting Equation 5.8 into Equation 5.2 gives

dxt

dt
=
k(1−A)

A
x0 exp{−kt}− bxt . (5.9)

This is a linear, first-order, ordinary differential equation of the form

dy

dx
+ Py = Q .

This form of differential equation can be solved using the integrating factor

method where an integrating factor I is deployed, with I = exp
{∫
P dx

}
.

The integrating factor for Equation 5.9 is I = exp{bt}, therefore an analytical

solution can obtained by firstly multiplying both sides by exp{bt}:

dxt

dt
. exp{bt} =

k(1−A)

A
x0 exp{−kt}. exp{bt}

⇒ d

dt
(xt. exp{bt}) =

k(1−A)

A
x0 exp{(b− k)t} .
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Integrating both sides with respect to t, we obtain

xt exp{bt} =
k(1−A)

A
x0

∫
exp{(b− k)t} dt

⇒ xt exp{bt} =
k(1−A)

(b− k)A
x0 exp{(b− k)t}+C

⇒ xt =
k(1−A)

(b− k)A
x0 exp{−kt}+C exp{−bt} , (5.10)

where C is the constant of integration of
∫

exp{(b− k)t}dt. To obtain a solution

for C, we let t = 0:

x0 =
k(1−A)

(b− k)A
x0 +C

⇒ C = x0

(
1−

k(1−A)

(b− k)A

)
.

Thus Equation 5.10 can be rewritten as

xt =
k(1−A)

A(b− k)
x0 exp{−kt}+ x0

(
1−

k(1−A)

A(b− k)

)
exp{−bt}

⇒ xt = x0

[
k (1−A)

A(b− k)
exp {−kt}+

(
1−

k(1−A)

A(b− k)

)
exp {−bt}

]
⇒ xt =

x0

A

[
k (1−A)

(b− k)
exp {−kt}+

(Ab− k)

(b− k)
exp {−bt}

]
⇒ xt = x0 Θt , (5.11)

where

Θt = A
−1

[
k (1−A)

(b− k)
exp {−kt}+

(Ab− k)

(b− k)
exp {−bt}

]
, (5.12)

and 0 6 A 6 1, b 6= k.
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5.4.2.3 Analytical Solution for total NoV load

We can now obtain an analytical solution for the total NoV load in an oyster

(zt) by substituting in the solutions for xt and yt into Equation 5.1 which states

that

zt = xt + yt

⇒ zt =
x0
A

[
k (1−A)

(b− k)
exp {−kt}+

(Ab− k)

b− k
exp {−bt}

]
+

(1−A)

A
x0 exp{−kt}

⇒ zt =
x0
A

[(
k (1−A)

(b− k)
+ (1−A)

)
exp{−kt}+

(
Ab− k

b− k

)
exp{−bt}

]
⇒ zt =

x0
A

[(
k−Ak+ (1−A)(b− k)

(b− k)

)
exp{−kt}+

(
Ab− k

b− k

)
exp{−bt}

]
⇒ zt =

x0
A

[(
k−Ak+ b− k−Ab+Ak

(b− k)

)
exp{−kt}+

(
Ab− k

b− k

)
exp{−bt}

]
⇒ zt =

x0
A

[(
b(1−A)

b− k

)
exp{−kt}+

(
Ab− k

b− k

)
exp{−bt}

]
. (5.13)

Using the initial condition that x0 = Az0, we can restate Equation 5.13 as

⇒ zt = z0

[
b (1−A)

(b− k)
exp {−kt}+

(Ab− k)

(b− k)
exp {−bt}

]
⇒ zt = z0Ωt , (5.14)

where

Ωt =

[
b (1−A)

(b− k)
exp {−kt}+

(Ab− k)

(b− k)
exp {−bt}

]
. (5.15)

This solution can also be obtained from the principles of linearity:

zt = xt + yt

⇒ dzt

dt
=
dxt

dt
+
dyt

dt
,

and this is expanded upon in Appendix B.1.1 and shown to hold true and

equal Equations 5.14 and 5.15.
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5.4.3 NoV Transfer Rates Constraint

Solutions to Equations 5.1, 5.2 and 5.3 have been obtained above using the

initial conditions x0 = Az0 and y0 = (1−A)z0. These solutions are collated

here:

xt = x0Θt , (5.16)

yt = y0 exp{−kt} , (5.17)

zt = z0Ωt , (5.18)

where

Θt = A
−1

[
k (1−A)

(b− k)
exp {−kt}+

(Ab− k)

(b− k)
exp {−bt}

]
, (5.19)

and

Ωt =

[
b (1−A)

(b− k)
exp {−kt}+

(Ab− k)

(b− k)
exp {−bt}

]
(5.20)

with b 6= k and 0 < A 6 1.

We have previously stated that NoV selectively binds to the digestive gland

of molluscs (xt). If k, the internal transfer rate of NoV from yt to xt, was less

than the excretion/depuration rate b, then the observable compartment xt

would only act as a conduit for the purging of viral loads from yt. Thus there

would be no accumulation of NoV in the observable compartment, which is

contrary to literature findings [42, 74, 40]. Conversely, if b < k then the outflow

of NoV from the observable compartment xt would be greater than the inflow

from yt. Therefore declaring that b < k realistically describes the selective

accumulation of NoV within the xt compartment.
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5.4.4 Equilibrium of System

We now consider the equilibrium of the system of Equations 6.15 and 6.16.

Setting Equations 6.15 and 6.16 to equilibrium (i.e. that there is no change to

either of xt and xt as time progresses) gives

dyt

dt
= −kyt = 0

dxt

dt
= kyt − bxt = 0 . (5.21)

From Equation 5.21 we see that, at equilibrium, kyt = bxt ⇒ yt
xt

= b
k . A is

defined as the proportion of observable (xt) NoV to the total (zt = xt + yt) NoV

load within a shellfish, therefore

A =
xt

xt + yt
=

1

1+ yt
xt

⇒ A =
1

1+ b
k

⇒ A =
k

k+ b
. (5.22)

Therefore, at equilibrium, the magnitude of the observable NoV load A can

be estimated using the internal transfer rate k and the depuration rate b.

5.4.5 Probability Distributions of x0 and z0

Equations 5.16 — 5.20 provide a description of the depuration dynamics of

NoV within a single mollusc. As with the model of NoV dynamics described

in Chapter 3, we must apply these equations across a whole population of

shellfish to realistically understand and model the depuration process. For

simplicity we assume that all variability in the system is associated with the

total initial NoV loads, Z0, and that A is fixed across the population. The
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distribution of initial observable NoV loads is denoted by X0 = AZ0, and is

given by

P(X0 = x0) = A
−1 P(Z0 = z0) . (5.23)

As in Chapter 3, we assume that the loads of NoV across a population of

molluscs can be well described by a log normal distribution, with the PDF of

observable NoV load described by:

P(x0) =
1

x0σ0
√
2π

exp
{
−(ln (x0) − µ0)

2

2σ20

}
. (5.24)

Thus, the probability distribution of total NoV loads for a population at pre-

depuration can be derived from Equations 5.24 and 5.23:

P(z0) = A P(x0)

⇒ P(z0) =
A

x0σ0
√
2π

exp
{
−(ln (x0) − µ0)

2

2σ20

}
.

Substituting in x0 = Az0 from Equation 5.4 and simplifying obtains

P(z0) =
1

z0σ0
√
2π

exp
{
−(ln (Az0) − µ0)

2

2σ20

}
. (5.25)

5.4.6 Probability Distributions of xt and zt

Equations 5.24 and 5.25 describe the pre-depuration distributions of the ob-

servable and total NoV loads respectively. The relationship between the pre-

depuration and during depuration variables for the observable and total

NoV loads in a single oyster are defined by Equations 5.16 and 5.18, where

xt = x0Θt and zt = z0Ωt. As carried out in Section 3.3.4, these equations can

be used to change the variables of Equations 5.24 and 5.25, so to provide PDF’s

for any time t > 0 during depuration.
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Beginning with the observable NoV loads, we state the relationship between

P(x0) and P(xt) as

P(x0)dx0 = P(xt)dxt

⇒ P(xt) = P(x0)
dx0

dxt
. (5.26)

To obtain a term for dx0/dxt, we use Equation 5.16:

xt = x0Θt

⇒ dxt

dx0
= Θt

⇒ dx0

dxt
=
1

Θt
.

Substituting this and Equation 5.24 into Equation 5.26 gives

P(xt) =
1

Θtx0σ0
√
2π

exp
{
−(ln (x0) − µ0)

2 /2σ20
}

. (5.27)

Rewriting Equation 5.16 as x0 = xt/Θt, and substituting into Equation 5.27

then simplifying provides the description of the depuration distribution for

all t > 0:

P(xt) =
1

Θtx0σ0
√
2π

exp
{
−(ln (x0) − µ0)

2 /2σ20
}

⇒ P(xt) =
Θt

Θtxtσ0
√
2π

exp
{
−

(
ln
(
xt

Θt

)
− µ0

)2
/2σ20

}
⇒ P(xt) =

1

xtσ0
√
2π

exp
{
−

(
ln
(
xt

Θt

)
− µ0

)2
/2σ20

}
. (5.28)

Thus Equation 5.28 (along with the definition of Θt in Equation 5.19) describes

the distribution of the compartmentalised observable NoV loads before and

during the depuration process.

The same process is used to obtain an equation for P(zt), the distribution

of the total NoV load across a population of shellfish. The description of the

relationship between P(z0) and P(zt) defined by

P(z0)dz0 = dztP(zt)

⇒ P(zt) =
dz0

dzt
P(z0) . (5.29)
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The derivative of Equation 5.18 is obtained:

zt = z0Ωt

⇒ dzt

dz0
= Ωt

⇒ dz0

dzt
=
1

Ωt

, (5.30)

and substituted into Equation 5.29, along with z0 = zt/Ωt:

P(zt) =
1

Ωtz0σ0
√
2π

exp
{
−(ln (Az0) − µ0)

2 /2σ20
}
)

⇒ P(zt) =
Ωt

Ωtztσ0
√
2π

exp
{
−

(
ln
(
Azt

Ωt

)
− µ0

)2
/2σ20

}
⇒ P(zt) =

1

ztσ0
√
2π

exp
{
−

(
ln
(
Azt

Ωt

)
− µ0

)2
/2σ20

}
. (5.31)

Thus Equation 5.31 describes the distribution of the total NoV load before and

during the depuration process.

5.4.7 Minimum Depuration Times

In Chapter 3, two control parameters were applied to ensure the depuration

process was successful from a food safety viewpoint:

i) Ψ — a NoV threshold value in copies per gram (cpg);

ii) φ — an acceptable proportion of oysters with NoV loads less than Ψ.

Figure 5.4 shows how the value of Ψ splits the distribution into 2 sections: the

area shown in green represents the proportion of shellfish whose NoV load is

below the value of Ψ. The red area indicates the proportion of the population

who still have pathogen loads above Ψ, with this tail of the distribution

continuing on to infinity. Therefore, we can quantify the value of φ with

regards to the observable and total NoV loads during depuration in terms of

120

[ 6th June 2017 at 8:47 ]



0 Ψ

P
ro

ba
bi

lit
y 

D
en

si
ty

NoV Load (cpg)

(a)
(b)

Figure 5.4: Generic plot of NoV distribution at some time t during depuration. Ψ

is the NoV threshold limit, (a) represents the proportion of shellfish in a

population whose NoV loads are within Ψ, and (b) indicates the proportion

of shellfish whose pathogen loads are still above this threshold limit

Equations 5.28 and 5.31 by calculating the area under the distribution curve

that equates to φ:

P(xt < Ψ) =

Ψ∫
0

1

xtσ0
√
2π

exp

{
−
(
ln
(
xt
Θ

)
− µ0

)2
2σ20

}
dxt = φ (5.32)

and

P(zt < Ψ) =

Ψ∫
0

1

ztσ0
√
2π

exp


−
(

ln
(
Azt
Ω

)
− µ0

)2
2σ20

dxt = φ . (5.33)

Equations 5.32 and 5.33 cannot be satisfied simultaneously. Each will equal φ

after a different time t, dependent upon the value of A which determines the

proportions of pathogens within the observable and unobservable compart-
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ments.

The integrals of Equations 5.32 and 5.33 will be less than or equal to φ only

after a specific depuration time t. This time was previously defined as the

minimum depuration time required to conform to both of the constraints Ψ

and φ, and in Chapter 3, an analytical solution to P(xt < Ψ) = φ was obtained

in terms of the minimum depuration time (TWCV ); however both Equations

5.32 and 5.33 are more complex equations with regards to instances of the

time term t, and may not allow analytical solutions for t to be obtained. The

variables Θt and Ωt (Equations 5.19 and 5.20) are both in the generic form

Θt,Ωt = [m exp {−kt}+n exp {−bt}] , (5.34)

where m,n ∈ R. This cannot be analytically solved for t, therefore analytical

solutions for both P(xt < Ψ) = φ and P(zt < Ψ) = φ in terms of time t cannot

be obtained. Calculating minimum depuration times for the observable and

total NoV loads from Equations 5.32 and 5.33 would need to be carried out

using numerical methods.

5.4.8 Variability Estimation

We have previously stated that obtaining parameter estimates for the variability

of pathogens across a population of shellfish is costly and time-consuming

[39]. To deal with this difficulty, in Section 3.3.8 we established a worst case

approach to estimating the variability for the exponential model. This was

based on deriving a solution for time t to Equation 3.24, with this equation

restated here:

P(xt < Ψ) =

Ψ∫
0

1

xtσ0
√
2π

exp{−(ln(xt) + bt− µ0)2/2σ20} dxt = φ . (5.35)

122

[ 6th June 2017 at 8:47 ]



Solving this for t provided a formula for calculating the minimum depuration

time required to ensure that a proportion φ of the shellfish population being

depurated had NoV loads less than a threshold level of Ψ cpg. The solution for

the minimum depuration time from Equation 5.35 is

t (µ0,σ0) = b−1
(√
2 σ0 erf

−1 (2φ− 1) − ln(Ψ) + µ0
)

. (5.36)

Substituting in the equation which relates the location and shape parameters

of the lognormal distribution to its mean

µ0 = ln(x̄0) −
1

2
σ20 , (5.37)

allowed us to restate t as a convex quadratic equation in terms of σ0:

T(σ0) = b
−1

[
−
1

2
σ20 +

√
2erf−1 (2φ− 1)σ0 + ln

(
x̄0

Ψ

)]
, (5.38)

which is maximised when

⇒ σ0 =
√
2erf−1 (2φ− 1) . (5.39)

However, we cannot assume that this description of worst case variability is

applicable for the compartmental model derived in this chapter, so must look

at a more general form of Equation 5.36 for any probability density function.

This can be generally stated for the exponential model from Chapter 3 as

P(xt < Ψ) =

Ψ∫
0

P(xt) dxt = φ .

This general approach can be used for both the observable (P(xt < Ψ)) and

total (P(zt < Ψ)), carried forward from Equations 5.32 and 5.33.

These two equations can be generalised as

P(st < Ψ) =

Ψ∫
0

1

stσ0
√
2π

exp{−(ln(st) + g (t) − µ0)2/2σ20} dst = φ , (5.40)
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where g(t) is some function of time t, and st is either xt or zt. For the ex-

ponential model’s P(xt < Ψ) described by Equation 5.35, it is apparent that

g (t) = bt. For the observable and total loads described in this chapter,

g (t) = − ln (Θt) (5.41)

g (t) = ln (A) − ln (Ωt) (5.42)

respectively.

We now carry out the same steps as applied in Section 3.3.8 to obtain a

solution for t, the minimum depuration time:

Ψ∫
0

1

stσ0
√
2π

exp{−(ln(st) + g (t) − µ0)2/2σ20} dst = φ

substituting in u = ln(st) and dst = st du gives

ln(Ψ)∫
−∞

1

σ0
√
2π

exp{−(u+ g(t) − µ0)
2/2σ20} du = φ .

A second substitution of z = (u+ g (t) − µ0)/
√
2σ0 and du =

√
2σ0 dz , plus

application of the symmetry of the standard, normal distribution results in

1

π

D∫
−∞

exp{−z2} dz = φ

⇒ 1

π

D∫
0

exp{−z2} dz = φ−
1

2
, (5.43)

where

D = (ln(Ψ) + g (t) − µ0)/
√
2σ0 .
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Multiplying both sides of Equation 5.43 by 2 and applying the definition of

the error function (cf. Equation 3.26) provides

2

π

D∫
0

exp{−z2} dz = 2φ− 1

⇒ erf (D) = 2φ− 1

⇒ D = erf−1 (2φ− 1)

⇒ ln(Ψ) + g (t) − µ0 =
√
2σ0erf−1 (2φ− 1)

⇒ g (t) =
√
2σ0erf−1 (2φ− 1) − ln(Ψ) + µ0 . (5.44)

A final substitution of Equation 5.37 into Equation 5.44 yields

g (t) = −
1

2
σ20 +

√
2σ0erf−1 (2φ− 1) − ln(Ψ) + ln(x̄0) .

This equation needs to be solved for t to obtain the minimum depuration time.

For g (t) = bt (as in Chapter 3) this can be solved numerically, however neither

of Equations 5.41 or 5.42 allow an analytical solution for g (t).

We are still able to find the worst case scenario variability for σ0 as follows.

The general equation for g(t) is maximised (as it is in convex quadratic form

with respect to σ0) when ∂g(t)/∂σ0 = 0:

∂g(t)

∂σ0
= −σ0 +

√
2erf−1 (2φ− 1)

⇒ −σ0 +
√
2erf−1 (2φ− 1) = 0

⇒ σ0 =
√
2erf−1 (2φ− 1) . (5.45)

Therefore this equation describes the worst case variability, regardless of g(t).

Thus the description of the worst case variability for the exponential model in

Chapter 3 immediately translates to the compartmental model for both xt and

zt.
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5.4.9 Arithmetic Means of P(xt) and P(zt)

We can consider a different approach to calculating minimum depuration times

required to meet the two constraints φ and Ψ. In Chapter 3 it was discussed

that the current testing protocols for NoV are carried out on homogenates of

10 oysters, and so provide arithmetic means of testing samples NoV burdens.

The equation to calculate minimum depuration time (Equation 3.32) applies

the arithmetic mean (x̄0) to inform the initial NoV distributions measure of

location. The variability described by Equation 3.31 provides the worst case

scenario with regards to the measure of spread of the initial distribution, σ0,

and this is solely a function of the assurance level φ.

Using this same approach allows us to obtain initial values of µ0 and σ0 for

our observable and total NoV distributions. We have already stated that only

numerical methods will provide solutions for t from Equations 5.32 and 5.33;

however if we consider how the arithmetic means of the total and observable

distributions behave over time, then we will be able to obtain similarly robust

estimates for minimum depuration times.

In Section 3.3.5 of Chapter 3, we stated that the arithmetic mean of a

lognormal distribution is defined as

x̄ = exp
{
µ+

σ2

2

}
. (5.46)

We compared the PDF of P(xt) (Equation 3.15) with that of the PDF of P(x0), and

equated the components which performed the Z-score correction, to obtain

values of µt and σt. Applying the same comparison between P(x0) and P(xt)

we obtain

µt = µ0 + ln(Θt)

σt = σ0 .
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We substitute these two equations into Equation 5.46 to obtain x̄t:

x̄t = exp
{
µt +

σ2t
2

}
⇒ x̄t = exp

{
µ0 + ln(Θt) +

σ20
2

}
⇒ x̄t = exp

{
µ0 +

σ20
2

}
Θt .

It follows that the arithmetic mean for any time t for the observable NoV load

is described by

x̄t = Θtx̄0 . (5.47)

Similarly, the arithmetic mean of the total NoV load P(zt) can be derived from

its definitions of µt and σt

µt = µ0 + ln(Ωt)

σt = σ0 ,

thus providing an equation for the mean of the total NoV load during depura-

tion:

z̄t = Ωtz̄0 . (5.48)

5.4.10 Salient Depuration Timescales

The inclusion of an unobservable compartment of NoV within our model infers

that the minimum depuration time for the total NoV load model must be

greater than that derived in Chapter 3. Although xt is observable, zt (> xt) is

what constitutes the risk to the consumer. Hence, depuration must be aimed at

the total NoV load zt and not only xt. Therefore it is important to understand

and be able to calculate this increase in depuration time by taking into account

the initial, unobservable loads.

Examining the behaviour of the means of the observable (x̄t) and total (z̄t)

NoV loads as shown in Figure 5.5, it is apparent that some time must elapse
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in depuration before the total NoV load (z̄t) decays to equal the value of

the initial, observable NoV load (x̄0). Note also in Figure 5.5 that x̄t begins to

closely approximate z̄t after a significant time period in depuration; both of

these times will depend on the levels of NoV that are observable in relation to

the total NoV burden i.e. both times will be dependent upon the value of the

parameter A.
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Figure 5.5: Generic plot of behaviour of arithmetic means of NoV loads within com-

partments x̄t, ȳt, z̄t

5.4.10.1 Salient Depuration Times Summary

In the above sections, we have compared the decay dynamics of the mean

observable and mean total NoV loads along with the behaviour of the mean

NoV loads from the exponential decay model described in Chapter 3. From
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these comparisons, four salient depuration time points have been identified

and mathematical descriptions have been obtained:

τ1 — Mean total pathogen load has decayed to match initial, mean, observ-

able load

τ2 — Mean unobservable load has reduced to insignificant level

τ3 — Mean observable load has exponentially decayed to equal mean, NoV

threshold value

τ4 — Mean total load has decayed to equal mean NoV threshold value

The more significant of these four times are τ3 and τ4, as these describe the

minimum depuration times of the exponential model and compartmental

models, and the difference between these times would have significant food

safety implications, dependent on the value of A. If τ4 is significantly greater

than τ3 then there exists an increased likelihood of allowing oysters with larger

than expected NoV loads to the market.

5.4.10.2 τ1 : when z̄t equals x̄0

Figure 5.6 shows that at some time point during depuration (τ1), the total NoV

count (z̄t) will have decayed sufficiently to equal the initial, observable NoV

count (x̄0), and this occurs when

z̄τ1 = x̄0 . (5.49)

Equations 5.47 and 5.48 state that z̄t = Ωtz̄0 and Az̄0 = x̄0. These are used to

restate Equation 5.49:

z̄τ1 = x̄0

⇒ Ωτ1 z̄0 = x̄0

⇒ Ωτ1 z̄0 = Az̄0

⇒ Ωτ1 = A . (5.50)

129

[ 6th June 2017 at 8:47 ]



As previously shown in Section 5.4.7, Ωt does not afford an analytic solution,

but can be solved numerically for τ1 using Equation 5.50.
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Figure 5.6: Generic plot showing instances of τ1 and τ2

5.4.10.3 τ2 : when x̄t converges to z̄t

When both t > 0 and A 6= 1, the observable NoV load and total NoV load will

approach but never reach a convergence of values. However, we can identify

a time during depuration at which they will have reached an approximate

convergence (see Figure 5.6). This will occur at time τ2, when a substantial

enough proportion of the initial, unobservable NoV load (y0) has migrated to or

through the animal’s NoV-measurable digestive gland (xt) and has either been

excreted by the animal, or is currently located there. Labelling this sufficient

proportion as p (where p ≈ 1) allows us to calculate when τ2 occurs, i.e. when

ȳτ2 = (1− p)ȳ0 . (5.51)
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This can be simplified for τ2 using ȳτ2 = ȳ0 exp {−kτ2}:

ȳτ2 = (1− p)ȳ0

⇒ ȳ0 exp {−kτ2} = (1− p)ȳ0

⇒ exp {−kτ2} = (1− p)

⇒ −kτ2 = ln(1− p)

τ2 = −
1

k
ln {1− p} . (5.52)

When 0 6 t < τ2, the mean observable NoV load x̄t is notably less than the

mean total NoV load z̄t, with the difference decreasing as t→ τ2. When t > τ2

and p ≈ 1, the NoV load in the unobservable compartment (yt) becomes

negligible and so x̄t approximates z̄t. At this point, the decay rates for both

the observable and total NoV loads equalise.

5.4.10.4 τ3 : Minimum Depuration Time of x̄t From Exponential Model

In Chapter 3, minimum depuration times for populations of shellfish were

calculated using Equation 3.32, which is restated below:

TWCV = b−1

[(
erf−1 (2φ− 1)

)2
+ ln

(
x̄0

Ψ

)]
. (5.53)

Figure 5.7 shows the decay dynamics of x̄t and z̄t, this time including the

individual, exponential decay of the mean observable NoV load according to

the model described in Chapter 3, where

x̄t = x̄0 exp {−bt} . (5.54)

Adopting this same approach allows us to calculate τ3, the minimum depura-

tion time of the observable load (i.e. ignoring the impact of any unobservable

NoV within the shellfish) as

τ3 = b
−1

[(
erf−1 (2φ− 1)

)2
+ ln
{
x̄0

Ψ

}]
, (5.55)

where Ψ and φ are the NoV load limit and NoV assurance level applied to the

depuration system respectively.
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Therefore τ3 is the minimum depuration time required to achieve the NoV

threshold without accounting for any unobservable compartments (when

A = 1), and as such

τ3 = TWCV ,

with TWCV described by Equation 3.32 in Chapter 3.
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Figure 5.7: Generic plot showing occurrences of τ2, τ3 and τ4

5.4.10.5 Arithmetic Mean of Distribution Satisfying Ψ and φ Control Parameters

As previously discussed, we cannot obtain analytical solutions for the MDTs

of the distributions described by Equations 5.32 and 5.33 (cf. Section 5.4.7).

Other than numerical solutions for time t of these two equations, we could

potentially compare arithmetic means of these distributions with the mean

value of a lognormal PDF that satisfies the control parameters Ψ and φ (and

so would not require further depuration time). This can then be used as the
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benchmark value that both x̄t and z̄t would be required to achieve the MDT.

In Section 5.4.9 we derived definitions for x̄t and z̄t (Equations 5.47 and

5.48), the arithmetic means of the PDFs that describe the distributions of the

observable and total NoV loads during depuration. Therefore, we must obtain a

definition for the arithmetic mean of a lognormal PDF that satisfies the control

parameters Ψ and φ to allow us to use Equations 5.47 and 5.48 to determine

MDTs.

Note that to allow this comparison, we must hold the variability constant

across the PDFs being compared. Thus we must apply a consistent value of φ

to allow calculation of τ4, the minimum depuration time of the total NoV load.

To achieve this, we initially consider the PDF from Chapter 3 which was

used to calculate τ3 in the previous section. The location and scale parameters

of that PDF are described by Equations 3.17 and 3.18 in Chapter 3, which state

that

σt = σ0 (5.56)

and that

µt = µ0 − bt . (5.57)

Combining these with Equation 5.46 (x̄ = exp {µ+ σ2/2} cf. Section 5.4.9) we

calculated the appropriate mean NoV load of the distribution at time t that

conforms to the constraints Ψ and φ.

This was carried out in Section 3.3.5, however we are interested in calculating

the mean of the distribution at time τ3 as shown in Figure 5.7. To do so, we
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require the location and spread parameters of the distribution at time τ3.

Commencing from Equation 5.57, and restating this for τ3 gives

µτ3 = µ0 − bτ3 .

Substituting in Equation 5.55 obtains

µτ3 = µ0 −
b

b

[(
erf−1 (2φ− 1)

)2
+ ln
{
x̄0

Ψ

}]
⇒ µτ3 = µ0 −

[(
erf−1 (2φ− 1)

)2
+ ln
{
x̄0

Ψ

}]
⇒ µτ3 = µ0 −

(
erf−1 (2φ− 1)

)2
− ln
{
x̄0

Ψ

}
⇒ µτ3 = µ0 −

(
erf−1 (2φ− 1)

)2
− ln (x̄0) + ln (Ψ) . (5.58)

Equations 5.56 states that σt = σ0. This holds true for the model in Chapter 3,

as well as the observable and total load PDFs in this chapter. Equation 5.45 in

Section 5.4.8 states that the worst case variability for both the observable and

total NoV loads is described by

σt = σ0 =
√
2erf−1(2φ− 1) . (5.59)

This can be permuted to aid simplification of Equation 5.58:

σ20 =
(√
2erf−1(2φ− 1)

)2
⇒ σ20 = 2

(
erf−1 (2φ− 1)

)2
⇒ 1

2
σ20 =

(
erf−1 (2φ− 1)

)2 . (5.60)

Substituting this into Equation 5.58 gives

µτ3 = µ0 −
1

2
σ20 − ln (x̄0) + ln (Ψ) . (5.61)

This equation can be simplified further yet by considering Equation 5.46 which

states that

x̄0 = exp
{
µ0 +

σ20
2

}
.
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Taking natural logs on both sides of this equation yields

ln (x̄0) = µ0 +
1

2
σ20 , (5.62)

which can be substituted into Equation 5.61:

µτ3 = µ0 −
1

2
σ20 − µ0 −

1

2
σ20 + ln (Ψ)

⇒ µτ3 = ln (Ψ) − σ20 . (5.63)

As it has previously been shown that exponential decay of individual NoV

loads due to depuration does not impact the magnitude of a lognormal

distribution’s scale parameter σ (see Equation 5.56), we can state that the value

of σ at time τ3 is

στ3 = σ0 . (5.64)

Finally, we can substitute Equations 5.63 and 5.64 into the definition of the

arithmetic mean of the lognormal distribution (Equation 5.46); doing so will

provide an equation for the arithmetic mean of the lognormally distributed

NoV burden across a shellfish population that has conformed to the constraints

φ and Ψ:

x̄τ3 = exp
{
µτ3 +

1

2
σ2τ3

}
⇒ x̄τ3 = exp

{
ln (Ψ) − σ20 +

1

2
σ20

}
⇒ x̄τ3 = Ψ exp

{
−
1

2
σ20

}
(5.65)

This equation describes the average NoV load required to conform to the

constraints φ and Ψ, and is redesignated as

Ψ = Ψ exp
{
−
1

2
σ20

}
(5.66)

where σ0 =
√
2erf−1(2φ− 1) from Equation 5.59.

This describes the arithmetic mean of the distribution of NoV that satisfies

the control parameters Ψ and φ as per the model in Chapter 3. This term
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is shown in Figure 5.7 as the target mean NoV load to be attained via the

depuration process. Note that Figure 5.7 also shows that Ψ can be stated as

Ψ = x̄0 exp {−bτ3} . (5.67)

5.4.10.6 τ4 : Minimum Depuration Time of z̄t

Equation 5.48 states that the mean total pathogen load for any time t can be

calculated from z̄t = Ωtz̄0, while Figure 5.7 shows the dynamics of the mean

observable and mean total pathogen loads during depuration. From this plot

and Equation 5.48, we can state that the minimum depuration time of the total

NoV load for a population (here designated as τ4) will occur when

z̄τ4 = Ψ . (5.68)

Equations 5.48 and 5.66 can be substituted in to obtain

Ωτ4 z̄0 = Ψ exp
{
−
1

2
σ20

}
⇒ Ωτ4 =

Ψ

z̄0
exp
{
−
1

2
σ20

}
. (5.69)

Here Ωτ4 is a function of the mean, total NoV load’s minimum depuration

time (τ4). We have previously shown that analytical solutions for Ωt are not

attainable, therefore numerical methods must be used to obtain values for τ4.

The value of τ4 obtained from Equation 5.69 is the minimum depuration

time of the shellfish population, taking into account the unobserved and

observed NoV loads.

5.4.11 Minimum Depuration Time — Compartmental vs Exponential Decay Model

The compartmental model developed in this Chapter is based on the assump-

tion that the total NoV load per shellfish is always at least equal to or greater
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than the observable NoV load, i.e. zt > xt. These values are equal only when

A = 1, i.e. when there is no unobservable load present. The proportion of the

observable load present is described by the parameter A, and this value is

fixed across the population of shellfish being depurated; this allows us to state

that the mean of the total load will also at least always be equal to or greater

than that of the mean of the observable load. It follows that the minimum

depuration time of z̄t will also at least always be equal to or greater than that

for x̄t.

The magnitude of τ4 − τ3 corresponds to the additional depuration time

required to conform to the constraints Ψ and φ, by taking into account the

compartmentalisation of NoV within the observable and unobservable com-

partments, and is further analysed below.
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5.5 results

The compartmental model constructed in this Chapter is posited on the hypo-

thesis that there exists an unobservable tranche of NoV within each shellfish

that is not captured by current testing methods. Therefore in this section we

compare the behaviour of the compartmental model from this Chapter with

that of the depuration model constructed in Chapter 3. We compare the initial,

pre-depuration distribution shapes for both models and go on to examine how

they behave during depuration.

We are also interested in the early pathogen dynamics during depuration,

as any unobservable NoV load in each shellfish will have begun to traverse

into the observable compartment according to the internal transfer rate k.

The sensitivity of the parameters used in the compartmental model is also

analysed. Finally, and most importantly, the value of the total NoV load’s

minimum depuration time, τ4, is compared with that of the depuration model

τ3.
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5.5.1 Parameterisation of Compartmental Model

Parameter Literature Regression Parameter value Impacts

value value c applied time:

A N/A 0.461 0.461 τ1, τ4

b 0.01339
a

0.00398 0.01339 τ1, τ3, τ4

k N/A 0.07453 0.07453 τ1, τ2, τ4

x̄0 1064
b

191245 1064 τ3,τ4

φ 0.95 N/A 0.95 τ3, τ4

µ0 5.617 N/A 5.617 τ3, τ4

σ0 1.645 N/A 1.645 τ3, τ4

Ψ 200 N/A 200 τ3, τ4

p N/A N/A 0.99 τ2

Table 5.1: Table of parameters and values derived from literature and

non-linear least squares regression. The salient times impacted

by changes in parameters values are also noted.

a [7] b [2] c All values obtained from Neish data using ’nls’ function in R

[39]

In Chapter 3, the depuration model was parameterised from the literature

[7, 75] and available data (Appendix C). The compartmental model has been

constructed on the foundation of the depuration model, with the additional

assumption that each oyster has a proportion of pathogen that is not observed

by current testing. The magnitude of this observable proportion (A) fixed

across the population of oysters is currently unknown, due to the fact that the

unobservable compartment is currently ‘unobservable’.
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An internal transfer rate from the unobservable to observable compartments

has also been incorporated into the model, with this transfer rate previously

designated as the parameter k. Again, there is no experimental data that has

previously informed a value of this internal transfer rate. Therefore, other

methods must be deployed to derive estimates of these two parameters.
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Figure 5.8: Plot of x̄t highlighted by ( ), and z̄t highlighted by ( ), fitted to

t = 0 and t = 320 Neish data shown in Figure 5.2. Parameters used are

A = 0.461, φ = 0.95, k = 0.07453, b = 0.01339

Parameter value estimates for A and k have been derived from the data

provided by Neish’s experiments carried out in 2013 and which were previ-

ously shown in Figure 5.2 [39]. Parameter estimation was carried out using

non-linear least squares regression on the Neish data using the software pack-

age R, and specifically the ‘nls’ command from the ‘stats’ software package for

R. This code is provided in full in Appendix A.1.5, with parameters obtained
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from the data shown in Table 5.1. These regression parameters are displayed

alongside the parameters carried over from literature in Chapter 3. Where

parameter values are obtained from both the literature and regression, the

literature parameters have been used in the following results.

The regression derived value of x̄0 shown in Table 5.1 is significantly greater

than that of the value of x̄0 deployed in Chapter 3. This is due to the regression

value being derived from the artificially seeded oyster samples, which were

exposed to artificially high levels of effluence before depuration to ensure that

all samples would return NoV test result values above the limit of quantitation

(10 NoV cpg).

Values of the parameter estimates b = 0.01339 and k = 0.07553 (cf. Table

6.2) allow us to also obtain a value for A using Equation 5.22 of A = 0.848.

Note that this value of A is greater than that obtained from the data sup-

plied by Neish [39], where a value of A = 0.461 was obtained using regression

techniques on time series of depuration data. The data used to obtain the re-

gression value of Awas noisy and based on the geometric mean value obtained

from samples of only 4 measurements for each time point measured. Due to

the sample size and the variability of the measurements at the timepoint t = 0

in Figure 5.2, the regression value of A could have been skewed somewhat.

Larger samples sizes would be preferable if applying the same regression

technique in future. However, we will deploy a value of A = 0.461 for our

results simulations in the rest of this chapter.
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5.5.2 Comparison of Initial Distributions

Equations 5.16 – 5.20 describe the depuration dynamics of water-borne patho-

gens within oysters, providing descriptions of both the observable and unob-

servable compartments across a population of oysters. If any unobservable NoV

load does exist at the pre-depuration stage, (i.e. A 6= 1 when t = 0) then the

pre-depuration distributions of the observable and total NoV loads would be

anticipated to exhibit different shapes. This is due to the relationship between

the observable and total load PDFs, P(X0 = x0) = A−1 P(Z0 = z0) (cf. Equation

5.23 ).
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Figure 5.9: Parameters used: µ0 = 5.617, σ0 = 1.645 and x̄ = 1064 cpg, with the pro-

portion of observable NoV A = 0.461. Distributions are shown segmented

into four tranches: 0 < x0 6 200, 200 < x0 6 500, 500 < x0 6 1000 and

x0 > 1000

Figure 5.9 shows the pre-depuration distributions of the observable and

total NoV loads respectively, parameterised with µ0 = 5.617, σ0 = 1.645 and

x̄0 = 1064 cpg, with the observable load in each single oyster fixed at the

proportion A = 0.461. The p values shown in both plots represent the probab-
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ility of a randomly selected oyster having a NoV load in that particular segment.

In Figure 5.9a, the distribution of the observable compartment, P(x0), ex-

hibits a strong, positive skewness and a high peak is observed close to zero.

These contribute to the probability p = 0.423 of the observable distribution’s

population that will have a NoV load less than 200 cpg. This can be interpreted

as 42.3% of randomly selected oysters having a NoV load less than 200 cpg.

Figure 5.9b plots the total NoV load at pre-depuration (P(z0)). We observe

a notably smaller peak than that of P(x0). This is due to the addition of the

unobservable compartment to the observable compartment, which results in

a horizontal axis shift towards higher values for all variates from Figures

5.9a to 5.9b. As the mode is much smaller than that of the observable load

distribution, then this reduction in the area between 0 < z0 6 200 will result

in an increase in the area of the tail (z0 > 200).

NoV range (cpg) P(x0) P(z0) Difference

0 < x0, z0 6 200 42.3% 25.3% -17.0%

200 < x0, z0 6 500 21.9% 20.4% -1.5%

500 < x0, z0 6 1000 14.2% 16.6% +2.4%

x0, z0 > 1000 21.6% 37.7% +16.1%

Table 5.2: Probabilities of an oyster having a NoV load within a particular range of

values. Parameters used are x̄0 = 1064 cpg, φ = 0.95, A = 0.461

The proportions of the observable and total NoV distributions for each

tranche are shown in Table 5.2, with differences between the models also

shown. These differences in values show that, when the unobservable loads are

included, there is a significant movement towards higher NoV load values. This
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conforms with sensible expectations: the inclusion of additional, sequestered

pathogen loads per mollusc should result in an across-the-board increase of

the total pathogen loads, and this has been borne out by the values from the

compartmental model.

5.5.3 Sensitivity of Salient Times to Parameter Variation

The sensitivity of each of the salient times to variation of the four parameters

A ,b , k and p is shown in Figure 5.10. In each plot one of four variables is

varied while holding all other parameters fixed, and the process is repeated

for each of A ,b ,k and p. Each line pertains to the impact upon the particular

salient time’s value for each parameter. Each parameter has been varied across

a range of ±1/3 of the starting value of each parameter being analysed.

For example, in Figure 5.10(a), the solid black line shows the impact upon

the value of τ1 of holding all other parameters constant at b = 0.01339, k =

0.07453, p = 0.75, x̄0 = 1064, Ψ = 200, φ = 0.95 while varying the value of

A across the range A = 0.75±A/3. The other lines depicted correspond to

varying the depuration rate b ( ), the internal transfer rate k (· · · ), and the

sufficient proportion parameter p ( · ).

5.5.3.1 τ1 Sensitivity

The value of time τ1 corresponds to when the total NoV load has decayed dur-

ing depuration to match the initial, observable pathogen load. Figure 5.10(a)

highlights that any changes in A, the proportion of initial, observable NoV

loads, has the biggest effect on the value of τ1. As A increases, a marked

decrease in the value of τ1 is observed. This is readily anticipated as the right
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−40% −30% −20% −10% 1 +10% +20% +30% +40%

150

200

250

300

350

400

Parameter Variation

T
im

e 
(τ

4)

(d) salient time τ4 sensitivity analysis

Figure 5.10: Sensitivity analysis of parameters within compartmental model. Initial

parameter values are: A = 0.75, b = 0.01339, k = 0.07453, p = 0.75,

with other parameters fixed at x̄0 = 1064 cpg, Ψ = 200 cpg, φ = 0.95.

Variation of parameter A highlighted by ( ); variation of b parameter

by ( ); k parameter by (· · · ); variation of p parameter ( · ). Times are

shown in hours

hand side of Equation 5.50 (Ωτ1 = A) is equal to A.

Consider when Ωτ1 = A, the value of the mean, total NoV load (z̄t) will

equal the mean, initial observable NoV load. In other terms,

z̄τ1 = Ωτ1 z̄0 = x̄0 .
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The depuration decay rate b also has a notable effect on the value of τ1,

whereas the internal transfer rate k has a more limited impact.

The parameter p does not have any impact upon τ1 as it is not a component

of Equation 5.50.

5.5.3.2 τ2 Sensitivity

The time τ2 pinpoints when the values of the mean observable NoV load

sufficiently approximates the mean total NoV load during depuration, i.e. the

unobservable compartment yt has been reduced to a sufficiently small amount

that any remaining value of yt can be reasonably ignored. The equation de-

scribing τ2 (Equation 5.52) is solely dependent upon the parameters k and p,

thus only changes to their values will affect any change to the value of τ2.

When the parameter p is increased across the range 0.50 6 p < 1, τ2 in-

creases exponentially, approaching a vertical asymptote at p = 1. It is evident

that, if p = 1, then τ2 →∞ as x̄t converges towards, but never equals, z̄t (refer

to Section 5.4.10.3 for further details).

As k increases a relatively small decrease in the value of τ2 is observed,

demonstrating that the value of the internal transfer rate is of limited import-

ance with respect to τ2.

5.5.3.3 τ3 Sensitivity

The salient time τ3 is equivalent to the minimum depuration time TWCV from

Chapter 3, and so is not impacted by any parameters that are exclusively used

by the compartmental model. Therefore τ3 will only be altered by b, the only

parameter examined here that was used in the depuration model in Chapter 3.

Figure 5.10(c) confirms this, as only changes in the value of b (shown in red)
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Figure 5.11: Heat plot of depuration rate b and internal transfer rate k versus τ3, the

minimum depuration time from exponential model. All other parameters

fixed at z̄0 = 1064 cpg, p = 0.99, A = 0.75, φ = 0.95, Ψ = 200 cpg. Note

that the z-values of the plot are shown on a log10 scale (in hours)

results in changes in τ3.

Clearly any increase in the depuration rate b will result in a decrease in

minimum depuration time required, and this is shown in Figure 5.11. This

figures shows that as b → 0, τ3 → ∞, and also further confirms that the

internal transfer rate k has no impact upon the value of τ3.

5.5.3.4 τ4 Sensitivity

The minimum depuration time of the mean total NoV load is defined as τ4,

the numerical solution obtained from Equation 5.69. This equation utilises

all four of the parameters (A ,b ,k and p) analysed in this section. In Figure
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Figure 5.12: Heat plot of depuration rate b and internal transfer rate k versus total

NoV load minimum depuration time τ4. All other parameters fixed at

z̄0 = 1064 cpg, p = 0.99, A = 0.75, φ = 0.95, Ψ = 200 cpg. Note that the

z-values of the plot are shown on a log10 scale (in hours)

5.10(d), each of A ,b ,k and p have been varied individually to test their

impact upon the total NoV load’s minimum depuration time. It is readily seen

that increasing the depuration rate b induces a significant reduction in the

value of τ4, and so the total load’s MDT is most sensitive to changes in the

depuration decay rate b for the ranges stated.

The black line in Figure 5.10(d), shows that as A (the proportion of the total

NoV load that is observable) increases towards 1, we see a steady decline in the

value of τ4. This is a consequence of the fact that more of the initial total NoV

load is sequestered in the observable load for larger values of A, and not in the

unobservable compartment. Thus there is a significantly smaller amount of
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NoV which must pass through both yt and xt compartments. As the transition

through each compartment takes time, the smaller the pathogen load which

needs to pass through both compartments will result in a quicker MDT for the

total load, τ4.

As we increase the value of the parameters p and k, we see very little re-

sponse in the value of τ4, thus showing that any change in these parameter’s

values in the ranges examined has minimal impact on τ4. As the sufficient

proportion p increases it elicits a very slight increase in the value of τ4. Any

increase in the internal transfer rate k only results in a very small decrease in

the value of τ4.

The sensitivity analysis shown in Figure 5.10 only considers the sensitivity

of the salient times τi across narrow ranges of values for each parameter. There

we analysed the decay and transfer rates in the range 0.00893 < b < 0.01785

and 0.0497 < k < 0.09937 respectively. Consideration of how the decay para-

meter b impacts depuration times across a wider range of values is undertaken

now, along with an examination of the internal transfer rate k across an ex-

panded range.

Figure 5.12 shows the behaviour of τ4 as both b and k operate across the

larger range of (0, 1]. This plot shows that significantly increasing the values

of both b and k would result in reduced depuration times. However, we

have already discussed the feasibility of whether b > k is biologically rel-

evant (see Section 5.4.3), and so we need only consider the top left triangle

of the figure, as the values above the diagonal b = k black line correspond

to when b < k. When either of the parameter’s b,k→ 0, it is seen that τ4 →∞.
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There is no mathematical reason to restrict b, k 6 1. However Figure 5.12

shows that if both rates are greater than 1 then the MDT is unrealistically fast

at less than 1 hour, much less than the current legislated MDT of 42 hours for

Class B harvests.

5.5.3.5 τ4 − τ3 Sensitivity
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Figure 5.13: Heat plot of depuration rate b and internal transfer rate k versus τ4 − τ3,

the additional depuration time required when including the unobservable

NoV load. All other parameters fixed at z̄0 = 1064 cpg, p = 0.99, A = 0.75,

φ = 0.95, Ψ = 200 cpg. Note that the z-values of the plot are shown on a

log10 scale (in hours)

Figure 5.13 shows the behaviour of (τ4 − τ3), which corresponds to the

additional depuration time required due to the inclusion of the unobservable

compartment in our model, for 0 < b, k 6 1. It is apparent that (τ4 − τ3)→∞
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when either b → 0 or k → 0, which is a consequence of the behaviour of τ4

shown in Figure 5.12.

The minimum value of τ4 − τ3 observed at approximately 0.5 < b < 1

where k ≈ 1 is noteworthy here. So far we have not obtained a satisfying

hypothesis as to why the relationship between b and k provides the contour

‘funnel’ observed at these values. This may be a consequence of the numerical

methods used in calculating τ4 − τ3, but seems unlikely as the contour is

consistently decreasing towards (≈ 0.7, 1). Further analysis on this is required

to understand this result.

Industry stakeholders have no control over the internal transfer parameter

k; its value is a consequence of the biology of the shellfish. The value we

have obtained by regression from the Neish data (k = 0.07453) is highlighted

on Figure 5.13, along with the depuration decay rate we have obtained via

the literature (b = 0.01339). Where these lines cross in Figure 5.13, it is

shown that a minimum depuration time of approximately 100 hours would be

required. Both the values of b and k would need to be significantly increased

to reduce depuration times although, as a minimum of 42 hours in depuration

is currently required by law, they would only need to be increased by a small

factor.
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5.5.4 Analysis of (τ4 − τ3)

In this section we especially note how the value of (τ4 − τ3) is impacted by

varying the four parameters A ,b ,k and p. The four salient times are restated

for convenience below:

Ωτ1 = A (5.70)

τ2 = −
1

k
ln(1− p) (5.71)

τ3 = b
−1

[(
erf−1 (2φ− 1)

)2
+ ln
{
x̄0

Ψ

}]
(5.72)

Ωτ4 =
Ψ

z̄0
exp
{
−
1

2
σ20

}
(5.73)

The impact of varying the two parameters (φ and Ψ) on minimum depuration

times was investigated in the previous Chapter 3.

5.5.4.1 Varying parameter A

A 0.50 0.60 0.70 0.80 0.90 1.00

τ 59 44 31 19 9 0

τ2 62 62 62 62 62 62

τ3 226 226 226 226 226 226

τ 285 270 257 246 235 226

τ − τ 59 44 31 20 9 0

Table 5.3: Results of varying proportion of pre-Depuration total NoV load which is

observable (A). Fixed parameters are: b = 0.01339, k = 0.07453, x̄0 = 1064,

Ψ = 200, φ = 0.95, p = 0.99. Impacted salient times (τi) and values (in hrs)

are highlighted in bold

Table 5.3 shows the impact of varying A, the proportion of the intial observ-

able NoV load. As expected, τ1 is significantly impacted by variations in the
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value of A. As τ2 and τ3 are not derived from A, no change in their values are

observed when A is increased. However τ4 is also altered by changes to the

value of A. The reason for this is not apparent from the definition of τ4 as it

stands in Equation 5.73.

From Table 5.3 note that, when A = 0.50, the minimum depuration time

of z̄t (τ4) is only 26% longer than that for τ3, the minimum depuration time

of the depuration model in Chapter 3. Figure 5.14 shows the impact on τ4

τ3
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Figure 5.14: Plot of proportion of initial, observable NoV load A versus total NoV load

minimum depuration time τ4. All other parameters fixed at x̄0 = 1064

cpg, p = 0.99, k = 0.07453, b = 0.01339, φ = 0.95, Ψ = 200 cpg

across the full range of possible values of A. When A is low we observe a large

value for τ4. As A→ 1, the resultant decrease in τ4 tends towards the value of

τ3. When A = 1 (i.e. there is no initial, unobservable load) Figure 5.14 shows

that the value of the minimum depuration time for the total NoV load equals
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the minimum depuration time from the exponential model. In other words,

τ3 = τ4 when A = 1.

5.5.4.2 Varying parameter p

p 0.90 0.92 0.94 0.96 0.98 0.99

τ1 59 59 59 59 59 59

τ 31 34 38 43 52 62

τ3 226 226 226 226 226 226

τ4 284 284 285 285 285 285

τ4 − τ3 58 58 59 59 59 59

Table 5.4: Results of varying sufficient proportion (p) expelled from unobservable

compartment yt. Other fixed parameters are: b = 0.01339, k = 0.07453,

x̄0 = 1064, Ψ = 200, φ = 0.95, A = 0.5. Impacted salient times (τi) and

values (in hrs) are highlighted in bold

From Table 5.4, it can be seen that changes to the value of p affect the value

of τ2, which is apparent from Equation 5.71. Neither τ4 or τ3 are dependent

upon p, and so τ4 − τ3 is not affected by any changes to its value.

5.5.4.3 Varying parameter b

Increasing the value of the depuration rate b results in an expected decrease

in the significant times τ1, τ3 and τ4. Chapter 3 showed that an increase

in the depuration decay rate by some proportion ρ results in a ρ/(1 + ρ)

proportional reduction in the minimum depuration time. This is borne out in

the times for τ3 in Table 5.5. This reduction is approximated by τ4, but exhibits

a smaller reduction in minimum depuration time. This is due to the inherent

difference in the decay rates between τ3 and τ4, which have different decay

rates, exp{−bt} and Ωt respectively.
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b b 1.1b 1.25b 1.5b 1.75b 2b

τ 59 55 49 42 37 33

τ2 62 62 62 62 62 62

τ 226 205 181 151 129 113

τ 285 260 230 193 167 148

τ − τ 59 55 49 42 38 35

Table 5.5: Results when depuration/excretion rate (b) is varied. Other fixed para-

meters are: p = 0.99, k = 0.07453, x̄0 = 1064, Ψ = 200, φ = 0.95, A = 0.5,

b = 0.01339. Impacted salient times (τi) and values (in hrs) are highlighted

in bold

5.5.4.4 Varying parameter k

k 0.5k 0.75k k 1.25k 1.5k 2k

τ 67 62 59 58 57 55

τ 124 82 62 49 41 31

τ3 226 226 226 226 226 226

τ 295 288 285 284 282 281

τ − τ 69 62 59 58 56 55

Table 5.6: Results when internal transfer rate (k) is varied. Other parameters applied

to model are: k = 0.07453, b = 0.01339, x̄0 = 1064 cpg, Ψ = 200, φ = 0.95,

A = 0.5, p = 0.99. Impacted salient times (τi) and values (in hrs) are

highlighted in bold

The results of varying the value of k, the internal NoV transfer rate, show

that this parameter has only a small impact on the salient times (Table 5.6). A

four-fold increase in the value of k only resulted in a reduction of 14 hours in
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the minimum depuration time for z̄t. This is significant due to the fact that this

rate cannot currently be measured, and only by estimation using numerical

methods has an approximation of k been obtained.
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Figure 5.15: Plot of internal transfer rate k versus total NoV load minimum depuration

time τ4. All other parameters fixed at x̄0 = 1064 cpg, p = 0.99, A = 0.75,

b = 0.01339, φ = 0.95, Ψ = 200 cpg

So far we have analysed k in the range of 0.03765 (0.5× k) — 0.14906 (2× k).

Further analysis of this parameter is carried out by looking at the full range of

values for k > 0, as a more complete understanding of how k affects the value

of τ4 is required to be able to ascertain the full significance of this parameter.

Figure 5.15 shows the behaviour of τ4 for the range of 0 < k 6 1, and shows

that the total NoV load minimum depuration time τ4 approaches a vertical

asymptote as k→ 0. In fact, as k→ b, the value of τ4 begins to increase rapidly.
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It was previously stated in Section 5.4.1 that k 6 b does not make biological

sense, something again borne out by this analysis.
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5.6 discussion

This chapter has proposed an extended model describing the depuration dy-

namics of NoV within a population of shellfish, based upon the depuration

model detailed in Chapter 3. The previous model has been extended by taking

into account an assumption of internal sequestration of pathogens within indi-

vidual shellfish, splitting the pathogen load into unobservable and observable

compartments. This approach has been undertaken based on the evidence in

the current literature that shows that pathogen loads are not centralised in

the digestive gland but are found more distributed throughout the animal’s

whole biology. This compartmentalisation has implications for current detec-

tion regimes of NoV, and specifically for NoV detection within oyster species.

Parameterisation of the compartmental model has been based in part on

values from the depuration model from Chapter 3. We have obtained reason-

able estimates for k, A and b from regression techniques applied to the Neish

data, and stated that the value of p should be . 1. However, the value of the

internal transfer rate k stated in Table 5.1 must conform to b < k for biological

reasons. This is due to the fact that, if b > k, then the internal transfer rate

would become the rate determining step of the depuration process. If this

occurred then the digestive gland (compartment xt in this model) would not

be the primary repository of NoV in shellfish, which would be contrary to

literature findings [29, 30].

For the sensitivity analysis carried out in Section 5.5.3, the impact of k upon

any of the salient times τi is very limited, inducing only small variation in

the values of τ1, τ2 and τ4. This is significant to our methodology here as, in

the absence of being able to obtain reliable estimates of k, we have had to
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fall back upon indirect methods to derive a parameter value for k, and any

inaccuracies involved in our estimate of k would only result in small changes

to the model’s results.

The salient result here is any observed increase in the length of minimum

depuration time required due to an increase in the initial unobservable load

proportion 1−A. This increase in the length of minimum depuration time

due to compartmentalisation of the pathogen, represented by (τ4 − τ3) in our

model, is shown to be most responsive to changes in the value of A, the pro-

portion of initial NoV loads which are observable to current testing practices.

Figure 5.14 shows that at low values of A, minimum depuration times of τ4

are much greater than that of τ3. Only as A→ 1 do we observe the minimum

depuration time of the total NoV load approach the minimum depuration

times using the exponential model from Chapter 3.

Not only does this compartmental model show that consideration of internal

pathogen sequestration must be made, but also that the timing of pathogen de-

tection testing be undertaken with some caution. The salient time τ1 indicates

when the total NoV load has decayed during depuration to match the initial

observable load. This time is most significantly impacted by the value of A, as

shown by the black line in Figure 5.10(a). That plot shows that for the range

0.50 6 A 6 1, τ1 decreased steadily from 59 to 0 hours. Thus, if the value of

A is low then any pathogen testing during depuration should not be carried

out within the first hours of the process. In actuality, only post-depuration

testing for the presence of NoV would be prudent, as at this point would any

difference between the observable and total pathogen loads have approxim-

ated zero. Further studies are required to validate our hypothesis of pathogen

compartmentalisation and especially with regards to NoV in oysters.
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6
S T O C H A S T I C WAT E R - B O R N E PAT H O G E N M O D E L

6.1 introduction

This chapter presents a mathematical model describing how pathogens are

transmitted into shellfish in a marine environment. We consider rainfall events

that can overwhelm the processing capacity of sewage treatment works (STW),

resulting in discharges of effluent into the immediate waters of the STW. Any

shellfish farms that are in the proximity of the STW will experience an increase

in human faecal contaminant levels in their waters, thus presenting an in-

creased likelihood of any shellfish ingesting pathogens such as E. coli, NoV and

other enteroviruses that may be present in the discharged effluence [13, 33, 76].

In this chapter, a mathematical model is constructed which can provide

linkage between the discharge levels from an STW and the pathogen exposure

levels at a shellfish farm located in close proximity. The model constructed

to describe rainfall events and a STW’s capacity to process them are based on

available data and literature [77, 78, 79, 80]. We incorporate into this model

a variable capacity for the STW to cope with significant rainfall, and examine

how varying the overflow capacity impacts the levels of pathogens within har-

vested shellfish, as well as how this alters minimum depuration times (MDT’s).

We then adapt the compartmental model of depuration from Chapter 5 into a

compartmental model that describes the dynamics of pathogens loads across a

population of shellfish while still at a farm and before harvesting. We analyse
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the results of the model, paying special consideration to the distribution of

pathogens within shellfish harvests, and how varying the overflow capacity

impacts upon the pathogen levels within shellfish populations.

Part of the motivation behind the construction of this model is to invest-

igate the origin of the variability of water-borne pathogens, in an attempt to

ascertain whether the random rainfall events which result in storm overflow

discharges at STWs contribute in some way towards the observed positive

skewness of the distributions of water-borne pathogens.

We initially examine the impact on pathogen levels in a population of oysters

at the point of harvest when the treatment capacity of a sewage treatment

works (STW) is varied. We subsequently analyse the trade-off between STW

capacity levels and the minimum depuration time (MDT) required post-harvest

time to conform to control parameter requirements.

Rainfall Model 

(𝝉𝒏, 𝜻𝒏) 

   STW – capacity, 𝑪 

𝟎 or 𝛏(𝝉𝒏, 𝜻𝒏 − 𝑪) 
 

Figure 6.1: Rainfall to STW to shellfish farm diagram
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6.2 rainfall model

To construct a mathematical model that describes how rainfall events can

cause an increase in the levels of pathogens passing into the waters of shellfish

farms, we need to first construct a model that accurately describes rainfall

levels and its frequency.

6.2.0.1 Gamma Distribution of Rainfall Levels

(a) 2014 Rainfall (b) 2015 Rainfall

Figure 6.2: PDF’s of 2014 and 2015 daily rainfall levels in England and Wales. Gamma

distribution curves fitted using parameters from Table D.1

Significant research has been carried out in describing rainfall levels around

the world. In the UK and many other countries rainfall levels have been shown

to be well described by a gamma distribution [78, 81, 80, 82, 83]. We have

analysed rainfall data for England and Wales for the years 2006–2015, applying

goodness of fit tests to the data for each year for a wide range of distribution

types, to check the appropriateness of using a gamma distribution to inform

rainfall levels for our model.
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Figure 6.2 shows histograms with fitted gamma distributions for rainfall in

England and Wales in 2014 and 2015. Rainfall has been plotted using a scale

of per day, the timescale supplied by the Met Office [84]. Appendix D includes

similar plots for the years 2006–2013, plus goodness of fit rankings for the

gamma distribution when compared with a wide range of other PDF types.

These plots, along with the current literature demonstrate that UK rainfall

levels can be well described by the gamma distribution.

Section 2.3.3.1 in Chapter 2 provides equations defining the PDF of the

gamma distribution. Based on Equation 2.17, we state that a random variable

X = x has a gamma distribution if its PDF is defined as

PG(x) =
1

θk Γ (k)
x(k−1) exp

{
−x

θ

}
, (6.1)

where x ∈ (0,∞) [58, p. 166], and Γ (k) is the gamma function, defined as (cf.

Equation 2.18)

Γ(k) =

∫∞
0
z(k−1) exp {−z}dz . (6.2)

Equations 6.1 and 6.2 can be used to predict the level of rainfall per day in the

UK, and more generally for any geographic location. This is accomplished by

the use of appropriate parameter values of k and θ within Equations 6.1 and

6.2 (see Appendix D for UK parameter values for 2006–2015).

6.2.0.2 Distribution of Rainfall Events

The gamma distribution can describe the levels of rainfall per day, however

we require another mechanism to inform the temporal frequency of rainfall i.e.

how often does it rain on a particular day across a particular number of days?

Appendix D details data describing rainfall frequency within England and

Wales. Looking at the data for the 30 year period of 1986–2015 (visualised in

Figure 6.3), the median number of days with rainfall > 1 mm was 192, with
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Figure 6.3: Number of days with rainfall > 1mm in England and Wales, 1986-2015

an average of 189.8 days per year. Using the median value of 192 (and taking

each year as 365 days), we can estimate that each day in a particular year has

probability of 192/365 = 0.5260 to have rainfall > 1 mm. This information can

provide an estimate of the likelihood of rain for each day in the UK.

Whether a day has rainfall or not can be viewed as a success or failure

outcome, and so can be described as a Bernoulli trial. For simplicity, we ignore

any clustering of rainfall days e.g. due to seasonality of rainfall. As we have

a fixed number of discrete Bernoulli trials to consider (365 in this case), we

can use the binomial distribution as a means to find a random number of

days with rainfall for our model. The negative binomial distribution was also

considered but is not appropriate here as it is dependent on a fixed number of

Bernoulli trial successes rather than a fixed number of trials.
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As shown in Equation 2.23 in Chapter 2, the binomial distribution is a

discrete distribution with parameters N, k and p:

PB(T = k) =

(
N

k

)
pk qN−k [61] , (6.3)

where N represents the number of days in a year, k represents the number of

days that rainfall would be expected in a year, p defines the probability of any

particular day being rainy, and q = 1− p.

Selecting a random deviate from the probability mass function PB(T = k)

thus provides our model with a randomly selected number of rainfall days, T,

as defined by Equation 6.3.

6.2.0.3 Seasonality of Rainfall

For the purposes of our simulation, we randomly and uniformly select which

days experience rainfall across each year. Thus any day of a year in the

simulation is as likely as any other to experience rainfall. In actuality this

does not reflect the seasonality of UK rainfall patterns which experience less

rainfall frequency and intensity in the summer months. The model also does

not take into account the dependence of rainfall per day upon the weather of

the previous day, which often results in clustering of rainfall days in the UK.

6.2.0.4 Rainfall Event Notation

We now define the notation used to describe rainfall levels and occurrences

within our model. A day with rainfall is denoted as τn, the nth day, which

experiences a rainfall level of ζn, where n = (1, 2, 3, . . . ,N) and N is the

maximum number of days in the simulation. Thus each day with rainfall is

described by a pairwise event

(τn, ζn) . (6.4)

165

[ 6th June 2017 at 8:47 ]



The number of days which experience rainfall is T, obtained from the binomial

distribution described above, with the distribution of rainfall days across N

uniformly and randomly selected. The rainfall level per day (ζn) is drawn

from the gamma distribution (Equation 6.1), independently of τn.

However, it can be readily seen that the pairwise rainfall event can be

obtained by application of only the gamma distribution of rainfall levels. This

can be selecting a rainfall level ζn for each nth day in our simulation, rather

than for only each τn obtained from the binomial distribution described by

Equation 6.3. Any days that have a rainfall level < 1mm could be set to have

zero rainfall, however this would not be required due to model constructs

described in the next Section (6.3).
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6.3 rainfall—stw model

Sewage treatment works (STWs) have only a finite capacity for dealing with

the levels of waste and rain water they receive from public drainage and

sewage systems [34, 48, 36]. Due to the effects of greater rainfall, an STW

can experience pulsed levels of increased waste water which can overwhelm

their treatment capacity. When this occurs, the capacity of a STWs can be

breached and overflows of untreated sewage are released into their immediate

environment[79, 44, 71]. When this occurs, there will be a spike in the levels

of bacterial and viral contaminants discharged into proximal environmental

waters. If this increase in contaminants are also expereinced by a nearby shell-

fish farm, then an increased risk of pathogens being ingested by the shellfish

occurs, and thus can induce an increase in the food safety risk if the animals

are subsequently harvested.

We incorporate the capacity of a STW into our model, thus taking into ac-

count the finite limitation of a STW for dealing with rainfall levels. Thus we

define a STWs capacity as C, a measure of waste water volume beyond which

the STW must discharge untreated liquids. We assume that, on any day without

rainfall, a STW treats a constant level of sewage from public systems, and so

we define C as a capacity which is over and above this baseline volume of

sewage. Only when a rainfall event (τn, ζn) occurs we need to consider any

untreated effluence that may be discharged by the STW.

Therefore our model needs only to consider rainfall events where ζn > C

for each rainfall day τn with volume C being fully processed by the STW. Thus
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Figure 6.4: Generic rainfall levels conforming to a gamma distribution, with STW

capacity C shown

the discharge of untreated waste water each day (with or without rainfall) is

described by 
0 if ζn 6 C

ζn −C if ζn > C .

(6.5)

This allows us to state that each day with rainfall which results in an overflow

discharge from a STW can be described by

(τn, ζn −C) . (6.6)
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6.4 stw—environment model

As previously stated, our aim is to construct a model which describes the

levels of pathogens which may pass into a shellfish farm’s aquatic environment

resulting from storm overflow processes from STWs. We have defined the

events that will result in an overflow discharge as (τn, ζn −C), where n =

(1, 2, 3, . . . ,N), and N is the maximum number of simulated days.

Discharge events which occur in rapid succession will result in a cumulative

increase in these pathogens concentrations locally. Therefore, dependent upon

the frequency and temporal spacing of discharge events, pathogen levels in

any shellfish farms in close proximity to the STW will experience increased

pathogen levels in their waters.

The number of rainfall events in one year is T where 0 6 T 6 N = 365,

which is dependent upon the parameters of the binomial distribution from

which it has been randomly enumerated.

We must consider the natural reduction of pathogen levels within marine

waters, resulting from dilution and/or dispersal of contaminants due to water

currents and sedimentation. We designate the pathogen in water reduction

rate as λ. This allows us to describe the concentration of pathogens within a

shellfish farm’s waters at time t by wt, with the dynamics of wt described by

the differential equation:

dwt

dt
= −λwt +

N∑
n=1

(ζn −C) δ (t− τn) , (6.7)
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where wt describes the concentration of pathogen levels in the immediate

water, and is a continuous function of time t ∈ [0,T]. The term δ (t− τn)

describes a Dirac delta function,

δ (n− τn) =


0 if n 6= τn

∞ if n = τn

. (6.8)

Note that Equation 6.7 is comprised of both continuous and discrete com-

ponents. The term −λwt is the continuous component, describing the natural

reduction in the current pathogen levels. The second term describes discrete

influxes of pathogen levels, dependent upon the level of rainfall on a particular

day.

6.4.1 Parameter Units of Measurement

We must ensure that the units of measurement used in Equation 6.7 are con-

sistent with the system being described by the model. The term wt describes

pathogen concentrations in water, therefore the units of the summation term

must also be in pathogen concentrations. Therefore we need to convert the

measure of rainfall (in units of length) described by the summation term in

Equation 6.7 into a pathogen concentration.

To do so we consider how the rainfall level passes pathogens to the STW. A

level of rainfall τn will fall on the area of land served by the STW, with this

catchment area is known as an agglomeration and indicated by L in our model.

As we are assuming a linear relationship between the level of rainfall and

the pathogen level passed to a STW, we can parameterise the input pathogen

170

[ 6th June 2017 at 8:47 ]



concentration as ρ. Thus the total pathogen levels passed to the STW by rainfall

level τn is described by ρζn.

L
��

�� ��

STW – capacity, �

V � or ����� 	 �


�� 
���
� � �

Figure 6.5: Diagram of pathogen transmission from agglomeration to STW to estuary

shellfish farm per day

We now consider the pathogen levels passed into the estuary waters by

a overflow discharge due to heavy rainfall. The STW will process up to its

capacity C, and only allow an outflow of ζn −C of untreated water. Thus the

STW can process pathogen levels of up to

ρLC ,

and so we can more accurately state the pathogen levels passed into the

estuary waters are

ρL(ζn −C) .

We finally consider how this pathogen level is translated into a concentration

in the estuary waters and thus in the shellfish farm waters. We assume that the

volume V of the estuary water in which the STW and shellfish farm are located
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is not increased or decreased due to the influx of overflow waters. This is a

reasonable assumption as any additional water volume added to the estuary

would not cause an increase in its nominal volume due to the equalisation of

the water levels between the estuary and the open seawaters. Therefore we can

state that any increase of pathogen concentration in the shellfish farm waters

due to storm overflow discharges can be described by

ρL

V
(ζn −C) . (6.9)

We now include the term ρL
V in Equation 6.7 to fully describe the concentra-

tion levels within the estuary and shellfish farm waters:

dwt

dt
= −λwt +

N∑
n=1

ρL

V
(ζn −C) δ (t− τn) , (6.10)

Parameter Description Units

λ pathogen water reduction rate /day

ρ Input pathogen concentration copies/litre

L Area of agglomeration dm2

V Volume of estuary litres

T Total no. of rain days/year T ∈ Z

τn Day n with rainfall event τn ∈ Z

ζn Rainfall level on day τn dm/day

wt Farm water pathogen concentration copies/litre

Table 6.1: Parameters and units used in stochastic environmental model

Table 6.1 states the units for each of the parameters that will be used within

our model. Note that we have used equivalent volume measurements of 1 litre

= 1 dm3, and where 1 dm = 10 cm.
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6.5 environmental—compartmental model

Equation 6.7 describes how the concentration of pathogens in a shellfish

farm located close to a STW changes over time. The compartmental model of

individual shellfish depuration dynamics described by differential Equations

5.1–5.2 in Chapter 5 is

dzt

dt
=
dxt

dt
+
dyt

dt
, (6.11)

dyt

dt
= −kyt (6.12)

dxt

dt
= kyt − bxt . (6.13)

These equations can be adapted to incorporate Equation 6.7, allowing a descrip-

tion of the internal dynamics of an individual, compartmentalised shellfish

and while it is filter feeding in its farm environment.

In Equation 6.12, k is the internal pathogen transfer rate, whereas b is the

depuration rate of each shellfish. For this model, we use the Greek letter

equivalents to differentiate between the different stages of our modelling.

Thus we set κ = k and β = b for the farm pathogen model, and both are

incorporated:

dwt

dt
= −λwt +

N∑
n=1

ρL

V
(ζn −C) δ (t− τn) , (6.14)

dyt

dt
= ηwt − κyt , (6.15)

dxt

dt
= κyt −βxt , (6.16)

and where the total pathogen load per shellfish is described by

zt = xt + yt . (6.17)

The component ηwt in Equation 6.15 defines the interface between the concen-

trations of pathogens in the marine environment and the ingestion/accretion
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of pathogen concentrations by a shellfish whilst filter feeding.

This system of differential equations describes the farm-feeding dynamics of

an individual shellfish, and is represented in Figure 6.6. Note that we assume

full mixing of any pathogens transmitted into the environmental waters. We

also assume that the volume of farm water is so large that the excretion of any

pathogens by the shellfish (described by −βxt) back into the environment has

no effect on wt.

Farm

water,

wt

Oyster, zt

Pre-gland

yt

Digestive gland

xt

κ βη

1

Figure 6.6: Representation of extended shellfish compartmental feeding model

Equation 6.14 is stochastic in nature, whereas Equations 6.15–6.17 are de-

terministic. However as Equation 6.14 instigates and drives the pathogen levels

in the system, then this stochasticity will permeate through and into Equations

6.15–6.17.
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6.6 model parameterisation

This section provides parameter values from available data and literature,

explaining parameter values which are directly used, as well as parameters

which describe appropriate probability distributions used by the model.

6.6.1 Rainfall Frequency and Intensity
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Figure 6.7: Probability mass function of binomially distributed number of rainfall

days in England and Wales, based on the parameters N = 365, k = 192,

and p = 0.5260

Equation 6.3 describes the binomial distribution, and allows us to select a

random variable from this distribution using the parameter values of N = 365,

k = 192, and p = 0.5260. These values have been obtained from the data

detailed in Appendix D, where 192 is the median number of rainfall days
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per year for the last 30 years. The probability mass function of this binomial

distribution is shown in Figure 6.7. The random variable from this distribution

yields T, the number of days with rainfall per year for our stochastic model.
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Figure 6.8: PDF of gamma distributed rainfall intensity derived from England and

Wales, 2006–2015. Shape parameter k = 0.49116, scale parameter θ =

6.3675 derived from Table D.1

Stochastic values of rainfall intensity levels ζn (for each rain day τn) are

obtained from the gamma distribution shown in Figure 6.8, with shape para-

meter k = 0.49116 and scale parameter θ = 6.3675 derived from Table D.1

in Appendix D. As previously stated, the model generates the number of

rainfall days T from the binomial distribution shown in Figure 6.7. Therefore

we require T random variables to be selected from the gamma distribution

shown in Figure 6.8, one for each rainfall day τn.
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Note that as we are operating in decimetres rather than millimetres for other

length measurements, any value obtained from the above parameters applied

to a gamma distribution must be divided by 100 to convert rainfall level into

decimetres.

6.6.2 Shellfish Pathogen Intake Rate

A reasonable estimate of η, the parameter that describes the pathogen intake

rate of an oyster, can be obtained from knowing the volume of water that the

animal filter feeds during a particular time period.

Fox et al [85] reviewed previous experimental results designed to calculate

the volume of water that molluscs filtrate per time period, stating that previous

rates of filtration from a range of previous results were between 0.167 – 7.5

litres per hour. The authors carried out further experimentation with mussels

species (a bivalve analog for oysters), arriving at a range of 2.2 – 2.6 litres per

hour filtrated. We therefore reasonably assume a filtration volume rate of 2.5

litres/hour for our model, and equivalently is 60 litres/day.

6.6.3 Environmental Water Pathogen Reduction Rate

Bae and Schwab carried out a 2008 survey on the viral reduction rates of

several enteric viruses within environmental waters [86]. This provides a

NoV reduction rate of 0.03 log10/day, which equates to a NoV reduction rate

of 0.06907 loge/day. Thus we set the water-borne pathogen reduction rate

parameter at λ = 0.06907 loge/day.
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6.6.4 Area of Agglomeration

The area of the agglomeration for a particular STW will be hugely variable;

dependent upon many factors such as population density and geography

[79]. Therefore any value we provide for L will be nominal and based only

on best guess approach. The agglomeration area must be large enough to be

financially viable for the local water company, but at the same time much less

than the area of the UK. Based on literature, an average agglomeration with a

population of 10000 – 20000 would have an area of 470 hectares [87]. We can

round this value down to 400 hectares as not all of an agglomerations rainfall

will be passed to a STW for processing. Converting this into decimetres2, where

1 hectare = 1000000 dm2, we obtain a value of L = 400 000 000 dm2.

6.6.5 Volume of Estuary

Placing a value on the parameter V which enumerates the estuary volume

is again an arbitrary exercise. The only reasonable constraint would be that

the volume of the estuary must be much greater than any outflow from an

adjacent STW and so we state that V >> Lζ̄n, where ζ̄n is the average rainfall

per day.

We can calculate an average rainfall level based on the parameters used

in our gamma distribution, as well as Equation 2.20 which states the arith-

metic mean of a gamma distribution as x̄ = kθ. Using k = 0.49116 and

θ = 6.3675, we thus state that ζ̄n = 3.13mm = 0.0313dm. and using the para-

meters decided upon previously we note that V >> 400 000 000× 0.0313 and

so V >> 12 520 000 litres. Therefore we select a value of V = 100 000 000 litres,
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but again emphasise that this parameter has been arbitrarily fixed.

Note that we assume absolute mixing of the waters in the estuary, resulting

in a uniform pathogen concentration at any point in the estuary and the

shellfish farm. We simulate spatial variation of concentrations within the shell-

fish population by running the simulation 30 times, once for each simulated

shellfish sample. The stochastic nature of variables T, τn and ζn will provide

some randomness to the results.

6.6.6 STW-Discharge Pathogen Concentrations

We can obtain an estimate of the pathogen concentration in water in proximity

to STWs from literature. In their 2005 paper, Lodder et al [76] stated that NoV

concentration levels were in the range of 896–7499 PCR-detectable units of NoV

per litre of treated sewage, and 5111–850000 PCR-detectable units of NoV per

litre of untreated sewage. Flannery et al [88] reported a range of 29–323593 NoV

copies per 100 ml for NoV genotype GII after primary treatment, with a mean

value of 2512 copies per litre. Equating these to the same volume measure of

per litre, Flannery’s range is equivalent 290–3235930 NoV copies per litre, with

a mean of 25120 copies per litre.

These are broad ranges to consider when setting the input pathogen con-

centration parameter, ρ, for our model. For expediency, we set the pathogen

concentration at ρ = 2500 copies per litre, based on the mean value reported

by Flannery et al [88].

In essence we are applying a best guess approach to the parameterisation

of ρ, L and V . Based on the breadth of the ranges found in the literature

179

[ 6th June 2017 at 8:47 ]



that report water-borne pathogen concentrations of NoV, providing exact case

study parameter values in this thesis would be difficult without extensive site

surveys and fieldwork. However we are more interested in the general features

of the system rather than the particular results. As stated in the introduction to

this chapter, we are more concerned with how increasing the storm overflow

capacity of a STW affects the pathogen loads in a nearby shellfish farm, as well

as how minimum depuration times are impacted by any increase in pathogen

levels.

Parameter label Description Parameter value used Units

λ pathogen water reduction rate 0.06907 /day

ρ STW input pathogen concentration 2500 copies/litre

L Area of agglomeration 400 000 000 dm2

V Volume of estuary water 100 000 000 litres

T Total no. of rain days/year ∼ B (365, 0.5260) T ∈ Z

τn Day n with rainfall event ∼ U(1, 365) τn ∈ Z

ζn Rainfall level on day τn [∼ Γ(0.49116, 6.3675)] /100 dm

κ Pathogen internal transfer rate 1.78872 /day

β Pathogen excretion rate 0.32136 /day

η Feeding intake volume 60 litres/day

Table 6.2: Parameters used in simulation results from stochastic environmental model
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6.7 results

This section presents the results obtained from the stochastic model describ-

ing the transmission of water-borne pathogens from STW storm discharges,

flowing into the waters and shellfish of nearby farms. We analyse how this

process impacts the pathogen levels in local waters as well as across popula-

tions of shellfish in nearby farms. We also examine the pathogen levels within

the compartments of the animals, and analyse the shape of the distribution

of pathogens within these compartments, comparing the shape with known

distribution types.

6.7.1 Environmental Model

The environmental model described across Sections 6.2 – 6.4.1 was simulated

using ‘R’ software, applying the parameters values discusseded in Section 6.6

and that are listed in Table 6.2. The simulation process is carried out in ‘R’

using the following steps:

1. time t is discretized to time steps of 1 day;

2. simulation is run for 1460 time steps, simulating 4 years;

3. wt, yt, xt are calculated using Eulerian methods;

4. First 100 days data are removed to allow the first (τn, ζn −C) events to

take place, allowing a level of background pathogen concentration to be

instigated.
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The discretized equivalents of Equations 6.14 – 6.16 applied in the ‘R’ code

are:

wn+1 = −λwn +

K∑
k=1

ξ (ζk −C) δkn ,

yn+1 = ηwn − κyn ,

xn+1 = κyn −βxn ,

where δkn is a Kronecker delta,

δkn =


0 if k 6= n

1 if k = n .

6.7.1.1 Pathogen Concentration Dynamics

Figure 6.9 shows the pathogen concentrations within the environmental waters

denoted by our model as wt. Figure 6.9a shows the pathogen levels (in copies

per litre) across days 0 – 365 simulated in our model, while 6.9b provides a

closer look at the dynamics across 31 – 120 simulated days.

0 100 200 300
0

1

2

3

4

5

Day

P
at

ho
ge

n 
C

on
c.

, w
t (

cp
l)

(a) Pathogen Conc. Days 1–365

40 60 80 100 120

1

2

3

4

5

Day

P
at

ho
ge

n 
C

on
c.

, w
t (

cp
l)

(b) Pathogen Conc. Days 31–120

Figure 6.9: Plot of pathogen concentrations within estuary/shellfish farm water, wt.

STW capacity = 0 dm of rainfall
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Both plots exhibit multiple spikes, discrete increases in the pathogen con-

centrations which are proportional to any rainfall events, (τn, ζn −C), which

have rainfall levels greater than the STW capacity to process. These spikes are

instantaneous, immediately followed by a decay of the pathogen level of rate λ.
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Figure 6.10: Plot of pathogen concentrations, wt, within estuary/shellfish farm water,

when STW capacity = 0.1 dm of rainfall

Figure 6.9 shows pathogen levels when the local STW has capacity C = 0dm

of rainfall. Figure 6.10 shows pathogen level patterns when the STW has capa-

city C = 0.1dm = 10mm of rainfall. It is apparent that both the number and

magnitude of the spikes in concentration levels due to (τn, ζn −C) events has

decreased due to the increased treatment capacity. Note that the treatment ca-

pacity of 0.1dm is more than three times that of the average rainfall described

by the parameters of the gamma distribution used to inform the rainfall levels

ζn. Equation 2.20 in Chapter 2 defines the arithmetic mean of a gamma distri-

bution as x̄ = kθ. We have used values of k = 0.49116 for the shape parameter,

and the scale parameter is θ = 6.3675, resulting in x̄ = 3.127mm = 0.0313dm.

The spike-decay shape associated with each pairwise (τn, ζn −C) event is

similar to that reported in literature with regards to pathogen time series data.
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Research carried out in 2008 by DEFRA measuring the levels of faecal indicator

organisms at sites in England exhibited very similar spike-decay behaviour to

that shown in Figures 6.9 – 6.10 [77].

6.7.1.2 Pathogen Concentrations In Water
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Figure 6.11: Histograms of pathogen concentrations within the environmental water

wt. The plots show loge-transformed values of wt

Figure 6.11 shows the distribution shapes of pathogen levels, wt, the envir-

onmental water component of our model. The histograms are plotted using

log-transformed pathogen levels (log copies per litre). Each plot is a histogram

of the pathogen levels each day, across days 100 – 1460. Previously Figure

6.10 showed that no pathogen level is present until the first (τn, ζn −C) event

occurs.
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Each plot in Figure 6.11 shows that, as the capacity of the STW increases, the

pathogen histogram experiences a shift towards lower concentration levels,

as well as a decrease in event frequency. The shape also undergoes a change

in symmetry, with the histogram for C = 0dm appearing to be symmetric

whereas, when the capacity increases, the shape becomes more negatively

skewed.

6.7.1.3 Pathogen Levels in Shellfish
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Figure 6.12: Histograms of pathogen concentrations within the unobservable compart-

ment yt. The plots show loge-transformed values of yt

Figure 6.12 show the log-transformed histograms of simulated levels of

pathogens in the unobservable compartments of shellfish yt. Similar to the

shape of the data in Figure 6.11, the histogram showing levels when the STW

has capacity C = 0dm is symmetric for log values. This suggests that yt
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could be well described by a lognormal distribution. Again, as the capacity is

increased the symmetry of the data shifts to an increasingly negative skewness

for the log transformed data.
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Figure 6.13: Histograms of pathogen concentrations within the observable compart-

ment xt. The plots show loge-transformed values of xt

Figure 6.13 shows the observable compartment xt under the same criteria

as Figures 6.11 and 6.12. We again observe a symmetric shape when capacity

C = 0dm, and similar changes to the shape of the data as the capacity increases

towards 0.15dm.

Note that mode of each of the peaks for the xt data is located at higher

pathogen levels when compared to the unobservable compartment yt. This is

a consequence of the relationship between the values of κ and β as used in

this model. The rate κ describes the internal transfer of pathogens between the
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unobservable (yt) and observable (xt) compartments of a shellfish, whereas β

defines the pathogen excretion rate by the animal.

It is important to note that the shape of Figures 6.11(a), 6.12(a) and 6.13(a)

all are unimodal, symmetric with no apparent outliers. As these histograms

are plotted on a log horizontal axis, then they can be reasonably described as

lognormal in shape. This corresponds with our use of lognormal distributions

to describe the distribution of water-borne pathogens across a population of

shellfish in Chapters 3 and 5.
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6.8 connecting the models

A stochastic model of pathogen transmission from public waste water systems

and into estuary/shellfish farm waters was constructed in Chapter 6. That

model incorporated the system of differential equations that describes the

dynamics of pathogen levels within individual shellfish (cf. Equations 5.2 – 5.3

in Chapter 5):

dyt

dt
= −kyt (6.18)

dxt

dt
= kyt − bxt , (6.19)

with an adaptation to the equations to take into account the accretion of patho-

gens whilst filter feeding in contaminated waters (see Equations 6.14 – 6.17).

The results obtained from the model constructed in Chapter 6 can be used to

inform the pathogen levels for a population of shellfish at the pre-depuration

stage. Equations 6.18 – 6.19 shown above form the compartmental model of

depuration from Chapter 5. Thus the models from both Chapters 5 and 6

provide the means to simulate a harvest and subsequent depuration of a batch

of shellfish.

6.8.1 Simulating Harvest of Shellfish

There are two ways in which a simulated sample (or harvest) of oysters can be

obtained from the environmental—compartmental model in Section 6.5. The

first would be to generate multiple pairwise (yt, xt) values (say m pairwise

values) using the model described by Equations 6.11—6.13, and select some

time t ∈ T in the model as the simulated harvest time, although t should be
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sufficiently greater than zero to have allowed the burn-in of pathogen levels to

have taken place. At the selected time point, m pairwise values of both yt and

xt can then be randomly selected from the results of each simulation.

This sampling simulates the act of harvesting, and so can be used to enu-

merate the pre-depuration compartmentalised pathogen levels for a batch of

m shellfish. These values can then used as the pre-depuration values (t = 0)

in the depuration model detailed in Chapter 5, and so depuration of the m

pairwise values (yt, xt) can be simulated according to Equations 6.12 and 6.13.

The second method would be to generate one pairwise set of yt and xt,

across the period of n days, then select m pairwise (yt, xt) values randomly

from the values as at each time point. This is possible due to the ergodic

nature of the discrete time process used to create our values of yt and xt,

which states that the statistical properties of an entire process can be obtained

from a random sample of the process [89]. The ergodicity of the process is

borne out by the calculation of the value of A described in Section 6.8.3 further

on in this Chapter, which shows that this sampling method returned a value

of A which conforms to Equation 5.22 derived in the previous Chapter.

Note that in the compartmental model in Chapter 5, we had to provide the

parameter A, which split the unobservable and observable compartments at

the pre-depuration stage by proportions (1−A) and A respectively. As we

have been able to simulate pairwise sampling of both these compartments, we

do not require this parameter in this connected model.
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6.8.2 Depuration of Simulated Harvest

The parameters used to simulate depuration are shown in Table 6.3, and the

‘R’ code which implements the depuration process by the Euler method is

shown in Appendix A. We have used the same values of k (the internal transfer

rate) and b (the depuration rate) as applied in Chapter 5. Equivalent rates

per day were also applied in the model describing the transit of pathogens

from accretion to excretion in Chapter 6. Unlike the models described in

Chapters 3 and 5, the NoV assurance level is not used to set the variability of

the distribution of pathogen loads. The variability of the pathogen distribution

is already inherent in the simulated samples randomly selected from the

model in Chapter 6 at time t.In this instance, the values of φ are as described:

they define the proportion of a shellfish batch which must be below some

pre-defined pathogen load value. We have previously defined Ψ as this load

limit value, and set Ψ = 200 copies as done previously.

Parameter label Description Parameter value used Units

k Pathogen depuration transfer rate 0.07453 /hour

b Pathogen depuration rate 0.01339 /hour

φ NoV assurance level φ ∈ {0.90, 0.95, 0.99} φ ∈ R+

Ψ NoV threshold limit 200 copies

Table 6.3: Parameters used to obtain depuration results based values from stochastic

environmental model

6.8.3 Pre-Depuration Proportions

Chapter 5 presented a model of unobservable and observable loads sequestered

internally within each oyster. In that model, the most important parameter was
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Figure 6.14: Plot of mean pre-depuration values of observable (x̄t) and unobservable

(ȳt) loads for varying STW capacities

A, which determined the fixed level of observable NoV across the population

of shellfish begin depurated.

We now analyse the mean values of the observable (xt) and unobservable

(yt) values obtained using the stochastic model in Chapter 6, comparing the

proportion of their values which comprise the total pathogen load (zt). Figure

6.14 shows the mean pathogen loads of these compartments, and indicates

that their values both follow exponential decay behaviour as the STW capacity

is increased.

The proportion of pathogens obtained from calculating xt
zt

defined the value

of parameter A. The values shown in Figure 6.14 are stated in Table 6.4, along

191

[ 6th June 2017 at 8:47 ]



with the resulting value of A for each capacity C.

Capacity, C

0 mm 5 mm 10 mm 15 mm

ȳt 83 29 11 5

x̄t 465 160 61 28

z̄t = ȳt + x̄t 548 189 72 33

A 0.849 0.847 0.847 0.848

Table 6.4: Parameters used to obtain depuration results based values from stochastic

environmental model

The values of A are almost constant with A ≈ 0.848 for the different values

of capacity C. This aligns with the derivation of the value of A from the

equilibrium of the system in Section 5.4.4, where the value of A was shown to

be

A =
k

k+ b

in terms of the internal transfer and excretion/depuration rates during depur-

ation, and equivalently as

A =
κ

κ+β
(6.20)

in the environmental—compartmental model in Section 6.5. There we have

used κ = 1.78872 and β = 0.32136 as the internal transfer and excretion/de-

puration rates, and so Equation 6.20 provides a value for A = 0.8477.

6.8.4 Capacity v Pre-Depuration NoV Levels

The processes to simulate shellfish harvest described in Section 6.8 were carried

out, and results are now presented. Figure 6.15 provides values of the pre-

192

[ 6th June 2017 at 8:47 ]



depuration observable load xt at which the three NoV assurance levels have

already been achieved. It can be seen that as the STW capacity C is increased,

the value of xt at which 90, 95, 99% of the simulated harvest sample is below

decreases.
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Figure 6.15: Plot of STW capacity versus pre-depuration observable NoV load xt. Plot

shows pathogen values of xt at which the NoV assurance levels of φ =

0.90, 0.95, 0.99 are already fulfilled

Results shown in Table 6.5 and Figure 6.15 are based upon simulated

samples sizes of n = 1000. The code executed in ‘R’ to obtain these results is

shown in Section A.1.7 of Appendix A.
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Capacity, C

Assurance level 0 mm 5 mm 10 mm 15 mm 20 mm 25 mm

φ = 90% 665 322 155 46 31 0

φ = 95% 728 406 198 91 63 3

φ = 99% 913 599 314 171 118 30

Table 6.5: Observable pathogen load values at pre-depuration stage for increasing STW

capacity C. Values shown are where φ % of the xt samples have pathogen

loads less than that value for each capacity C

6.8.5 Capacity v Minimum Depuration Time

The results shown in 6.5 and Figure 6.15 show that only after the STW capacity

C has been increased to deal with rainfall levels of ≈ 10mm and above do

we observe that the assurance levels of φ = 90%, 95% are already fulfilled for

load limit value Ψ = 200 copies. Therefore no depuration would be required

to meet these assurance levels. However some depuration would need to be

undertaken to meet the higher assurance of φ = 99%.

Figure 6.16 shows the minimum depuration times (MDTs) required to achieve

the assurance levels of 90%, 95% and 99%. In general, MDTs decrease with

increasing capacity C. This shows that it is possible to reduce the MDTs by

increasing C; this lowers the environmental concentrations of NoV and thus

allows reduced (or no) requirement for depuration. As previously stated, when

the STW capacity is at C > 10mm, only when we are required to achieve 99%

of the sample with xt < Ψ = 200 copies do we require some depuration to be

instigated.
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Figure 6.16: Plot of STW capacity versus MDT’s. Plot reports MDT values for NoV assur-

ance levels set at φ = 0.90, 0.95, 0.99 to achieve load limit value Ψ = 200

copies
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6.9 summary

The aim of this chapter was to construct a mathematical model that could

provide some interconnectivity between the treatment capacity of a STW and

the levels of pathogens within the waters of shellfish farms in close proximity.

We achieved this by first analysing data on rainfall intensity and frequency,

and constructing mathematical mechanisms that could simulate rainfall within

our model. We considered how any significant rainfall events can overwhelm

the waste water treatment capacity of a STW, and so incorporated the treat-

ment capacity into our model. We then adapted the compartmental model of

depuration constructed in Chapter 5 into a compartmental model describing

the pathogens levels within the compartments of shellfish while they are

filter-feeding in a pathogen rich environment.

The constructed model allowed us to consider how an increased capacity can

have a positive impact on the levels of pathogens transmitted into waters and

shellfish farms. The model was also used to produce results describing how

an increased STW treatment capacity induces a reduction the pathogenic loads

which become sequestered in shellfish due to their ability to bio-concentrate

water-borne pathogens via their filter-feeding process. The model also showed

that the shape of the distribution of pathogens that become sequestered in

shellfish could be approximated as lognormal, and so could be a possible

mechanism (or at least part form of a larger one) that drives the variability of

water-borne pathogen levels across shellfish populations.
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We have stated that the concentration of pathogens in the estuary is de-

scribed by Equation 6.9, which states that the concentration passed into the

estuary is
ρL

V
(ζn −C) . (6.21)

We should consider the pathogen concentration transmitted into the estuary,

based on the parameters in Table 6.2, and no rainfall capacity in place at the

STW. Values of ρ = 2500 copies per litre, L = 400 000 000dm2, V = 100 000 000

litres, and an average rainfall level ζ̄n = 0.0313dm and assuming that C = 0dm

results in an estuary concentration of 313 copies per litre = 5.7446 loge copies

per litre.

This value is well above the range of the distribution shown in Figure 6.11.

However this value is based on an average rainfall of ζ̄n = 0.0313dm occur-

ring each day, and so does not take into account events when ζn < ζ̄. More

importantly the pathogen reduction rate λ will be the most significant factor

in reducing the pathogen concentrations levels in wt, above and beyond any

increase in the value of the STW capacity C.

One aspect of this model of note has been the lognormal shape of patho-

gens in our results. Figures 6.11(a), 6.12(a) and 6.13(a) all closely approximate

lognormal distributions and describe the distribution of pathogens within

the environmental water (wt),and unobservable (yt) and observable (xt) com-

partments of oysters. This provides some confidence in our application of

lognormal distributions earlier in this thesis to describe pathogens within and

across a population of shellfish at the harvest/pre-depuration stage.
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7
D I S C U S S I O N

Norovirus (NoV) is a significant cause of gastroenteritis globally [19, 20], and

the consumption of oysters is frequently linked to outbreaks [14, 27]. Depura-

tion is the principle means employed to reduce levels of potentially harmful

agents or toxins in shellfish [90]. The aim of this thesis was to construct math-

ematical models which can describe the depuration dynamics of water-borne

pathogens and specifically examines the dynamics of NoV during depuration.

This was considered, not only for an individual shellfish, but across a popula-

tion of shellfish. Legislation is currently under consideration within the EU by

the Directorate-General for Health and Consumers (DG SANCO) to limit the

maximum level of NoV that consumers are exposed to via this route. Therefore

any models constructed should incorporate control measures which could be

used to implement maximum NoV levels.

In addition to modelling the impact on pathogens during the depuration of

shellfish, we wished to gain some insight into how the variability, and not just

the mean levels, of water-borne pathogens can be as important with respect

to the length of depuration required to minimise any food safety risks to the

consumer. This proved difficult in the absence of any data sets that can be used

to calculate variability measures, as little data is currently available to inform

these values for NoV. However, our modelling techniques can provide an upper

limit on the variability of water-borne pathogens that are well described by

lognormal distributions.
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7.1 exponential decay model

The model described in Chapter 3 assumes an exponential decay of pathogen

loads in a single mollusc due to depuration, and incorporates this decay into

a lognormal distribution. This model is based on the assumptions that NoV is

log-normally distributed throughout the oyster population [44, 53, 54, 55, 56]

and that decay during depuration is exponential [62, 63, 69], both of which

are consistent with available data and published records.

The model requires the input of four parameters: i) the initial average NoV

load, ii) the depuration efficiency, iii) the desired assurance level and iv) the

required NoV threshold limit. Based on these inputs the model provides an

estimate of the minimum depuration time required to reduce NoV levels below

a threshold which, in conjunction with the other parameters, can also be used

to determine the probability of a batch of oysters testing below the detection

threshold after depuration. A protocol for determining minimum depuration

times using the model is as follows:

1. Measure x̄0 of oyster batch’s harvest site;

2. Determine characteristic efficiency of overall depuration process, b−1;

3. Fix value of NoV load threshold, Ψ;

4. Select NoV assurance level, φ;

5. Apply these parameter values to the model to obtain recommended

depuration period, TWCV.

Steps 1–3 are anticipated to be carried out or fixed by regulators. The NoV as-

surance level parameter φ may not be fixed by legislation, however increasing

values of this parameter in the model would provide increased confidence to
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both depurators and consumers. This would ensure that oysters passing into

the supply chain would have a diminished probability of containing significant

NoV levels. The initial NoV load would be determined using the international

standard for NoV detection [15] prior to depuration. This test provides an

arithmetic mean of a NoV load across a population of ten oysters.

This in itself provides no information on variability within the population

which is required in the calculation of depuration times. However, a worst

case level of variability can be determined in the absence of this data. This

worst case variability increases with the assurance level applied, as does the

depuration time required. In the data sample analysed in Section 3.3.1.2 there

was relatively good correlation between the worst case variability and the

variability observed in the single oyster data when assurance levels of 90%

and 95% were assumed. When real data becomes available for variability in

NoV between oyster populations, this can replace our worst case variability

approach, which should result in a reduction in the predicted depuration times.

The assurance level φ determines the desired (by the depurator or regulator)

proportion of oysters in the population with NoV levels below the set threshold

after depuration. This is important as, in addition to providing a confidence

level associated with the safety of a batch depurated oysters, it is also directly

linked to the probability that a sample of ten oysters will return a value below

the threshold after depuration. Though increasing the assurance level also

increases the required depuration time, it will also reduce the probability

that a batch of oysters will fail testing, thus allowing stakeholders to evaluate

the trade-offs between depuration times and an acceptable failure rate for

themselves.
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The results shown in Table 3.3 show that simulated tests of 10 homogenates

of shellfish would provide differing pass rates compared to the value of the as-

surance level φ. With φ = 90%, a simulated test pass rate of 96% was observed

from 10 000 test runs; when φ = 95%, a pass rate of 98% was observed; while

φ = 99% gave a pass rate of 99%. With this in mind, it would be prudent to

use an assurance level of 95% or greater to ensure that post-depuration testing

would reflect a pass rate close to the assurance level used to determine the MDT.

The final parameter is the NoV threshold value, which is likely to be set in

future by an appropriate regulating body. The bigger the difference between

the initial average NoV level and the threshold value, the longer the required

period of depuration will be. Though this model uses a value of Ψ = 200 NoV

cpg, this is purely for illustrative purposes and not a suggestion for such a

limit, which would require a detailed understanding of the health risk posed

by different levels of NoV.

Both of these values, Ψ and φ, may be controlled in the future by public

health authorities [40], although changes to the status of the UK within the EU

may require future UK legislators to adopt pathogen controls within shellfish

beyond the current 42 hours required for Class B harvests.

7.1.1 Model Limitations

Little data is currently available regarding the depuration efficiency of differ-

ent systems for the removal of NoV. For illustrative purposes this model used

estimates obtained from the literature [7, 62, 63], but clearly there needs to

be substantial research to determine accurate depuration efficiencies for NoV
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before sensible predictions regarding depuration times can be made. How-

ever, regardless of the value used, it is possible to calculate the relationship

between improvements in depuration efficiency and depuration time, which

approximately halves as efficiency doubles.

The model has assumed an exponential decay of pathogen levels due to

depuration within an individual shellfish. We have used a fixed value for the

rate of decay (b) across the whole population during depuration, however

this would not be realistic as pathogen levels would decay at different rates

within the population. This could be due to differing metabolic rates, internal

biological differences and position within the depuration tank are reasons that

could vary the rate of b across the population.

This model does not incorporate any cross contamination between shellfish

during depuration. Following on from the lognormal distribution of pathogen

loads within shellfish, we can hypothesise that a small number of shellfish will

carry a high pathogen load into the depuration tank. Once the shellfish have

recommenced filter feeding, they will excrete pathogens into the depuration

tank water, and some of this may be accreted by other shellfish in close

proximity.

7.1.2 Further Work on Exponential Decay Model

Some refinements of the model from Chapter 3 could be undertaken in future.

The inclusion of a variable decay rate instead of a fixed value of b would

provide a more realistic depiction of depuration, as per the reasons stipulated

previously. This could be implemented by selecting a value of b for each shell-

fish in the population from a probability distribution, e.g. each depuration rate
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could be chosen from N(µ = b,σ2). Incorporating this selection method for

b into the model would provide a more realistic depiction of the depuration

process.

Where cross contamination during depuration is concerned, an experiment

could be conducted to test for the significance of any transmission of patho-

gens between shellfish. Similar to the experiment carried out by Neish in 2013

[39], a batch of oysters could be exposed to high levels of NoV in artificially

seeded tank waters. The shellfish would then ingest high levels of NoV as a

consequence of their feeding activity.

Once this bioaccumulation has taken place, allowing the shellfish to biocon-

centrate high pathogen loads, the animals could then be removed to a depura-

tion tank. Amongst the bioaccumulated animals, shellfish which are known to

have been grown and harvested in farms with track records of very low patho-

gen levels could be marked and placed within the depuration tanks along

with the bioaccumulated specimens. Once depuration has been completed,

the marked shellfish could then be tested for pathogen loads, and if they re-

turn higher than expected values, then cross-contamination within depuration

would need to be taken into account within our modelling framework.
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7.2 compartmental model

Chapter 5 built upon the depuration model, inheriting that models’ features to

include pathogen level controls as well as yield a worst case variability meas-

ure. The main difference between them was that the Chapter 5 model assumed

a sequestration of NoV levels between two interconnected compartments within

an oyster. This compartmentalised approach was based on evidence within the

literature which states the pathogen loads are found not only in the digestive

glands of a shellfish, but also in most other parts of the animal’s biology

[29, 30]. This is of special concern with regards to NoV in oyster species for

two reasons: the standard assay for NoV is only viable for the digestive glands

of oysters; oysters are traditionally consumed raw, unlike most other molluscs.

The cooking process will render most or all viruses present in shellfish invi-

able, and so raw consumption can pose an increased food safety hazard to the

public.

The inclusion of a fixed proportion (A) across a shellfish population of unob-

servable NoV load in our model resulted in extended depuration times being

calculate. More importantly, the model demonstrated that mean observable

NoV loads will experience an increase during the first hours of depuration,

dependent upon the value of A. This initial increase in observed mean values

was observed in data recorded by Neish in 2013 [39], and is also observed in

results provided by Polo et al [63].
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7.2.1 Limitations of Compartmental Model

Similar to the limitation of the depuration decay rate b, the proportion of

observable NoV wold be variable rather than fixed across a population of

shellfish. This would also be true for the internal transfer rate k. Including

methods in our model to vary these parameter values would provide some

greater resemblance to the reality of the depuration process.

7.2.2 Further Work

If our hypothesis of sequestered pathogens loads within oysters is correct,

then this would have ramifications for the timing of testing practices. Due to

the increase in the observable loads seen during the initial hours of depuration

as predicted by our model, any food safety testing must be carried out at least

after this initial increase has occurred (τ2 in our model). Testing at the end

point of depuration rather than before (or even during) the process would

be prudent to minimise any potential food safety risk being passed to the

consumer.
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7.3 stw — shellfish farm pathogen model

The work carried out in Chapter 6 was not based on depuration, but rather

had the principal aim of investigating the connection between overflow dis-

charges from sewage treatment works (STW) due to high levels of rainfall, and

the levels of faecal-transmitted pathogens that are found within untreated

sewage waters. The model of pathogen concentrations passed into shellfish

farm waters via a STW due to high rainfall levels was stochastic in nature,

and was used to calculate observable and unobservable pathogen loads for a

large sample of simulated shellfish. These values were then used to inform

the pre-depuration pathogen loads for a large sample of simulated shellfish.

These were then ‘depurated’ according to the equations used as the basis for

the compartmental model in Chapter 5, applying Eulerian methods to do so.

7.3.1 Limitations of Simulating Harvests

The main limitation of this model is highlighted by the sampling of simulated

shellfish. We produce sample batches of shellfish by randomly choosing time

points of the simulation rather than selecting a batch at a specific time during

the simulation. Therefore, our simulated harvests are temporal not spatial.

Ergodic theory does allow this type of longitudinal sampling rather than from

across a simulated batch of oysters; however, this does not reflect the actual

harvesting of shellfish, who are removed en masse from farm waters at the

same time.

Any variability in the pathogen loads they have accrued will be due to

variances in their biology (which we could account for by the use of variable
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rates of k, b and η), their location in the water column of the farm and distance

form any source of pollution, as well as variances in the water currents and

temperatures they individually experience over time.

7.3.2 Further Work

The inclusion of a spatial component in our modelling of a shellfish farm’s

waters would be an important next step in improving this model. We have

used a temporal selection instead of a spatial one in our model and, as stated

earlier, does not reflect the reality of shellfish harvesting. Further work on

constructing a spatial model with components that describe variations in

water column flows and temperatures, and an inclusion of turbulence in the

pathogen levels due to tides and currents would provide the means to simulate

a shellfish harvest within our model.

A further extension of this model would be to include variable values of

the internal transfer (k) and depuration/excretion (b) rates per shellfish. we

have previously stated that the lognormal distribution is a multiplicative type

of distribution (cf. Section 2.3.2); incorporating a random selection of the

values of k and b per oyster from an appropriate distribution of values would

perhaps provide an additional explanation of the lognormal shape of pathogen

distribution across shellfish populations. Further simulation and mathematical

analysis is required to provide discover any validity to this hypothesis.
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7.4 conclusions

Depuration is one of the main tools through which shellfish industries aim

to reduce NoV levels below possible future legislated thresholds. This may

however be costly to the industry and therefore the consumer. This thesis

arose from a desire to provide a mathematical framework to help industry

and regulators understand the relationship between possible future NoV limits

and required depuration times. In doing so the models described in this thesis

can also provide tools with which to determine by how much depuration

efficiencies may need to improve to reduce depuration times to levels deemed

economically and logistically feasible by industry. It is recognised that NoV

is harmful not just to shellfish consumers, but also to the shellfish industry’s

reputation; therefore, having the ability to determine the depuration times re-

quired to bring NoV and other water-borne pathogen loads to below threshold

levels will be beneficial to all concerned.

However, recent developments with the vote on the EU Referendum in June

2016 will mean that any EU imposed regulations may not be enforced by the

UK government. However UK legislators may deem it a necessity to enforce

viral mitigation for shellfish before they reach the consumer, and these models

can provide them and industry stakeholders with a management tool capable

of providing a robust solution to the question of sufficient application of the

depuration process.
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A
A P P E N D I X A

a.1 r code

This appendix provides the code executed in ‘R’ which has been referenced

throughout the main body of this thesis.

a.1.1 Pass/Fail Test Results Calculations

This R code calculates the arithmetic mean values of 10000 test iterations of

the depuration model in accordance with the results discussed in Section 3.4.4.

#Set value of NoV threshold value used to calaculate min. dep. time

psi_test=200

#define NoV xbar value to be used

xbar_test=1064

#Create inverse erf function

invErf = function(x) {

qnorm((1+x)/2)/sqrt(2)

}

#define upper limit of NoV Load from literature
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maxNoVLoad=10000

#define range of x(NoV cpg) to be used

xx=seq(0.0001,maxNoVLoad,length=4000000)

#phi values to test

phi_test_array=c(0.90,0.95,0.99)

#lambda values to test

lambda_test=0.01339

lambda_test_array=c(lambda_test,lambda_test*1.1,lambda_test*1.25,lambda_

test*1.5,lambda_test*2)

#Number of iterations to run each test

test_number=10000

#build 3d array to store test run values

test_array = array(NaN,dim=c(test_number,length(phi_test_array),length(

lambda_test_array)))

#create array to store pass(=1)/fail(=0) results

test_array_results=array(NaN,dim=c(test_number,length(phi_test_array),

length(lambda_test_array)))

single_test_array=array(NaN,dim=c(test_number,length(phi_test_array),

length(lambda_test_array)))

Fixed_Time=42 #Set value for Fixed Depuration Time for Pass/Fail

rates
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MDT_array <- matrix(c

(186,226,327,169,205,297,149,181,262,124,151,218,93,113,163), nrow =

5, ncol = 3)

###############################Test Run Code for rlnorm function

#########################################################

#Loop 1 - run through 5 differing values of lambda

for (k in 1:length(lambda_test_array)){

#Loop 2 - run through 3 different phi values

for (j in 1:length(phi_test_array)){

#calculate initial sigma value using WCV equation

sigma_initial=sqrt(2)*invErf(2*phi_test_array[j]-1)

#calculate initial value of mu at t=0 to calculate min. dep. time

mu_initial=log(xbar_test)-sigma_initial^2/2

#Loop 3 - run number of test iterations for each variant of phi and

lambda

for (i in 1:test_number){

#calculate MinDep_mu

MinDep_mu=0

#MinDep_mu= mu_initial-lambda_test_array[k]*Fixed_Time

MinDep_mu= mu_initial-lambda_test_array[k]*MDT_array[k,j]

#Store 10 random NoV values from minimum depuration distribution

using inbuilt R function rlnorm

ten_oyster_array=rep(NaN,10)

ten_oyster_array=rlnorm(10,MinDep_mu,sigma_initial)
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#run test for single oyster samples

single_oyster=rlnorm(1,MinDep_mu,sigma_initial)

#Finally, store the average value of these 10 ’random oysters’ in

the big array in the correct location

test_array[i,j,k]=mean(ten_oyster_array)

if (test_array[i,j,k]>psi_test){

test_array_results[i,j,k]=0

}

else {

test_array_results[i,j,k]=1

}

#same process for single oyster test

if (single_oyster>psi_test){

single_test_array[i,j,k]=0

}

else {

single_test_array[i,j,k]=1

}

}

}

}
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mean(test_array_results[,1,1]) #to access results, use this code in

console window and cycle up through k,j options �

a.1.2 Truncated Normal Distribution Generic Plots

The code executed to produce the plots shown in Figure 4.1 is shown below.

The ‘msm’ package was imported to provide the appropriate functions to

produce the plots. [91].

# Generic Plots for normal and 3 truncated normal

-------------------------

pdf("generic_normal_std . pdf", 9,7)

xx <- seq(-5,10, length=1000)

std_norm <- dnorm(xx, mean =3, sd =2)

plot(xx,std_norm, type=" l ", lwd=2.5, xaxt="n", ylab = " ", xlab = " ", ylim

= c(0,0.30), cex.axis=1.6)

axis(1, at=c(0,3),labels=c(0, expression(mu == bar(bold(x)))),cex.axis

=2.0,las=1, tck=-0.005)

mtext(" Probability density",2,line=2.5,cex=2.2,las=0)

abline(v=0, lwd=1.8)
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abline(v=3, lty=2, lwd =1.5)

abline(h=0)

dev.off()

pdf("generic_normal_std_lower . pdf", 9,7)

xx <- seq(-5,10, length=1000)

std_norm_lower <- dtnorm(xx, mean =3, sd =2, lower =0, upper = Inf)

plot(xx,std_norm_lower, type=" l ", col = "red", lwd=2.5, xaxt="n", ylab =

" ", xlab = " ", ylim = c(0,0.30), cex.axis=1.6)

axis(1, at=c(0,3),labels=c(0, expression(mu != bar(bold(x)))),cex.axis

=2.0,las=1, tck=-0.005)

mtext(" Probability density",2,line=2.5,cex=2.2,las=0)

abline(v=0, lwd=1.8)

abline(v=3, lty=2)

abline(h=0)

dev.off()

pdf("generic_normal_std_upper . pdf", 9,7)

xx <- seq(-5,10, length=1000)

std_norm_upper <- dtnorm(xx, mean =3, sd =2, lower =-Inf, upper = 4)
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plot(xx,std_norm_upper, type=" l ", col="blue", lwd=2.5, xaxt="n", ylab = "

", xlab = " ", ylim = c(0,0.30), cex.axis=1.6)

#lines(xx,std_norm)

axis(1, at=c(0,3),labels=c(0, expression(mu != bar(bold(x)))),cex.axis

=2.0,las=1, tck=-0.005)

mtext(" Probability density",2,line=2.5,cex=2.2,las=0)

abline(v=0, lwd=1.8)

abline(v=3, lty=2)

abline(h=0)

dev.off()

pdf("generic_normal_std_combined. pdf", 9,7)

xx <- seq(-5,10, length=1000)

std_norm_upper <- dtnorm(xx, mean =3, sd =2, lower =-Inf, upper = 4)

plot(xx,std_norm_upper, type=" l ", col="blue", lwd=2.5, xaxt="n", ylab = "

", xlab = " ", ylim = c(0,0.30), cex.axis=1.6)

lines(xx,std_norm, lwd =2.5)

lines(xx,std_norm_lower, lwd = 2.5, col ="red")

axis(1, at=c(0,3),labels=c(0, expression(mu)),cex.axis=2.0,las=1, tck

=-0.005)
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mtext(" Probability density",2,line=2.5,cex=1.8,las=0)

abline(v=0, lwd=1.8)

abline(v=3, lty=2)

abline(h=0)

dev.off() �
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a.1.3 Calculation of σ0 Parameter for Truncated Normal Model

The code below was used to obtain a numerical solution for a value of sigma0,

based on the use of the literature-derived parameter x̄0 = 1064 cpg, and match-

ing the value of the mode between the lognormal and truncated normal

distributions. A numerical solution was required as no analytical solution for

sigma0 of Equation 4.32 can be obtained.

# Preamble

----------------------------------------------------------------

# Define inverse erf function

invErf <- function(x) {

qnorm((1+x)/2)/sqrt(2)

}

# Define erf function to use in calculating C

erf <- function(x) {

2*pnorm(x*sqrt(2))-1

}

# define value of mean NoV from James Lowther harvest data Jan ’11

xbar0 <- 1064

# define values of assurance level phi as applied in lognormal model
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phi_array <- c(0.90,0.95,0.99)

sigma_array <- rep(0, length(phi_array))

sigma_tnorm_array <- rep(0, length(phi_array))

mu_array <- rep(0, length(phi_array))

mode_array <- rep(0, length(phi_array))

# function to calculate sigma for tnormal model

# sigma_0 numerical calculation

----------------------------------------------

# sigma_0 is the scale parameter for the truncated distrbution

# we know that the mean value = xbar_0 = 1064, so we use the definition

for the mean of the truncated normal distrbution to

# numerically derive a value for sigma_0

# first declare the definition of the mean for tnorm as a function in

terms of sigma and equal to zero

mu_0 <- mode_array[2]

function_sigma <- function (sigma) {

mu_0 + sigma*(((1/sqrt(2*pi))*exp(-((-mu_0) ^2)/(2 * sigma ^2)))/(0.5 *

(1 - (erf((- mu_0) / (sqrt(2) * sigma)))))) - xbar0

}

# solve function_mu using uniroot
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sigma_0 = uniroot(function_sigma,c(0,10000))$root

# check that mean = xbar_0

test_mean <- mu_0 + sigma_0*(((1/sqrt(2*pi))*exp(-((-mu_0) ^2)/(2 * sigma

_0 ^2)))/(0.5 * (1 - (erf(- mu_0 / (sqrt(2) * sigma_0)))))) �
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a.1.4 Minimum Depuration Times for Truncated Normal Model

The ‘R’ code reproduced below generates numerical solutions to determine

the minimum depuration time required using the truncated normal model.

b = 0.01339 # Dore 2010 depuration decay rate

time <- seq(from = 0, to = 600, by = 0.5)

# Vary the value of Psi for these calculations

psi_array <- seq(100,1000,length=1000)

mu_array_psi <- array(data = 0, dim=c(length(psi_array),length(time)))

sigma_array_psi <- array(data = 0, dim=c(length(psi_array),length(time)))

K_array <- array(data = 0, dim=c(length(psi_array),length(time)))

# array to store values of areas under PDF between 0 and each Psi, for

each time[j]

prob_Area_MDT <- array(data = 0, dim=c(length(psi_array),length(time)))

# array to store results

MDT_psi <- rep(0,length(psi_array))

# cycle through values of Psi

for (i in 1:length(psi_array)){

# cycle through values of time

for (j in 1:length(time)){
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# calculate values of mu and sigma for each time step

mu_array_psi[i,j] <- mu_0*exp(-b*time[[j]])

sigma_array_psi[i,j] <- sigma_0*exp(-b*time[[j]])

K_array[i,j] <- (0.5*(1-erf(-mu_array_psi[i,j]/(sqrt(2)*sigma_array_

psi[i,j]))))

# function defining the truncated normal distribution at time[j]

pxt_area=function(x)

{

return((1/(sqrt(2*pi)*sigma_array_psi[i,j]*K_array[i,j]))*exp(-(x-

mu_array_psi[i,j])^2/(2*sigma_array_psi[i,j]^2)))

}

### calculate definite integral value for each bin

prob_Area_MDT[i,j]=integrate(pxt_area, lower = 0, upper = psi_array[i

])$value

}

MDT_psi[i] <- (which.min(abs(prob_Area_MDT[i,]-phi)))/(length(time)/max

(time))

} �

a.1.5 Non-linear Least Squares Regression of Neish Data

Below is shown the R code executed to obtain parameter estimates for the

proportion of observable NoV load (A), as well as the internal transfer rate (k)
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from the unobservable to observable compartments within the oysters tested

by Dr Anna Neish in 2013 [39].

# Nonlinear least squares regression to obtain best fit parameters

# Original data from Anna Neish

matrix_AN <- matrix(c(0,83951,172746,330798,279012,

42,676135,329798,183490,365956,

90,195117,131936,690449,585570,

162,143542,195646,151702,265712,

210,109121,62891,392198,324491,

258,297505,204854,212936,104772,

330,73709,66332,173570,185330),

byrow=T,nrow=7)

# Obtain time data from matrix_AN

time_AN <- matrix_AN[,1]

# Count number of columns excluding time data in first row

count_AN <- matrix_AN[,-1]

# Remove time data column from Matrix_AN and log values

logdata_AN <- log(count_AN)

# Calculate geometric mean values for each time point

# of AN data for each time point’s data

geomean_AN <- c(exp(mean(logdata_AN[1,])),exp(mean(logdata_AN[2,])),

exp(mean(logdata_AN[3,])),exp(mean(logdata_AN

[4,])),

exp(mean(logdata_AN[5,])),exp(mean(logdata_AN[6,])),
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exp(mean(logdata_AN[7,])))

# Use nls to derive best fit values for parameters A, x_0, b and k from

matrix_AN

derived_nls <- nls(geomean_AN ~ x_0*(exp(-b*time_AN)+(((1-A)*k)/(A*(b-k))

)*

(exp(-k*time_AN)-exp(-b*time_AN))),

start = list(A = 0.4, x_0 = 550000, b = 0.005, k =

0.03))

# Extract best fit data from summary of nls

coef_BF <- summary(derived_nls)\$coefficients[,1]

BF_A1 <- coef_BF[[1]] #best fit of proportion of norovirus in

unobservable compartment

BF_x0 <- coef_BF[[2]] #Best fit value from nls for mean of t=0 AN

data -

BF_b1 <- coef_BF[[3]] #Best fit depuration decay rate in hours

BF_k1 <- coef_BF[[4]] #Best fit interior transfer rate in hours �

a.1.6 Simulation of Environmental Stochastic Model

Shown below is the code executed in ‘R’ to carry out the simulation of pathgoen

transferral from waste waters through sewage treatment works overflows due

to rainfall, and into environmental estuary waters where pathogen levels are

bioconcentrated by simulations of shellfish with compartmentalised pathogen

caches.
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# This script sets the parameters values for all the results and

modelling for Chapter 6 Thesis

# Environmental Parameters

------------------------------------------------

capacity <- seq(from = 0, to = 25,by = 1) #rainfall level processed by

STW (in mm)

time <- 1460 # run the simulation for this number of days = 4 years

# 4 years used due to life cycle of oyster form spat to

adult oyster

batchSize <- 30 # number of oysters in simulation

lambda <- 0.06907 # natural decay/dispersal rate of pathogen in

environmental waters

alpha <- 0.49116 # gamma distribution shape parameter of

rainfall event level (note is in mm)

# - based on last 10 years E&W rainfall

theta <- 6.3675 # gamma distribution rate parameter of

rainfall levels

# - based on last 10 years E&W rainfall

yyy <- seq(from=0, to=100, by=0.1) # domain to produce test plot of

gamma distributed rainfall

#
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plot(dgamma(yyy, shape = alpha,scale = theta), type="n", xlim=c(0,0.2),

ylim=c(0,0.5),cex.axis=1.2,

xlab= " Rainfall level (dm/day) ", ylab=" Probability ", cex.lab=2)

curve(dgamma(x, shape=alpha, scale=theta), add=TRUE, col=1, lwd=3)

numEvents <- 192*(time/365) # number of (expected?) STW events in time

period

#192 per year is figure based on median of last 30 years E&W rainfall for

rainfall >= 1mm in a day

# Parameter is used in randomly generating number of rainfall events

across all ’time’

Area <- 400000000 # agglomeration area in dm^2

rho <- 2500 # input into STW pathogen concentration copies/litre

Volume <- 100000000 # volume of estuary in litres = dm^3

# Compartmental Parameters

------------------------------------------------

b <- 0.01339*24 # excretion rate of each oyster per day,

equivalent to depuration rate

transfer <- 0.07453*24 # Internal transfer rate of pathogen from

compartment y to compartment x, per day

eta <- 60 # oyster intake rate litres/day

############### STW Section array declarations ###################

# array to store up to ’batchSize’ number of time series of pathogen

loads
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pathogenLoad <- array(0,dim=c(time,batchSize,length(capacity)))

pathogenLoad0 <- array(0,dim=c(time,batchSize,length(capacity)))

# blank array to copy pathogenLoad data to and from

x1 <- array(0,dim=c(time,batchSize,length(capacity)))

###############Oyster Section array declarations ###################

# array to store unobservable pathogen loads

preDigest <- array(0,dim=c(time,batchSize,length(capacity)))

# array to store observable pathogen loads

Digest <- array(0,dim=c(time,batchSize,length(capacity)))

# Main Loop for environmental simulation

----------------------------------

#timer for how long the loop takes to run

ptm <- proc.time()

# This outer loop runs through the capacity values in array ’capacity’

for (c in 1:length(capacity)){

# This loop runs for the number of oysters in your batch

for (k in 1:batchSize){

# n is the random number of time periods from which to instigate an

event

# rbinom(n,size,prob) gives n observations from ’size’ trials with

probability success = ’prob’
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# binomial does not use clustered or seasonal rainfall pattern, see

AK re implement seasonality

n = rbinom(1,time,p=numEvents/time)

n <- ifelse(n = 0,1,n)

# randomly selected points in time for rainfall events to occur, and

puts in ascending order

beginEvent = sort(sample(1:(time-1),n)) #not seasonal or

clustered at the moment######################

# sets value of level of rainfall event

x1[beginEvent,k,c] = rgamma(n,shape=alpha, scale=theta) #gamma

distributed random level of rainfall set for each beginEvent

#set the level of each beginEvent’s discharge to what would

constitute the overflow: rainfall minus capacity

x1[beginEvent,k,c] <- ifelse(x1[beginEvent,k,c]<=capacity[c],0,x1[

beginEvent,k,c]-capacity[c])

# divide by 100 to set rainfall minus capacity to decimetre units

instead of millimetres

x1[beginEvent,k,c] <- x1[beginEvent,k,c]/10

#obtain vector of times of overflow events, as beginEvent currently

holds ALL rainfall events

beginEvent <- beginEvent[x1[beginEvent,k,c] != 0]

# copy x1 array into pathogenLoad array

pathogenLoad[beginEvent,k,c] <- x1[beginEvent,k,c]

pathogenLoad0[beginEvent,k,c] <- x1[beginEvent,k,c]
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# this loop goes through the array of overflow events

for (i in 1:length(beginEvent)) {

afterEvent <- beginEvent[i]

# this loop calculates the compound value of each time point for

each overflow event

# ’overlaying’ the decayed value of each previous event on top of

each value

for (j in (afterEvent+1):time){

pathogenLoad[j,k,c] <- pathogenLoad[j,k,c]+pathogenLoad0[

afterEvent,k,c]*exp(-lambda*(j-afterEvent))

}

}

#loop to pass environmental pathogenLoad through each oyster’s

digestive and predigestive systems

for (m in 1:(time-1)){

preDigest[m+1,k,c] <- preDigest[m,k,c] + eta*pathogenLoad[m,k,c] -

transfer*preDigest[m,k,c]

Digest[m+1,k,c] <- Digest[m,k,c] + transfer*preDigest[m,k,c] - b*

Digest[m,k,c]

}

}

print(c)

}

# Stop the clock

proc.time() - ptm

######Allow system to reach ’steady’ state, so remove first 100 time

units from results arrays###########
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equilPathogenLoad <- array(0,dim=c(length(101:time),batchSize,length(

capacity)))

equilPathogenLoad[,,] <- pathogenLoad[101:time,,]

equilPreDigest <- array(0,dim=c(length(101:time),batchSize,length(

capacity)))

equilPreDigest[,,] <- preDigest[101:time,,]

equilDigest <- array(0,dim=c(length(101:time),batchSize,length(capacity))

)

equilDigest[,,] <- Digest[101:time,,] �

a.1.7 Simulating Harvest and Depuration of Results From Stochastic Model

This Section provides the code used to obtain and simulate the harvest and

subsequent depuration of a population of shellfish with pathogen compart-

mentalised between yt and xt. The values have been obtained from simulations

of the stochastic environmental model detailed in Chapter 6.

# use depTime from depuration_plots.R

# copies array of unobservable pathogen loads during depuration for 1000

sampled oysters

y_t <- depPreDigest # dim = c(oyster,capacity,depTime)

# copies array of observable pathogen loads during depuration for 1000

sampled oysters

x_t <- depDigest # dim = c(oyster,capacity,depTime)
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#Plot impact of capacity on minimum dep time for assurance levels phi =

0.90,0.95,0.99

psi <- 200 # NoV load threshold limit value

phi = c(0.9,0.95,0.99) #assurance levels

quantile.results <- array(0,dim=c(length(phi),length(capacity),length(

depTime)))

ecdf.results <- array(0,dim=c(2,length(capacity),length(depTime)))

minDepTime.results <- array(0,c(length(capacity),length(phi)))

# obtain quantiles for both x_t and y_t for all capacities and for each

value of phi

#loop through all capacity values

for (c in 1:length(capacity)){

#loop through all depuration time values

for (t in 1:length(depTime)){

# define function to calculate quantiles of observable values (x_t)

quantile.function <- quantile(x_t[,c,t],probs=phi)

quantile.results[,c,t] <- quantile.function

ecdf.function <- ecdf(x_t[,c,t])

ecdf.results[1,c,t] <- ecdf.function(psi)

ecdf.results[2,c,t] <- 1-ecdf.function(psi)

}

# calculate the minimum depuration time needed to achieve each

# of the pathogen load assurance levels for each capacity value

for (p in 1:length(phi)){
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minDepTime.results[c,p] <- min(which(ecdf.results[1,c,]>phi[[p]]))

}

}

# this plots the pathogens loads values at the 90%, 95%, 99% assurance

levels for each capacity

pdf(file="capacity_vs_predepuration_loads . pdf",width=9,height=7)

plot(capacity,quantile.results[3,,1],type=" l ",xlab="Capacity",ylab="

Pathogen load",lwd=1.5,

main="Capacity vs pre−depuration pathogen loads\nat 90%, 95%, 99%

assurance levels ")

lines(capacity,quantile.results[2,,1],lty=2,lwd=1.5)

lines(capacity,quantile.results[1,,1],lty=3,lwd=1.5)

abline(h=0,v=0)

# add a line denoting the pathogen threshold level limit psi

abline(h=psi,lty=4)

legend(17,800,c("90%","95%","99%"),lty=c(3,2,1),lwd=1.5, cex=1.6)

text(24,220,bquote(Psi), cex = 1.6)

dev.off()

# this plots minimum depuration time required for each of the 3 assurance

levels 0.90,0.95,0.99

pdf(file="capacity_vs_minimum_depuration_times . pdf",width=9,height=7)

plot(capacity,minDepTime.results[,3],type=" l ",xlab="Capacity",ylab="Time"

,lwd=1.5,
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main="Capacity vs minimum depuration time required\nto achieve 90%,

95%, 99% assurance levels ")

lines(capacity,minDepTime.results[,2],lty=2,lwd=1.5)

lines(capacity,minDepTime.results[,1],lty=3,lwd=1.5)

legend(17.25,110,c("90%","95%","99%"),lty=c(3,2,1),lwd=1.5, cex=1.6)

dev.off() �
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B
A P P E N D I X B

b.1 mathematical derivations

b.1.1 Alternative derivation of analytical solution for total NoV load, zt

In Section 5.4.2.3, we obtained an analytical solution for zt by summing the

analytical solutions of xt and yt. This solution can be obtained by using a

different method, and so can confirm that we obtained the correct definition

for the total NoV load. Equation 5.1 states that

zt = xt + yt ,

and so taking derivatives of both sides of this equation using the principle of

linearity yields
dzt

dt
=
dxt

dt
+
dyt

dt
. (B.1)

Equations 5.2 and 5.3 state that

dxt

dt
= kyt − bxt

dyt

dt
= −kyt ,

therefore
dzt

dt
= −bxt . (B.2)

Integrating both sides of this equation with respect to t gives∫
dzt

dt
dt =

∫
−bxtdt

⇒ zt = −b

∫
xtdt .
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Substituting in above the solution for xt as stated by Equation 5.16 yields

zt = −b

∫
x0

A

[
k (1−A)

(b− k)
exp {−kt}+

(Ab− k)

(b− k)
exp {−bt}

]
dt

⇒ zt =
−bx0
A

[∫
k (1−A)

(b− k)
exp {−kt}+

(Ab− k)

(b− k)
exp {−bt}

]
dt

⇒ zt =
−bx0
A

[
k (1−A)

(b− k)

∫
exp {−kt}dt+

(Ab− k)

(b− k)

∫
exp {−bt}dt

]
⇒ zt =

−bx0
A

[
k (1−A)

(b− k)

(
−
1

k

)
exp {−kt}+

(Ab− k)

(b− k)

(
−
1

b

)
exp {−bt}+C

]
⇒ zt =

x0

A

[
b (1−A)

(b− k)
exp {−kt}+

(Ab− k)

(b− k)
exp {−bt}− bC

]
, (B.3)

where C is the constant of integration. The initial condition of x0 = Az0 allows

us to restate this as

zt = z0

[
b (1−A)

(b− k)
exp {−kt}+

(Ab− k)

(b− k)
exp {−bt}

]
+D

where D = −bz0C. Setting t = 0 elicits a term for D ans subsequently C:

z0 = z0

[
b (1−A)

(b− k)
+

(Ab− k)

(b− k)

]
+D

⇒ z0 = z0

[
b−Ab+Ab− k

b− k

]
+D

⇒ z0 = z0

[
b− k

b− k

]
+D

⇒ z0 = z0 +D

⇒ D = 0

⇒ −bz0C = 0 .

As both b, z0 6= 0, it follows that C = 0. This allows us to state that, cf. Equation

B.3,

zt = z0

[
b (1−A)

(b− k)
exp {−kt}+

(Ab− k)

(b− k)
exp {−bt}

]
, (B.4)

which is equal to the definition derived in Section 5.4.2.3.

b.1.2 Θt and Ωt when t = 0

Equations 5.16 – 5.20 describe the dynamics of the respective observable and

total NoV loads within a single oyster for all t > 0. Equations 5.16 and 5.18
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state that xt = x0Θt and zt = z0Ωt. From these two equations, we would

expect that Θ0 = 1 and Ω0 = 1 when t = 0. This can be shown to be true by

setting t = 0 within, firstly, Equation 5.19 and simplifying:

Θ0 = A
−1

[
k (1−A)

(b− k)
exp {−k.0}+

(Ab− k)

(b− k)
exp {−b.0}

]
⇒ Θ0 = A

−1

[
k (1−A)

(b− k)
+

(Ab− k)

(b− k)

]
⇒ Θ0 =

[
k (1−A) + (Ab− k)

A (b− k)

]
⇒ Θ0 =

[
k−Ak+Ab− k

A (b− k)

]
⇒ Θ0 =

[
A (b− k)

A (b− k)

]
⇒ Θ0 = 1 .

Again by setting t = 0, we also check that Equation 5.20 conforms to expecta-

tions:

Ω0 =

[
b (1−A)

(b− k)
exp {−k.0}+

(Ab− k)

(b− k)
exp {−b.0}

]
⇒ Ω0 =

[
b (1−A)

(b− k)
+

(Ab− k)

(b− k)

]
⇒ Ω0 =

[
b−Ab+Ab− k

b− k

]
⇒ Ω0 =

[
b− k

b− k

]
⇒ Ω0 = 1 .

Therefore, as required, Θt = 1 and Ωt = 1 when t = 0. This demonstrates that

the analytical solutions conform with our initial condition assumptions.
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C
A P P E N D I X C

c.1 harvest data

To be able to derive a mean value of NoV in oyster samples from harvest

locations, harvest data must of course be used. Dr James Lowther of CEFAS

carried out an extensive study of NoV loads in oysters from 39 harvest sites over

the course of 2 years. This study assayed 10-homogenate oyster samples per

site for NoV using the standard quantitative PCR test, from samples collected

each month over the two year period. The 39 sites were comprised of 6 class

A, 31 class B and 2 class C sites from around mainland Britain [2]. Class A

sites were reported as having almost negligible NoV copies/g, and as these

sites are also not currently required by legislation to depurate, we have not

examined their data.

The class B and C data can be used to derive estimates of arithmetic mean

values (x̄0) of NoV for each site and at specific time frames (Tables 2,3).

However we need to be able to calculate µ0 for our exponential depuration

model, which is the geometric mean of the un-logged data, not the arithmetic

mean. Geometric mean is defined as the arithmetic mean of log-data values

that follow a log-normal distribution. However, knowing values of both x̄0
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and σ0 we can use the definition of the arithmetic mean of a log-normal

distribution as stated by Equation 3.2 and solve for µ0:

x̄0 = exp
(
µ0 +

1

2
σ20

)
⇒ ln(x̄0) = µ0 +

1

2
σ20

⇒ µ0 = ln(x̄0) −
1

2
σ20 (C.1)

Using σ0 = 1.645 (cf. Section 3.4) and Equation C.1, we can calculate values of

µ0 for both harvest classifications at the high and low temperature time-points.

SITE NO. Jul ’09 Jan ’10 Jul ’10 Jan ’11

11 < 100a 13272 < 40b 15369

14 < 100a 6249 < 40b 5042
c

x̄0 70 9761 20 10206

µ0 2.896 7.833 1.643 7.878

Table C.1: NoV load cpg for class C sites at low and high temperature points through-

out study duration, along with calculated means. a NoV loads recorded as

< 40 cpg are designated as having value = 20 cpg (the midpoint between 0

and 40), b while < 100 cpg are quantified as 70 cpg (the midpoint between

40 and 100). c Nearest data to Jan ’11 was Oct ’10.
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SITE NO. Jul ’09 Jan ’10 Jul ’10 Jan ’11

1 < 40 a 609 < 100 b 774

2 < 40 2554 < 40 1990

3 < 40 < 40 < 40 < 40

4 < 40 1240 < 40 3274

5 < 100 10883 < 40 3657

6 < 40 < 40 < 40 c < 100

7 < 40 348 < 40 3944

8 < 40 < 100 < 40 152

9 < 40 300 d < 40 2739

12 < 100 2055 e < 40 3114

13 < 100 1852 < 40 366

15 < 40 1123 < 40 < 100

16 < 40 300 d < 40 1401

17 < 40 748 < 40 414

18 < 100 512 < 40 1312

19 < 40 < 100 < 40 465

20 < 40 1043 < 100 517

21 < 40 f 300 d < 40 655

22 < 40 300 d < 40 769

23 < 40 294 < 40 300 d, g

24 140 < 100 < 40 657 h

25 < 100 3638 357 i 235
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SITE NO. Jul ’09 Jan ’10 Jul ’10 Jan ’11

26 < 100 < 100 < 40 < 100

27 < 100 300 d < 40 2756

28 < 100 < 100 < 40 532

29 < 40 < 100 < 100 < 100

30 < 100 300 d < 40 824

32 < 100 300 d, j < 40 < 100

33 < 40 1869 < 40 1175 k

35 < 40 < 40 < 40 < 40

37 < 40 1549 < 100 564

x̄0 40 1062 38 1064

µ0 2.336 5.615 2.285 5.617

Table C.2: Genotype II NoV load cpg for class B sites at low and high temperature points

through study duration, as well as calculated means. a NoV loads recorded as

< 100 cpg are designated as having value = 70 cpg (midpoint between 40 and 100), b

while < 40 cpg are quantified as 20 cpg (the midpoint between 0 and 40). c Nearest

data to Jul ’10 was Jun ’10. d Midpoint of 100-500 cpg. e Nearest date to Jan ’10

was Feb ’10. f Nearest date to Jul ’09 was Aug ’09. g Nearest date to Jan ’11 was

Oct ’10. h Nearest date to Jan ’11 was Feb ’11. i Nearest date to Jul ’10 was Aug

’10. j Nearest date to Jan ’10 was Dec ’09. k Nearest date to Jan ’10 was Feb ’10.
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D
A P P E N D I X D

d.1 rainfall data

d.1.1 England & Wales Rainfall Levels

This appendix provides details of the analysis of rainfall data for England &

Wales covering the last ten years. UK rainfall data is available online from the

Met Office [84]. Daily rainfall data for England and Wales from 1931–2015 was

obtained, with the last ten years of data analysed for a best fit distribution

type. This was accomplished using a distribution fitting program called Easy

Fit [92], which ranks a large number of distribution types against each year’s

rainfall data, and provides the parameter values used in the rankings per

distribution.

The rankings are based upon goodness of fit tests carried out against a

wide range of different distribution types. The software provided rankings

based on goodness of fit results from Kolmogorov-Smirnov, Ryan-Joiner and

Anderson-Darling tests. For our purposes, we used the Kolmogorov-Smirnov

results and the gamma distribution ranked very highly, if not the best fit, for

each year’s rainfall examined. The other tests also returned very high rankings

for the gamma distribution.
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The histograms of each year’s rainfall data for 2006–2015 with fitted Gamma

distributions are shown in Figure D.0, whereas the ranking and parameters

for the Gamma distribution for each year are shown in Table D.1.

Note that all values of the shape parameter 0 < k < 1. This results in the

the PDF being a monotonic decreasing function, with P(x)→ 0 as x→∞, and

P(x)→∞ as x→ 0.

Other notable distribution types which ranked highly using this process

were the beta, lognormal, Weibull and Pearson Type VI distributions.

Year Rank k Θ No. of rain days

2006 7/51 0.48668 6.7107 189

2007 9/51 0.45875 6.624 193

2008 1/51 0.49296 7.0049 220

2009 3/51 0.56039 5.6353 203

2010 2/52 0.42119 5.6354 173

2011 7/51 0.55637 5.3008 205

2012 2/51 0.50921 7.3544 213

2013 1/52 0.39687 6.6758 174

2014 6/51 0.55568 5.6596 213

2015 1/52 0.4735 7.0737 209

Mean 3.9 0.49116 6.3675 199.2

Table D.1: Rainfall 2006–2015 data — Gamma distribution’s Kolmogorov-Smirnov

goodness of fit ranking, with distribution parameters describing each year’s

rainfall. Final column reports the number of days with recorded rainfall >

1 mm
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(a) 2006 Rainfall (b) 2007 Rainfall

(c) 2008 Rainfall (d) 2009 Rainfall

(e) 2010 Rainfall (f) 2011 Rainfall

(g) 2012 Rainfall (h) 2013 Rainfall
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(i) 2014 Rainfall (j) 2015 Rainfall

Figure D.0: 2006–2015 England and Wales rainfall density histograms with fitted

Gamma distribution curves using parameters from Table D.1
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d.1.2 Frequency of England and Wales Rainfall

Years Mean Median Q1 Q3 Min. Max.

1986–2015 189.8 192 173.25 204.5 158 232

2006–2015 199.2 204 190 212 173 220

Table D.2: Rainfall 1986–2015 data — 30 years of England and Wales rainfall data for

days with rainfall > 1 mm

Again analysing the rainfall data from the Met Office [84], we can ascertain

the number of days that rainfall was recorded for each year, assessing the

last 30 years of available data for 1986–2015. Table D.2 shows that between

2006–2015, England and Wales experienced days with rainfall > 1 mm within

a range of 173–220 days per year. The average number of rain days is 199.2,

with a standard deviation of 16.4 days. median number of rain days is 204.

For the last 30 years, the location of the number of rainfall days is much

lower in comparison with only the 2006–2015 data, and boxplots of both

data are shown in Figure D.1. Both timeframes exhibit a slight negative skew

towards the upper values of the range. As the data is not symmetric, the

median values are more appropriate measures of location than the mean.
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Figure D.1: Boxplots of 1986–2015 and 2006–2015 England and Wales rainfall, for days

with rainfall > 1 mm
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