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Generalised Fractional Evolution Equations of Caputo Type

M. E. Hernández-Hernández, V. N. Kolokoltsov, L. Toniazzi

Abstract. This paper is devoted to the study of generalised time-fractional evolution
equations involving Caputo type derivatives. Using analytical methods and probabilistic
arguments we obtain well-posedness results and stochastic representations for the so-
lutions. These results encompass known linear and non-linear equations from classical
fractional partial differential equations such as the time-space-fractional diffusion equa-
tion, as well as their far reaching extensions.
Meaning is given to a probabilistic generalisation of Mittag-Leffler functions.

1. Introduction

The main purpose of this article is to prove well-posedness and stochastic representation
for the solutions of the following evolution equations

−tD(ν)
a+∗u(t, x) = −Au(t, x) − g(t, x), (t, x) ∈ (a, b] ×Rd,

u(a, x) = φa(x), x ∈ Rd, (1)

and

−tD(ν)
a+∗u(t, x) = −Au(t, x) − f(t, x, u(t, x)), (t, x) ∈ (a, b] ×Rd,

u(a, x) = φa(x), x ∈ Rd, (2)

where −tD(ν)
a+∗ is a generalised differential operator of Caputo type of order less than 1 act-

ing on the time variable t ∈ [a, b] (as introduced in [25]), A is the (infinitesimal) generator
of a Feller semigroup on C∞(Rd) acting on the variable x ∈ Rd, φa belongs to the domain
of the generator A (denoted by Dom(A)), g ∶ [a, b] × Rd → R is a bounded measurable
function, and f ∶ [a, b]×Rd ×R→ R is a non-linear function satisfying a certain Lipschitz
condition.

Since Caputo derivatives of order β ∈ (0,1) are special cases of the operators −tD(ν)
a+∗,

the evolution equations in (1)-(2) include as particular cases a variety of equations stud-
ied in the theory of fractional partial differential equations (FPDE’s). The latter equa-
tions have been successfully used for describing diffusions in disordered media, also called
anomalous diffusions, which include both subdiffusions and superdiffusions. Subdiffusion
phenomena are usually related to time-FPDE’s, whereas superdiffusions are related to
space-FPDE’s. We refer, e.g., to [6], [7], [20], [29], [30], [19], [1], [23], [28] [33], [36], [43]
[22] (and references cited therein) for an account of historical notes, theory and appli-
cations of fractional calculus, as well as different analytical and numerical methods to
address both fractional ordinary differential equations (FODE’s) and fractional partial
differential equations.

2010 Mathematics Subject Classification. 34A08, 26A33, 34A12, 60H30, 35S15, 34A05.
Key words and phrases. Fractional evolution equation, Generalised derivatives of Caputo type, Mittag-

Leffler functions, Feller process, β-stable subordinator, Stopping time, Boundary point.
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GENERALISED FRACTIONAL EVOLUTION EQUATIONS OF CAPUTO TYPE 2

In the classical fractional setting, special cases of equation (1) include fractional Cauchy
problems, that is initial value problems of the form

−tDβ
a+∗u(t, x) = −Au(t, x), (t, x) ∈ [a, b] ×Rd,

u(a, x) = φa(x), x ∈ Rd, β ∈ (0,1), (3)

where tD
β
a+∗ stands for the Caputo derivative of order β (acting on the variable t). Equa-

tions of the type in (3) have been actively studied in the literature. Amongst the standard
analytical approaches to solve FPDE’s, the Laplace-Fourier transform method plays an
important role (see, e.g., [9], [11], [19], [36], [37], and references therein). From a prob-
abilistic point of view, interesting connections have been found between the solution of
time-FPDE’s and the transition densities of time-changed Markov processes (see for ex-
ample [2], [4], [16], [23], [24], [33], [34]). For instance, a very standard example of the
equation (3), first studied by Schneider and Wyss [39] and Kochubei [21] (see also [6],
[29], [33] and references therein), is given by the time-fractional diffusion equation, where
−A = − 1

2∆, ∆ being the Laplace operator. The work in [3] provides strong solutions for
A being the generator of a Feller process. The work in [27] provides strong solutions for A
being the generator of a Pearson diffusion on an interval. In these cases the fundamental
solution (or Green function) corresponds to the probability density of a self-similar non-
Markovian stochastic process, given by the time-changed transition probability function
of the diffusion associated with A by the hitting time of a β-stable subordinator.
An example of equation (3) (with a potential), was studied in [12], wherein the authors
determined the fundamental solution of the non-homogeneous Cauchy problem associated
with the second-order differential operator with variable coefficients given by

A =
d

∑
i,j

aij(x)
∂2

∂xi∂xj
+

d

∑
j=1

bj(x)
∂

∂xj
+ c(x).

The well-posedness of the (abstract) Cauchy problem (3) for A being a closed operator in
a Banach space was studied in [5]. Moreover, evolution equations of the type (3) arise, for
example, as the limiting evolution of an uncoupled and properly scaled continuous time
random walk (CTRW) with the waiting times in the domain of attraction of β−stable
laws. This probabilistic model and some of its extensions have been widely studied (see,
e.g., [33], [38], [24], and references therein). The authors in [26] addressed the regularity
of the non-homogeneous time-space fractional linear equation

tD
β
0+∗u(t, x) = −c(−∆)α/2u(t, x) + g(t, x), x ∈ Rd, t ≥ 0,

u(0, x) = φ0(x), x ∈ Rd

as well as the well-posedness for the fractional Hamilton-Jacobi-Bellman (HJB) type equa-
tion

tD
β
0+∗u(t, x) = −c(−∆)α/2u(t, x) +H(t, x,∇u(t, x)), x ∈ Rd, t ≥ 0,

u(0, x) = φ0(x), x ∈ Rd,

for β ∈ (0,1), α ∈ (1,2] and a positive constant c > 0.

Using the results presented here, we are able to deduce some of the results known for
the previous cases, as well as to extend the analysis to more general situations (see, e.g.,

Section 2.3 for some possible choices of concrete operators −tD(ν)
a−∗).

We will first show the well-posedness of problem (1) (for two notions of solution) and the
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stochastic representation for both notions of solution (see Theorem 4.20). The stochastic
representation for the solution u, will be given by

u(t, x) = E [φa (Xx,A(τ (ν)
a (t))) + ∫

τ
(ν)
a (t)

0
g(X t,(ν)

a+∗ (s),Xx,A(s))ds] , (4)

where {X t,(ν)
a+∗ (s)}s≥0 is the decreasing [a, b]-valued stochastic process generated by −tD(ν)

a+∗

started at t ∈ [a, b], {Xx,A(s)}s≥0 is the stochastic process generated by A started at x ∈ Rd,

τ
(ν)
a (t) is the first time {X t,(ν)

a+∗ (s)}s≥0 hits {a}. Note that the stochastic representation

(4) features the (time-changed) process {Xx,A(τ (ν)
a (t))}t≥0.

For A bounded and a stronger assumption on the function ν (see assumption (H1b)), we
will give the series representation to the solution of problem (1)

u(t, x) =
∞

∑
n=0

((AI(ν)a+ )nφa)(t, x) +
∞

∑
n=0

((AI(ν)a+ )nI(ν)a+ g)(t, x), (5)

where I
(ν)
a+ is the potential operator of the semigroup generated by the (generalised) RL

fractional operator −tD(ν)
a+ (see Theorem 4.24). The series in (5) provides a generalisation

of a certain class of Mittag-Leffler functions. To see this take A = λ, λ ∈ R, a = 0

and −tD(ν)
a+∗ = −tDβ

a+∗, the Caputo derivative of order β ∈ (0,1), then I
(ν)
a+ = Iβa+, the RL

fractional integral of order β, and

u(t, x) = φa(x)Eβ(λtβ) + ∫
t

0
g(t − y, x)βtβ−1 d

dy
Eβ(λyβ)dy,

where Eβ(z) ∶= (∑∞
n=0

zn

Γ(βn+1)) (see [9, Theorem 7.2] for example). By approximating the

generator of a Feller process A with bounded operators (namely the Yosida approxiamtion)
we show the convergence of the series representation (5) to the stochastic stochastic rep-
resentation (4) for the operator A (see Theorem 4.27).

As for the non-linear problem (2), we study the well-posedness following a similar strategy
to the one used for the non-linear equation studied by the authors in [18]. Namely, by
means of the the integral representation (mild form) of the solution to the linear problem
(1), we reduce the analysis of (2) to a fixed point problem for a suitable linear operator
(see Theorem 5.3). Let us mention that, even though in this work we do not include
the HJB type case, our results for the generalised non-linear equation (2) can be used to
extend the well-posedness for the corresponding equations of HJB type.

The results concerning the series representations (5) of the solutions to the linear evolu-
tion equation (1) and the well-posedness of the non-linear evolution equation (2) rely on
the bounds in Theorem 3.4. Theorem 3.4 is a consequence of assumption (H1b), which

implies that for every t, y ∈ [a, b], s ∈ R+, P[X t,(ν)
a+∗ (s) ≥ y] ≤ P[X t,β

+ (s) ≥ y] where X t,β
+ is

some inverted β-stable subordinator of order β ∈ (0,1).

Let us briefly describe the two notions of solution used in this work for problem (1).
We call u ∈ C∞([a, b] × Rd) a solution in the domain of the generator for problem (1)
with g ∈ C∞([a, b] × Rd), φa ∈ Dom(A), if u satisfies the two equalities in (1) and u ∈
Dom(−D(ν)

a+∗ +A), the domain of the generator −D(ν)
a+∗ +A.

This notion of solution is quite natural from the point of view of semigroup theory. To see
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this consider a strongly continuous semigroup {Ts}s≥0 acting on a Banach space B, let G
be its generator and Dom(G) the domain of G. Suppose now that the potential operator
(−G)−1 is bounded on B, then (−G)−1 ∶ B → Dom(G) is a bijection and G(−G)−1g = −g
(see [10, Theorem 1.1’]). By viewing problem (1) as a Dirichlet problem of the form

Gu(t, x) = −g(t, x), in (a, b] ×Rd, u(a, x) = φa(x) on {a} ×Rd,

for G = (−tD(ν)
a+ + A), where −D(ν)

a+ is the generalised Riemann-Liouville (RL) fractional
derivative, φa = 0, we will see that (−G)−1 is bounded. From the RL case we extend the
definition to the Caputo case. Of course such definition of solution does not allow to
choose the boundary condition φa, as u(a, ⋅) is determined by the choice of g ∈ B.
The second notion of solution overcomes this issue. Roughly speaking, a function u ∈
B([a, b] × Rd) is said to be a generalised solution to problem (1) if u is the point-wise
limit of a certain sequence of solutions in the domain of the generator. The stochastic
representation of solutions in the domain of the generator allows us to pass to the limit
and obtain well-posedness along with the stochastic representation (4) of the generalised
solution.
All results of this work concerning solutions in the domain of the generator hold true
(with no change in the proofs) if we substitute Rd with the closure of an open subset of
Rd, call it X, and we let A be the generator of a Feller semigroup on C∞(X).

The paper is organized as follows. Section 2 sets standard notation and gives a quick
review about generalised Caputo type operators of order less than 1. Section 3 introduces

the generalised RL integral operator I
(ν)
a+ . Section 4 focuses on the well-posedness results

for the equation (1) along with providing stochastic and series representations for the
solutions. Section 5 deals with the well-posedness of the non-linear equation (2).

2. Preliminaries

2.1. Notation. Let N and Rd be the set of positive integers and the d-dimensional Eu-
clidean space, d ∈ N, respectively.
For any subset A ⊂ Rd, we define the standard sets of functions

B(A) ∶={f ∶ A→ R ∶ f is bounded and Borel measurable},
C(A) ∶={f ∈ B(A) ∶ f is continuous},

C∞(A) ∶={f ∈ C(A) ∶ f vanishes at infinity}.
All these spaces are equipped with the usual sup-norm ∥ ⋅ ∥, making them Banach spaces.
For an open set A ⊂ Rd we define

Ck(A) ∶={f ∈ C(A) ∶Dγf ∈ C(A), ∀∣γ∣ ≤ k},
Ck
∞(Ā) ∶={f ∈ C∞(A) ∶Dγf ∈ C∞(A) & Dγf is uniformly continuous on A, ∀∣γ∣ ≤ k},

C∞(Ā) ∶= ∩∞k=1 C
k(Ā) and C∞

∞(Ā) ∶= ∩∞k=1C
k
∞(Ā),

where γ is a multi-index, Dγ the associated integer-order derivative operator, Ā denotes
the closure of A, and for the last three spaces of continuous functions we identify the
functions on A along with their partial derivatives with their unique continuous extension
to Ā. If A is compact we write Ck(Ā) = Ck

∞(Ā).
Two special spaces of continuous function will be of interest to us, namely

Ca([a, b]) ∶={f ∈ C([a, b]) ∶ f(a) = 0}, and

Ca,∞([a, b] ×X) ∶={f ∈ C∞([a, b] ×X) ∶ f(a, x) = 0 ∀x ∈X},
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for X ⊂ Rd, both equipped with the supremum norm, turning them into Banach spaces.
When we write ∥f∥ for some real-valued function f ∶X → R we mean the supremum norm
of f over its domain. If L is a linear operator acting on a subset of a Banach space B to
a Banach space B̃, we denote by Dom(L) the domain of L. If L is bounded we denote
its operator norm by ∥L∥.
Notation Γ(z) and B(α,β) stands for the Gamma and the Beta function, respectively.
For all α,β > 0, the Beta function is defined by

B(α,β) ∶= ∫
1

0
uα−1(1 − u)β−1du.

We shall use the following rather standard identities

Γ(z + 1) = zΓ(z), B(α,β) = Γ(α)Γ(β)
Γ(α + β)

, (6)

and the inequality

Γ(na) > (n − 1)!a2(n−1)(Γ(a))n, (7)

for n ∈ N and a > 0. Letters P and E are reserved for the probability and the mathe-
matical expectation, respectively. We will use the lower case letter s as the time variable
when indexing stochastic processes or semigroups (the letter t will generally be used to
denote the starting point of a process on [a, b]). For a stochastic process {Xz(s)}s≥0

the superscript z means that the process starts at z. The notation E [f (Xz(s))] and
E [f (X(s)) ∣X(0) = z] are used interchangeably.
For a topological space X we write B(X) to denote its Borel σ-algebra. All the stochastic
processes {Xz(s)}s≥0 considered in this paper are assumed to be defined on some com-
plete filtered probability space (Ω,F ,{Fs}s≥0,P) such that σ(Xz(s)) ⊂ Fs for each s ≥ 0,
where σ(Xz(s)) is the smallest σ-algebra generated by Xz(s). The notation a.e. stands
for almost everywhere with respect to Lebesgue measure.

2.2. Feller processes. Let {Ts}s≥0 be a strongly continuous semigroup of linear bounded
operators on a Banach space (B, ∥ ⋅ ∥B), i.e., Ts ∶ B → B s ∈ R+, Ts+t = TsTt ∀s, t ∈ R+,
T0 = I the identity operator and lims→0 ∥Tsf − f∥B = 0 for all f ∈ B. Its (infinitesimal)
generator L is defined as the (possibly unbounded) operator L ∶ Dom(L) ⊂ B → B given
by the strong limit

Lf ∶= lim
s↓0

Tsf − f
s

, f ∈Dom(L), (8)

where the domain of the generator Dom(L) consists of those functions f ∈ B for which
the limit in (8) exists in the norm sense. We denote the resolvent operator for λ ≥ 0 by
(λ−L)−1. Sometimes we use the notation eLs = Ts for a semigroup {Ts}s≥0 with generator
L. If L is a closed operator and D ⊂ Dom(L) is a subspace of B, then D is called a core
for L if L is the closure in the graph norm of the restriction of L to D. If D ⊂ B and
TsD ⊂D for all s ≥ 0, then D is said to be invariant (under the semigroup).

We say that a (time homogeneous) Markov process Z = (Z(s))s≥0 taking values in E ⊂ Rd

is a Feller process (see, e.g., [24, Section 3.6]) if its semigroup {Ts}s≥0, defined by

Tsf(z) ∶= E [f (Z(s)) ∣Z(0) = z] , s ≥ 0, z ∈ E, f ∈ B(E),

gives rise to a Feller semigroup when reduced to C∞(E), i.e., it is a strongly continuous
semigroup on C∞(E) and it is formed by positive linear contractions (0 ≤ Tsf ≤ 1 whenever
0 ≤ f ≤ 1). We denote the extension of a bounded linear operator on C∞(E) to B(E) by
the same notation.
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2.3. Generalised fractional operators of Caputo type. This section provides the
basics on generalised fractional operators as introduced in [25], along with some properties
and related definitions.

Let ν ∶ R × (R+/{0}) → R+ be a non-negative function of two variables. The following
condition will be always assumed when dealing with generalised fractional operators.

(H0) The function ν(t, r) is continuous as a function of two variables and
continuously differentiable in the first variable. Furthermore,

sup
t
∫

∞

0
min{1, r}ν(t, r)dr <∞, sup

t
∫

∞

0
min{1, r}∣ ∂

∂t
ν(t, r)∣dr <∞,

and

lim
δ→0

sup
t
∫

0<r≤δ
rν(t, r)dr = 0.

Remark 2.1. The second bound in (H0) is both a natural assumption for concrete ex-
amples (see, e.g., the Lévy kernel (12)) and a natural assumption for the proof of [25,
Theorem 4.1]. The last bound in (H0) is a tightness assumption also used in the proof of
[25, Theorem 4.1].

Definition 2.2. Let a, b ∈ R, a < b. For any function ν satisfying condition (H0), the

operator −D(ν)
a+∗, defined by

−D(ν)
a+∗f(t) ∶= ∫

t−a

0
(f(t − r) − f(t))ν(t, r)dr + (f(a) − f(t))∫

∞

t−a
ν(t, r)dr, (9)

t ∈ (a, b], is called the generalised Caputo type operator.

The operator −D(ν)
a+ , defined by

−D(ν)
a+∗f(t) ∶= ∫

t−a

0
(f(t − r) − f(t))ν(t, r)dr − f(t)∫

∞

t−a
ν(t, r)dr, (10)

t ∈ (a, b], is called the generalised RL type operator.

Remark 2.3. Note that the operator (9) is well-defined at least on C1
∞([a,∞)) and that

the operator (10) is well-defined at least on C1
∞([a,∞)) ∩ {f(a) = 0}.

The sign − in the notation −D(ν)
a+∗ is introduced to comply with the standard notation of

fractional derivatives.
The subscript t will be added to operators (9) and (10) by denoting them as −tD(ν)

a+∗ and

−tD(ν)
a+ , respectively, if we want to emphasise the variable they act on.

2.3.1. Special cases: the Caputo derivatives of order β ∈ (0,1). The classical fractional
Caputo derivatives are particular cases of the operator (9). Namely, on regular enough
functions f ,

if ν(t, r) = − 1

Γ(−β)r1+β
, β ∈ (0,1), then −D(ν)

a+∗f(t) = −Dβ
a+∗f(t), (11)

where Dβ
a+∗ stands for the Caputo derivative of order β ∈ (0,1). Hence,

Dβ
a+∗f(t) =

1

Γ(−β) ∫
t−a

0

f(t − r) − f(t)
r1+β

dr − f(a) − f(t)
Γ(1 − β)(t − a)β

, β ∈ (0,1).

For β ∈ (0,1) and smooth enough functions f , the expression in (9) coincides with the
standard analytical definition (Riemann-Liouville approach) which is given in terms of
the Riemann-Liouville fractional integral operator and the standard differential operator
of integer order (see, e.g., [9], [36], [37] and references therein).
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Other particular cases include the fractional derivatives of variable order −D(ν)
a+∗ ≡ −Dβ(t)

a+∗ ,
which are obtained by taking ν as the function

ν(t, r) = − 1

Γ(−β(t))r1+β(t)
(12)

with a suitable function β ∶ R → (0,1) (see [17]). Even more generally, these operators
include the generalised distributed order fractional derivatives :

−D(ν)
a+∗f(t) = − ∫

∞

−∞
ω(s, t)Dβ(s,t)

a+∗ f(t)µ(ds), (13)

where ω ∶ R× [a, b]→ R+ is a differentiable function in the second variable such that

ν(t, r) = −∫
∞

−∞
ω(s, t) µ(ds)

Γ(−β(s, t))r1+β(s,t)

is a function satisfying condition (H0). In the classical fractional framework, particular
cases of (13) have been studied for example in [31], [15]. Let us mention that tempered
Lévy kernels of the form

ν(t, r) = − e−λr

Γ(−β)r1+β
, β ∈ (0,1), λ > 0,

fall under the assumptions (H0). Tempered Lévy kernels are actively studied, see for
example [8], [41].

2.3.2. Probabilistic interpretation and basic results. For ν satisfying (H0), we define the
following processes:

Definition 2.4. (i) We denote by X
t,(ν)
+ ∶= {X t,(ν)

+ (s)}s≥0 the Feller process started at

t ∈ [a, b] induced by the semigroup {T (ν)+
s }s≥0 generated by the operator (14) (be-

low) on the space C∞((−∞, b]) with core C1
∞((−∞, b])∩{f ∶ −D(ν)

+ f ∈ C∞((−∞, b])}
(see [24, Theorem 5.1.1]).

(ii) We denote by X
t,(ν)
a+∗ ∶= {X t,(ν)

a+∗ (s)}s≥0 the Feller process started at t ∈ [a, b] induced

by the semigroup {T (ν)a+∗
s }s≥0 generated by the operator (9) on the space C([a, b])

with core C1([a, b]) (see [25, Theorem 4.1]).

(iii) We denote by X
t,(ν)
a+ ∶= {X t,(ν)

a+ (s)}s≥0 the sub-Feller process started at t ∈ (a, b]
induced by the semigroup {T (ν)a+

s }s≥0 generated by the operator (10) on the space
Ca([a, b]) with core C1([a, b])∩Ca([a, b]) (this follows from a simple modification
of [25, Theorem 4.1]).

The operator (9) was introduced in [25] as a probabilistic extension of the classical frac-
tional derivatives when applied to sufficiently regular functions. It can be seen as the
generator of an interrupted Feller processes. The generator of the decreasing Feller pro-

cess X
t,(ν)
+ is given by

−D(ν)
+ f(t) = ∫

∞

0
(f(t − r) − f(r))ν(t, r)dr, (14)

and the process X
t,(ν)
a+∗ with generator (9) is obtained by absorbing at the point a the

process X
t,(ν)
+ on its first attempt to leave the interval (a, b]. The process X

t,(ν)
a+ with

generator (10) is obtained by killing the process X
t,(ν)
+ on its first attempt to leave the

interval (a, b].
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Remark 2.5. Since we are interested in the solutions to differential equations on finite

time intervals, we only consider the operators −D(ν)
a+∗ and −D(ν)

a+ acting on functions defined
on the interval [a, b] instead of [a,∞), as was done originally in [25, Theorem 4.1].

Remark 2.6. If a = −∞, then the operator −D(ν)
−∞+∗ coincides with the operator −D(ν)

+ on
functions vanishing at infinity. This operator can be seen as the left-sided generalisation
of the Marchaud derivative [37, Formulas 5.57-5.58]. This operator is also known as the
generator form of fractional derivatives [24], [33].

Notation p
(ν)+
s (r,E) and p

(ν)a+∗
s (r,E) denote the transition probabilities (with s being

the time variable) for the processes X
t,(ν)
+ and X

t,(ν)
a+∗ , respectively.

We collect some results in the following

Proposition 2.7. (i) The processes X
t,(ν)
+ , X

t,(ν)
a+ and X

t,(ν)
a+∗ are non-increasing and

the sets {X t,(ν)
+ (s) ∈ (c, d)}, {X t,(ν)

a+ (s) ∈ (c, d)}, {X t,(ν)
a+∗ (s) ∈ (c, d)} have the same

probability, for every t ∈ (a, b], a < c < d ≤ b, s ∈ R+. In particular p
(ν)a+∗
s (t,{a}) =

p
(ν)+
s (t, (−∞, a]), t ∈ (a, b].

(ii) The law of τ
(ν)
a (t) ∶= inf{s ≥ 0 ∶ X t,(ν)

+ (s) ≤ a} equals the law of the first exit time

from the interval (a, b] of the processes X
t,(ν)
a+∗ for each t ∈ (a, b] (so that we will

use indistinctly the same notation τ
(ν)
a (t)).

(iii) The first exit time τ
(ν)
a (t) has finite expectation and E[τ (ν)

a (t)]→ 0 as t→ a under
either the assumption (H1a) or (H1b):

(H1a): There exist ε > 0 and δ > 0, such that the function ν satisfies
ν(t, r) ≥ δ > 0 for all t and ∣r∣ < ε, or

(H1b): The function ν satisfies ν(t, r) ≥ Cr−1−β for some constant C > 0
and β ∈ (0,1).

Proof.

Part (i) is proved in Appendix 6.2. Part (ii) is implied by (i). For part (iii) see [25,
Theorem 4.1].

�

Remark 2.8. Note that (H1b) implies (H1a).

For our notion of generalised solution we will assume

(H2): the measures p
(ν)+
s (t, ⋅) and pAs (x, ⋅) are absolutely continuous with

respect to Lebesgue measure for each t ∈ [a, b], x ∈ Rd, t ∈ R+,

where A is the generator of a Feller process {Xx,A(s)}s≥0 on Rd, x ∈ Rd, and we denote
by pAs (x, ⋅) the law of Xx,A(s), s ≥ 0, x ∈ Rd.

3. Generalised RL integral operator I
(ν)
a+

We use the potential operator corresponding to the generator −D(ν)
a+ as in Definition 2.4-

(iii) to define an integral operator on B([a, b]), which can be thought of as a generalisation

of the RL integral operator Iβa+ of order β ∈ (0,1) (see, e.g., [9, Definition 2.1]).
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Definition 3.1. Let ν be a function satisfying assumption (H0) and (H1a). The operator

I
(ν)
a+ ∶ B([a, b])→ B([a, b]) defined by

(I(ν)a+ f) (t) ∶= ∫
(a,t]

f(y) (∫
∞

0
p
(ν)+
s (t, dy)ds) , t > a,

and 0 for t = a, will be called the generalised RL fractional integral associated with ν.

The generalised fractional integral I
(ν)
a+ satisfies the following:

(i) for the process X
t,(ν)
+ we have

I
(ν)
a+ f(t) = E [∫

τ
(ν)
a (t)

0
f(X t,(ν)

+ (s))ds] ,

which follows from Proposition 2.7-(i)-(ii).

(ii) For each f ∈ B[a, b],

∣ (I(ν)a+ f) (t)∣ ≤ ∥f∥ sup
t∈[a,b]

E [τ (ν)
a (t)] .

In particular, if f = 1 (the constant function 1), then

(I(ν)a+ 1) (t) = ∫
(a,t]
∫

∞

0
p
(ν)+
s (t, dy)ds = E [τ (ν)

a (t)] .

Remark 3.2. The operator I
(ν)
a+ can be thought of as the left inverse operator of the RL

type operator −D(ν)
a+ . Note that the RL type operator −D(ν)

a+ coincides with the Caputo

type operator −D(ν)
a+∗ on functions vanishing at a.

Remark 3.3. If ν(x, y) is given by (11), then I
(ν)
a+ coincides with the Riemann-Liouville

integral operator Iβa+ of order β ∈ (0,1) (see, e.g., [9, Chapter 2]). Let τβa (t) be the first
exit time from the interval (a, b] of the inverted β−stable subordinator started at t ∈ (a, b].
If pβ−s (t, y) denotes the transition densities of the β−stable subordinator, then

pβ−s (t, y) = s−1/βωβ(s−1/β(y − t); 1,1),

where ωβ(⋅;σ, γ) stands for the β-stable density with scaling parameter σ, skewness pa-
rameter γ and zero location parameter (see, e.g., [24, Equation (7.2), page 311]). Let

pβ+s (t, y) denote the transition density of the respective inverted β−stable subordinator.
Then

∫
∞

0
pβ+s (t, y)ds = ∫

∞

0
s−1/βωβ(s−1/β(t − y); 1,1)ds

= (t − y)β−1∫
∞

0
u−1/βωβ(u−1/β; 1,1)du = 1

Γ(β)
(t − y)β−1, (15)

using the Mellin transform of the β−stable densities ωβ(z; 1,1) for the last equality (see,
e.g., [44, Theorem 2.6.3, p. 117]). The previous yields the known results

∣ (Iβa+f) (t)∣ ≤
1

Γ(β + 1)
∥f∥(b − a)β,

and

(Iβa+1) (t) = ∫
t

a
∫

∞

0
pβ+s (t, y)dsdy = E [τβa (t)] =

(t − a)β
Γ(β + 1)

.
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Let I
(ν),n
a+ denote the n-fold iteration of the operator I

(ν)
a+ , n ∈ N. For convention I

(ν),0
a+

stands for the identity operator.
The following result shall be important for the following sections. It provides an explicit

bound for ∣I(ν)a+ f(t)∣ under assumption (H1b).

Theorem 3.4. Let ν be a function satisfying assumptions (H0), (H1b). Then, for each
f ∈ B([a, b]),

∣ (I(ν),na+ f) (t)∣ ≤ ∥f∥t
(b − a)nβ

(Γ(β + 1))n
n−1

∏
k=0

B(kβ + 1, β), n ≥ 1, (16)

where ∥f∥t ∶= supy≤t ∣f(y)∣. Moreover, the series

∞

∑
n=0

(I(ν),na+ f) (t) (17)

converges uniformly on [a, b].

Proof. By definition of the generalised fractional integral

∣ (I(ν)a+∗f) (t)∣ ≤ ∫
∞

0
(∫

(a,t]
∣f(y)∣p(ν)+s (t, dy))ds

≤ ∫
∞

0
(∫

(a,t]
sup
z≤y

∣f(z)∣p(ν)+s (t, dy))ds.

Fix β ∈ (0,1) as in (H1b) and denote by {X t,β
+ (s)}s≥0 the associated inverted β-stable

subordinator. By assumption (H1b) it follows from [42, Theorem 1.5] that P[X t,(ν)
+ (s) >

y] ≤ P[X t,β
t (s) > y], t, y ∈ (a, b], s ∈ R+. Therefore

E [g (X t,(ν)
a+ (s))] = E [g (X t,(ν)

+ (s))] ≤ E [g (X t,β
+ (s))]

for any non-decreasing function g ∈ C1
∞((−∞, b]) such that g(t) = 0, ∀x ≤ a, where

the equality holds as a consequence of the proof of Proposition 2.7-(i). By a standard
approximation argument we obtain

P[X t,(ν)
a+ (s) > y] ≤ P[X t,β

+ (s) > y], t, y ∈ (a, b], s ∈ R+.

Another approximation argument yields

E [g (X t,(ν)
a+ (s))] ≤ E [g (X t,β+(s))] , (18)

for any non-decreasing bounded function g ∶ [a, b] → R. In particular (18) holds for the
function g(y) = supz≤y ∣f(z)∣. Hence

∣ (I(ν)a+∗f) (t)∣ ≤ ∫
∞

0
(∫

(a,t]
∣f(y)∣p(ν)+s (t, dy))ds

≤ ∫
∞

0
∫

t

a
sup
z≤y

∣f(z)∣pβ+s (t, y)dyds

≤ ∥f∥t∫
∞

0
∫

t

a
pβ+s (t, y)dyds ≤ 1

Γ(β + 1)
∥f∥t(t − a)β, (19)

To prove the inequality (16) we proceed by induction. Case n = 1 is given by (19). Assume
that the inequality in (16) holds for n − 1. Then, using standard identities for the Beta
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function, the inequality in (19) and the induction hypothesis

∣ (I(ν),na+ f) (t)∣ = ∣I(ν)a+ I
(ν),n−1
a+ f(t)∣ ≤ ∫

∞

0
∫

t

a
sup
z≤y

∣I(ν),n−1
a+ f(z)∣pβ+s (t, y)dyds

≤ ∫
∞

0
∫

t

a
∥f∥y

(y − a)(n−1)β

(Γ(β + 1))n−1

n−2

∏
k=0

B(kβ + 1, β)pβ+s (t, y)dyds

≤ ∥f∥t
1

(Γ(β + 1))n−1

n−2

∏
k=0

B(kβ + 1, β)∫
∞

0
∫

t

a
(y − a)(n−1)βpβ+s (t, y)dyds

≤ ∥f∥t
1

(Γ(β + 1))n−1

n−2

∏
k=0

B(kβ + 1, β)∫
t

a
(y − a)(n−1)β(t − y)β−1 1

Γ(β + 1)
dy

= ∥f∥t
(b − a)nβ

(Γ(β + 1))n
n−1

∏
k=0

B(kβ + 1, β),

where the last inequality uses Fubini’s theorem and the equality in (15).
To prove the convergence of (17) we use the identity (6) and the inequality (7) to obtain
that for each n ∈ N

n−1

∏
k=0

B(kβ + 1, β) = (Γ(β) )n

nβΓ(nβ)
≤ ( Γ(β) )n

nβ(n − 1)!β2(n−1) (Γ(β) )n
≤ 1

n!β2n
.

Hence,

∣ (I(ν),na+ f) (t) ∣ ≤ ∥f∥( (b − a)β
β2Γ(β + 1)

)
n

1

n!
=∶Mn.

Since ∑∞
n=0Mn converges, Weierstrass M−test implies the uniform convergence of (17) on

[a, b], as required.

�

Remark 3.5. In the classical fractional setting, the n−fold RL integral Iβ,na+ has an explicit
expression obtained from its semigroup property [9, Theorem 2.2]

(Iβ,na+ f) (t) = (Inβa+ f) (t).
Hence, for f(t) = 1,

(Iβ,na+ f) (t) =
1

Γ(nβ) ∫
t

a
(t − y)nβ−1dy = (t − a)nβ

Γ(nβ + 1)
.

4. Generalised fractional evolution equation: Linear case

Using the theory of strongly continuous semigroups and the properties of the process

X
(ν)
a+∗ (in particular Proposition 2.7-(iii)), we first prove the wellposedness and stochastic

representation for two notions of solution to the problem

(−tD(ν)
a+ +A)u(t, x) = −g(t, x), (t, x) ∈ (a, b] ×Rd,

u(a, x) = 0, x ∈ Rd, (20)

for g ∈ B([a, b] × Rd), A being the generator of a Feller semigroup on C∞(Rd), and ν
satisfying assumptions (H0) and (H1a) (see Theorem 4.10).
The series representation is obtained under the additional assumptions (H1b) and A
bounded (see Theorem 4.15). We then show convergence of such series representation
to the stochastic representation for A generator of a Feller semigroup (see Theorem
4.16).
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We use the following technical results whose proof is provided in Appendix 6.1.

Theorem 4.1. Let G, G̃ be generators of strongly continuous, uniformly bounded semi-
groups T = {Ts}s≥0, T̃ = {T̃s}s≥0 on C∞(X), C∞(X̃) with domains D = Dom(G), D̃ =
Dom(G̃), respectively, where X, X̃ are the closure of non-empty open subsets of Rn and
C∞
∞(X) ⊂D, C∞

∞(X̃) ⊂ D̃, respectively.
Define

L ∶= Linear span of DD̃,

where DD̃ ∶= {g = ff̃ ∶ f ∈D, f̃ ∈ D̃}.
Then

(i) the closure of G + G̃ in C∞(X × X̃) on the set L generates a uniformly bounded
strongly continuous semigroup {Φs}s≥0 on C∞(X×X̃), with invariant core L, where
Φs ∶= TsT̃s = T̃sTs s ∈ R+ (where G and Ts act on the X-variable, G̃ and T̃s act on
the X̃-variable, s ∈ R+).
We denote by L the generator of {Φs}s≥0.

(ii) If G, G̃ are generators of Feller semigroups, then {Φs}s≥0 is a Feller semigroup. If
G, G̃ are generators of sub-Feller semigroups, then {Φs}s≥0 is a sub-Feller semi-
group.

(iii) The same statement in (i) holds for X = [a, b], G acting on Ca([a, b]) and {Φs}s≥0

acting on Ca,∞([a, b] × X̃) instead of C∞([a, b] × X̃).

Remark 4.2. Theorem 4.1 allows us to solve the resolvent equation

Lu = λu + g, λ ∈ R+/{0}, g ∈ C∞(X × X̃),
but what we are particularly interested in is the case λ = 0, which requires more care as
the potential operator is not well-defined in general.

The next Proposition will be used in Section 4.1.3.

Proposition 4.3. Suppose that G̃ is bounded. Then, under the assumptions of Theorem
4.1, f ∈ Dom(L) implies that f(⋅, x̃) ∈ Dom(G) for each x̃ ∈ X̃. In particular Lf =
(G + G̃)f .

Proof. Let f ∈ Dom(L). Since L is a core for the generator L, there exists {fn}n∈N ⊂ L
such that fn → f and (G + G̃)fn = Lfn → Lf . As G̃ is bounded G̃fn → G̃f and so
{G̃fn}n∈N is Cauchy in C∞(X × X̃). For each x̃ ∈ X̃ fn(⋅, x̃) → f(⋅, x̃) in C∞(X) and
fn(⋅, x̃) ∈ Dom(G) for each n ∈ N, by the definition of L. If we show that Gfn(⋅, x̃) is
Cauchy in C∞(X) we are done as G is a closed operator on C∞(X). This follows from
the inequality

∣(Gfn −Gfm)(x, x̃)∣ ≤ ∥Lfn −Lfm∥ + ∥G̃fn − G̃fm∥,
and by taking n and m large. �

We now identify two independent processes associated with the semigroups {Ts}s≥0 and
{T̃s}s≥0 from the process on X × X̃ induced by the semigroup {Φs}s≥0 in Theorem 4.1-
(ii).

Definition 4.4. Let {Φs}s≥0 be a Feller semigroup generated as in Theorem 4.1-(ii) and
denote by Y (t,x̃) ∶= {Y (t,x̃)(s)}s≥0, (t, x̃) ∈X × X̃ the induced Feller process.
For each (t, x̃) ∈ X × X̃, define the process X t ∶= {X t(s)}s≥0 and the process X̃ x̃ ∶=
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{X̃ x̃(s)}s≥0 to be the processes induced by the collection of probability measures on X
and on X̃ defined as

P (X t(s) ∈ B) ∶= Φs1(B × X̃)(t, x̃), B ∈ B(X),

and

P (X̃ x̃(s) ∈ B̃) ∶= Φs1(X × B̃)(t, x̃), B̃ ∈ B(X̃),
respectively. Define the stochastic process {(X t(s), X̃ x̃(s))}s≥0 on X × X̃ by

P(X t(s) ∈ B, X̃ x̃(s) ∈ B̃) ∶= Φs1(B × B̃)(t, x̃), B ∈ B(X), B̃ ∈ B(X̃).

Corollary 4.5. Let {Φs}s≥0 be a Feller semigroup generated as in Theorem 4.1-(ii).
Then Y (t,x̃)(s) = (X t(s), X̃ x̃(s)), s ∈ R+, (t, x̃) ∈ X × X̃. Moreover the processes X t and
X̃ x̃ are independent and they equal the processes generated by G and G̃ on C∞(X) and
C∞(X̃), respectively.

Proof. The first statement is straightforward. The latter two statements follow from

Φs1(B × B̃)(t, x̃) = P(X t(s) ∈ B)P(X̃ x̃(s) ∈ B̃), B ∈ B(X), B̃ ∈ B(X̃), s ∈ R+.

�

4.1. Linear evolution equation: RL Case.

4.1.1. Well-posedness and stochastic representation. We drop the subscript t from the

operators −tD(ν)
a+∗ and −tD(ν)

a+ .
With respect to the notation in Theorem 4.1, from now on

G = −D(ν)
a+ , D =Dom(−D(ν)

a+ ), C∞(X) = Ca([a, b]), or (21)

G = −D(ν)
a+∗, D =Dom(−D(ν)

a+∗), C∞(X) = C([a, b]), and (22)

G̃ = A, D̃ =Dom(A), C∞(X̃) = C∞(Rd), (23)

where the triples (21) and (22) are the ones given in Definition 2.4-(i) and Definition
2.4-(ii), respectively. The triple (23) is any such triple arising from a Feller semigroup on
C∞(Rd) with C∞

∞(Rd) ⊂ Dom(A), and we denote the corresponding process by Xx,A ∶=
{Xx,A(s)}s≥0.

We will show that the potential operator (−L)−1 of L = −D(ν)
a+ +A (as in Theorem 4.1-(iii))

is bounded. We will use this fact to solve problem (20).
Define the stopping times

τYa ((t, x)) ∶= inf
s
{s ≥ 0 ∶ Y (t,x)(s) ∉ (a, b] ×Rd}, τXa (t) ∶= inf

s
{s ≥ 0 ∶X t(s) ∉ (a, b]},

where Y (t,x) = {Y (t,x)(s)}s≥0 and X t = {X t(s)}s≥0 are defined as in Definition 4.4.

Proposition 4.6. The stopping times τYa ((t, x)), τXa (t) and τ
(ν)
a (t) have the same dis-

tribution, in particular

E[τYa ((t, x))] = E[τ (ν)
a (t)] <∞, (24)

uniformly in (t, x) ∈ [a, b] ×Rd. Moreover τYa ((t, x)) is independent of {X̃x(s)}s≥0.
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Proof. By Corollary 4.5 the process X t has the same distribution of X
t,(ν)
a+∗ . In particular

X t is non-increasing and

P(X t(s) > a) = P(X t,(ν)
+ (s) > a).

Also {τYa ((t, x)) > s} = {X t(s) > a} ∩ {X̃x(s) ∈ Rd} and by independence of X t(s) and
X̃x(s) (Corollary 4.5) we have

P(τYa ((t, x)) > s) = P({X t(s) > a)P(X̃x
s ∈ Rd) = P(X t,(ν)

+ (s) > a) = P(τ (ν)
a (t) > s).

This proves that τYa ((t, x)), τXa (t) and τ
(ν)
a (t) have the same distribution. In particular

we obtain the equality in (24).
The inequality in (24) follows from Proposition 2.7-(iii).
The last statement can be proved using the computations in this proof. �

From now on we will use the notation τ
(ν)
a (t) for the stopping time τYa ((t, x)). In the next

proposition we obtain the boundedness and the stochastic representation for the potential
operator (−L)−1.

Proposition 4.7. Let Φ∗ ∶= {T ∗
s T̃s}s≥0 be the Feller semigroup obtained in Theorem 4.1-

(ii) for the triples (22) and (23). Denote the generator of Φ∗ by L∗.
Let Φ ∶= {TsT̃s}s≥0 be the semigroup obtained from in Theorem 4.1-(iii) for the triples
(21) and (23). Denote the generator of Φ by L.
Then (−L)−1 ∶ Ca,∞([a, b] × X̃) → Ca,∞([a, b] × X̃) is well-defined and it is bounded.

Moreover the equality (−L∗)−1g = (−L)−1g holds if g ∈ Ca,∞([a, b]× X̃) and we obtain the
stochastic representation

(−L)−1g(t, x) = E∫
τ
(ν)
a (t)

0
eAsg(X t,(ν)

+ (s), x)ds.

Proof.

For each (t, x) ∈ [a, b] ×Rd, s ∈ R+

T ∗
s T̃s1(B × B̃)(t, x) = TsT̃s1(B × B̃)(t, x) (25)

if a ∉ B, B ∈ B(X), B̃ ∈ B(X̃) from Proposition 2.7-(i) and Corollary 4.5. Let g ∈
Ca,∞([a, b] ×Rd), then

(−L∗)−1g(t, x) = ∫
∞

0
T ∗
s T̃sg(t, x)ds

= E(∫
τ
(ν)
a (t)

0
+∫

∞

τ
(ν)
a (t)

) T̃sg(X t,(ν)
a+∗ (s), x)ds

= E∫
τ
(ν)
a (t)

0
T̃sg(X t,(ν)

a+∗ (s), x)ds + 0,

where we used Proposition 4.6. A similar computation using (25) yields

(−L)−1g(t, x) = E∫
τ
(ν)
a (t)

0
T̃sg(X t,(ν)

a+ (s), x)ds. (26)

That (−L)−1 ∶ Ca,∞([a, b]×X̃)→ Ca,∞([a, b]×X̃) is well-defined and bounded follows from
Proposition 2.7-(iii) with the representation (26), as

∣(−L)−1g(t, x)∣ ≤ E∫
τ
(ν)
a (t)

0
∣T̃sg(X t,(ν)

+ (s), ⋅)(x)∣ds ≤ ∥g∥E[τ (ν)
a (t)] <∞,
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and noting that E[τ (ν)
a (t)] ≤ E[τ (ν)

a (b)] <∞. �

We are now ready to prove the well-posedness of problem (20) for two notions of solutions
(following [17]) and to obtain stochastic representations for such solutions.

Definition 4.8. Let g ∈ Ca,∞([a, b]×Rd). A function u ∈ Ca,∞([a, b]×Rd) is said to be a
solution in the domain of the generator to problem (20) if u ∈Dom(L) and u satisfies the
equalities in (20), where L is the generator obtained in Theorem 4.1-(iii).

Definition 4.9. Let g ∈ B([a, b] × Rd). A function u ∈ B([a, b] × Rd) is said to be a
generalised solution to problem (20) if u = limn→∞ un point-wise, where un is the solution in
the domain of the generator to problem (20) with {gn}n∈N ⊂ Ca,∞([a, b]×Rd), limn→∞ gn = g
a.e. and supn ∥gn∥ <∞.

Theorem 4.10. Let ν be a function satisfying conditions (H0), (H1a) and let A be the
generator of a Feller semigroup on C∞(Rd).

(i) If g ∈ Ca,∞([a, b] × Rd), then there exists a unique u ∈ Ca,∞([a, b] × Rd) solution
in the domain of the generator to problem (20). Moreover u admits the stochastic
representation

u(t, x) = E [∫
τ
(ν)
a (t)

0
eAsg(X t,(ν)

+ (s), ⋅)(x)ds] . (27)

(ii) If g ∈ B([a, b] ×Rd) and (H2) holds, then there exists a unique u ∈ B([a, b] ×Rd)
generalised solution to problem (20). Moreover u has the stochastic representation
given in (27).

Proof.

(i) The potential operator (−L)−1 of the semigroup {Φs}s≥0 is bounded by Proposition
4.7. Hence by Theorem 1.1’ in [10] (−L)−1 ∶ Ca,∞([a, b] × Rd) → Dom(L) is a
bijection, and (−L)−1g solves the equation

L(−L)−1g(t, x) = −g(t, x), (t, x) ∈ [a, b] ×Rd, g ∈ Ca,∞([a, b] ×Rd),
giving the existence and uniqueness of a solution in the domain of the generator.
The stochastic representation follows from Proposition 4.7.

(ii) Let g ∈ B([a, b]×Rd) and take {gn}n∈N ⊂ Ca,∞([a, b]×Rd) such that gn → g a.e. as
n→∞ and supn ∥gn∥∞ <∞ (such sequence can be constructed using [14, Theorem
7-(i)-(ii), Appendix C]). Note that condition (H2) and g ∈ Ca,∞([a, b] ×Rd) imply
that

Eg(X t,(ν)
a+ (s),Xx,A(s)) = Eg(X t,(ν)

a+∗ (s),Xx,A(s))

=∫
t

a
∫
Rd
g(z, y)p(ν)+s (t, z)pAs (x, y)dydz.

Then by Dominated Convergence Theorem (DCT) for each (t, x) ∈ [a, b] ×Rd

F(t,x),n(s) ∶= E[eAsgn(X t,(ν)
a+ (s), ⋅)(x)]→ E[eAsg(X t,(ν)

a+ (s), ⋅)(x)] =∶ F(t,x)(s),

as n→∞. Define G(t,x)(s) ∶= supn ∥gn∥P(τ (ν)
a (t) > s). Then

sup
n

∣F(t,x),n(s)∣ ≤ G(t,x)(s), ∫
∞

0
G(t,x)(s)ds = sup

n
∥gn∥E[τ (ν)

a (t)] <∞,
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and by DCT we obtain

lim
n→∞

E [∫
τ
(ν)
a (t)

0
eAsgn(X t,(ν)

+ (s), ⋅)(x)ds] = E [∫
τ
(ν)
a (t)

0
eAsg(X t,(ν)

+ (s), ⋅)(x)ds] ,

which gives existence of a generalised solution, independence of the approximating
sequence, hence uniqueness, and the claimed stochastic representation.

�

4.1.2. Approximation by Yosida operators.

Lemma 4.11. Let Lλ ∶= λL(λ − L)−1 be the Yosida approximation for the generator L
of a Feller semigroup on C∞(Rd). Let g ∈ C∞([a, b] ×Rd). Let uλ ∈ Ca,∞([a, b] ×Rd) be
the generalised solution to problem (20) with A = Lλ. Let u ∈ Ca,∞([a, b] × Rd) be the
generalise solution to problem (20), with A = L.
Then for each t ∈ [a, b], uλ(t, x)→ u(t, x) as λ→∞, uniformly in x ∈ Rd.

Proof. By [13, Chapter 1, Proposition 2.7] we have that for each g ∈ C∞([a, b] × Rd),
t ∈ [a, b],

∥(eLλs − eLs)g(t, ⋅)∥Rd → 0 as λ→∞,
uniformly for s ≥ 0 in compact sets.
Pick the constant function ∥g∥ as the dominating function. Then ∥eLλsg(t, ⋅)(x)∥ ≤
1∥g(⋅, x)∥ ≤ ∥g∥ which implies

E [∫
τ
(ν)
a (t)

0
∣eLλsg(X t,(ν)

+ (s), ⋅)(x)∣ds] ≤ ∥g∥E [τ (ν)
a (t)] <∞,

and the result follows from the application of DCT. �

4.1.3. Series representation. Under the additional assumptions

A is bounded and ν satisfies assumption (H1b),

we give a series representation for the solution in the domain of the generator and the
generalised solution to problem (20) obtained in Theorem 4.10.
Once we have the series representation we will obtain convergence of a sequence of series
representations of solutions to the stochastic representation obtained in Theorem 4.10 for
A the generator of a Feller semigroup on C∞(Rd) (see Theorem 4.16 below).

Let us give well-posedness and stochastic representation for the solution to the (FODE)
problem

−D(ν)
a+ u(t) = −g(t), t ∈ (a, b],
u(a) = 0, g ∈ B([a, b]). (28)

Definition 4.12. Let g ∈ Ca([a, b]). A function u ∈ Ca([a, b]) is a solution in the domain

of the generator for problem (28) if u ∈Dom(−D(ν)
a+ ) and u satisfies (28).

Definition 4.13. A function u ∈ B([a, b]) is a generalised solution to problem (28) if
u = limn→∞ un point-wise, where un is the solution in the domain of the generator to
problem (28) for gn ∈ Ca([a, b]), n ∈ N, gn → g a.e. and supn∈N ∥gn∥ <∞.

The following is just a simpler version of Theorem 4.10.
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Theorem 4.14. Let ν be a function satisfying conditions (H0), (H1a). If g ∈ Ca([a, b])
there exists a unique solution in the domain of the generator u ∈ Ca([a, b]) to problem

(28), and u has the representation u = I(ν)a+ g.
Under the additional assumption (H2), if g ∈ B([a, b]) there exists a unique u ∈ B([a, b])
generalised solution to problem (28), also with the representation u = I(ν)a+ g.

Theorem 4.15. Let ν be a function satisfying assumption (H0), (H1b). Suppose that A
is bounded.

(1) If g ∈ Ca,∞([a, b] ×Rd) the unique solution u ∈ Ca,∞([a, b] ×Rd) in the domain of
the generator to problem (20) has the series representation

u(t, x) =
∞

∑
n=0

((I(ν)a+ A)nI(ν)a+ g) (t, x), (29)

where the convergence is in the sense of the norm of Ca,∞([a, b] ×Rd).

(ii) If g ∈ B([a, b] ×Rd) and (H2) holds, the unique generalised solution u ∈ B([a, b] ×
Rd) to problem (20) has the series representation given in (29).

Proof. Note that by Riesz-Representation Theorem ([24, Theorem 1.7.3]) A and I
(ν)
a+

commute.

(i) Let u ∈ Ca,∞([a, b]×Rd) be the solution in the domain of the generator to problem
(20) obtained in Theorem 4.10. As A is bounded and u ∈ Dom(L) we obtain by

Proposition 4.3 that for each x ∈ Rd, u(⋅, x) ∈ Dom(−D(ν)
a+ ), Lu(⋅, x) = (−D(ν)

a+ +
A)u(⋅, x). Hence u(⋅, x) solves

−D(ν)
a+ u(⋅, x) = −g̃(⋅, x), u(a, x) = 0 (30)

where g̃(⋅, x) ∶= Au(⋅, x) + g(⋅, x) ∈ Ca[a, b], as Au(a, ⋅) = 0. Hence, by Theorem
4.14, u(⋅, x) is the unique solution in the domain of the generator to problem (30)

and it has the representation u(⋅, x) = I(ν)a+ g̃(⋅, x).
By induction, for each N ∈ N

u(t, x) =
N

∑
n=0

((I(ν)a+ A)nI(ν)a+ g) (t, x) + ((I(ν)a+ A)N+1u) (t, x). (31)

Now observe that,

an(t, x) ∶= ((I(ν)a+ A)nI(ν)a+ g) (t, x) ≤ ∣ (I(ν)a+ A)nI(ν)a+ g) (t, x)∣

≤ ∥g∥∥A∥n∣ (I(ν),n+1
a+ 1) (t)∣ =∶ bn(t).

Hence Theorem 3.4 implies the uniform convergence of ∑∞
n=0 bn(t), which in turn

implies the uniform convergence of ∑∞
n=0 an(t, x). Moreover

∣ ((I(ν)a+ A)N+1u) (t, x)∣ ≤ ∥u∥∥A∥N ∣I(ν),N+1
a+ (t, x)∣→ 0, N →∞,

due to the uniform convergence of ∑∞
n=0 ∥A∥n (I(ν),na+ 1) (t) on [a, b], again by The-

orem 3.4. Then, letting N →∞ in the equality (31) yields the result in (29).

(ii) Consider a sequence {gn}n∈N ⊂ Ca,∞([a, b] × Rd) such that gn → g a.e. and
supn ∥gn∥ <∞. Fix (t, x) ∈ [a, b] ×Rd. By DCT we obtain

lim
n→∞

∞

∑
m=0

F(t,x),n(m) =
∞

∑
m=0

((I(ν)a+ A)mI(ν)a+ g) (t, x), (32)
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where F(t,x),n(m) ∶= (I(ν)a+ A)mI(ν)a+ gn. To see this observe that for every m ∈ N

lim
n→∞

F(t,x),n(m) = ((I(ν)a+ A)mI(ν)a+ g) (t, x),

and ∣F(t,x),n(m)∣ ≤ F(t,x)(m) ∶= supn ∥gn∥∥A∥m(I(ν)a+ )m+11(t).
By part (i) of this Theorem and part (ii) of Theorem 4.10 the limit on the left-
hand-side of (32) equals the unique generalised solution to problem (20).

�

4.1.4. Convergence of the series representation to the stochastic representation.

Theorem 4.16. Let ν be a function satisfying assumptions (H0), (H1b). Let Aλ be
the Yosida approximation for the generator of a Feller semigroup A on C∞(Rd). Let
g ∈ C∞([a, b] ×Rd).
Then for each t ∈ [a, b]

∞

∑
n=0

(I(ν)a+ Aλ)nI(ν)a+ g(t, x)→ E [∫
τ
(ν)
a (t)

0
eAsg(X t,(ν)

+ (s), ⋅)(x)ds] , λ→∞, (33)

uniformly in x ∈ Rd.

Proof. The result follows from combining Lemma 4.11 with Theorem 4.15. �

4.2. Linear evolution equation: Caputo case. We now transfer the results for the

RL generalised fractional operator −D(ν)
a+ to the Caputo generalised fractional operator

−D(ν)
a+∗. We will indeed look at the problem

(−tD(ν)
a+∗ +A)u(t, x) = −g(t, x), (t, x) ∈ (a, b] ×Rd,

u(a, x) = φa(x), x ∈ Rd, (34)

where g ∈ B([a, b]×Rd), φa ∈Dom(A) ⊂ C∞(Rd), A is the generator of a Feller semigroup
on C∞(Rd) with C∞

∞(Rd) ⊂Dom(A) and ν is a function satisfying conditions (H0), (H1a).

We again drop the subscript t in −tD(ν)
a+∗.

Remark 4.17. Note that if φa ∈Dom(A) then u satisfies

(−D(ν)
a+∗ +A)u(t, x) = −g(t, x),

u(a, x) = φa(x),

if and only if ũ = u − φa satisfies

(−D(ν)
a+∗ +A)ũ(t, x) = −(g +Aφa)(t, x),

ũ(a, x) = 0,

using the fact that −D(ν)
a+∗c(t, x) = 0 for all functions c constant in the t variable (which

is an immediate consequence of Definition 9). We indirectly use this fact to connect
the results obtained in last section about RL type evolution equations to Caputo type
evolution equations.
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4.2.1. Well-posedness and stochastic representation.

Definition 4.18. Let g ∈ C([a, b] ×Rd), φa ∈ Dom(A) such that Aφa(x) = −g(a, x) ∀x ∈
Rd. A function u ∈ C([a, b] ×Rd) is a solution in the domain of the generator to problem
(34) if u = ũ + φa, where ũ is a solution in the domain of the generator for problem (20)
with g̃ = g +Aφa ∈ Ca,∞([a, b] ×Rd).

Definition 4.19. Let g ∈ B([a, b] ×Rd), φa ∈ Dom(A). A function u ∈ B([a, b] ×Rd) is
a generalised solution for problem (34) if u = ũ + φa, where ũ is a generalised solution to
problem (20) for g̃ ∶= g +Aφ ∈ B([a, b] ×Rd).

Theorem 4.20. Assume that ν is a function that satisfies (H0) and (H1a).

(i) If g ∈ C∞([a, b] × Rd) and φa ∈ Dom(A) such that Aφa(⋅) = −g(a, ⋅), then there
exists a unique solution u ∈ C∞([a, b] × Rd) in the domain of the generator to
problem (34) and u has the stochastic representation

u(t, x) = E [φa(Xx,A(τ (ν)
a (t)))] +E [∫

τ
(ν)
a (t)

0
g(X t,(ν)

+ (s),Xx,A(s))ds] . (35)

(ii) If g ∈ B([a, b] × Rd), φa ∈ Dom(A) and (H2) holds, then there exists a unique
u ∈ B([a, b] × Rd) generalised solution for problem (34) and u has the stochastic
representation given by (35).

Proof.

(i) By the assumptions on g and φa we have that g̃ ∶= g +Aφa(x) ∈ Ca,∞([a, b] ×Rd),
and it follows from Theorem 4.10-(i) that a unique solution ũ in the domain of the
generator to problem (20) exists.
The above gives existence of a solution in the domain of the generator to problem
(34) and uniqueness.
By Theorem 4.10 ũ has the stochastic representation

ũ(t, x) = E∫
τ
(ν)
a (t)

0
g̃(X t,(ν)

+ (s),Xx,A(s))ds

= E∫
τ
(ν)
a (t)

0
g(X t,(ν)

+ (s),Xx,A(s))ds +E∫
τ
(ν)
a (t)

0
Aφa(Xx,A(s))ds.

Consider u = ũ+φa, then by Dynkin formula (see [24, Theorem 3.9.4]) we have the
equality

φa(x) +E∫
τ
(ν)
a (t)

0
Aφa(Xx,A(s))ds = Eφa(Xx,A(τ (ν)

a (t))),

and we obtain the stochastic representation in (35).

(ii) As g + Aφa ∈ B([a, b] × Rd) existence and uniqueness follows immediately from
Theorem 4.10-(ii), and we have the stochastic representation (35) by the same
argument at the end of part (i) of this proof.

�

Remark 4.21. The solution in the domain of the generator u ∈ C∞([a, b]×Rd) of Theorem
4.20 solves problem (34), in the sense that

L∗u(t, x) = Lũ(t, x) +Aφa(x)
= −g(t, x) −Aφa(x) +Aφa(x) = −g(t, x),
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and u(a, x) = ũ(a, x) + φa(x) = φa(x), where we use the fact that u = ũ + φa ∈ Dom(L∗),
L∗ũ = Lũ and L∗φa = Aφa. Here L∗ is the generator obtained in Theorem 4.1-(ii) and L

is the generator obtained in Theorem 4.1-(iii). For the equality L∗u = (−D(ν)
a+∗ +A)u, it is

in general necessary to prove smoothness properties of u.

Remark 4.22. As mentioned in the introduction, all results for the solution in the domain
of the generator hold (with the same proofs) if A is the generator of a Feller semigroup on
a bounded domain such that the respective conditions of Theorem 4.1 are satisfied. To
obtain the results for the generalised solution it is necessary to modify assumption (H2).
Such stochastic representations have been obtained for example in the case of Pearson
diffusions ([27, Theorem 4.2]).

Example 4.23. In the standard Caputo case, i.e. −D(ν)
a+∗ = −Dβ

a+∗, a = 0, the generalised
solution u to problem (34) has the stochastic representation

u(t, x) =∫
Rd
φ0(y) (∫

∞

0
pAs (x, y)

t

β
s−

1
β
−1ωβ (ts−

1
β ; 1,1)ds)dy

+ ∫
Rd
∫

t

0
g(z, y) (∫

∞

0
∫

∞

0
1(s < r)ϕβt,s(r, z)pAs (x, y)drds)dzdy, (36)

where

ϕβt,s(r, z) ∶=1(s < r)pβ+s (t, z) d
dr ∫

0

−∞
pβ+r−s(z, γ)dγ

=1(s < r)s−
1
βωβ ((t − z)s−

1
β ; 1,1) z

β
(r − s)−

1
β
−1ωβ (z(r − s)−

1
β ; 1,1)

is the joint density of (τβ0 (t),X t,β
0+∗(s)) (see [17, Proposition 4.2]), using the notation of

assumption (H2) and Remark 3.3. To obtain the last equality we used standard change of
variables and identities for the stable densities ωβ(⋅; ⋅, ⋅). In the homogeneous case (g = 0),
the representation (36) agrees with the representations found in the literature, see for
example [3, Theorem 3.1].

4.2.2. Series representation.

Theorem 4.24. Let ν be a function satisfying conditions (H0), (H1b). Let A be a bounded
linear operator on C∞(Rd).

(i) If g ∈ C∞([a, b] × Rd), φa ∈ Dom(A), Aφa(⋅) = −g(a, ⋅), then the unique solution
u ∈ C∞([a, b] ×Rd) in the domain of the generator to problem (34) has the series
representation

u(t, x) =
∞

∑
n=0

AnφaI
(ν),n
a+ 1(t, x) +

∞

∑
n=0

(I(ν)a+ A)nI(ν)a+ g(t, x). (37)

(ii) If g ∈ B([a, b] × Rd), φa ∈ Dom(A), condition (H2) holds, then the unique gen-
eralised solution u ∈ B([a, b] × Rd) to problem (34) has the series representation
(37).

Proof.

(i) Let u ∈ C∞([a, b] ×Rd) be the solution in the domain of the generator to problem
(34). By Proposition 4.3, ũ ∶= u − φa ∈Dom(L) ⊂ Ca,∞([a, b] ×Rd) solves

−D(ν)
a+∗ũ(t, x) = −Aũ(t, x) − (g(t, x) +Aφa(x)), ũ(a, ⋅) = 0. (38)
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By the assumptions of the Theorem g̃ ∶= g + Aφa ∈ Ca,∞([a, b] × Rd). Therefore
by Theorem 4.15-(i) ũ is the unique solution in the domain of the generator to
problem (38) and it has the series representation

ũ(t, x) =
∞

∑
n=0

(I(ν)a+ A)nI(ν)a+ g̃(t, x)

=
∞

∑
n=0

(I(ν)a+ A)nI(ν)a+ g(t, x) +
∞

∑
n=0

(I(ν)a+ A)nI(ν)a+ Aφa(t, x). (39)

using the fact that both series in the right-hand side converge in C∞([a, b] ×Rd)
by Theorem 3.4. Then u = ũ + φa has the series representation given in (37).

(ii) For g ∈ B([a, b]×Rd), let ũ be the unique generalised solution to problem (20) with
g̃ = g +Aφa. Then by Theorem 4.15-(ii) ũ has the representation (39), using the
fact that both series in the right-hand side converge in B([a, b]×Rd) by Theorem
3.4. Then u = ũ + φa has representation (37).

�

Definition 4.25. Let ν satisfy conditions (H0), (H1b) and let A be bounded. We call

E(ν)(A(⋅)I(ν)a+ 1) ∶ B(Rd)→ B([a, b]×Rd) the generalised Mittag-Leffler function for A and
ν , defined as

φa ↦ E(ν)(AφaI(ν)a+ 1)(t, x) ∶=
∞

∑
n=0

Anφa(x)I(ν),na+ 1(t), (40)

(t, x) ∈ [a, b] ×Rd.

Remark 4.26. The function E(ν)(A(⋅)I(ν)a+ 1) provides a probabilistic generalisation, for
λ = A bounded operator, to the Mittag-Leffler function

Eβ(λ(t − a)β) =
∞

∑
n=0

λn(t − a)βn
Γ(βn + 1)

=
∞

∑
n=0

λnφa(x)Iβ,na+ 1(t),

where β ∈ (0,1), φa(⋅) = 1.

4.2.3. Convergence of the series representation to the stochastic representation.

Theorem 4.27. Let ν be a function satisfying (H0), (H1b), and assume that (H2) holds.
Let A be the generator of a Feller semigroup on C∞(Rd) and Aλ its Yosida approximation.
Fix g ∈ C∞([a, b] ×Rd) and φa ∈Dom(A).
Then for each t ≥ 0

E(ν)(Aφa1(ν))(t, x)→ Eφa(Xx,A(τ (ν)
a (t))),

and
∞

∑
n=0

(I(ν)a+ Aλ)nI(ν)a+ g(t, x)→ E∫
τ
(ν)
a (t)

0
eAsg(X t,(ν)

+ (s), ⋅)(x)ds

as λ→∞, uniformly in x ∈ Rd.

Proof. Let uλ ∈ B([a, b] ×Rd) be the generalised solution for problem (34) for A = Aλ.
Let u ∈ B([a, b] ×Rd) be the generalised solution for problem (34) for A = A.
By Theorem 4.20

uλ(t, x) = Eφa(Xx,Aλ(τ (ν)
a (t))) +E∫

τ
(ν)
a (t)

0
eAλsg(X t,(ν)

+ (s), ⋅)(x)ds, (41)
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and

u(t, x) = Eφa(Xx,A(τ (ν)
a (t))) +E∫

τ
(ν)
a (t)

0
eAsg(X t,(ν)

+ (s), ⋅)(x)ds. (42)

As a consequence of Theorem 4.15 and Theorem 4.10 the second term in (41) equals the
series representation (29) and by Theorem 4.16 it converges as required to the second
term in (42).
The considerations above along with Theorem 4.24 imply that the first term in (41) equals
the first term on the right-hand side of (37). For the first term in (41) observe that by
[13, Chapter 1, Proposition 2.7]

eAλsφa(x)→ eAsφa(x), λ→∞,
uniformly in x ∈ Rd, for each s ≥ 0. For each λ ≥ 0

Eφa(Xx,Aλ(τ (ν)
a (t))) = ∫

∞

0
eAλsφa(x)µτ

(ν)
a (t)(ds),

by independence of Xx,Aλ and τ
(ν)
a (t) (Corollary 4.6), where µτ

(ν)
a (t)(ds) is the law of

τ
(ν)
a (t). Also

∣eAλsφa(x)∣ ≤ ∥φa∥ ∀λ > 0, and ∫
∞

0
∥φa∥µτ

(ν)
a (t)(ds) ≤ ∥φa∥,

and the result follows from the application of DCT. �

Remark 4.28. Theorem 4.27 allows us to give meaning to a generalised Mittag-Leffler
function for A generator of a Feller semigroup on C∞(Rd).

5. Generalised fractional evolution equation: Non-linear case

Let us now study the well-posedness for the non-linear equation given in (2). We introduce
a notion of solution and then we proceed as in [18] via fixed point arguments.

Definition 5.1. Let ν be a function satisfying (H0), (H1b). A function u ∶ [a, b]×Rd → R
is said to be a generalised solution to the non-linear equation (2) if u is a generalised
solution to the linear equation (1) with g(t, x) ∶= f(t, x, u(t, x)) for all (t, x) ∈ [a, b] ×Rd.

Lemma 5.2. Let ν be a function satisfying conditions (H0), (H1b). Assume that A is
the generator of a Feller semigroup on C∞(Rd) and φa ∈ Dom(A) and that (H2) holds.
Suppose that f ∶ [a, b] ×Rd ×R → R is a bounded measurable function. Then, a function
u ∈ C([a, b] × Rd) is a generalised solution to equation (2) if, and only if, u solves the
non-linear integral equation

u(t, x) =∫
∞

0
(eAsφa)(x)µτ

(ν)
a (t)(ds)

+E∫
τ
(ν)
a (t)

0
eAsf(X t,(ν)

+ (s), ⋅, u(X t,(ν)
+ , ⋅))(x)ds, (43)

where µτ
(ν)
a (t) is the law of τ

(ν)
a (t).

Proof. By Definition 5.1, u ∈ C([a, b] × Rd) is a generalised solution to (2) if and only
if u is a generalised solution to the the linear equation (1) with g(t, x) ∶= f(t, x, u(t, x)).
Note that if u ∈ C([a, b]×Rd), then g is a measurable and bounded function on [a, b]×Rd.
Hence Theorem 4.20-(ii) yields the integral equation (43), as required. �

Using Weissenger’s fixed point theorem we prove that the integral equation (43) possesses a
unique solution (for a given boundary φa) under the following additional assumption:
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(H3): The function f ∶ [a, b] × Rd × R → R is bounded and fulfils the
following Lipschitz condition with respect to the third variable: for all
(t, x, y1), (t, x, y2) ∈ [a, b] ×Rd ×R,

∣f(t, x, y1) − f(t, x, y2)∣ < Lf ∣y1 − y2∣, (44)

for a constant Lf > 0 (independent of t and x).

Theorem 5.3. Let [a, b] ⊂ R and φa ∈ Dom(A). Suppose that ν is a function satisfying
conditions (H0), (H1b). Suppose that (H2) holds and that f is a function satisfying
condition (H3). Then problem (2) has a unique generalised solution u ∈ C([a, b] ×Rd).

Proof. By Lemma 5.2, the existence of a unique generalised solution to (2) means the
existence of a unique solution to the integral equation (43). The latter equation can be
rewritten as a fixed point problem u(t, x) = (Ψu)(t, x) for a suitable operator Ψ.

Step a) Definition of the operator Ψ. Denote byBφa the closed convex subset of C ([a, b] ×Rd)
consisting of functions satisfying f(a) = φa. This set is a metric space when endowed with
the metric induced by the norm on C ([a, b] ×Rd).
Next, define the operator Ψ on Bφa by

(Ψu)(t, x) ∶=∫
∞

0
(eAsφa)(x)µτ

(ν)
a (t)(ds)

+E∫
τ
(ν)
a (t)

0
eAsf(X t,(ν)

+ , ⋅, u(X t,(ν)
+ , ⋅))(x)ds, t ∈ [a, b]. (45)

Note that if u ∈ Bφa , then (Ψu)(⋅, x) ∈ C[a, b] for each x ∈ Rd and (Ψu)(t, ⋅) ∈ C(Rd)
for each t ∈ [a, b]. Further, (Ψu)(a, x) = φa(x) as µτ

(ν)
a (a)(ds) = δ0(ds). Therefore,

Ψ ∶ Bφa → Bφa .

Step b) Let Ψn denote the n-fold iteration of the operator Ψ for n ≥ 0, n ∈ N. For
convention Ψ0 denotes the identity operator. Note that for n = 1, the Lipschitz condition
of f and the fact that eAs is a contraction semigroup imply

∣Ψu −Ψv∣(t, x) = ∣E∫
τ
(ν)
a (t)

0
eAs(f(X t,(ν)

+ , ⋅, u(X t,(ν)
+ , ⋅)) − f(X t,(ν)

+ , ⋅, v(X t,(ν)
+ , ⋅))(x)ds∣

≤ E∫
τ
(ν)
a (t)

0
eAs(∣f(X t,(ν)

+ , ⋅, u(X t,(ν)
+ , ⋅)) − f(X t,(ν)

+ , ⋅, v(X t,(ν)
+ , ⋅)∣)(x)ds

≤ Lf∥u − v∥tI(ν)a+ 1(t),
where

∥u − v∥t ∶= sup
z≤t

∥u(z, ⋅) − v(z, ⋅)∥, t ∈ [a, b],

and Lf is the Lipschitz constant of the function f . Proceeding by induction we can prove
that

∣Ψnu(t, x) −Ψnv(t, x)∣ ≤ ∥u − v∥tLnf (I
(ν),n
a+ 1) (t), n ≥ 0,

where I
(ν),n
a+ is the nth fold iteration of the generalised fractional operator I

(ν)
a+ . Moreover,

by Theorem 3.4, we know that

∞

∑
n=0

Lnf (I
(ν),n
a+ 1) (t) ≤ (

Lnf (b − a)β

β2Γ(β + 1)
)
n

1

n!
=∶ αn.
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Hence,

∥Ψnu −Ψnv∥ ≤ αn∥u − v∥,

for every n ≥ 0 and every u, v ∈ Bφa , where αn ≥ 0 and ∑∞
n=0αn converges.

Therefore, the Weissinger fixed point theorem [9, Theorem D.7] guarantees the existence
of a unique fixed point u∗ ∈ Bφa to the integral equation (43), which in turn implies the
existence of a generalised solution to (2), as required. �

6. Appendix

6.1. Proof of Theorem 4.1. (i). It is easy to show that DD̃ ⊂ C∞(X × X̃), Φt ∶= TtT̃t is
a well-defined continuous linear operator on C∞(X × X̃), {Φt}t≥0 is a uniformly bounded
semigroup. That TtT̃t = T̃tTt follows from Riesz-Markov representation Theorem ([24,
Theorem 1.7.4]).
That L is a dense subspace of C∞(X × X̃) follows from Stone-Weierstrass Theorem (for
locally compact spaces, see [40, 44A.I]) by taking as a sub-algebra the linear span of
C∞
∞(X)C∞

∞(X̃) ⊂ L where

C∞(X)C∞(X̃) ∶= {f ∶ f = gg̃, C∞
∞(X), g̃ ∈ C∞

∞(X̃)},

as it separates points and it does not vanish on X × X̃.
Let f = ∑Nn=1 λngng̃n ∈ L. Then

∥Φtf − f∥ ≤
N

∑
n=0

∣λn∣∥TtgnT̃tg̃n − gg̃∥

≤
N

∑
n=0

∣λn∣(∥TtgnT̃tg̃n − Tgng̃∥ + ∥Ttgng̃n − gg̃∥)

≤
N

∑
n=0

∣λn∣(∥Tt∥∥gn∥∥T̃tg̃n − g̃∥ + ∥g̃n∥∥Ttgn − g∥),

which can be made arbitrarily small by choice of t small, using the strong continuity and
the uniform boundedness of (Tt) and (T̃t).
As L is dense in C∞(X × X̃), it follows that Φt strongly continuous on C∞(X × X̃).
The semigroup {Φt}t≥0 is invariant on L as T in invariant on D and T̃ is invariant on D̃
and

Φtf =
N

∑
n=1

λnTtgnT̃tg̃n, f ∈ L.

We now show that L belongs to the domain of the generator of {Φt}t≥0.
It is enough to show that DD̃ belongs to the domain of the generator of Φt as the domain
of a generator is closed under linear combinations.
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To do so we show that t−1(Φtgg̃ − gg̃) converges to g̃Ag + gÃg̃ as t→ 0. Compute

∣ t−1(Φtgg̃ − gg̃) − g̃Ag − gÃg̃∣ ≤∣t−1(TtgT̃tg̃ − gg̃) ± t−1Ttgg̃ ± TtgÃg̃ − g̃Ag − gÃg̃∣
≤∣t−1(TtgT̃tg̃ − Ttgg̃) − TtgÃg̃∣
+ ∣t−1(TtgT̃tg̃ − gg̃) + t−1Ttgg̃ + TtgÃg̃ − g̃Ag − gÃg̃∣

≤∥Ttg∥X∥t−1(T̃tg̃ − g̃) − Ãg̃∥X̃
+ ∣ − t−1gg̃ + t−1Ttgg̃ + TtgÃg̃ − g̃Ag − gÃg̃∣

≤∥g∥X∥t−1(T̃tg̃ − g̃) − Ãg̃∥X̃
+ ∥g̃∥X̃∥t−1(Ttg − g+) −Ag∥X + ∥Ãg̃∥X̃∥Ttg − g∥X ,

which can be made arbitrarily small independently of (x, x̃) ∈ X × X̃ by choosing t small
by strong continuity and the uniform boundedness of (Tt) and (T̃t) (here the notation
∥h∥Y means the supremum norm of the function h ∶ Y → R).
Therefore we have shown that L is a dense invariant subspace of Dom(L) and by [24,
Proposition 1.9.1] L is a core for the generator of Φt, and L = A + Ã on L.

(ii). That the semigroup {Φt}t≥0 is a Feller semigroup if {Tt}t≥0 and {T̃t}t≥0 are Feller
semigroups follows easily. The same for the sub-Feller case.

(iii). The case of Ca,∞([a, b] × X̃) has the same proof as above apart from the statement
about the density of L. Briefly, to obtain the density of the respective set L, consider
the linear span of the product of smooth functions in C∞((−∞, b] × X̃), apply Stone-
Weierstrass as above, then use an isometric isomorphism between Ca,∞((a, b] × X̃) and

Ca,∞((−∞, b] × X̃).

6.2. Proof of Proposition 2.7-(i). Fix h > 0 and consider the bounded generators

−D(ν),h
+ , −D(ν),h

a+ and −D(ν),h
a+∗ defined as

−D(ν),h
+ f(x) = ∫

∞

h
(f(x − y) − f(x))ν(x, y)dy,

−D(ν),h
a+ f(x) = ∫

max{(x−a),h}

h
(f(x − y) − f(x))ν(x, y)dy − f(x)∫

∞

max{(x−a),h}
ν(x, y)dy,

−D(ν),h
a+∗ f(x) = ∫

max{(x−a),h}

h
(f(x − y) − f(x))ν(x, y)dy + (f(a) − f(x))∫

∞

max{(x−a),h}
ν(x, y)dy,

acting on the spaces C∞((−∞, b]), Ca([a, b]), C([a, b]), respectively. Then

T
(ν)+,h
s =

∞

∑
n=0

tn

n!
(−D(ν),h

+ )n, T
(ν)a+,h
s =

∞

∑
n=0

tn

n!
(−D(ν),h

a+ )n, T
(ν)a+∗,h
s =

∞

∑
n=0

tn

n!
(−D(ν),h

a+∗ )n,

(46)

s ∈ R+, are the respective semigroups. We first prove the second part of Proposition 2.7-
(i).
The key observation is that

−D(ν),h
+ f(t) = −D(ν),h

a+ f(t) = −D(ν),h
a+∗ f(t), t > a,
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if f ∈ {f(x) = 0 ∀x ≤ a} ∩C∞((−∞, b]), and

−D(ν),h
+ f ∈ {f(x) = 0 ∀x ≤ a} ∩C∞((−∞, b]),

−D(ν),h
a+ f ∈ {f(x) = 0 ∀x ≤ a} ∩Ca([a, b]),

−D(ν),h
a+∗ f ∈ {f(x) = 0 ∀x ≤ a} ∩Ca([a, b]).

Hence for every n ∈ N,

(−D(ν),h
+ )nf(t) = (−D(ν),h

a+ )nf(t) = (−D(ν),h
a+∗ )nf(t), t > a, (47)

if f ∈ {f(x) = 0 ∀x ≤ a}.
The identities in (47) imply that

T
(ν)+,h
s f(t) = T (ν)a+,h

s f(t) = T (ν)a+∗,h
s f(t), t > a, s ∈ R+, (48)

if f ∈ {f(x) = 0 ∀x ≤ a}, as each of the semigroups is given by the exponentiation formula
in (46). By the proofs of [24, Theorem 5.1.1] and [25, Theorem 4.1]

T
(ν)+,h
s f(t)→ T

(ν)+
s f(t), h→ 0, (49)

for each s ≥ 0, t ∈ (a, b], f ∈ C1
∞((−∞, b]), and

T
(ν)a+,h
s f(t)→ T

(ν)a+
s f(t), T

(ν)a+∗,h
s f(t)→ T

(ν)a+∗
s f(t), h→ 0, (50)

for each s ≥ 0, t ∈ (a, b], f ∈ C1([a, b]) ∩Ca([a, b]).
Hence, If f ∈ C1((−∞, b])∩ {f(x) = 0 ∀x ≤ a, f ′(a) = 0}, then (48) holds and we also have
the convergence in (49) and (50).
Now approximate point-wise from below the indicator function of any interval in (a, b]
with functions in C1([a, b]) ∩ {f(x) = 0 ∀x ≤ a, f ′(a) = 0} to obtain the second part of
Proposition 2.7-(i).

The first part of Proposition 2.7-(i) follows similarly after observing that

T
(ν)+,h
s fy(t) = T (ν)a+,h

s fy(t) = T (ν)a+∗,h
s fy(t) = 0 ∀a < t ≤ y

for any f ∈ {f(x) = 0 ∀x ≤ y}∩C∞((−∞, b]). In the last step we approximate the indicator
function 1(⋅ > y) with functions in C1((−∞, b]) ∩ {f(x) = 0 ∀x ≤ y}, y > a to obtain that
for every s ∈ R+

0 = T (ν)+
s 1(⋅ > y)(t) = P[X t,(ν)

+ (s) > y] = P[X t,(ν)
a+ (s) > y] = P[X t,(ν)

a+∗ (s) > y],
if t ≤ y.
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