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Highlights: 

1. A low-frequency miniaturized active control unit with giant 

magnetostrictive material (GMM) is designed to less than 50 mm. 

It can satisfy the particular underwater working requirements 

such as high pressure, low frequency and high efficiency. 

2. A large-plate active acoustic structure is constructed with 16 

giant magnetostrictive actuators. The thickness of the whole 

active structure is 50mm. 

3. The active noise reduction performance of the active structure 

is measured in an anechoic tank. The experimental results of the 

absorption coefficients are much higher even under a high 

pressure. 

 

Abstract: A light and thin underwater large-plate active acoustic structure is developed that satisfies 

the particular requirements of high pressure resilience, low frequency and high efficiency 

encountered in underwater work environments. A low-frequency miniaturized active control unit, 
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with a thickness of less than 50mm, is designed using giant magnetostrictive material (GMM).  The 

noise reduction performance is measured with an active control system based on a multi-channel 

adaptive filter. The active control system is developed within a LabVIEW environment and can 

achieve significant levels of noise reduction within time intervals of less than one second achieving 

absorption coefficients far exceeding 0.8 even under high pressures. The new active-control system 

incorporates hardware and software components and represents a novel technology for low-

frequency underwater noise reduction. 

Key words: underwater large-scale acoustic structure; low frequency; active noise control; noise 

reduction; giant magnetostrictive actuator  

1.Introduction 

Since the emergence of silent submarines, navies in the developed countries have primarily 

focused on noise detection frequencies substantially below 2 kHz. In recent years active detection 

sonars with substantially low frequencies have been used regularly. Low-frequency detection sound 

waves can not only achieve over the horizon (OTH) detection, but also lead to shell resonance, 

increase the target intensity, and overcome acoustic stealth. Thus, low frequency detection can leave 

the target fully exposed to the enemy in the monitoring system. It is of crucial importance for large 

scale targets to resolve this safety hazard at low frequency. 

Traditional passive acoustic structures are unable of response to incoming low-frequency sound 

waves. This is due to sound reflection being governed by the material properties and the overall 

structure of the target. Active noise control techniques, however, offer an effective means to achieve 

low frequency noise reduction. Nevertheless, compared with the significant progress in the 

aerodynamic field, active noise control is hardly used in underwater acoustics due to its harsh 

application requirements such as high pressure, light weight and high efficiency. Low-frequency 

active control of a large-scale underwater target is rarely reported because of its special military 

background. 

Structures for active noise control  employing piezoelectric ceramics [1] and accelerometers 

for underwater targets are referred to as "Smart Tiles”, this terminology was introduced by the Naval 

Civil Engineering Laboratory in 1996 [2-4]. Multifunctional active noise reduction structures can 

have many concurrent functions such as active sound absorption, active sound insulation and active 

sound radiation control [5]. Related research based on PVDF thin films and Sonopanel composite 

structures, resulted in the development of active acoustic structures  for underwater targets. Two 

layers of PVDF thin films are used as signal separator to separate the incident wave and the  

reflected wave by means of a delay algorithm. The most efficient active noise- reduction effect can 

be achieved with these signals by active methods as described by Howarth et al. [6-8] . 

The most important component of signal separation and secondary sound source in active noise 

control are low-frequency acoustic transducers. Giant Magnetostrictive Materials (GMM) can be 

designed for piston-type underwater acoustic transducers. This low frequency active sonar can 

transmit signals of 200 Hz whose sound intensity is 200 dB [9-10]. Macro Fiber Composites are 

another new smart material for shell active noise control [11-12]. 

 Frequently used materials are piezoelectric materials [13-16] (such as piezoelectric ceramics PZT, 

piezoelectric film PVDF) and magnetostrictive materials (such as rare earth material, giant 

magnetostrictive material). Nevertheless, the most common materials are piezoelectric ceramics. 
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However, the disadvantages of ceramics are the required high driving voltage, small actuating 

amplitude, and the fragility of the material which limits its scope for underwater applications. 

Meanwhile, giant magnetostrictive material used in land high-frequency or ultra-high frequency 

transducer fields and GMM has problems  associated with heat transfer and cooling [17-20]. 

Although GMM do not need to cooling in water, it is difficult to use them at  low frequencies 

especially when the structural size of the Giant Magnetostrictive Actuator (GMA) is less than 50 

mm.  

In this paper, an active-control technology of an underwater large-scale target based on giant 

magnetostrictive materials is studied in the low-frequency range. A GMA was designed step by step 

to meet these requirements. The multi-channel control software was developed within a LabVIEW 

environment and achieves transient acoustic noise reduction. A limited area composed of active 

control units was used as the secondary sound source in a high pressure anechoic tank. The 

performance characteristics of the active noise control were evaluated by means of monitoring the 

reflection coefficients. 

2. Active unit design method 

The active unit used a giant magnetostrictive actuator which is based on the magnetostrictive 

effect. The basic parameters proposed in accordance with task requirements must be determined 

prior to the design of the magnetostrictive actuator. This section describes the design of an actuator 

which can improve on the weakness of piezoelectric ceramics such as fragility, low efficiency and 

high drive voltage.  

2.1 structure parameters of the active unit 

Based on the design principle of an alternating current electromagnetic circuit, the giant 

magnetostrictive actuator under 2 kHz is designed with a Terfenol-D rod, as illustrated in Fig. 1, 

which can be applied to special requirements such as low frequency, high power and miniaturization.  

Depending on the working conditions such as high pressure and current density, the diameter of 

the bare wire can be chosen from standard sizes. The diameter of the bare wire can be obtained from 

the current density. The magnetic circuit will be working repeatedly within short time intervals. 

The coil thickness is: 

Inn

H
e

214
                        (1)                                                                   

where, H is the magnetic field intensity. n1 and n2 are the number of turns per unit length and the 

unit thickness of layers respectively. I is the current.  

     The outer radius of the coil is: 

 1212  Neerr j
                       (2)                               where, r1 and r2 are the 

outer radius of the Terfenol-D rod and the outer radius of the coil respectively. ej is the thickness of 

each layer of the insulation materials (ej=0.05 mm) and N2 is the number of coil layers (N2=e·n2). 

   The total number of turns is: 
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                               (3)  

where, Lc is the length of the coil. 

Set one end of the coil as the coordinate origin, the axis of the distribution of the magnetic field 

(approximation for multilayer coil) is: 
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where, Hx is the magnetic field at position x.  

Due to the alternating current (AC) in the coil, the total impedance coil consists of two parts, 

that is the resistance and the inductance. 

               (5)                                         2

4
nd dS


                          

(6) 

where, R is resistance. Sd is the effective cross-sectional area of the wire and dn is the diameter of 

the bare wire. The resistance coefficient of the conductor is ρT=0.01191. 

The calculation to determine the self-induction coefficient is, in general, complex. However, for 

the particular case of a simple straight solenoid coil, as considered in this paper, the Biot-Savart law 

can be used to obtain an approximation of its value. Nevertheless, this approximation is larger than  

the actual value. This is so because the magnetic field of the coil is assumed to be uniform whereas 

the actual magnetic field is non-uniform and the discrepancy is particularly pronounced for short 

coils. Due to the existing edge effects the field strength near the ends of the coil is only half its 

center value.  

The self-induction coefficient is:  

                   (7)                                                                                          

where, µ0 is the permeability of air, N is the total number of turns on the coil. Vc is the volume of 

the coil.  

When the frequency of the alternating current within the coil is f, the impedance is 

                        (8) 

   The total impedance of the coil is                                                                                              

22

LXRZ                       (9)                                                                                                                                        

   The required voltage and consumption power of the coil is:  

                       (10) 

The bias magnetic field of permanent magnets is used to eliminate Second Harmonic Generation 

(SHG) of a Terfenol-D rod and provide mechanical movement of the Terfenol-D rod in a linear 

range. The calculations associated with the bias magnetic field are also very complex and the results 

obtained are generally not very accurate. For engineering application it is therefore a common 

procedure to use an estimate in the first instance and, thereafter, the actual measurement provides a 

))(( 21 enLnN c

dT SNrrR /)( 21  
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reference for improvements. The estimate is obtained from  the λ-H curve. If this estimate does not  

satisfy the requirements then the shape of the permanent magnet should be improved until the 

performance is satisfactory.  

 The design requirements and the steps outlined above define the geometric dimensions of the 

actuator. The diameter of radiation plate located in the end of the actuator drive rod is 150 mm and 

its thickness is 2 mm. The total thickness of the GMA is only 40 mm which is ideal for thin low-

frequency acoustic smart materials. 

2.2 Finite element Simulation  

Finite element analysis uses a mathematical approximation method to simulate the real physical 

condition such as geometry and loading conditions. We have conducted a finite element analysis, 

employing the ANSYS 14.0 software, to simulate our experiments computationally.  and provide 

theoretical support for the structural design and optimization. The GMA parameters are shown in 

Table 1.   

In Fig. 2, the element type used the three dimensional solid element solid 186 in finite element 

model of ANSYS 14.0. The axial key parts including rare earth rods, driver, permanent magnets and 

other components used more than 200,000 elements to guarantee the accuracy in the modeling 

process of meshing, which can influence the GMA modal frequencies. 

The boundary conditions of the finite element model are that the shell is constrained in all 

degrees of freedom and the axial parts have axial freedom. The mode extraction method of Block 

Lanczos in ANSYS 14.0 is adopted to calculate the first four orders of resonance frequencies 

between 100 Hz to 3 kHz. The results of the simulations are compared to the experimental data in 

Fig. 3. 

For comparison, the resonance frequencies of the GMA is measured by a laser 

scanning vibrometer (type: MLV-100). The experimental and computational results display, overall, 

identical trends, as shown in Table 2. This indicates that the experimental values are overall 

consistent with the theoretical ones. 

 

 

2.3 Absorption coefficients testing 

 The sound absorption of the GMA unit is measured in the water-filled acoustic tube, illustrated 

in Fig. 4, by means of a set of adaptive control systems. The frequencies of the incident acoustic 

signal ranged from 500 Hz to 2 kHz at the bottom of the acoustic tube. Sensors at the top of the tube 

receive the reflected sound waves from the surface of the GMA unit. Therefore, the sound absorption 

performance of the GMA unit can be evaluated, and the acoustic field can be displayed by means 

of an oscilloscope. The reflection coefficient of the water-air interface is close to 1.0. The sound 

absorption coefficients of the GMA unit before and after control are shown in Fig. 5. 

Fig. 5 reveals that, compared with sound absorption coefficients of the GMA unit before control, 

the coefficients after control are much higher. The average value of the coefficient after control lies 

above 0.85. The GMA units have a broadband noise reduction effect. In the low frequency range 

the sound absorption performance of the GMA far exceeds the traditional passive absorption 
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structures. 

3. Active large plate design method and active control system 

3.1 Active large plate 

A large-plate sound source was used as a secondary source, or anti-source, which is constructed 

by uniformly distributed GMA units as shown in Fig. 6. These GMA units are embedded in rubber 

material. This plate specimen size is 1 m × 1 m × 50 mm with 8 mm steel backing.    

The surface acceleration of these sixteen units were measured by means of a surface vibration 

analyzer (type: B&K 2513) and they were adjusted to the same phase. In Fig. 7 all units display the 

same trends of the frequency response characteristics. The main resonance frequency band ranges 

from 1.1 kHz to 2 kHz which is in accordance with the initial design purpose and application 

frequency band.  

3.2 Active control system 

An active control theory has been developed adequately in the field of aerodynamics. The D-

LMS algorithm in Eq. (11) is widely used in many active control methods [21]. The active control 

system is developed based on the LabVIEW and DLMS layout illustrated in Fig. 8.  

( 1) ( ) 2 ( ) ( )sW n W n e n X n k     (11)                        

The primary microphone or hydrophone measures the signal x(n) from the primary source and 

the error sensor monitors the error signal e(n). When the error signal is reduced to the minimum 

through an adaptive filter algorithm, noise reduction is achieved. The active control system has three 

branches (Background And Parameter Set, Impulse response of the secondary-path and ANC 

System) as shown in Fig. 10. 

4. Experiment apparatus and testing procedure 

The active noise control experiments  were conducted in an anechoic tank with a diameter of 

4.5 m and a length of 25 m. The primary source used 127 circular array sound sources. The plate 

sound source is the secondary source or anti-source. The whole performance testing system is shown 

in Fig. 9. After the signals were emitted from the primary source, the signal can be separated to get 

the incident signal and the reflected signal in the plate sound source. The controller analyzed and 

calculated the incident signal to send a secondary signal to the GMA units with the multi-channel 

DLMS algorithm.  

In order to evaluate active echo suppression performance under the condition of low frequencies, 

sound wave from primary sound noise source ranged from 500 Hz to 3 kHz. The entire testing 

process was conducted under atmospheric pressure and for a hydrostatic pressure of 1 MPa. High 

hydrostatic pressure was achieved by water injection. After the secondary acoustic signals interfered 

with primary signals, the hydrophones can monitor the acoustic stealth effect. In each monitor 

position, the oscilloscope will display local signals in real time.  
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Prior to the experiments the tank was sealed and water was injected to increase the hydrostatic 

pressure to 1 MPa. The active noise control experiments were carried out at the stable pressure value 

of 0.96 MPa. The active control process is shown in Fig. 10. There are three spectra in Fig.10. The 

first spectrum displays the time-domain results, the second spectrum shows the frequency-domain 

results and the third spectrum is the sound absorption coefficient of the active noise control. In the 

first and second spectrum, the red line is the primary signal from a signal generator (type: Agilent 

33220A) and the white line is the secondary sound signal. The sound pressure level of the error 

signal reduced from 128 dB to 103 dB when the incident frequency was 1.3 kHz. The convergence 

time of the total active control was less than 1 s. The time domain and frequency domain of the 

signal can be found in Fig.10 and the current frequency is clearly displayed in the frequency domain.  

In the frequency band from 500 Hz~3 kHz, under atmospheric pressure, the active absorption 

coefficients of the large target in the large pressure anechoic tank is substantially higher than 0.9 at 

constant temperature as shown in Fig. 11. Meanwhile, the absorption coefficients under high 

pressure is slightly smaller than those under hydrostatic pressure in Fig. 5. But these values are still 

more than 0.8 and the average coefficient was about 0.9. 

Along with the absorption coefficient, the acoustical transmission property is also validated 

through the hydrophone array in Fig. 9. The sound pressure levels in front and back of the active 

plate sample are shown in Fig. 12. The distance from the hydrophone array to the active plate is 50 

cm. The hydrophone array is composed of 16 hydrophones. The horizontal distance between two 

hydrophones is 20 cm and the longitudinal distance between two hydrophones is 0.40 m. The 

hydrophone marked in red at Location [3,4] in the array is at the center point of the plate. 

The acoustic fields of 800 Hz and 1500 Hz are shown in Fig. 12. The bright area is off-center 

due to the relative position. Because the array is close to the active plate, acoustic signals from the 

array are near field signals of the plate. The controlled area is an approximate rectangle which is the 

region of active units. The sound pressure level of the transmission attenuation is more than 10 dB 

even 20 dB through 58 mm at low frequencies. It has a substantial control effect even if the 

frequency is as low as 800 Hz. 

5. Conclusion and discussion 

In this paper, a thin low-frequency actuator with GMM was designed to satisfy special 

underwater requirements. A large active acoustic structure was constructed with distributed giant 

magnetostrictive actuators. An integrated underwater active control system based on LabVIEW was 

proposed to achieve low frequency noise reduction even in deep water or under high pressure. This 

large acoustic structure with high absorption coefficients can provide a very important reference in 

the context of the design of underwater equipment. 

The objective of the present work  was to evaluate the potential engineering application of the 

acoustic characteristics of a large-scale underwater acoustic structure with giant magnetostrictive 

actuators in the low frequency band. This large acoustic structure consisted of GMA units that can 

provide useful results in active noise reduction. To distinguish this from traditional passive noise 

reduction methods the current research with high absorption coefficients has a certain reference 

value for the underwater acoustical noise reduction. Meanwhile, experiments under high pressure 

indicate this work has the potential to be used for underwater operation even in deep water. All these 
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underwater active control experiments are the very important works which indicate that the 

exploratory in the lab can be used in the engineering application. 

Future research will evaluate the active noise reduction performance under higher pressure 

(≤5MPa) and at other temperatures. Additionally, a monitoring system will be built to observe the 

noise reduction effect of the whole space. Experiments in lakes and in shallow seas would be 

beneficial in order to achieve more realistic conditions mirroring real engineering applications.  

Acknowledgments  

This paper is supported by the China Postdoctoral Science Foundation (No. 2016M591046). 

References and links  

[1] J. F Tressler, R. E Newnham, W. J Hughes, Capped ceramic underwater sound projector: The 

"cymbal" transducer, Journal of the Acoustical Society of America. 105 (1999) 591-600 

[2] R. D. Corsaro, B. Houston, J. Bucaro, Sensor actuator tile for underwater surface impedance 

control studies, Journal of the Acoustical Society of America. 102(1997) 1573-1581 

[3] R. D. Corsaro, B. H. Houston, Sensor actuator panels for underwater acoustic control, 

Proceedings of SPIE, 2779 (1996) 598-602 

[4] R. D. Corsaro, B. H. Houston, J. D. Klunder, Integrated smart actuator containing a monolithic 

conformed accelerometer, Proceedings of SPIE, 3044 (1997) 397-405 

[5] F. D Shields, L. D. Lafleur, Smart acoustically active surfaces, Journal of the Acoustical 

Society of America. 102 (1997) 1559-1566 

[6] T. R. Howarth, V. K. Varadan, X. Q. Bao, V. V. Varadan, Piezocomposite coating for active 

underwater sound reduction, Journal of the Acoustical Society of America. 2 (1991) 823-831 

[7] T. R. Howarth, X. Q. Bao, V. V. Varadan, Digital time delay network for an active underwater 

acoustic coating, Journal of the Acoustical Society of America. 3 (1993) 1613-1619 

[8] T. R. Howarth, Y. T. Robert, Electroacoustic Evaluations of 1-3 Piezocomposite SonoPanel 

Materials, Ultrasonics, Ferroelectrics and Frequency Control. IEEE Transactions on 47 (2000) 

886-894 

[9] G. Engdahl, Handbook of Giant Magnetostrictive Materials, Sa Diego: Academic Press (2000) 

[10] J. H. Goldie, M. J. Gerver, J. Oleksy, Composite Terfenol-D Sonar Transducers, Proceedings 

of SPIE, 3675 (1999) 223-234 

[11] W. K. Wilkie, R. G Bryant, J. W. High, et.al., Low-cost piezocomposite actuator for structural 

control applications, Proceeding of SPIE, 3991 (2000)  323-334 

[12] R. B. Williams, D. J. Inman, M. R. Schultz, et.al., Nonlinear tensile and shear behavior of 

macro fiber composite actuators., J. Compos. Mater. 38 (2004) 855-869 

[13] Z. W. Chen, J. Q. Hu, Piezoelectric and dielectric properties of Bi0.5(Na0.84K0.16)0.5 TiO3-

Ba(Zr0.01Ti0.96)O3 lead free piezoelectric ceramics, Advances in Applied Ceramics, 107 

(2008) 222-226 

[14] Huang Shouqing, Yang Yong, Liu Shouwen, Chu Xiangcheng, A large-diaphragm 

piezoelectric panel loudspeaker and its acoustic frequency response simulation method, 

Applied Acoustics, 125 (2017) 176-183 

[15] Montazer Babak, Sarma Utpal, Modeling and Analysis the Effect of PZT Area on Square 

https://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=searchresults&category=authorsearch&searchtype=Quick&searchWord1=%7bChen,+Z.W.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=searchresults&category=authorsearch&searchtype=Quick&searchWord1=%7bHu,+J.Q.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=searchresults&category=authorsearch&searchtype=Quick&searchWord1=%7bHu,+J.Q.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/doc/abstract.url?pageType=quickSearch&usageOrigin=searchresults&usageZone=resultslist&searchtype=Quick&SEARCHID=89055b28M274aM430fMab53M0a7b2d92513f&DOCINDEX=2&database=1&format=quickSearchAbstractFormat&dedupResultCount=&SEARCHID=89055b28M274aM430fMab53M0a7b2d92513f&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=searchresults&category=authorsearch&searchtype=Quick&searchWord1=%7bHuang,+Shouqing%7d&section1=AU&database=1&yearselect=yearrange&sort=yr&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=searchresults&category=authorsearch&searchtype=Quick&searchWord1=%7bYang,+Yong%7d&section1=AU&database=1&yearselect=yearrange&sort=yr&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=searchresults&category=authorsearch&searchtype=Quick&searchWord1=%7bLiu,+Shouwen%7d&section1=AU&database=1&yearselect=yearrange&sort=yr&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=searchresults&category=authorsearch&searchtype=Quick&searchWord1=%7bChu,+Xiangcheng%7d&section1=AU&database=1&yearselect=yearrange&sort=yr&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/doc/abstract.url?pageType=quickSearch&usageOrigin=searchresults&usageZone=resultslist&searchtype=Quick&SEARCHID=89055b28M274aM430fMab53M0a7b2d92513f&DOCINDEX=1&database=1&format=quickSearchAbstractFormat&dedupResultCount=&SEARCHID=&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/doc/abstract.url?pageType=quickSearch&usageOrigin=searchresults&usageZone=resultslist&searchtype=Quick&SEARCHID=89055b28M274aM430fMab53M0a7b2d92513f&DOCINDEX=1&database=1&format=quickSearchAbstractFormat&dedupResultCount=&SEARCHID=&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=searchresults&category=authorsearch&searchtype=Quick&searchWord1=%7bMontazer,+Babak%7d&section1=AU&database=1&yearselect=yearrange&sort=yr&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=searchresults&category=authorsearch&searchtype=Quick&searchWord1=%7bSarma,+Utpal%7d&section1=AU&database=1&yearselect=yearrange&sort=yr&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/doc/abstract.url?pageType=quickSearch&usageOrigin=searchresults&usageZone=resultslist&searchtype=Quick&SEARCHID=ffbbdfbcMb183M4331M9559Mb8d4b3441f01&DOCINDEX=1&database=1&format=quickSearchAbstractFormat&dedupResultCount=&SEARCHID=&referer=/search/results/quick.url


 

 9 

Shaped Substrate for Power Enhancement in MEMS Piezoelectric Energy Harvester, Journal 

of Circuits, Systems and Computers, 26 (2017) 9-21 

[16] Yuan Xi, Zhu Song, Li Xianfang, Mechanical performance of piezoelectric fiber composites 

and electroelastic field concentration near the electrode edges, Materials and Design 128 (2017) 

71-79 

[17] Zhu Yuchuan, Ji Liang, Theoretical and experimental investigations of the temperature and 

thermal deformation of a giant magnetostrictive actuator, Sensors and Actuators, A: Physical, 

218 (2014) 167-178 

[18] Zhou Can,  Duan Jian, Deng Guiling, Li Junhui, Improved thermal characteristics of a novel 

magnetostrictive jet dispenser using water-cooling approach, Applied Thermal Engineering, 

112 (2017) 1-7 

[19] L. F. Cótica, S. Betal, C. T. Morrow, Thermal effects in magnetoelectric properties of 

NiFe2O4/Pb(Zr0.52Ti0.48)O3/NiFe2O4tri-layered composite, Integrated Ferroelectrics, 174 

(2016) 203-209 

[20] Sun Jianping, Wang Jianxin, Structure design and verification of thermo-acoustic refrigerator 

driven by magnetostrictive transducer, Modern Electronics Technique, 39 (2016) 164-167 

[21] H. S. Kim, Y. Park, Delayed-XLMS Algorithm: An Efficient ANC Algorithms Utilizing 

Robustness of Cancellation Path Mode, Journal of Sound and Vibration. 212 (1998) 875-887  

https://www.engineeringvillage.com/search/doc/abstract.url?pageType=quickSearch&usageOrigin=searchresults&usageZone=resultslist&searchtype=Quick&SEARCHID=ffbbdfbcMb183M4331M9559Mb8d4b3441f01&DOCINDEX=1&database=1&format=quickSearchAbstractFormat&dedupResultCount=&SEARCHID=&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=searchresults&category=authorsearch&searchtype=Quick&searchWord1=%7bYuan,+Xi%7d&section1=AU&database=1&yearselect=yearrange&sort=yr&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=searchresults&category=authorsearch&searchtype=Quick&searchWord1=%7bZhu,+Song%7d&section1=AU&database=1&yearselect=yearrange&sort=yr&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=searchresults&category=authorsearch&searchtype=Quick&searchWord1=%7bLi,+Xianfang%7d&section1=AU&database=1&yearselect=yearrange&sort=yr&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/doc/abstract.url?pageType=quickSearch&usageOrigin=searchresults&usageZone=resultslist&searchtype=Quick&SEARCHID=ffbbdfbcMb183M4331M9559Mb8d4b3441f01&DOCINDEX=3&database=1&format=quickSearchAbstractFormat&dedupResultCount=&SEARCHID=&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/doc/abstract.url?pageType=quickSearch&usageOrigin=searchresults&usageZone=resultslist&searchtype=Quick&SEARCHID=ffbbdfbcMb183M4331M9559Mb8d4b3441f01&DOCINDEX=3&database=1&format=quickSearchAbstractFormat&dedupResultCount=&SEARCHID=&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=searchresults&category=authorsearch&searchtype=Quick&searchWord1=%7bZhu,+Yuchuan%7d&section1=AU&database=1&yearselect=yearrange&sort=yr&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=searchresults&category=authorsearch&searchtype=Quick&searchWord1=%7bJi,+Liang%7d&section1=AU&database=1&yearselect=yearrange&sort=yr&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/doc/abstract.url?pageType=quickSearch&usageOrigin=searchresults&usageZone=resultslist&searchtype=Quick&SEARCHID=d0ea5254M952cM4af7Mab70M79592eb00f49&DOCINDEX=17&database=1&format=quickSearchAbstractFormat&dedupResultCount=&SEARCHID=d0ea5254M952cM4af7Mab70M79592eb00f49&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/doc/abstract.url?pageType=quickSearch&usageOrigin=searchresults&usageZone=resultslist&searchtype=Quick&SEARCHID=d0ea5254M952cM4af7Mab70M79592eb00f49&DOCINDEX=17&database=1&format=quickSearchAbstractFormat&dedupResultCount=&SEARCHID=d0ea5254M952cM4af7Mab70M79592eb00f49&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=searchresults&category=authorsearch&searchtype=Quick&searchWord1=%7bZhou,+Can%7d&section1=AU&database=1&yearselect=yearrange&sort=yr&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=searchresults&category=authorsearch&searchtype=Quick&searchWord1=%7bDuan,+Ji-an%7d&section1=AU&database=1&yearselect=yearrange&sort=yr&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=searchresults&category=authorsearch&searchtype=Quick&searchWord1=%7bDeng,+Guiling%7d&section1=AU&database=1&yearselect=yearrange&sort=yr&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=searchresults&category=authorsearch&searchtype=Quick&searchWord1=%7bLi,+Junhui%7d&section1=AU&database=1&yearselect=yearrange&sort=yr&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/doc/abstract.url?pageType=quickSearch&usageOrigin=searchresults&usageZone=resultslist&searchtype=Quick&SEARCHID=f313bd27M065aM4c0cM8a8cM5b1e70655d7e&DOCINDEX=18&database=1&format=quickSearchAbstractFormat&dedupResultCount=&SEARCHID=&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/doc/abstract.url?pageType=quickSearch&usageOrigin=searchresults&usageZone=resultslist&searchtype=Quick&SEARCHID=f313bd27M065aM4c0cM8a8cM5b1e70655d7e&DOCINDEX=18&database=1&format=quickSearchAbstractFormat&dedupResultCount=&SEARCHID=&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=searchresults&category=authorsearch&searchtype=Quick&searchWord1=%7bC&oacute;tica,+L.F.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=searchresults&category=authorsearch&searchtype=Quick&searchWord1=%7bBetal,+S.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=searchresults&category=authorsearch&searchtype=Quick&searchWord1=%7bMorrow,+C.T.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=searchresults&category=authorsearch&searchtype=Quick&searchWord1=%7bMorrow,+C.T.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr&referer=/search/results/quick.url
https://www.engineeringvillage.com/search/doc/abstract.url?pageType=quickSearch&usageOrigin=searchresults&usageZone=resultslist&searchtype=Quick&SEARCHID=f313bd27M065aM4c0cM8a8cM5b1e70655d7e&DOCINDEX=45&database=1&format=quickSearchAbstractFormat&dedupResultCount=&SEARCHID=f313bd27M065aM4c0cM8a8cM5b1e70655d7e&referer=/search/results/quick.url


 

 10 

 

 

Biographies 

Dr. Wenjie Wang was born in Shandong, China, in 1988. He received the Ph.D. degree in fluid 

and acoustic engineering from Beihang University, Beijing, China, in 2015. He is now a 

postdoc in Fluid and Acoustic Engineering Laboratory, Beihang University. His main research 

interests include underwater acoustics, aeroacoustics, intelligent systems with smart 

materials and structures, piezoelectric devices and nonlinear dynamics. 

 

 

 

 

 

Dr. Peter J. Thomas was born in Rotenburg a. d. Fulda, Germany, in 1960. He received the 

Dipl.-Phys. and Dr. rer. nat. degrees from the Georg-August-Universität in Göttingen, 

Germany, in 1988 and 1991, respectively. He is currently a Professor at the School of 

Engineering, University of Warwick, Coventry, UK where he is also the Director of their Fluid 

Dynamics Research Centre. His research interests include Rotating Flows, Laminar-

Turbulent Transition, Vortex Stability, Oceanographic Coastal Currents, Granular Flows and 

Particle-Laden Flows. Over the years, he has received more than $4M in research funds 

from funding agencies and industry, and published more than 150 journal and conference 

papers. 

 

http://www2.warwick.ac.uk/fac/sci/eng/staff/pjt/rotenbg
http://www.eng.warwick.ac.uk/
http://www.eng.warwick.ac.uk/
http://www.exponet.co.uk/peter


 

 11 

 

 

 

Fig. 1. GMA structure. 

 

 

Fig. 2. GMA mesh. 

 

 

Fig. 3. Results of simulation and experiment. 
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Fig. 4. GMA unit and acoustic tube. 

 

Fig. 5. Absorption coefficients of GMA unit. 

 

 

Fig. 6. Active large plate. 

 

Fig. 7. Surface accelerations of GMA units. 
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Fig. 8. Active control procedure. 

 

 

Fig. 9. Experiment system. 
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Fig. 10. Testing process (f=1.3 kHz). 

 

 

 

 

 

 

 

 

A) Absorption coefficients of 0 MPa. 

B) Absorption coefficients of 0.96 MPa. 

Fig. 11. Absorption coefficients of large plate.  
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Fig. 12. Array signals of front and back. 

 

Table.1 Parameters of Terfenol-D 

Magnetostrictive Coefficient

（×10-9m/A） 
2.0~3.2 

Energy Density（/ kJ·m-3） 12~25 

Resistivity（×10-5Ω·cm） 6.0 

Elasticity Modulus

（×1010Pa） 
2.5~3.5 

Density（/ g·cm-3） 9.25 

Relative Permeability 3~15 

 

Table 2 Results of simulation and experiment (Hz). 

 1st frequency 2nd frequency 3rd frequency 4th frequency 

Simulation 303.77 765.91 1270.9 2815.0 

Experiment 296.30 879.41 1562.5 2963.8 

 

 


