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PROBABILISTIC SOLUTIONS TO NONLINEAR FRACTIONAL

DIFFERENTIAL EQUATIONS OF GENERALIZED CAPUTO

AND RIEMANN-LIOUVILLE TYPE

M. E. HERNÁNDEZ-HERNÁNDEZ∗, V. N. KOLOKOLTSOV

Abstract. This paper provides well-posedness and integral representations of

the solutions to nonlinear equations involving generalized Caputo and Riemann-

Liouville type fractional derivatives. As particular cases, we study the linear
equation with non constant coefficients and the generalized composite frac-

tional relaxation equation. Our approach relies on the probabilistic represen-

tation of the solution to the generalized linear problem recently obtained by
the authors. These results encompass some known cases in the context of clas-

sical fractional derivatives, as well as their far reaching extensions including
various mixed derivatives.

1. Introduction

Over the last decades, the theory of fractional differential equations has been
actively studied due to its vast applications in different fields of science (see, e.g.,
[3, 14, 25, 26, 30], and references therein). The use of fractional ordinary differen-
tial equations (FODE’s) and fractional partial differential equations (FPDE’s) for
modeling relaxation phenomena, viscoelastic systems, anomalous diffusions, and
continuous time random walks (CTRW’s), have been addressed, e.g., in [2, 15, 19,
21, 23, 30].

To solve this type of equations a variety of numerical and analytical approaches
have been investigated. Amongst them, the Laplace, the Mellin and the Fourier
transform techniques play an important role (see, e.g., [4, 14, 25, 26]). In the context
of probability theory, some connections between the solutions of certain fractional
differential equations and stochastic processes can be found in the literature (see,
e.g., [9, 15, 16, 23, 24, 28]). A more recent connection between fractional equations
and stochastic analysis was given in [11, 17].

This work focuses on the well-posedness for the generalized nonlinear fractional
equation

−D̃(ν)u(t) = −f(t, u(t)), t ∈ (a, b], u(a) = ũa, ũa ∈ R, (1)

and the generalized composite fractional relaxation equation

−D̃(ν)u(t)−γ(t)u′(t)−λu(t) = −f(t, u(t)), t ∈ (a, b], u(a) = ũa, ũa ∈ R, (2)
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for some given functions f and γ, and λ ≥ 0. Notation −D̃(ν) refers either to

the generalized RL type operator −D(ν)
a+ or to the Caputo type operator −D(ν)

a+∗
(defined below). These operators were introduced in [17] as natural extensions
(from a probabilistic point of view) of the Caputo and RL derivatives of order
β ∈ (0, 1). They can be thought of as the generators of decreasing Feller processes
interrupted on an attempt to cross a boundary.

Some particular examples of equation (1) include the initial value problem for

the nonlinear equation with the classical Caputo derivative Dβ
0+∗:

Dβ
0+∗u(t) = f(t, u(t)), t ∈ (0, b], u(0) = u0, β ∈ (0, 1), (3)

and the fully mixed (or multi-term) fractional equation

d∑
i=1

ωi(t)D
βi(t)
0+∗ u(t) = f(t, u(t)), t ∈ (0, b], u(0) = u0, βi ∈ (0, 1), (4)

for a given continuous function f and nonnegative functions ωi(·), i ∈ {1, . . . , d}.
The existence and uniqueness results for the fractional equation (3) have been
proved by transforming this equation into a Volterra type equation and then by
using fixed point arguments (see, e.g., Theorem 5.1 and Theorem 6.1 in [4] for the
RL and the Caputo case, respectively).

Our method to prove well-posedness for the generalized problem in (1) is also
based on transforming the equation into an integral equation. However, the integral
equation used here is taken from the probabilistic solution to the corresponding
linear problem which was recently obtained in [11].

We also study the linear equation with non constant coefficients:

−D̃(ν)u(t) = λ(t)u(t)− g(t), t ∈ (a, b], u(a) = ũa, (5)

for given functions λ and g. For this case we give an explicit solution in terms of the
transition probabilities of the underlying stochastic process. One of the reasons to
deal with this case separately is due to the fact that the probabilistic representation
of its solution has an explicit form as a Feynman-Kac type formula.

The generalized equation (5) encompasses the initial value problem for the linear
equation with non constant coefficients involving the classical Caputo derivative:

Dβ
0+∗u(t) = λ(t)u(t) + g(t), t ∈ (0, b], u(0) = u0, (6)

for β ∈ (0, 1). It was proved by analytical methods that if g ∈ C[0, b], then equation
(6) has a unique solution u ∈ C[0, b] given by (see, e.g., [4], Theorem 7.10)

u(t) = T (t) +

∫ t

0

R(t, r)T (r)dr, t ∈ (0, b], (7)

where

T (t) := u0 + Iβ0+g(t), R(t, r) :=

∞∑
j=1

kj(t, r),

Iβ0+ denotes the Riemann-Liouville integral operator of order β,

k1(t, r) := k(t, r) =
1

Γ(β)
(t− r)β−1λ(r),

and

kj(t, r) :=

∫ t

r

k(t, s)kj−1(s, r)ds, (j = 2, 3, . . .).
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The probabilistic approach used here provides a different representation of the
solution in (7) when λ is a positive function. This representation is given in terms
of path functionals and can also be written explicitly in terms of the transition
probabilities of the underlying decreasing process.

The last part of this paper addresses the nonlinear equation (2). Some particular
cases have been studied in the literature, for instance, the initial value problem for
the composite fractional relaxation equation [18] (also called the generalized Basset
equation [19]):

c1D
β
0+∗u(t) + c2

d

dt
u(t) = −u(t) + g(t), t ∈ (0, b], u(0) = u0, (8)

for β ∈ (0, 1), c1 > 0, c2 = 1 and g a continuous function, was solved in [18] via
the Laplace transform method. The explicit solution in terms of the fundamental
solution φ(t) and the so-called impulse-response solution −φ′(t) is

u(t) = u0φ(t)−
∫ t

0

g(t− r)φ′(r)dr; (9)

where

φ(t) =

∫ ∞
0

e−rtH
(1)
β,0(r; c1)dr, (10)

and

H
(1)
β,0(r; c1) =

1

π

c1r
β−1 sin(βπ)

(1− r)2 + c21r
2β + 2(1− r)c1rα cos(απ)

. (11)

The results obtained here extend the ones known for the equation (8). Firstly, by
considering the nonlinear version, and secondly, by allowing the parameters c1 and
c2 being more general (functions instead of constants). The generalized equation
(2) is also an extension of the linear case studied in [11], where the well-posedness
was treated but without the drift term.

Further, as was done in [11] for the linear case, we study the existence of two types
of solutions: solutions in the domain of the generator and generalized solutions (see
definitions later). For some specific cases (which encompass the classical fractional
operators), we also investigate the existence of smooth solutions.

The main contribution of this work lies on displaying the use of stochastic anal-
ysis as a valuable approach for the study of fractional differential equations as well
as their generalizations. Since this probabilistic method allows us to obtain explicit
solutions in terms of mathematical expectations, it also leads to many interest-
ing potential applications, e.g., by providing new numerical approaches to obtain
approximating solutions to a variety of equations arising in fractional modelling.

The paper is organized as follows. The next section sets standard notation and
gives a quick review about generalized Caputo and RL type operators. Section 3
summarizes some important properties and results obtained in [11] concerning the
generalized fractional operators. Then, the well-posedness results for the equation
(1) is addressed in Section 4. In Section 5 the equation (5) is analyzed, whilst
Section 6 focuses on the generalized composite fractional relaxation equation given
in (2). Section 7 gives some general comments in connection with the classical
fractional framework. Finally, for the sake of clarity, the lengthy proofs of Theorem
2.1 and Proposition 4.1 are presented in Section 8.
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2. Preliminaries

2.1. Notation. Let N and R be the set of positive integers and the real line, respec-
tively. For any open set A, the standard notation B(A), C(A) and Cb(A) denotes
the set of bounded Borel measurable functions, continuous functions and bounded
continuous functions defined on A, respectively. Notation || · || stands for the sup-
norm ||h|| = supx∈A |h(x)| for h ∈ B(A). The space of continuous functions on A
with continuous derivative on A (first order partial derivatives if A ⊂ Rd) shall be
denoted by C1(A). This space is equipped with the norm ||h||C1 := ||h|| + ||h′||.
Similar notation is used for the corresponding spaces of functions defined on the clo-
sure Ā of A. In this case, C1(Ā) indicates the continuously differentiable functions
up to the boundary. Furthermore, notation Ca[a, b] and C1

a [a, b] refers to the space
of continuous functions vanishing at a and the space Ca[a, b]∩C1[a, b], respectively.

Letters P and E mean the probability and the mathematical expectation, respec-
tively. Notation wβ(·;σ, l) stands for the density function of a β−stable random
variable (r.v.) with scaling parameter σ, skewness parameter l and location param-
eter zero. For a given Feller semigroup {Ss}s≥0 on Cb(A), its resolvent operator Rλ
for λ > 0 is defined as the Bochner integral (see, e.g., [7])

Rλg :=

∫ ∞
0

e−λsSsg ds, g ∈ Cb(S). (12)

By taking λ = 0 in (12), one obtains the potential operator denoted by R0g (when-
ever it exists). Additional superscripts will be used to differentiate amongst differ-
ent resolvent and potential operators. When referring to the generator of a Feller
process, say L with domain DL, we will use the short notation (L,DL).

Notation Γ(z) and B(α, β) stands for the Gamma and the Beta function, respec-
tively. For all α, β > 0, the Beta function is defined by

B(α, β) :=

∫ 1

0

uα−1(1− u)β−1du. (13)

We shall use the following rather standard identities

Γ(z + 1) = zΓ(z), B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
, (14)

and the inequality

Γ(na) > (n− 1)!a2(n−1)
(
Γ(a)

)n
, (15)

for n ∈ N and a > 0.
Finally, letters t and r are mainly used as space variables, and the letter s is

reserved for the time variable.

2.2. Generalized fractional operators of Caputo and RL type. This section
is a quick summary about the generalized fractional operators introduced in [17],
as well as some related definitions and results obtained in [11].

Let ν(t, r) be a function satisfying the condition:

(H0) The function ν(t, r) is continuous as a function of two variables and con-
tinuously differentiable in the first variable. Furthermore,

sup
t

∫
(r ∧ 1)ν(t, r)dr <∞, sup

t

∫
(r ∧ 1)

∣∣∣ ∂
∂t
ν(t, r)

∣∣∣dr <∞,
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and

lim
δ→0

sup
t

∫
r≤δ

rν(t, r)dr = 0.

Definition 2.1. Let a, b ∈ R, a < b, and let h be a function on [a, b]. For any

function ν satisfying condition (H0), the operator −D(ν)
a+∗ defined by

−D(ν)
a+∗h(t) =

∫ t−a

0

(h(t− r)− h(t))ν(t, r)dr + (h(a)− h(t))

∫ ∞
t−a

ν(t, r)dr, (16)

is called the generalized Caputo type operator; and the operator −D(ν)
a+ defined by

−D(ν)
a+h(t) =

∫ t−a

0

(h(t− r)− h(t))ν(t, r)dr − h(t)

∫ ∞
t−a

ν(t, r)dr, (17)

is called the generalized RL type operator.

Remark 2.1. The sign − in the notation −D(ν)
a+∗ and −D(ν)

a+ is introduced to comply
with the standard notation of fractional derivatives. Note also that these operators
are well-defined at least for continuously differentiable functions h. Moreover, they
can be defined (respectively) for functions on [a,+∞) and (−∞, b], but for our
purposes it is enough to work on the closed interval [a, b].

The operators (16) and (17) can be thought of as the generators of interrupted
Feller processes which are forced to land exactly at t = a on the first attempt to cross
this barrier point a. More precisely, if ν satisfies condition (H0) and (−D(ν),D(ν))
is the generator of a decreasing Feller process on (−∞, b] given by

−D(ν)h(t) =

∫ ∞
0

(h(t− r)− h(t)) ν(t, r)dr, t ≤ b, h ∈ D(ν), (18)

then the corresponding process interrupted at the barrier point t = a (for any a < b)

is a Feller process on [a, b] with the generator (−D(ν)
a+∗,D

(ν)
a+∗). This generator has

a domain D
(ν)
a+∗ ⊂ C[a, b] and C1[a, b] ⊂ D

(ν)
a+∗.

Remark 2.2. Since the process generated by (−D+(ν),D(ν)) is decreasing, the
interruption procedure effectively means stopping the process at the boundary point
t = a.

Moreover, if the process is also killed at the barrier point t = a (meaning ana-
lytically to set h(a) = 0), then the corresponding Feller (sub-Markov) process on

(a, b] has the generator (−D(ν)
a+ ,D

(ν)
a+). This generator has a domain D

(ν)
a+ ⊂ Ca[a, b]

and C1
a [a, b] ⊂ D

(ν)
a+.

Thus, the operators −D(ν)
a+∗ (resp. −D(ν)

a+) arise as generators of decreasing Feller
processes stopped (resp. killed) on an attempt to cross a given barrier point.

The previous discussion is formalized in the following theorem (see also Theorem
4.1 in [17]).

Theorem 2.1. Let ν be a function satisfying assumption (H0). Then,

(i) The operator (−D(ν)
a+ ,D

(ν)
a+) generates a Feller semigroup {Ss}s≥0 on Ca[a, b],

where the domain D
(ν)
a+ contains the space C1

a [a, b].
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(ii) If additionally ν(t, r) is twice continuously differentiable in the first variable,
and

sup
t

∫
(r ∧ 1)

∣∣∣ ∂2

∂t2
ν(t, r)

∣∣∣dr <∞, lim
δ→0

sup
t

∫
r≤δ

r

∣∣∣∣ ∂∂tν(t, r)

∣∣∣∣ dr = 0, (19)

then the semigroup {Ss}s≥0 is also strongly continuous on the space{
f ∈ C1

a [a, b] : f ′(a) = 0
}
.

(iii) The operator (−D(ν)
a+∗,D

(ν)
a+∗) generates a Feller semigroup {S∗s}s≥0 on C[a, b],

where the domain D
(ν)
a+∗ contains the space C1[a, b].

Proof. See proof in Section 8. �

2.2.1. Particular cases. (i) The Caputo and RL fractional derivatives of order β ∈
(0, 1). The classical fractional derivatives are particular cases of the previous inter-
ruption procedure applied to β−stable subordinators. Namely, on regular enough
functions h,

if ν(t, r) = − 1

Γ(−β)r1+β
, β ∈ (0, 1), then

{
−D(ν)

a+∗h(t) = −Dβ
a+∗h(t),

−D(ν)
a+h(t) = −Dβ

a+h(t),

(20)

whereDβ
a+∗ andDβ

a+ stand for the (left-sided) Caputo and the (left-sided) Riemann-
Liouville fractional derivatives of order β ∈ (0, 1), respectively. Hence,

Dβ
a+∗h(t) =

1

Γ(−β)

∫ t−a

0

h(t− r)− h(t)

r1+β
dr +

h(t)− h(a)

Γ(1− β)(t− a)β
, t ∈ (a, b], (21)

and

Dβ
a+h(t) =

1

Γ(−β)

∫ t−a

0

h(t− r)− h(t)

r1+β
dr +

h(t)

Γ(1− β)(t− a)β
, t ∈ (a, b]. (22)

Let us recall that the Riemann-Liouville approach defines the Caputo and the RL
fractional operators, respectively, by

Dβ
a+∗h(t) := Im−βa+ Dmh(t), β > 0, β /∈ N, t > a, m = dβe, (23)

and

Dβ
a+h(t) := DmIm−βa+ h(t), β > 0, β /∈ N, t > a, m = dβe, (24)

where Dm denotes the classical mth derivative for m ∈ N. Notation d·e means the
ceiling function and Iαa+ is the Riemann-Liouville integral operator defined by

Iαa+h(t) =
1

Γ(α)

∫ t

a

(t− s)α−1h(s)ds, t > a,

for any α > 0 and a ∈ R ∪ {−∞}. For convention, I0
a+ refers to the identity

operator.
For β ∈ (0, 1) and smooth enough functions h, the expressions in (23) and (24)

coincide with (21) and (22), respectively (see, e.g., Appendix in [17]). For a detailed
treatment about the Riemann-Liouville approach we refer, e.g., to [4, 25, 26] and
references therein.
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(ii) Fractional derivatives of variable order. Let β : R → (0, 1) be a continuously
differentiable function with values in a compact subset of (0, 1). Then, the function

ν(t, r) = − 1

Γ(−β(t))r1+β(t)
(25)

defines the Caputo and RL type operators of variable order, denoted by −D(ν)
a+∗ ≡

−Dβ(·)
a+∗ and −D(ν)

a+ ≡ −D
β(·)
a+ , respectively. They can be thought of as the genera-

tors of inverted stable-like processes (see, e.g., [1],[16] ) with the jump density (25)
which are stopped (resp. killed) on an attempt to cross the boundary point t = a.

(iii) Multi-term fractional operators. These are operators of the form

−D(ν)
a+∗h(t) = −

d∑
i=1

ωi(t)D
βi
a+∗h(t), βi ∈ (0, 1) (26)

with nonnegative functions ωi(·) ≥ 0, where ν(t, r) = −
∑d
i=1 ωi(t)

1
Γ(−βi)r1+βi

.

Even more generally, it includes the generalized distributed order fractional deriva-
tives:

−D(ν)
a+∗h(t) = −

∫ ∞
−∞

ω(s, t)D
β(s,t)
a+∗ h(t)µ(ds), (27)

with

ν(t, r) = −
∫ ∞
−∞

ω(s, t)
µ(ds)

Γ(−β(s, t))r1+β(s,t)

satisfying condition (H0). In the context of standard fractional derivatives, special
cases of (27) have been studied, e.g., in [20, 10].

3. Properties of the underlying stochastic processes

This section summarizes some properties and results related to the stochastic

processes generated by the operators −D(ν)
a+∗ and −D(ν)

a+ . For the sake of clarity we
will retain some notation from [11], wherein details can be found.

For a given function ν satisfying condition (H0) and for t ∈ (a, b], the following

notation will be used hereafter: T
+(ν)
t = {T+(ν)

t (s)}s≥0 denotes the underlying

(decreasing) Feller process (started at t) generated by (−D(ν),D(ν)) as given in

(18); T
a+∗(ν)
t = {T a+∗(ν)

t (s)}s≥0 stands for the interrupted Feller process generated

by (−D(ν)
a+∗, D

(ν)
a+∗); and T

a+(ν)
t = {T a+(ν)

t (s)}s≥0 refers to the Feller (sub-Markov)

process generated by (−D(ν)
a+ ,D

(ν)
a+).

For t ∈ [a, b], notation τ
(ν)
a (t) denotes the first time the process T

+(ν)
t (or the

process T
a+∗(ν)
t ) leaves (a, b], i.e.

τ (ν)
a (t) = inf{s ≥ 0 : T

+(ν)
t (s) /∈ (a, b] } = inf{s ≥ 0 : T

a+∗(ν)
t (s) /∈ (a, b] },

and, of course, τ
(ν)
a (a) = 0. Note that τ

(ν)
a (t) is a stopping time with respect to the

natural filtration generated by the process T
+(ν)
t . Further, τ

(ν)
a (t) is also the first

exit time from (a, b] of the killed process T
a+(ν)
t for t > a.

Notation p
+(ν)
s (r, E), p

a+(ν)
s (r, E) and p

a+∗(ν)
s (r, E) denote the transition prob-

abilities (from the state r to a Borel set E with s being the time variable) of the
processes T+(ν), T a+(ν) and T a+∗(ν), respectively.
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Sometimes we will use the following additional assumptions concerning the func-
tion ν and the transition probabilities of the process T+(ν):

(H1) There exist ε > 0 and δ > 0, such that the function ν satisfies ν(t, r) ≥ δ > 0
for all t and |r| < ε.

(H2) The transition probabilities of the process T
+(ν)
t are absolutely continuous

with respect to the Lebesgue measure (the transition densities are denoted

by p
+(ν)
s (r, y)).

(H3) The transition density function p
+(ν)
s (r, y) is continuously differentiable in

the variable s with bounded derivative.

The following (rather simple) facts hold ([11], Section 4):

(1) If E ⊂ B(a, b] and r ∈ (a, b], then p
+(ν)
s (r, E) = p

a+∗(ν)
s (r, E) = p

a+(ν)
s (r, E).

Moreover,

pa+∗(ν)
s (r, {a}) = p+(ν)

s (r, (−∞, a]), r ∈ (a, b].

(2) Under the assumptions (H0)-(H1), the point a is regular in expectation

(i.e., E[τ
(ν)
a (t)] → 0 as t ↓ a) for both operators −D(ν)

a+∗ and −D(ν)
a+ , see

[17, Theorem ]. Moreover, E
[
τ

(ν)
a (t)

]
< +∞ uniformly on t ∈ (a, b]; and if

additionally (H2)-(H3) hold, then

E
[
τ (ν)
a (t)

]
=

∫ ∞
0

P
[
τ (ν)
a (t) > s

]
ds =

∫ ∞
0

∫ t

a

p+(ν)
s (t, r) dr ds; (28)

and the distribution law of τ
(ν)
a (t) has the density

µt,(ν)
a (s) := − ∂

∂s

∫ t

a

p+(ν)
s (t, r)dr, t ∈ (a, b]. (29)

By the standard theory of Feller processes, it is known that the domains of

the generators (−D(ν)
a+∗,D

(ν)
a+∗) and (−D(ν)

a+ ,D
(ν)
a+) coincide with the images of their

corresponding resolvent operators, denoted (for any λ > 0) by R
a+∗(ν)
λ and R

a+(ν)
λ ,

respectively. Namely, u ∈ D
(ν)
a+∗ if, and only if, there exists g ∈ C[a, b] such that

u(t) = R
a+∗(ν)
λ g(t). Analogously, w ∈ D

(ν)
a+ if, and only if, there exists g ∈ Ca[a, b]

such that w(t) = R
a+(ν)
λ g(t). Moreover, the functions u and w solve the so-called

resolvent equations:

−D(ν)
a+∗u(t) = λu(t)− g(t), g ∈ C[a, b],

and

−D(ν)
a+w(t) = λw(t)− g(t), g ∈ Ca[a, b],

respectively.

Hereafter, notation −D̃(ν) stands for either the RL type operator −D(ν)
a+ or the

Caputo type operator −D(ν)
a+∗. Analogously, notation D̃(ν) and R̃

(ν)
λ will denote,

respectively, the domain of the generator and the resolvent (or potential operator

if λ = 0) associated with the operator −D̃(ν). The space wherein the semigroup

generated by the operator −D̃(ν) is strongly continuous shall be denoted by C̃[a, b],
meaning Ca[a, b] or C[a, b] whether the operator refers to the RL or the Caputo type
operator, respectively. Similarly, ũa ∈ R will mean ũa = 0 for RL type equations,
and any real number for Caputo type equations.
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Notation (−D̃(ν), λ, g, ũa) is used to represent the linear problem

−D̃(ν)u(t) = λu(t)− g(t), t ∈ (a, b], u(a) = ũa, ũa ∈ R, (30)

for any λ ≥ 0.
Let us now define the different notions of solutions we shall be interested in (see

Definition 5.1 and Definition 5.3 in [11]).

Definition 3.1. Let g ∈ B[a, b] and λ ≥ 0. A function u on [a, b] is said to solve

the linear equation (−D̃(ν), λ, g, ũa) as

(i) a solution in the domain of the generator if u satisfies (30) and u belongs

to the domain of the generator (−D̃(ν), D̃(ν));
(ii) a generalized solution if for all sequence of functions gn ∈ Ca[a, b] such

that supn ||gn|| < ∞ and limn→∞ gn → g a.e., it holds that u(t) = ũa +
limn→∞ wn(t) for all t ∈ [a, b], where wn is the solution (in the domain of

the generator (−D̃(ν), D̃(ν))) to the RL type problem (−D(ν)
a+ , λ, gn−λũa, 0);

(iii) a smooth classical solution if u is a generalized solution belonging to C̃[a, b]∩
C1(a, b].

For the existence results we will use the following preliminary result taken from
Theorem 5.2 and Theorem 5.4 in [11].

Lemma 3.1. Let ν be a function satisfying conditions (H0)-(H1). Assume that
g ∈ B[a, b] and ũa ∈ R. Then,

(i) the unique generalized solution u to the linear problem (−D̃(ν), 0, g, ũa) is
given by

u(t) = ũa + E

[∫ τ(ν)
a (t)

0

g
(
T

+(ν)
t (s)

)
ds

]
. (31)

Moreover, if ν also satisfies conditions (H2)-(H3), then the solution rewrites

u(t) = ũa +

∫ ∞
0

∫ t

a

g(r)p+(ν)
s (t, r) dr ds.

(ii) If g ∈ Ca[a, b] and ũa = 0, then the solution in (31) is the unique solution

in the domain of the generator (−D̃(ν), D̃(ν)).

4. Nonlinear equations involving RL and Caputo type operators

This section is concerned with the well-posedness results for the nonlinear equa-
tion

−D̃(ν)u(t) = −f( t, u(t) ), t ∈ (a, b], u(a) = ũa, ũa ∈ R, (32)

where f is a given bounded function f : G ⊂ R2 → R.

Definition 4.1. Let f ∈ B(G), G ⊂ R2 and let ν be a function satisfying (H0).
A function u on [a, b] is called a solution ( generalized, smooth classical or in the
domain of the generator) to the nonlinear equation (32) if u is a solution (general-
ized, smooth classical or in the domain of the generator, respectively) to the linear
equation

−D̃(ν)u(t) = −g(t), t ∈ (a, b]; u(a) = ũa, (33)

where g(t) := f(t, u(t)) for all t ∈ [a, b].
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Lemma 4.1. Let ν be a function satisfying conditions (H0)-(H3). Suppose that
f : G ⊂ R2 → R is a function in B(G). Then, a function u on [a, b] is a generalized
solution to the problem (32) if, and only if, u solves the nonlinear integral equation

u(t) = ũa +

∫ ∞
0

∫ t

a

f( r, u(r))p+(ν)
s (t, r) dr ds. (34)

Proof. By Definition 4.1, u on [a, b] is a generalized solution to (32) if, and only if, u
is a generalized solution to (33) with g(t) := f(t, u(t)). Note that if u ∈ B[a, b], then
g is a bounded measurable function. Under the assumptions (H2)-(H3), Lemma
3.1 provides the integral equation (34). �

Remark 4.1. Definition 4.1 and Lemma 4.1 can be extended to the RL type equa-
tion

−D(ν)
a+u(t) = λu(t)− f( t, u(t) ), t ∈ (a, b], u(a) = 0, (35)

for any λ > 0. In this case, the equation (33) should be replaced with the equation
in (30), whilst the integral equation

u(t) =

∫ ∞
0

∫ t

a

e−λs f( r, u(r))p+(ν)
s (t, r) dr ds, (36)

will replace the one in (34) (see Theorem 5.1 in [11]). Moreover, to study the
corresponding Caputo type problem, an additional term will appear in the integral
equation (see Theorem 5.3 in [11]).

Let us now see that the integral equation (34) possesses a unique solution under
the following assumptions:

(H4) There exists β ∈ (0, 1) such that the function ν satisfies that ν(t, r) ≥
Cr−1−β for some constant C > 0.

(H5) For K > 0 and ũa ∈ R, the function f belongs to B(GK) where

GK :=
{

(t, x) ∈ R2 : t ∈ [a, b] and x ∈ [ũa −K, ũa +K]
}
.

Moreover, f fulfills a Lipschitz condition with respect to the second variable,
i.e., for all (t, x), (t, y) ∈ GK

|f(t, x)− f(t, y)| < Lf |x− y|, (37)

for a constant Lf > 0 (independent of t).

Remark 4.2. Condition (H4) ensures the regularity in expectation of the boundary
point a. This follows from [17, Theorem 4.1].

Let us also consider a positive constant κ satisfying∫ ∞
0

y−1/βwβ(y−1/β ; 1, 1)dy < κ. (38)

Recall that wβ represents a β-stable density (see Preliminaries). The existence of κ
can be obtained by splitting the integral (38) into two regions, over the sets {y ≤ 1}
and {y ≥ 1}. Then, the upper bounds for the β-stable densities in each region (see,
e.g., Theorem 7.3.1 in [16]) provide the required bound.
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Proposition 4.1. Let K > 0, a, b ∈ R and ũa ∈ R. Let ν be a function satisfying
conditions (H0) and (H2)-(H4). Assume that f : GK ⊂ R2 → R is a function
satisfying condition (H5). Define MK and b∗ by setting

MK = sup{ |f(t, x)| : (t, x) ∈ GK}, b∗ = min

{
b,

(
Kβ

κMK

)1/β

+ a

}
.

Then, the integral equation (34) has a unique solution u ∈ C̃[a, b∗].

Proof. See Section 8. �
Observe that the previous result ensures the existence of a solution to the integral

equation only in a subinterval [a, b∗] ⊂ [a, b]. A solution in the whole interval can
be guaranteed with an additional assumption, as shown below.

Corollary 4.1. Let a, b ∈ R and ũa ∈ R. Let ν be a function satisfying conditions
(H0) and (H2)-(H4). Assume that f belongs to B([a, b] × R) and it satisfies the
Lipschitz condition (37). Then, the integral equation (34) has a unique solution

u ∈ C̃[a, b].

Proof. It follows directly from Proposition 4.1 by taking the constant K such that
(b− a)βκM < K with M := ||f ||. �

Theorem 4.1. Suppose that the assumptions in Corollary 4.1 hold. Then,

(i) There exists a unique generalized solution u ∈ C̃[a, b] to the nonlinear prob-
lem in (32).

(ii) If additionally the function f is continuous and satisfies that f(a, ũa) =
0 with ũa = 0, then there exists a unique solution in the domain of the
generator.

Proof. (i) According to Lemma 4.1, the existence of a generalized solution to (32)
is equivalent to the existence of a solution to the integral equation (34). The latter
follows by Corollary 4.1.

(ii) Setting g(t) := f(t, u(t)), the assertion (ii) in Lemma 3.1 implies that u belongs
to the domain of the generator whenever g(a) = 0 and ũa = 0, i.e., when f(a, 0) = 0
and ũa = 0. �

Theorem 4.2. Suppose that the assumptions in Corollary 4.1 hold. Consider the
equation

−D̃(ν)u(t) = λu(t)− f(t, u(t)), t ∈ (a, b], u(a) = ũa, (39)

for any λ > 0 and ũa ∈ R. Then,

(i) There exists a unique generalized solution u ∈ C̃[a, b] to the nonlinear equa-
tion (39).

(ii) If additionally the function f is continuous satisfying f(a, ũa) = λũa, then
there exists a unique solution in the domain of the generator.

Proof. By Remark 4.1, the proof of these assertions is quite similar to the case
λ = 0, so that the details are omitted. �

Remark 4.3. Since the function f(t, u) = λ(t)u + g(t) (with bounded functions
λ and g) is not bounded in [a, b] × R, Theorem 4.1 can only guarantee the well-
posedness for the linear equation with non constant coefficients on the interval [a, b∗]
for some b∗ ≤ b. In the next section we shall analyze this case in a different way
via purely probabilistic arguments.
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Remark 4.4. By imposing additional assumptions on the function ν, it is possible
to extend Theorem 4.1 and Theorem 4.2 to the case of possibly unbounded functions
f(t, u). This case will be studied in a separate paper.

4.1. Smoothness of solutions. To finish this section, let us now consider the
existence of smooth solutions for some specific cases. We will start with the linear
equation whose smoothness was not studied in [11].

Theorem 4.3. (Linear case) Let ν(t, r) be a function satisfying the assumptions
(H0)-(H3). Let λ > 0 and g ∈ C1[a, b]. Suppose that ν is twice continuously
differentiable in the first variable and satisfies (19).

(i) If g(a) = 0 = g′(a) , then there exists a unique solution u in the domain of

the generator to the RL type problem (−D(ν)
a+ , λ, g, 0) such that u ∈ C1

a [a, b].
(ii) If g(a) = λua and g′(a) = 0, then there exists a unique generalized solution in

C1[a, b] to the Caputo type problem (−D(ν)
a+∗, λ, g, ua).

Proof. (i) This follows from Theorem 2.1 which guarantees that under assumption

(H0)-(H1) and (19), the semigroup of the process T
a+(ν)
t is strongly continuous on

the space {f ∈ C1
a [a, b] : f ′(a) = 0}. Consequently, the resolvent operator R

a+(ν)
λ

associated with the operator −D(ν)
a+ maps the latter space into itself. Therefore,

for any g ∈ {f ∈ C1
a [a, b] : f ′(a) = 0} the function u(t) = R

a+(ν)
λ g(t) solves

(−D(ν)
a+ , λ, g, 0) and belongs to C1

a [a, b], as required.
(ii) By definition, the solution to the Caputo type problem is given by u(t) =
ua + w(t) (see Definition 5.5), where w(t) is the solution to the RL type problem

(−D(ν)
a+ , λ, g − λua, 0). Hence, u ∈ C1[a, b] whenever w ∈ C1[a, b], but this follows

from assertion (i) because g(a)− λua = 0 and g′(a) = 0. �
To avoid technicalities in the nonlinear case, we only study the existence of

smooth solution for the Lévy case, i.e., for functions ν(t, r) independent of the
variable t.

Theorem 4.4. (Nonlinear Lévy case) Let a, b ∈ R and ũa ∈ R. Suppose that
ν(t, r) is a function independent of the variable t satisfying assumptions (H0) and
(H2)− (H4). Assume f ∈ C1

b ([a, b]× R).

(i) If f(a, ũa) = 0 and ũa = 0, then there exists a unique solution (in the
domain of the generator) u ∈ C1

a [a, b] to the nonlinear RL type equation in
(32).

(ii) If f(a, ũa) = 0, then there exists a unique generalized solution u ∈ C1[a, b]
to the Caputo type equation (32).

Proof. The existence of a unique continuous solution u (in both the RL and Ca-
puto case) is ensured by Theorem 4.1). It remains to prove that its derivative exists
and is continuous.

(i) Since the function ν is independent of t, then the transition density function of

the underlying (inverted) Lévy subordinator T
+(ν)
t satisfies p

+(ν)
s (t, r) = ψ(s, t− r)
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for some function ψ depending on the variable s and the difference t − r. Conse-
quently, u′(t) (if exists) should satisfy

u′(t) =

∫ ∞
0

∫ t−a

0

(
∂

∂t
f( t− r, u(t− r)) +

∂

∂u
f(t− r, u(t− r))u′(t− r)

)
p+(ν)
s (t, t− r) dr ds+

+ f(a, u(a))

∫ ∞
0

p+(ν)
s (t, a) ds.

Assumption f(a, u(a)) = 0 leads us to define the operator

Ψ̃u′(t) :=

∫ ∞
0

∫ t−a

0

(
∂

∂t
f( t− r, u(t− r)) +

∂

∂u
f(t− r, u(t− r))u′(t− r)

)
p+(ν)
s (t, t−r) dr ds.

(40)

Since

|Ψ̃u′(t)− Ψ̃v′(t)| ≤ L̃f
∫ ∞

0

∫ t−a

0

|u′(t− r)− v′(t− r)|p+(ν)
s (t, t− r) dr ds,

where L̃f := ||f ||C1 , the same arguments used in the proofs of Proposition 4.1 and
Corollary 4.1 imply the existence of a unique fixed point in C[a, b] for the operator

Ψ̃. Thus, u′ exists and belongs to C[a, b], as required.

(ii) Since the Caputo type equation can be written in terms of the RL type operator,
its solution equals u(t) = ũa+w(t), where w(t) is the unique solution (in the domain
of the generator of the RL operator) solving

w(t) =

∫ t

a

∫ ∞
0

f(t, w(t) + ũa)p+(ν)
s (t, r) ds dr.

Define f̃(t, w) := f(t, w(t) + ũa), then assertion (i) and assumption f(a, ũa) = 0
imply the existence of a unique solution w ∈ C1

a [a, b], which in turn yields the
smoothness for the generalized solution u. �

Remark 4.5. Notice that if the function f in the previous result is continuously
differentiable in a smaller region [a, b]× [ua −K,ua +K] for some constant K > 0
instead of [a, b]×R, then the procedure above can only guarantee the existence of a
solution in C1

a [a, b∗] for some subinterval [a, b∗] ⊂ [a, b].

5. Linear equations with non constant coefficients

This section provides probabilistic solutions to linear equations with non constant
coefficients involving generalized fractional derivatives. These solutions are given
in terms of (stationary) Feynman-Kac type formulas.

5.1. Auxiliary results. Let us start with some preliminary results. Let λ be a
nonnegative function in Ca[a, b]. Define

p
a+(ν)
s,λ (t, E) := E

[
1E

(
T
a+(ν)
t (s)

)
exp

{
−
∫ s

0

λ
(
T
a+(ν)
t (γ)

)
dγ

}]
,

and S
a+(ν)
s,λ g(t) :=

∫
g(y)p

a+(ν)
s,λ (t, dy) for any g ∈ B[a, b] such that g(a) = 0. Then

S
a+(ν)
s,λ g(t) = E

[
g
(
T
a+(ν)
t (s)

)
exp

{
−
∫ s

0

λ
(
T
a+(ν)
t (γ)

)
dγ

}]
.
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Lemma 5 in [8] states that for λ ∈ Ca[a, b], g ∈ Ca[a, b] and δ > 0, the Laplace

transform at δ > 0 of S
a+(ν)
s,λ g(t) (as a function of s), denoted by R

a+(ν)
δ,λ g(t), solves

the equation

R
a+(ν)
δ,λ g(t) = R

a+(ν)
δ g(t)−Ra+(ν)

δ

[
λ(·)Ra+(ν)

δ,λ g(·)
]

(t), t ∈ [a, b],

where R
a+(ν)
δ is the resolvent operator (for δ > 0) for the process T

a+(ν)
t .

Equivalently (see Theorem 4.3.1 in [16]), the function w(t) = R
a+(ν)
δ,λ g(t) is the

unique solution in the domain of the generator (−D(ν)
a+ ,D

(ν)
a+) solving

−D(ν)
a+w(t) = (λ(t) + δ)w(t)− g(t), t ∈ [a, b]. (41)

Remark 5.1. The function p
a+(ν)
s,λ (t, E) defines a transition probability function

(from t to E with s as the time variable) for a Feller (sub-Markov) process with

semigroup S
a+(ν)
s,λ and generator −D(ν)

a+−λ(·) (see [8], Chapter II, Section 5). More-

over, the resolvent of this process (for δ > 0) coincides with R
a+(ν)
δ,λ g.

Let us now define

M
a+(ν)
δ,λ g(t) := E

[∫ τ(ν)
a (t)

0

exp

{
−δ s−

∫ s

0

λ
(
T

+(ν)
t (γ)

)
dγ

}
g
(
T

+(ν)
t (s)

)
ds

]
,

for any g ∈ B[a, b], t ∈ (a, b] and λ ∈ C[a, b], with λ being a nonnegative function.

Notice that M
a+(ν)
δ,λ g coincides with the solution (in the domain of the generator)

to (41) only when g ∈ Ca[a, b]. This function will appear in the generalized solution
to the nonlinear equation with non constant coefficients for any g ∈ B[a, b]. In
order to write it down explicitly, we will need the following auxiliary results.

Set Y (0) := 0 and Y (ξ) :=
∫ ξ

0
λ
(
T

+(ν)
t (γ)

)
dγ for any ξ > 0, where λ ∈ C[a, b]

is a nonnegative function and T
+(ν)
t is the Feller process generated by the operator

(−D(ν),D(ν)) (see (18)). Define the pair process

(Y,Z) = {( Y (ξ), Z(ξ) ) : ξ ≥ 0} ,

where {
Y (ξ) =

∫ ξ
0
λ (Z(γ) ) dγ

Z(ξ) = T
+(ν)
t (ξ).

(42)

Then (42) is the solution to the Langevin type equation:

dY = λ(Z)dξ, dZ = dT
+(ν)
t (ξ),

with initial condition (Y (0), Z(t)) = (0, t) (see, e.g., [1, 16]). The process (Y,Z) is
a Markov process on R+ × (−∞, b] with initial state (0, t).

For any (y1, t1), (y2, t2) ∈ R+× (−∞, b], denote by pξ(y1, t1; y2, t2) the transition
density function from (y1, t1) to (y2, t2) with ξ being the time variable.

Remark 5.2. If ν is the Lévy kernel in (20), then the process in (42) is the solution
to a stable noise driven Langevin equation, see, e.g., [1, 12, 16].
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Lemma 5.1. Let ν be a function satisfying conditions (H0)-(H3) and let λ ∈ C[a, b]
be a nonnegative function. Assume that the process (Y, Z) has transition densities
ps(y1, t1; y2, t2) which are continuously differentiable in the variable s (with bounded
derivative). Then, for fixed ξ ≥ 0 and for all y ≥ 0, the distribution law of the

random vector
(
Y (ξ), τ

(ν)
a (t)

)
has the density φt,λξ,a(y, ξ) at point (y, ξ) given by

φt,λξ,a(y, ξ) = − ∂

∂ξ

∫ t

a

pξ
(

0, t; y, r
)
dr.

Proof. Since the r.v.’s Y (ξ) and τ
(ν)
a (t) are not independent, to compute the

distribution of the pair (Y (ξ), τ
(ν)
a (t)) we use the next equivalence{

Y (ξ) > y, τ (ν)
a (t) > ξ

}
≡
{
Y (ξ) > y, T

+(ν)
t (ξ) > a

}
,

to obtain

φt,λξ,a(y, ξ) =
∂2

∂y ∂ξ

∫ ∞
y

∫ t

a

pξ
(

0, t;w, r
)
dr dw = − ∂

∂ξ

∫ t

a

pξ
(

0, t; y, r
)
dr,

as required. �

Lemma 5.2. Under the assumptions of Lemma 5.1, the distribution law of the

random vector
(
Y (s), T

+(ν)
t (s), τ

(ν)
a (t)

)
has the density ψt,λs,a(y, r, ξ) at point (y, r, ξ)

given by

ψt,λs,a(y, r, ξ) = − ps(0, t; y, r)
∂

∂ξ

∫ r

a

p
+(ν)
ξ−s (r, z) dz,

for all (y, r, ξ) ∈ R+ × (a, t]× [s,∞).

Proof. The next equivalence between events{
Y (s) > y, T

+(ν)
t (s) > r, τ (ν)

a (t) > ξ
}
≡
{
Y (s) > y, T

+(ν)
t (s) > r, T

+(ν)
t (ξ) > a

}
,

implies that, if s < ξ, then

P
[
Y (s) > y, T

+(ν)
t (s) > r, T

+(ν)
t (ξ) > a

]
=

∫ ∞
y

∫ t

r

ps( 0, t; γ,w)

(∫ w

a

p
+(ν)
ξ−s (w, z)dz

)
dw dγ,

where ps( ·, ·; ·, ·) and p
+(ν)
s (·, ·) denote the transition density function of the pair

process (Y, T
+(ν)
t ) and of the process T

+(ν)
t , respectively. The result follows by

differentiating the last expression with respect to the variables y, r and ξ. �

Lemma 5.3. Let λ ∈ C[a, b] be a nonnegative function. Let δ > 0 and g ∈ B[a, b].
Suppose that conditions of Lemma 5.1 hold. Then

E

[
exp

{
−
∫ τ(ν)

a (t)

0

λ
(
T

+(ν)
t (s)

)
ds

}]
=

∫ ∞
0

∫ ∞
0

exp{−y}φt,λξ,a(y, ξ) dy dξ; (43)

and

M
a+(ν)
δ,λ g(t) =

∫ t−a

0

g(t− r)
∫ ∞

0

∫ ∞
0

exp {−δs− y} ps(0, t; y, t− r) dy ds dr, (44)

where φt,λξ,a(y, ξ) stands for the density function at point (y, ξ) of the random vector(
Y (ξ), τ

(ν)
a (t)

)
.
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Proof. Equality (43) follows by conditioning on the r.v. τ
(ν)
a (t) and then by using

the joint density φt,λξ,a(·) of the random vector (Y (ξ), τ
(ν)
a (t)) as given in Lemma 5.1.

To prove (44), Fubini’s theorem and the definition of Y yield

M
a+(ν)
δ,λ =

∫ ∞
0

E

[
1{
τ
(ν)
a (t)>s

} exp {−δ s− Y (s)} g
(
T

+(ν)
t (s)

)]
ds.

Then, Lemma 5.2 provides the density ψt,λs,a(y, r, ξ) (at the point (y, r, ξ)) of the

random vector (Y (s), T
+(ν)
t (s), τ

(ν)
a (t)), yielding

M
a+(ν)
δ,λ =

∫ ∞
0

∫ ∞
0

∫ t

a

∫ ∞
s

exp {−δs− y} g(r)ψt,λs,a(y, r, ξ) dξ dr dy ds,

=

∫ t

a

g(r)

∫ ∞
0

∫ ∞
0

exp {−δs− y} ps(0, t; y, r)
∫ ∞
s

(
− ∂

∂ξ

∫ r

a

p
+(ν)
ξ−s (r, z) dz

)
dξ dy ds dr,

=

∫ t

a

g(r)

∫ ∞
0

∫ ∞
0

exp {−δs− y} ps(0, t; y, r)
(∫ ∞

0

µr,(ν)
a (ξ̃) dξ̃

)
dy ds dr,

=

∫ t

a

g(r)

∫ ∞
0

∫ ∞
0

exp {−δs− y} ps(0, t; y, r) dy ds dr,

where we have also used that µ
r,(ν)
a (·) is the density of the r.v. τ

(ν)
a (r) defined in

(29). �

5.2. Explicit solutions: Feynman-Kac type formulas. Consider the problem
of finding a function w ∈ Ca[a, b] satisfying

−D(ν)
a+w(t) = λ(t)w(t)− g(t), t ∈ (a, b], w(a) = wa, (45)

for a given nonnegative function λ ∈ C[a, b], g ∈ B[a, b] and wa = 0. Hereafter, we

shall refer to (45) as the problem (−D(ν)
a+ , λ(·), g, wa). Similar notation will be used

for the corresponding problem with the Caputo type operator.

Case 1: RL type operator

Theorem 5.1. Let ν be a function satisfying conditions (H0)-(H1). Suppose that
λ is a nonnegative function in C[a, b] such that inft∈[a,b] λ(t) = δ > 0.

(i) If g ∈ Ca[a, b], then the unique solution (in the domain of the generator) to

the problem (−D(ν)
a+ , λ(·), g, 0) is given by formula (46) below.

(ii) For any g ∈ B[a, b], the linear problem (−D(ν)
a+ , λ(·), g, 0) has a unique gen-

eralized solution. This solution is given by the Feynman-Kac type formula

w(t) = E

[∫ τ(ν)
a (t)

0

exp

{
−
∫ s

0

λ
(
T

+(ν)
t (γ)

)
dγ

}
g
(
T

+(ν)
t (s)

)
ds

]
. (46)

Moreover, if ν also satisfies conditions (H2)-(H3) and assumptions in Lemma
5.1 hold, then (46) rewrites

w(t) =

∫ t−a

0

g(t− r)
∫ ∞

0

∫ ∞
0

exp {−y} ps(0, t; y, t− r) dy ds dr, t ∈ (a, b], (47)

where ps(·, ·; ·, ·) denotes the transition densities of the pair process (Y,Z)
defined in (42).



17

Proof. (i) Let δ > 0 be as in the statement. Rewrite (45) as

−D(ν)
a+w(t) = λ̂(t)w(t) + δw(t)− g(t), t ∈ (a, b], w(a) = 0, (48)

where λ̂(t) := λ(t)− δ.
If g ∈ Ca[a, b], then Theorem 4.3.1 in [16] states the existence of a solution

w ∈ D
(ν)
a+ (in the domain of the generator) to equation (48). Such a solution is

given by the stationary Feynman-Kac (FK) formula

w(t) = E

[∫ ∞
0

exp

{
−δs−

∫ s

0

λ̃
(
T
a+(ν)
t (γ)

)
dγ

}
g
(
T
a+(ν)
t (s)ds

)]
,

where T a+ν
t is the process generated by (−D(ν)

a+ ,D
(ν)
a+). Note that this solution co-

incides with (46) due to the fact that g(a) = 0 and E
[
τ

(ν)
a (t)

]
<∞. Moreover, the

positive maximum principle (see, e.g., [16]) implies the uniqueness of the solution.

(ii) For the general case g ∈ B[a, b], the stationary FK formula no longer provides
a solution. However, by definition, the generalized solution can be obtained as a
limit of solutions in the domain of the generator. More precisely, take a sequence
of functions {gn}n≥1 satisfying gn → g a.e., gn ∈ Ca[a, b] and supn ||gn|| < +∞,
then the generalized solution is given by w = limn→∞ wn, where for n ≥ 1, wn is
the unique solution (in the domain of the generator) to the problem

−D(ν)
a+wn(t) = λ(t)wn(t)− gn(t), t ∈ (a, b], wn(a) = 0.

For n > 0, the previous case provides the solution wn(t) = M
a+(ν)
δ,λ gn(t). Hence, as-

sumption (H1) and the dominated convergence theorem imply that the generalized

solution is w(t) = M
a+(ν)
δ,λ g(t), as required. Representation (47) follows directly

from Lemma 5.3.
�

Case 2: Caputo type operator

Theorem 5.2. Suppose the assumptions of Theorem 5.1 hold.

(i) If g ∈ C[a, b] and g(a) = uaλ(a), then there exists a unique solution in the
domain of the generator.

(ii) For any g ∈ B[a, b] and ua ∈ R, the linear problem (−D(ν)
a+∗, λ(·), g, ua) has

a unique generalized solution given by the Feynman-Kac type formula

u(t) = ua E

[
exp

{
−
∫ τ(ν)

a (t)

0

λ(T
+(ν)
t (γ))dγ

}]
+

+ E

[∫ τ(ν)(t)

0

g(T
+(ν)
t (s)) exp

{
−
∫ s

0

λ(T
+(ν)
t (γ))dγ

}
ds

]
. (49)

Moreover, if ν also satisfies conditions (H2)-(H3) and assumptions in Lemma
5.1 hold, then the solution u rewrites

u(t) = ua

∫ ∞
0

∫ ∞
0

exp{−y}φt,λξ,a(y, ξ) dy dξ

+

∫ t−a

0

g(t− r)
∫ ∞

0

∫ ∞
0

exp {−y} ps(0, t; y, t− r) dy ds dr, (50)
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where ps(·, ·; ·, ·) denotes the transition densities of the pair process (Y, Z)

defined in (42), and φt,λξ,a(·, ·) is the density function of the random vector

(Y (ξ), τ
(ν)
a (t)).

Proof. (i) Define v(t) := u(t) − ua for t ∈ [a, b]. Using that the Caputo type
derivative of a constant function is zero yields

−D(ν)
a+∗v(t) = λ(t)u(t)− g(t) = λ(t)v(t)− [g(t)− λ(t)ua] =: λ(t)v(t)− g̃(t). (51)

Further, note that −D(ν)
a+∗ = −D(ν)

a+ whenever v(a) = 0. Consequently, Theorem
5.1 gives

v(t) = E

[∫ τ(ν)
a (t)

0

(
g(T

+(ν)
t (s))− λ(T

+(ν)
t (s))ua

)
exp

{
−
∫ s

0

λ(T
+(ν)
t (γ))dγ

}
ds

]
(52)

as the unique generalized solution to (51) for any g ∈ B[a, b]. Since (by Leibniz’s
formula)∫ τ(ν)

a (t)

0

λ(T
+(ν)
t (s)) exp

{
−
∫ s

0

λ(T
+(ν)
t (γ))dγ

}
ds = 1−exp

{
−
∫ τ(ν)

a (t)

0

λ(T
+(ν)
t (γ))dγ

}
,

the equation (52) becomes

v(t) =− ua + uaE

[
exp

{
−
∫ τ(ν)

a (t)

0

λ(T
+(ν)
t (s))

}
ds

]
+

+ E

[∫ τ(ν)
a (t)

0

g(T
+(ν)
t (s)) exp

{
−
∫ s

0

λ(T
+(ν)
t (γ))dγ

}
ds

]
.

Equality u(t) = v(t)+ua then implies the result in (49). Finally, Lemma 5.3 implies
directly (50).
(i) Follows from the previous case and the first assertion in Theorem 5.1. �

Remark 5.3. A stochastic representation similar to (49) is a standard tool for
studying parabolic PDE’s (see [13], Proposition 7.2).

Remark 5.4. The explicit representations (47) and (50) can be obtained in terms
of the transition probabilities instead of the transition densities, whose existence
was assumed for simplicity.

6. Composite fractional relaxation equation of Caputo and RL type

Let us now consider the equation

−D̃(ν)u(t)− γ(t)
d

dt
u(t)− λu(t) = −g(t), t ∈ (a, b], u(a) = ũa, (53)

with λ ≥ 0 and some given functions g and γ. This equation is the generalized
version of the composite fractional relaxation equation introduced in [18],[19].

To prove its well-posedness we will use the next result which is an immediate
consequence of Theorem 4.1 in [17].
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Lemma 6.1. Let ν be a function satisfying assumption (H0) and suppose γ ∈
C1[a, b]. Then, (i) If either γ(a) = 0 = γ(b) or γ is a nonnegative function, then

the operator −D̃(ν,γ) := −D̃(ν) − γ(·) ddt generates a Feller process T̃
(ν,γ)
t on C̃[a, b]

with a domain containing the space C̃[a, b] ∩ C1[a, b]; (ii) If γ is a nonnegative
function and γ(a) > 0, then the boundary point t = a is regular in expectation.

Using the same notation introduced in Section 3, the operator −D̃(ν,γ) should

be understood as either the generator −D(ν,γ)
a+ := −D(ν)

a+ − γ(·) ddt , or the generator

−D(ν,γ)
a+∗ := −D(ν)

a+∗ − γ(·) ddt depending on −D̃(ν). We will denote by T
a,(ν,γ)
t and

T
a∗(ν,γ)
t the corresponding Feller processes.

The probabilistic interpretation of the operator −D̃(ν,γ) as the generator of an

interrupted Feller process still holds. If T
(ν,γ)
t is the Feller process (started at t)

generated by −D+(ν)−γ(·) ddt (the sum of the decreasing process in (18) and a drift

term), then T
a,(ν,γ)
t (resp. T

a∗(ν,γ)
t ) can be obtained by interrupting (resp. killing)

the process T
(ν,γ)
t on an attempt to cross the boundary point a.

Remark 6.1. The three notions of solutions introduced in Section 2 (generalized,
smooth, and in the domain of the generator) are extended to the linear problem
(53) and the corresponding nonlinear problem with g(t) := f(t, u(t)). This is done

by replacing −D̃(ν) with the operator −D̃(ν,γ) in Definition 3.1 and Definition 4.1,
respectively.

Well-posedness results (nonnegative γ)

The following result is the extension to Lemma 3.1 for the new operator −D̃(ν,γ)

considering λ ≥ 0.

Theorem 6.1. (Linear case) Let ν be a function satisfying assumption (H0).
Suppose that γ is a nonnegative function in C1[a, b] and γ(a) > 0.

(i) If g ∈ C[a, b] and g(a) = λũa, then there exists a unique solution u ∈ C̃[a, b]

in the domain of the generator to (53) given by u(t) = R
(ν,γ)
λ g(t), the

resolvent operator of the semigroup generated by −D̃(ν,γ).
(ii) For any g ∈ B[a, b], the equation (53) has a unique generalized solution u

which admits the stochastic representation

u(t) = uaE
[
e−λτ

(ν,γ)
a (t)

]
+ E

[∫ τ(ν,γ)
a (t)

0

e−λsg
(
T

(ν,γ)
t (s)

)
ds

]
, (54)

where τ
(ν,γ)
a (t) denotes the first time the process T

(ν,γ)
t leaves the interval

(a, b]. Moreover, if additionally ν satisfies conditions (H2)-(H3), then the
solution takes the form

u(t) = ũa

∫ ∞
0

e−λsµt,(ν,γ)
a (s)ds+

∫ t

a

g(r)

∫ ∞
0

e−λsp(ν,γ)
s (t, r) ds dr, (55)

where µ
t,(ν,γ)
a (s) and p

(ν,γ)
s (t, r) are the density function of the r.v. τ

(ν,γ)
a (t)

and the transition densities of the process T
(ν,γ)
t , respectively.

Proof. (i) Since γ is a nonnegative function, the process generated by −D̃(ν,γ) is a
decreasing process, Theorem 1.1 in [6] and Lemma 6.1 imply the result. (ii) Holds
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by using the definition of a generalized solution (see Remark 6.1) and the case (i)
above. Details have been omitted as they are quite similar to those used in [11] for

the operator −D̃(ν). �
The following theorem is the analogue to Theorem 4.1 and Theorem 4.2 for the
nonlinear case with the operator −D̃(ν,γ).

Theorem 6.2. (Nonlinear case) Let ν be a function satisfying conditions (H0)
and (H2)-(H4). Suppose that γ ∈ C1[a, b] is a nonnegative function and γ(a) > 0.
If f is a function satisfying condition (H5), then

(i) there exists a unique generalized solution u ∈ C̃[a, b] to the nonlinear equa-
tion

−D̃(ν)u(t)− γ(t)u′(t)− λu(t) = −f(t, u(t)), t ∈ (a, b], u(a) = ũa, (56)

(ii) If, additionally, f is continuous and satisfies f(a, ũa) = λũa, then there is
a unique solution in the domain of the generator.

Proof. Since the drift term γ is nonnegative and the assumption ν(x, y) > Cy−1−β

holds, the process T
+(ν,γ)
t is decreasing and dominates the inverted β−stable sub-

ordinator T+β
t (see proof of Proposition 4.1 above for the notion of this concept).

Hence, all the arguments and calculations used in the proof of Proposition 4.1 and
Theorem 4.1 can be carried out similarly, details are then omitted. �

Another interesting case arises when the function γ is assumed to take negative

values as well. In this case, since the process T̃
a,(ν,γ)
t is no longer decreasing, the

condition γ(a) > 0 is not sufficient to guarantee that the boundary point a is regular
in expectation.

Proposition 6.1. Let ν be a function satisfying (H0) and let γ ∈ C1[a, b].

(i) If condition (H4) holds and γ also satisfies that γ(a) = 0, then the point a

is regular in expectation for the operator −D̃(ν,γ).
(ii) if γ(b) > 0, then the boundary point b is regular in expectation for the

operator −D̃(ν,γ), whilst if γ(b) = 0 then the point b is unattainable.

Proof. Statements (i) and (ii) follow by the Lyapunov method [16, Proposition
6.3.2] using the Lyapunov functions fω(t) = (t − a)ω and hω(t) = (b − t)ω, for an
appropriate ω ∈ (0, 1), respectively. �

Theorem 6.3. (Linear case) Let ν be a function satisfying assumptions (H0)
and (H2)-(H4). Assume that γ is a function in C1[a, b] such that γ(a) = 0 and
γ(b) = 0. Then, the assertions (i) − (ii) in Theorem 6.1 (except for the equation
(55)) hold for the linear problem (53).

Proof. Since Proposition 6.1 ensures that a is regular in expectation and b is not
attainable, the same arguments used in [11] with the operator −D̃(ν) remain valid

for the operator −D̃(ν,γ). �

Remark 6.2. It is worth noting that the explicit equation (55) does not hold when γ

also takes negative values because the join distribution of (T
(ν,γ)
t (s), τ

(ν)
a (t)) cannot

be obtained as was done in Section 4, [11] wherein the monotonicity played the main
role in the calculations.

Remark 6.3. If the process generated by −D̃(ν,γ) is extended to R (see [17, Section
3]) instead of restricting it to the interval [a, b] as we did before, we would drop the
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assumption γ(b) = 0. However, under assumption, e.g., γ(b) > 0, the boundary
point b will be also regular in expectation, therefore the uniqueness of solutions
is no longer satisfied for the equation (53) for such a γ. Thus, infinitely many
solutions can be found unless one imposes conditions on the boundary point b, that
is, the uniqueness can be obtained for the equation

−D̃(ν)u(t)− γ(t)u′(t) = −g(t), t ∈ (a, b], u(a) = ũa, u(b) = ub, (57)

for some ub, ũa ∈ R. Since the points a and b are regular in expectation in this
case, the arguments used in the previous results can be extended by replacing the

stopping time τ
t,(ν)
a with the corresponding r.v.

τ
t,(ν)
a,b := inf{ s ≥ 0 : T

(ν,γ)
t (s) /∈ (a, b)},

which denotes the first time the process T
(ν,γ)
t leaves the interval (a, b).

Remark 6.4. The nonlinear version of equation (53) cannot be obtained (as was
done for the nonnegative γ) under the assumptions (H4) and (H5) when γ is al-

lowed to take negative values. The reason is that, as the process T
(ν,γ)
t is not

decreasing, condition (H4) no longer provides the upper bounds needed for the fixed
point arguments.

7. Remarks on the classical fractional setting

Since the generalized operators include the classical RL and Caputo derivatives,
all the results presented above apply to the classical fractional setting and to their
generalizations. This section highlights some important points in this context.

(1) Lemma 4.1 applied to the fractional case states the equivalence between
the fractional nonlinear equation

D̃βu(t) = f(t, u(t)), t ∈ (a, b], u(a) = ũa, (58)

and the integral equation

u(t) = ũa +

∫ t

a

f(r, u(r))(t− r)β−1

∫ ∞
0

s−1/βwβ

(
s−1/β ; 1, 1

)
ds dr, (59)

where wβ denotes the β−stable density (see Preliminaries) and D̃β stands

for either the RL classical fractional derivatives Dβ
a+ or the Caputo derivate

Dβ
a+∗, for β ∈ (0, 1). By comparing the integral equation (59) with the

Volterra integral equation

u(t) = ũa + Iβa+f(t, u(t)), (60)

one can conclude (by uniqueness) that∫ ∞
0

s−1/βwβ

(
s−1/β ; 1, 1

)
ds =

1

Γ(β)
. (61)

The Volterra equation (60) is the one commonly used in fractional calculus
to prove the well-posedness for fractional differential equations (see, e.g.,
[4]) The equivalence between (60) and the RL equation (58) has been proved
on a space of functions similar to the space FK defined in (68) (see, e.g., [4],
[14]). This equivalence also holds for more general (possibly unbounded)
continuous functions f on (a, b] × [−K,K] with some K > 0 such that
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(t− a)σf(t, u(t)) ∈ C([a, b]× [−K,K]) with 0 ≤ σ < β < 1, (see, e.g., [14],
[29]).

(2) Theorem 4.1 provides the well-posedness for fractional nonlinear equations
as well as for nonlinear equations involving fully mixed (multi-term) frac-
tional derivatives (see Section 2.2.).

(3) In the fractional setting, Theorem 4.3 implies the next result.

Corollary 7.1. Assume that g ∈ C1[a, b] and β ∈ (0, 1). If g(a) =
0 = g′(a), then there is a unique solution u ∈ C1

a [a, b] to the problem

(−Dβ
a+, λ, g, 0) for any λ > 0. Moreover, if g(a) = λua, then there is a

unique solution u ∈ C1[a, b] for the Caputo type problem (−Dβ
a+∗, λ, g, ua).

Notice that if g(a) 6= 0, the derivative u′ is continuous but unbounded
as t→ a. This can be seen by differentiating the solution

u(t) =

∫ t−a

0

∫ ∞
0

g(t− r)e−λsp+β
s (t, t− r) ds dr ,

to obtain

u′(t) =

∫ t−a

0

g′(t− r)rβ−1

∫ ∞
0

exp{−λurβ}u−1/βwβ(u−1/β ; 1, 1) du dr

+ g(a)(t− a)β−1

∫ ∞
0

exp{−λu(t− a)β}u−1/βwβ(u−1/β ; 1, 1) du. (62)

As for the nonlinear case, the existence of a smooth solution in the closed
interval [a, b] follows by Theorem 4.4 under the assumption f ∈ C1

b ([a, b]×
R) and f(a, ũa) = 0.

(4) Theorem 6.1 implies that the solution to the composite fractional relaxation
equation given in (9)-(11) can be rewritten as

u(t) = u0

∫ ∞
0

e−sµ
t,(c1,β,c2)
0 (s)ds+

∫ t

0

g(t− r)
∫ ∞

0

e−sp+(c1,β,c2)
s (t, t− r) ds dr,

(63)

with c1, c2 > 0, g ∈ C[0, b]. Notation µ
t,(c1,β,c2)
0 (s) denotes the density

function of the first exit time and p
+(c1,β,c2)
s (t, r) refers to the transition

density function of the Feller process generated by −c1Dβ
0+∗ − c2

d
dtu(t),

respectively.
(5) By uniqueness of solutions, for any g ∈ C[0, b] and any strictly positive func-

tion λ ∈ C[0, b], Theorem 6.2 provides another integral representation of
the solution to the fractional linear equation with non constant coefficients
given in (7) which was obtained by analytical methods.

8. Proofs

Proof. (of Theorem 2.1)
(i) This can be proved by approximation arguments and perturbation theory as was
done in [17, Theorem 4.1]. Namely, we work with a family of bounded operators

{Lh := −D(νh)
a+ }h∈(0,1] which approximates the operator −D(ν)

a+ as h → 0, where
νh(t, r) = 1r>hν(t, r). For each h the operator Lh is bounded in Ca[a, b] (due to
assumption (H0)) and is conditionally positive, hence it generates a Feller semigroup
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Shs on Ca[a, b]. This semigroup is the unique (bounded) solution to the evolution
equation

d

ds
fs(t) = Lhfs(t), f0(t) = f(t). (64)

Notice that due to the smoothness of ν the operator Lh is also bounded in C1
a [a, b],

hence the semigroup Shs has the latter space as an invariant space.
We will prove that {Shs }h∈(0,1) is a Cauchy sequence. To do so, let us first observe

that LhS
h
s f ∈ C1

a [a, b] because Shs f ∈ C1
a [a, b] whenever f ∈ C1

a [a, b]. Differentiating
(64) with respect to t yields the evolution equation for gs(t) = f ′s(t) given by

d

ds
gs(t) = L

(1)
h gs(t), g0(t) = g(t) = f ′(t),

where
L

(1)
h g(t) := Lhg(t) +A(∂tνh)g(t),

with the operator A(µ) defined by

A(µ)g(t) = −
∫ t−a

0

∫ t

t−r
g(z)dzµ(t, r)dr −

∫ t

a

g(z)dz

∫ ∞
t−a

µ(t, r)dr,

for functions µ satisfying the uniform bounds given in (H0). Notice the use of
notation ∂tν for partial derivatives. Let us stress that we have used the fact that
f(a) = 0 to rewrite the derivative of (Lhf)(t) by means of the operator A(∂tν) and
without the term f(a)ν(t, t− a).

Since the operator L
(1)
h decomposes as the sum of the generator Lh perturbed

by the bounded operator A∂tνh on Ca[a, b], perturbation theory (see, e.g., [16,

Theorem 1.9.2]) implies that L
(1)
h generates a strongly continuous semigroup on

Ca[a, b], which we denote by S
h,(1)
s . Due to the invariance of the space C1

a [a, b], it

follows that (Shs f)′ = S
h,(1)
s f ′ for f ∈ C1

a [a, b]. Moreover, the perturbation series

representation for the semigroup S
h,(1)
s [16, p.52] implies

||Sh,(1)
s f ′|| ≤ ||f ′||+

∞∑
m=1

(s||A(∂tνh)||)m

m!
||f ′||.

Since A(∂tνh) is uniformly bounded in h due to assumption (H0), we obtain that
the derivative d

dt (S
h
s f)(t) is uniformly bounded in h whenever f ∈ C1

a [a, b].

Take 0 < h2 ≤ h1 < 1 and f ∈ C1
a [a, b]. By rewriting

(Sh1
s − Sh2

s )f =

∫ s

0

Sh2
s−u(Lh1

− Lh2
)Sh1
u fdu.

and using that Sh1
s f is differentiable (with derivative uniformly bounded in h), we

can estimate (by mean value theorem)∣∣(Lh1
− Lh2

)Sh1
u f
∣∣ ≤ ∫

h2≤|r|≤h1

|Sh1
u f(t− r)− Sh1

u f(t)|ν(t, r)dr

≤
∫
h2≤|r|≤h1

||(Sh1
s f)′||rν(t, r)dr

= o(1)||f ||C1 , h1 → 0.

The last equality due to the tightness property of ν given by assumption (H0).
Therefore,

||(Sh1
s − Sh2

s f)|| = o(1)s||f ||C1 .
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Thus, the family {Shs f}h converges to a limiting family, say Ssf , as h→ 0, for any
f ∈ C1

a [a, b]. Using that

Ssf − f
s

=
Ssf − Shs f

s
+
Shs f − f

s
,

we conclude that C1
a [a, b] belongs to the domain of the generator and that the gen-

erator is given by −D(ν)
a+ . Finally, by standard approximation arguments, we obtain

that the limiting family forms also a strongly continuous semigroup of contractions
on Ca[a, b], as required.

(ii) From the previous approximation procedure, we have a family of Feller
semigroups {Shs }h∈(0,1] on the space Ca[a, b]. We need to prove that this fam-

ily forms a Cauchy sequence in the C1−norm. Hence, from previous calculations
we already have the estimate for ||(Sh1

s − Sh2
s )f ||, so that it remains to estimate

||(Sh1
s f)′ − (Sh2

s f)′||. Let us first observe that under the additional assumption

(19), the operator Lh is bounded in Ĉ := {f ∈ C2
a [a, b] : f ′(a) = 0}. Hence, Shs is

invariant under the latter space and thus LhS
h
s f ∈ Ĉ whenever f ∈ Ĉ. Proceeding

as before, we now take f ∈ Ĉ and we differentiate twice the evolution equation (64)
with respect to t. We obtain then the evolution equation for ks(t) = f ′′s (t):

d

ds
ks(t) = L

(2)
h ks(t), k0(t) = k(t) = f ′′(t),

where

L
(2)
h k(t) := Lhk(t) + 2A(∂tνh)k(t) +B(∂2

t νh)k(t)

with the operator A(µ) as defined above and B(µ) given by

B(µ)g(t) = −
∫ t−a

0

∫ t

t−r

∫ z

a

g(y)dydzµ(t, r)dr −
∫ t

a

∫ z

a

g(y)dydz

∫ ∞
t−a

µ(t, r)dr.

As before, it is worth noting that the previous holds because f is such that f(a) =
0 = f ′(a).

Since the operatorsA(∂tνh) andB(∂2
t νh) are bounded in Ĉ (also uniformly bounded

in h), perturbation theory implies again that L
(2)
h generates a strongly continuous

semigroup, denoted by S
h,(2)
s , on Ca[a, b] and, further, (Shs f)′′ = S

h,(2)
s f ′′ for f ∈ Ĉ.

The latter due to the invariance of Ĉ. Again, the series representation for S
h,(1)
s

implies that the second derivative (Shs f)′′ is uniformly bounded in h for f ∈ Ĉ.
As before, rewrite

(Sh1,(1)
s − Sh2,(1)

s )f ′ =

∫ s

0

S
h2,(1)
s−u (L

(1)
h1
− L(1)

h2
)Sh1,(1)
u f ′du. (65)

Notice that if g ∈ Ĉ, then A(∂tνh)g′(t) coincides with L̃hg(t) := −D(∂tνh)
a+ g(t). Thus,

since (Shs f)′ = S
h,(1)
s f ′, we obtain that A(∂tνh)S

h,(1)
s f ′(t) = L̃hS

h
s f(t) yielding (by

definition of the operator L
(1)
h )

(L
(1)
h1
− L(1)

h2
)Sh1,(1)
u f ′(t) = (Lh1

− Lh2
)Sh1,(1)
u f ′(t) + (L̃h1

− L̃h2
)Sh1
u f(t).

Due to the tightness property for ∂tν given in (19), similar arguments as in the
proof of statement (i) yield∣∣(L̃h1

− L̃h2
)Sh1
u f
∣∣ ≤ o(1)||f ||C2 , h1 → 0, (66)
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whereas∣∣(Lh1
− Lh2

)Sh1,(1)
u f ′

∣∣ ≤ ∫
h2≤|r|≤h1

|Sh1,(1)
u f ′(t− r)− Sh1,(1)

u f ′(t)|ν(t, r)dr

≤
∫
h2≤|r|≤h1

||(Sh1
s f)′′||rν(t, r)dr

= o(1)||f ||C2 , h1 → 0, (67)

where we have used that the derivative (Sh1
s f)′′ is uniformly bounded in h. Plugging

(66) and (67) into (65), we obtain

||(Sh1
s f)′ − (Sh2

s f)′|| = ||(Sh1,(1)
s − Sh2,(1)

s )f ′|| = o(1)s||f ||C2 .

We obtain then the convergence of {Shs }h as h→ 0 in the C1-norm. Proceeding as
before, we can conclude that the limiting semigroup is also strongly continuous on
{f ∈ C1

a [a, b] : f ′(a) = 0}, as required.
(iii) The statement for the Caputo type operator follow similar arguments and

thus we omit the details. �

Proof. (of Proposition 4.1) To prove the existence of a unique solution to (34) we
rewrite it as a fixed point problem u(t) = (Ψu)(t) for a certain operator Ψ.
Step a) Defining the operator Ψ. Let us consider the space FK given by

FK =
{
u ∈ C̃[a, b∗] : ||u− ũa||C̃[a,b∗] ≤ K

}
. (68)

Note that FK is a closed subset of the space C̃[a, b∗], the latter space endowed with
the supnorm denoted by || · ||C̃[a,b∗]. Hence, (FK , || · ||C̃[a,b∗]) is a complete metric

space. Next, define the operator Ψ on FK by

(Ψu)(t) := ũa +

∫ ∞
0

∫ t

a

f( r, u(r))p+(ν)
s (t, r) dr ds, t ∈ [a, b∗].

Note that if u ∈ FK , then Ψu ∈ C̃[a, b∗]. Further,

|Ψu(t)− ũa| =
∣∣∣ ∫ ∞

0

∫ t

a

f( r, u(r))p+(ν)
s (t, r) dr ds

∣∣∣
≤
∫ ∞

0

∫ t

a

sup
y≤r
|f( y, u(y))|p+(ν)

s (t, r) dr ds.

Since for any ν satisfying (H0) the underlying process is decreasing, assumption

(H4) implies that the process T
+(ν)
t dominates the inverted β-stable subordinator

T+β
t in the sense that P[T

+(ν)
t (s) > r] ≤ P[T+β

t (s) > r], for all r ≤ b∗ and

for all s ≥ 0 (or, equivalently, P[T+β
t (s) ≤ r] ≤ P[T

+(ν)
t (s) ≤ r]). Therefore,

E
[
g
(
T

+(ν)
t (s)

)]
≤ E

[
g
(
T+β
t (s)

)]
for any increasing function g. Hence, using

the function g(r) = 1[a,t](r) supy≤r |f(y, u(y))| we obtain

|Ψu(t)− ũa| ≤
∫ ∞

0

∫ t

a

sup
y≤r
|f( y, u(y))|p+β

s (t, r) dr ds

≤MK

∫ ∞
0

∫ t

a

p+β
s (t, r) dr ds,
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where p+β
s (t, r) stands for the transition densities of the inverted β-stable subordi-

nator T+β
t . The scaling property and the stationary increments of the process T+β

t

imply p+β
s (t, r) = s−1/βwβ(s−1/β(t− r); 1, 1) (see, e.g., [27]). Hence

|Ψu(t)− ũa| ≤MK

∫ ∞
0

∫ t

a

s−1/βwβ(s−1/β(t− r); 1, 1) dr ds

≤MK

∫ t

a

(t− r)β−1

∫ ∞
0

y−1/βwβ(y−1/β ; 1, 1) dy dr

≤ κMK
1

β
(t− a)β ≤ κMK

1

β
(b∗ − a)β ≤ K.

In the second inequality we have used Fubini’s theorem, and then the change of
variable y = s(t− r)−β . Third inequality follows from (38) and the last inequality
holds by definition of b∗. Therefore, we proved that Ψ : FK → FK .

Step b) Let Ψn denote the n-fold iteration of the operator Ψ for n ≥ 0. For
convention Ψ0 denotes the identity operator. We will prove that for any t ∈ [a, b∗],

|Ψnu(t)−Ψnv(t)| ≤
(
κLf (t− a)β

)n||u− v||t n−1∏
k=0

B(kβ + 1, β), n ≥ 1, (69)

where

||u− v||t := sup
z≤t
|u(z)− v(z)|, t ∈ [a, b∗],

Lf is the Lipschitz constant of the function f , notation B(·, ·) refers to the Beta
function and κ is as before.

To prove (69), let us proceed by induction. For n = 1, the definition of the
operator Ψ and the Lipschitz condition yield

|Ψu(t)−Ψv(t)| ≤ Lf
∫ ∞

0

∫ t

a

|u(r)− v(r)|p+(ν)
s (t, r) dr ds

≤ Lf
∫ ∞

0

∫ t

a

||u− v||rp+(ν)
s (t, r) dr ds

≤ Lf
∫ ∞

0

∫ t

a

||u− v||rp+β
s (t, r) dr ds

≤ ||u− v||tLf
∫ ∞

0

∫ t

a

p+β
s (t, r) dr ds

≤ κLf ||u− v||t
1

β
(t− a)β ,

which implies the result for n = 1 as B(1, β) = 1/β. Note that the third inequality

is justified as before: we use that assumption (H4) implies that E
[
g
(
T

+(ν)
t (s)

)]
≤

E
[
g
(
T+β
t (s)

)]
for the function g(r) = 1[a,t](r)||u−v||r. The last inequality follows

from the previous calculations using the β-stable transition densities p+β
s (t, r).
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Now let us assume that the inequality (69) holds for n− 1. Then

|Ψnu(t)−Ψnv(t)| ≤ Lf
∫ ∞

0

∫ t

a

∣∣Ψn−1u(r)−Ψn−1v(r)
∣∣ p+(ν)
s (t, r) dr ds

≤ Lf
∫ ∞

0

∫ t

a

sup
z≤r

∣∣Ψn−1u(z)−Ψn−1v(z)
∣∣ p+(ν)
s (t, r) dr ds

≤ Lf
∫ ∞

0

∫ t

a

sup
z≤r

∣∣Ψn−1u(z)−Ψn−1v(z)
∣∣ p+β
s (t, r) dr ds

≤ κn−1Lnf ||u− v||t
n−2∏
k=0

B(kβ + 1, β)

∫ ∞
0

∫ t

a

(r − a)(n−1)βp+β
s (t, r) dr ds

≤ κnLnf ||u− v||t
n−2∏
k=0

B(kβ + 1, β)

∫ t

a

(r − a)(n−1)β(t− r)β−1dr ,

(70)

where the first, third and fourth inequalities hold due to the Lipschitz condition,
condition (H4) and the induction hypothesis, respectively.

For the integral in (70), the change of variable z = (r − a)/(t− a) yields∫ t

a

(r − a)(n−1)β(t− r)β−1dr = (t− a)nβ
∫ 1

0

z(n−1)β(1− z)β−1dz

= (t− a)nβB((n− 1)β + 1, β),

which implies inequality (69), as required.

Step c) To conclude that Ψ has a fixed point, we will apply the Weissenger fixed
point theorem. Hence, we shall prove that

||Ψnu−Ψnv||C[a,b∗] ≤ αn||u− v||C[a,b∗], (71)

for every n ≥ 0 and every u, v ∈ FK , where αn ≥ 0 and
∑∞
n=0 αn converges (see,

e.g., Appendix in [4]).
A proof by induction (using the identities in (14)) yields

n−1∏
k=0

B(kβ + 1, β) =
( Γ(β) )

n

nβΓ(nβ)
, n ∈ N.

Moreover, the inequality (15) implies

( Γ(β) )
n

nβΓ(nβ)
≤ ( Γ(β) )

n

nβ(n− 1)!β2(n−1) ( Γ(β) )
n ≤

1

n!β2n
.

Therefore

|Ψnu(t)−Ψnv(t)| ≤ κnLnf ||u− v||t(t− a)nβ
1

n!β2n

≤ κnLnf ||u− v||C[a,b∗](b
∗ − a)nβ

1

n!β2n
,

implying the inequality (71) with αn :=
(
β−2κLf (b∗ − a)β

)n
/n!.

Since
∑∞
n=0 αn = exp{β−2κLf (b∗ − a)β }, the Weissinger fixed point theorem

guarantees the existence of a unique fixed point u∗ ∈ FK , as required. �
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