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Abstract

Quasi-stationary distributions (QSDs) arise from stochastic processes that

exhibit transient equilibrium behaviour on the way to absorption. QSDs

are often mathematically intractable and even drawing samples from them

is not straightforward. In this paper the framework of Sequential Monte

Carlo samplers is utilized to simulate QSDs and several novel resampling

techniques are proposed to accommodate models with reducible state spaces,

with particular focus on preserving particle diversity on discrete spaces. Finally

an approach is considered to estimate eigenvalues associated with QSDs, such

as the decay parameter.
Keywords: Quasi-stationary distributions; limiting conditional distributions;

simulation; resampling methods; Sequential Monte Carlo
2010 Mathematics Subject Classification: Primary 60J27

Secondary 62G09

1. Introduction

Quasi-stationary distributions (QSDs) and limiting conditional distributions (LCDs)

arise from processes that exhibit temporary equilibrium behaviour before hitting an

absorbing state. They appear commonly in population processes [18], epidemic models

[2, 19, 20] and models in population genetics [14, 25]. Recently there has been a

significant increase in interest in the use of quasi-stationarity in the context of simu-

lation using sequential Monte Carlo methods. For example, [21] uses quasi-stationary
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simulation for Bayesian inference with big data sets, an entirely different motivation

from ours in this paper. The mathematical analysis of QSDs and LCDs are often

extremely challenging due to the fact that even for relatively simple processes the

distributions do not always exist; if they do exist they may not be unique; and there is

typically no closed form expression available for the distribution function. Furthermore,

it is reasonably challenging to simulate from QSDs and LCDs due to the fact that the

absorption event becomes increasingly likely through time but, to be representative of

the QSD, any sample paths must survive long enough to have ‘forgotten’ their starting

state.

In this paper we focus on the problem of simulating from the LCD of a stochastic

process on a countable state space. In particular, we make use of the Sequential Monte

Carlo (SMC) sampler [5] and discuss several novel resampling steps which make SMC

sampling for QSDs and LCDs more efficient. In particular, we address the difficulties

that arise when sampling from processes that have a reducible state space.

1.1. Quasi-stationary and limiting conditional distributions

Consider a continuous-time stochastic process (X(t))t≥0 evolving on state space

Ω = S∪{0}, where S contains transient states and 0 is the identification of all absorbing

states. Denote the transition rate matrix by Q̃ and denote its restriction to the transient

states S by Q.

Definition 1.1. A process (X(t))t≥0 (or the state space S over which it evolves) is

said to be irreducible if for every i, j ∈ S there exists t ∈ (0,∞) such that Pij(t) :=

P[X(t) = j|X(0) = i] > 0 and Pji(t) > 0; every state in S can be accessed from every

other state. A process and its state space are considered reducible if not irreducible.

Definition 1.2. A proper probability distribution u = (uj : j ∈ S) is said to be a

quasi-stationary distribution (QSD) for a Markov process (X(t))t≥0 if, for every t ≥ 0,

uj = P[X(t) = j|X(0) ∼ u, X(t) ∈ S], j ∈ S.

That is, conditional on the process not being absorbed, the distribution of (X(t))t≥0

started from initial distribution u is time-invariant.
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Definition 1.3. Given a proper probability distribution ν on S, a proper probability

distribution u on S is said to be a v-limiting conditional distribution (ν-LCD) for the

Markov process (X(t))t≥0 if, for each j ∈ S,

uj = lim
t→∞

P[X(t) = j|X(0) ∼ ν,X(t) ∈ S].

If ν is a point mass at state i ∈ S, then we may refer to this ν-LCD as an i-LCD.

Every QSD u is a u-LCD, and every LCD is a QSD [18, Prop 1]. We outline here

some results regarding the existence and uniqueness of QSDs.

Proposition 1.1. When X = (X(t))t≥0 is finite and irreducible, there exists a unique

LCD (which is independent of initial distribution ν) and there exists a unique QSD.

Moreover, these two distributions are equal. [3, Thm 3].

Remark 1. • When S is finite but reducible, it can be seen that the ν-LCD

depends on the communicating classes in which the support of ν is contained.

[22, Thm 7].

• For countable S, existence is not assured even with certain absorption, and

uniqueness does not hold in general. For example, if the transition probabilities

Pij(t) of an absorbing process X(t) converge to zero only polynomially, then no

QSD exists [23, Thm 6].

Some works have already been done into simulating QSDs using different methods.

Groisman & Jonckheere [10] consider a renewal process where, instead of being ab-

sorbed, particles are redrawn immediately from a given distribution over the transient

states. A supercritical multitype branching process is proposed, which can be used

to simulate the QSD through the use of a Kesten-Stigum theorem. Another paper

by Blanchet, Glynn and Zheng [1] uses a different approach. A single particle is

simulated to absorption, then a new particle is restarted from a location drawn from

the distribution of states visited by the original particle, weighted by occupation time.

They prove that as more particles are simulated, the distribution of occupation times

converges to the LCD. However, these methods assume irreducibility, a condition we

wish to go beyond in this paper. In this work, we provide an alternative and potentially
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more efficient method, particularly for processes with reducible state spaces. The

methods discussed in the rest of this paper hope to improve on the above papers

by making more strategic choices of resampling in order to improve the variance of

the estimators in the case of reducible state spaces (which are not discussed in the

above) whilst making use of more computationally viable techniques which do not

require unbounded population sizes. Moreover, it allows the use of known results in

Sequential Monte Carlo in order to prove convergence of our simulations in countable

and potentially reducible state spaces.

1.2. Motivating example: pure death process

To illustrate the difficulties involved in simulating QSDs for processes on reducible

state spaces, let us consider a pure death process (X(t))t≥0 on {0, 1, . . . , L} which

evolves according to a given sequence of death rates {δi : i = 1, . . . , L} shown in Figure

1. The process jumps from state i to state i − 1 after an exponentially distributed

waiting time with rate δi. Once the process hits state 0 it stays there for all future

time – it is absorbed. This process inhabits a reducible state space in which each state is

a communicating class. For this example, a single L-LCD exists and can be calculated

by solving the left eigenvector problem uTQ = −αuT . In the pure death process, this

simplifies to solving

−min(δj : 1 ≤ j ≤ L)ui = δi+1ui+1 − δiui, i = 1, . . . , L,

where we stipulate
∑L
i=1 ui = 1 to ensure uniqueness. This will be expanded on

in Section 4.3. We compare two approaches for simulating the LCD: (1) a rejection

sampler and (2) the SMC sampler with two new resampling methods introduced in

this paper: combine-split resampling and regional resampling.

Figure 1b shows the empirical distribution produced by each method. Under stan-

dard rejection sampling, the accepted particles don’t provide a good estimate of the

LCD starting from state 30, due to the large number of rejections (only 52 out of

3000 sample paths are not rejected), and the absence of particles present in states

{20, . . . , 30}. However in Figure 1c the SMC sampler, which makes use of combine-

split resampling (Section 3) and regional resampling (Section 4) performs much better.
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Figure 1: Simulated LCD for a pure death process using rejection sampler and SMC
sampler. Both used M = 3000 particles and simulated to Tend = 30. The SMC sampler
used combine-split and regional resampling with 1000 particles in each of the regions
S1 = {1, . . . , 10}, S2 = {11, . . . , 20}, S3 = {21, . . . , 30}, Tb = 0, Tstep = 5, Td = 30.

In Section 2 we introduce the SMC sampler as a method of simulating LCDs, discuss

common resampling methods and apply SMC sampling to the Wright-Fisher model

from population genetics. For an introduction to the SMC framework, see [4]. Section

3 introduces a combine-split resampling step to the SMC algorithm, which helps to

avoid particle degeneracy when the state space is discrete. An application to the linear

birth-death process shows that a combine-split resampling step can help the SMC to

explore the tails of the distribution. Section 4 introduces a regional resampling step

to the SMC algorithm, which may be needed if the state space is reducible. This is

illustrated using a pure death process and a transient immunity process – a model

for an emerging epidemic on a large population. In Section 5 we discuss how to use

resampling based on stopping-times to avoid a pitfall of the SMC sampler approach.

2. Sequential Monte Carlo samplers

2.1. Definition

Sequential Monte Carlo Samplers [5] provide a means to sample from a sequence

of target measures {πn : 1 ≤ n ≤ N} over some common measurable space (E,F).

Typically the target measures are only known up to some normalization constant Zn
and so it common to work with the unnormalized measure γn = Znπn.

Sampling is done using a sequence of proposal measures {ηn : 1 ≤ n ≤ N} on

E. Given an initial proposal measure η1, we construct subsequent proposal measures
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using ηn(xn) =
∫
E
ηn−1(xn−1)Kn(xn−1, xn)dxn−1 for some sequence of Markov ker-

nels Kn : E × F → [0, 1]. Under naive importance sampling we would give each

particle the unnormalized importance weight wn(xn) = γn(xn)/ηn(xn). However,

such proposal distributions ηn become very difficult to compute pointwise as n in-

creases, particularly if E is high-dimensional. To tackle this we use the following

SMC sampler as described in [5]. We define a sequence of artificial backwards-in-time

Markov kernels Ln−1(xn, xn−1) then perform importance sampling using joint proposal

distributions ηn(x1:n) (where x1:n = (x1, . . . , xn)) to estimate an artificial target joint

distribution π̃n(x1:n) on En defined by π̃n(x1:n) := Z−1
n γ̃n(x1:n) where γ̃n(x1:n) :=

γn(xn)
∏n−1
k=1 Lk(xk+1, xk). Our final target distribution πn(xn) is a marginal of our

artificial target by construction. Assuming we can evaluate η1(x1) and γ1(x1) to obtain

unnormalized weights w1(x1) = γ1(x1)
η1(x1) then for each time-point n, we move the particles

forward according to Kn(xn−1, xn). We then use importance sampling to approximate

our artificial target π̃n(x1:n) which gives unnormalized importance weights

wn(x1:n) = wn−1(x1:n−1)w̃n(xn−1, xn) for n > 1 (2.1)

where w̃n(xn−1, xn) = γn(xn)Ln−1(xn, xn−1)
γn−1(xn−1)Kn(xn−1, xn) .

We normalise the importance weights to get Wn(x1:n). These weights can then be

used to generate samples from the marginal distribution of interest πn(xn).

One can combine the SMC sampler with a resampling scheme to reduce the effect

of particle weight degeneracy, as typically, one will end up with particles of very high

weight or very low weight, arising from an increase in the variance of the particle

weights proven in [13]. Such resampling schemes will be discussed in Section 2.3.

2.2. Simulating LCDs using SMC samplers

To implement the SMC sampler in order to simulate from a ν-LCD, we would

ideally take the ν-LCD itself to be the target distribution. However, in general we

will not be able to compute even the unnormalized density of the LCD, and so we

cannot compute importance weights within an SMC sampler scheme. Instead, we use

the time marginal of the process in question conditional on non-absorption given by

πT (·) = P[X(T ) ∈ ·|X(T ) ∈ S,X(0) ∼ ν], which converges to the true ν-LCD as T
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gets large. It is the time marginal πT which we will attempt to simulate using an

SMC sampler. As such, the standard finite-time biases are accounted for, although

one should note that there is generally bias in finite-particle simulations [4].

Define an increasing sequence of time points {tn : n = 1, . . . , N} with t1 = 0

and tN = T , and set the initial proposal distribution η1 to be ν. When simulating

analytically intractable LCDs we cannot even work with an unnormalized target γn(x),

and so we might as well set πn(x) = γn(x) (i.e. Zn = 1). We construct the sequence

of proposal distributions ηn(·) = P[X(tn) ∈ ·|X(t1) ∼ η1] using the Markov transition

kernel Kn(xn−1, xn) = P[X(tn) = xn|X(tn−1) = xn−1] and the backward kernel

Ln−1(xn, xn−1) = P[X(tn−1) = xn−1]
P[X(tn) = xn] P[X(tn) = xn|X(tn−1) = xn−1].

This precisely matches the optimal choice of backward kernel given by [5], which

minimizes the variance of the unnormalized importance weights w(x1:n). The forward

kernel corresponds to the “bootstrap” choice which ignores the information that ab-

sorption does not occur. Superior choices may be possible for specific models, but this

is a flexible and easily implementable kernel, and one for which the optimal backward

kernel is available. Expressing our simulation problem as a generic SMC algorithm

gives us access to standard convergence results; see for example [4].

Proposition 2.1. If ν is supported on S, then wn(xn) = P[X(tn) ∈ S]−1 for xn ∈ S

and zero otherwise.

Proof. Since η1 = ν, for n = 1 we have that w1(x1) = π1(x1)
η1(x1) = P[X(t1)=x|X(t1)∈S,X(t1)∼ν]

η1(x) =

1 and so the particles begin with equal weights. For n > 1, if we substitute the

expressions for Ln,Kn, ηn and πn into the incremental weight w̃n (suppressing the

conditioning on X(t1) ∼ ν for brevity) we see that

w̃n(xn−1, xn) = πn(xn)Ln−1(xn, xn−1)
πn−1(xn−1)Kn(xn−1, xn)

= πn(xn)
πn−1(xn−1)

P[X(tn−1) = xn−1]
P[X(tn) = xn]

P[X(tn) = xn|X(tn−1) = xn−1]
P[X(tn) = xn|X(tn−1) = xn−1]

= P[X(tn) = xn|X(tn) ∈ S]
P[X(tn) = xn]

P[X(tn−1) = xn−1]
P[X(tn−1) = xn−1|X(tn−1) ∈ S] .
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Substituting this incremental weight into the full weight (2.1) gives a telescoping

product which reduces to

wn(xn) = P[X(tn) = xn|X(tn) ∈ S]
P[X(tn) = xn] w1(x1).

The result follows immediately by the definition of conditional probability. �

Proposition 2.1 shows that simulating the ν-LCD via SMC sampling works in a

similar way to rejection sampling, where only the non-absorbed particles are considered.

The existence of a LCD requires the certain absorption of each particle in a finite

amount of time and so there remains a problem balancing the approximation of the

LCD (improved by increasing T ) and particle depletion (worsened by increasing T ).

However setting our algorithm within an SMC framework allows us to draw on existing

tools to prevent particle depletion, such as particle resampling.

2.3. Particle resampling methods

Without a resampling scheme, standard SMC methods suffer from what is referred

to in the literature as particle weight degeneracy where, when a simulation is run long

enough, one will end up with a single particle with nearly all the weight, and many

low-weight particles. This results in a low effective sample size and a poor estimate of

the target distribution.

To implement a resampling scheme, we define a sequence of resampling timepoints

{τ1, τ2, . . . , τk}, either deterministically or drawn randomly according to some given

distribution. At each resampling timepoint, we redraw M ′ particles with replacement

from a pool of M particles {(Xj ,Wj) : j = 1, . . . ,M} with normalized weights.

Examples of these include Multinomial Resampling [16] and Residual Resampling [17].

Remark 2. One should note that in these resampling methods, one will typically

draw many particles from the high-weighted locations, and very few if any from low

weighted locations. For the purposes of exploring the tails of the distribution, this is

not particularly desirable. Specifically, under standard resampling methods, one would

expect, in order to look at the top 1% of the distribution, one would require many more

than 100 equally weighted particles, due to the resampling having a very low chance of

selecting such particles. To this end, we developed resampling methods which maintain
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high levels of particle diversity.

2.4. Particle refilling

To obtain approximations of LCDs using SMC samplers, we have shown that we

need only simulate the unconditioned process and give uniform non-zero weight to all

the non-absorbed particles. A simple approach aimed at maintaining particle diversity,

which we refer to as particle refilling, is to resample only those particles which have

been absorbed. If A particles have been absorbed then we replace these particles with

a sample drawn from the non-absorbed particles using one of the existing resampling

mechanisms described above, with M ′ = A. Since each non-absorbed particle is a draw

from the process conditional on non-absorption, one can intuitively see that there is no

gain by resampling such particles. If applied to all M particles, any valid resampling

method can potentially replace non-absorbed particles, which reduces particle diversity

and hinders the estimation of the tails of a LCD. Particle refilling maintains particle

diversity, since there is no chance of removing any non-absorbed particles.

We next show that particle refilling is valid in the sense that a properly weighted

sample is still properly weighted after refilling.

Definition 2.1. A set of weighted random samples {(Xj , wj) : 1 ≤ j ≤ M} is called

proper with respect to π if for any square integrable function h(·) we have E[h(Xj)wj ] =

cEπ[h(X)] for j = 1, . . . ,M , where c is a normalising constant common to all M

samples. (Chapter 10 of [7])

Proposition 2.2. Given a properly weighted sample {(Xj , wj) : 1 ≤ j ≤ M} as in

Definition 2.1 and a resampling method that produces properly weighted samples then

particle refilling produces properly weighted samples.

Proof. Let (X ′j , w′j) denote the particle location and weight after particle refill-

ing. Then conditioning on Xj = 0 (or equivalently wj = 0) yields E[h(X ′j)w′j ] =

E[h(XK)wK ]P(Xj = 0) + E[h(Xj)wj ]P(Xj 6= 0) = cEπ[h(X)], where K is the index of

the resampled particle randomly chosen from the non-zero weight particles using the

given resampling method. �
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2.5. Taking multiple samples

When simulating LCDs using SMC samplers, we can take advantage of the fact that

after a suitable burn-in period, every target distribution πn is an approximation of the

true LCD. As a result, we borrow ideas from Markov Chain Monte Carlo and draw

samples from many timepoints after the SMC sampler has reached stationarity and not

just the final timepoint. We adopt a burn-in period Tb, during which the samples are

discarded. To reduce auto-correlation between samples we also incorporate thinning,

in the form of a delay Td between sampling times.

2.6. Example: Wright-Fisher model

In order to demonstrate the SMC sampler, we apply it to simulate the QSD of the

discrete-time Wright-Fisher process. Population genetics forms an important applica-

tion area for QSDs; see [14] for an overview covering both the Wright-Fisher model

and QSDs. In this context the absorbing states correspond to the loss or fixation of

a mutation in a large population, yet genetic variation in a modern population is—by

definition—the collection of those mutations for which absorption has not occurred in

the time up to the present day.

Consider a population of D haploid individuals each with an allelic type from a set

of 2 types denoted {1, 2}. At each timepoint n, we generate a new set of D offspring,

which will form the population of the next generation. If the allelic types confer no

advantage, then each offspring independently chooses a parent uniformly at random

and adopts the allelic type of the parent. More generally, each allelic type k is assigned

a selection coefficient sk ≥ 0 where each offspring selects a particular parent with type

k with probability proportional to sk + 1. This Wright-Fisher with selection process

[8] evolves over a finite state space of 2D states.

2.6.1. 2-type Wright-Fisher model. Consider the LCD for the Wright-Fisher process

with selection conditioning on the event that both types remain in the population. One

can use results from [23] to find the true LCD as a left eigenvector of the transition

matrix, however for large population sizes, this is numerically demanding. Here we use

a small enough population to generate the true LCD for illustrative purposes.

We compare the SMC model with multinomial refilling to the basic rejection resam-
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Figure 2: Comparison of the number of non-absorbed particles in the SMC sampler
and rejection sampler; D = 20, s = (0, 0.1), M = 100.

pling algorithm. Here we set resampling to occur every 5 timepoints; henceforth, this

interval will be given by Tstep. In Figure 2, the main problem with rejection sampling

becomes evident: the number of accepted particles decreases rapidly through time.

In comparison, the SMC sampler replenishes the particles at each resampling step.

Figure 3 shows the estimated QSD of the number of individuals of type 1 from the two

methods.

3. Combine-split resampling

3.1. Idea and algorithm

Traditional SMC resampling schemes are designed for particles evolving in continu-

ous state spaces where no single point has strictly positive mass. In discrete state spaces

it is likely that several particles share the same location. We propose the Combine-Split

resampling method which redistributes particles within the space without moving any

of the weight, with the aim of improving the effective sample size.

Combine-split resampling comprises 3 steps. First, at each state s ∈ S we combine

together all the particles which are at that location s into a single particle and give it

the combined weight of all the particles that were sitting there. Next, all non-assigned

particles (those lost in the combining and the absorbed particles) are distributed

amongst the locations with non-zero weight according to some chosen distribution,
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Figure 3: LCD for a Wright-Fisher process with selection, simulated using a rejection
sampler and an SMC sampler; D = 20, M = 100, Simulation time Tend = 20,
Resampling interval Tstep = 5, s = (0, 0.1).

and are assigned temporary weight zero. Finally all of the particles now residing at

a given location are given weight equal to the total weight at that location divided

by the number of particles there. The combine-split resampling algorithm is given

in Algorithm 1. The weight at each state remains constant during combine-split

resampling; the particles are simply redistributed amongst those states.

Proposition 3.1. Given a properly weighted sample as in Definition 2.1 {(Xj , wj) :

1 ≤ j ≤M}, combine-split resampling produces a properly weighted sample.

Proof. Let {(X ′j , w′j)} denote the locations and weights after combine-split resam-

pling. Since combine-split does not change total weight at any location, we must have

E[h(X ′j)w′j ] = E[h(Xj)wj ] = cEπ[h(X)], so the new sample is properly weighted. �

Combine-split resampling bears some superficial resemblance to existing resampling

mechanisms. It has long been recognized that particles can be resampled according to

criteria other than their importance weight, such as the lookahead methods reviewed

in [15]. These attempt to predict the utility of a particle to future target distributions

via additional Monte Carlo simulation. Our (as-yet unspecified) distribution in step

3 of Algorithm 1 could be used to do a similar job, though in a non-random manner.

However, a key difference with standard resampling algorithms is that, because particle
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Algorithm 1 Combine-split resampling
Require: M ≥ 1, {(Xi,Wi) : 1 ≤ i ≤M} normalized weighted particles.

1: For each s ∈ S let as =
∑M
i=1 Wi1{Xi=s} and S∗ = {s ∈ S : as > 0}.

2: For each s ∈ S∗ let one particle Xi = s have weight as. Give all other particles
zero weight.

3: For each zero-weight particle, draw a new position from some specified distribution
over S∗.

4: For each s ∈ S∗ let Ns = |{i : Xi = s}|.
5: For i = 1, . . . ,M set Wi = as/Ns where s = Xi.
6: return {(Xi,Wi) : 1 ≤ i ≤M} normalized weighted particles

diversity is at such a premium, here resampling is focused on the support S∗ of the

particles rather than the particles themselves. Note that standard lookahead methods,

and indeed all of the other resampling mechanisms described in Section 2.3, can lose

particle locations and therefore reduce the diversity of the particles, whereas our

method guarantees that no locations are lost. Since this is a valid resampling method

in that its output is properly weighted, it inherits many convergence properties of SMC

[6]. Additionally, using a deterministic resampling timepoint sequence allows very easy

parallelization (through, for example, MapReplace or Pregel) of this SMC sampler with

combine-split resampling, since particles interact only at resampling timepoints.

3.2. Example: Combine-split resampling step

Suppose that there are eight particles with locations and weights as given in rows

2 and 3 respectively of Table 1, of which two have been absorbed into state zero. The

combine step (rows 4 and 5) moves the weight at locations a, b and c to a single particle

at each location, leaving 3 extra particles to reallocate (5 in total). Suppose that we

reallocate these 5 particles by drawing uniformly at random from the 3 locations, giving

(a, b, b, c, c), as seen in rows 6 and 7. Finally, the Split step equalises the weight at each

location, as shown in rows 8 and 9.

3.3. Example: Linear birth-death process

The linear birth-death process {I(t) : t ≥ 0} is a continuous-time Markov process

on N0 which represents the size of a population of individuals subject to births and

deaths. Individuals give birth independently at points of a Poisson Process with rate β

and live for an exponentially-distributed lifetime with rate γ. Once the population size
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Particle name X1 X2 X3 X4 X5 X6 X7 X8
Initial Location a a a b b c 0 0
Initial Weight 1 1 2 1 4 2 0 0

Combined Location a 0 0 b 0 c 0 0
Combined Weight 4 0 0 5 0 2 0 0

Reallocated Location a a b b b c c c
Reallocated Weight 4 0 0 5 0 2 0 0

Split Location a a b b b c c c
Split Weight 2 2 5/3 5/3 5/3 2/3 2/3 2/3

Table 1: Particles’ locations and weights during combine-split resampling step.

hits zero no more births are possible and so zero is an absorbing state. The transient

states S = {1, 2, . . . } form a single communicating class. At least one QSD exists if

γ > β > 0 and there is a unique ν-LCD for any initial distribution ν with finite mean:

the geometric distribution with parameter β/γ [23].

In this example we compare the true LCD for the linear birth-death process with

the simulated LCDs produced using an SMC sampler with multinomial refilling and

with combine-split resampling. In the combine-split resampling step, the zero-weight

particles were reallocated to locations drawn uniformly at random from the existing

locations, which sends more particles to the tail than reallocating proportionally to the

weights. Figure 4a shows the true and estimated LCDs. It is clear that the SMC with

combine-split resampling reaches further into the tail than SMC with multinomial

refilling, and hence matches the true LCD more closely. In Figure 4b, we see the

cumulative mean of the particles observed at each resampling step. The cumulative

mean under combine-split is consistently higher than under multinomial refilling and

closer to the true mean. This suggests faster convergence to the true LCD and a

reduction in the finite sample bias inherent in particle approximation methods.

4. Regional resampling

4.1. Idea and algorithm

One difficulty with SMC sampling on a reducible state space is that once all the

particles have left a transient communicating class there is no mechanism for particles to

return there. Since the support of the initial distribution determines which of the LCDs

is being estimated, this changes the LCD that the SMC sampler is converging towards
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Figure 4: The LCD for a linear birth-death process: β = 0.4, γ = 1, M = 100,
simulation time Tend = 80, resampling interval Tstep = 4, burn-in Tb = 40, sampling
delay Td = 2.

so that it is no longer the required target distribution. To address this weakness, we

propose regional resampling in which the state space is partitioned into regions and the

number of particles available to explore each region is stipulated in advance. At each

resampling timepoint, particles are removed from regions with too many particles and

reallocated to regions with too few. We describe regional resampling in the context of

LCDs, we anticipate that it will have wider applications in more general SMC schemes.

Intuitively, this can be seen as just a redistribution of a resampling step using existing

methods between different sections, so the resampling holds as expected locally, and

the preservation of region weight allows it to hold globally.

Let X = {X(t) : t ≥ 0} be an absorbing Markov process on a state space S ∪ {0},

with absorbing state 0. We partition the transient states into L further regions: S =⋃L
l=1 Sl. For each region l = 1, . . . , L we specify N1, N2, . . . , NL > 0 to be the desired

number of particles in each region, such that
∑L
l=1 Nl = M .

Each resampling step begins with a set of weighted particles {(Xi,Wi) : i = 1, . . . ,M}.

Any absorbed particles have weight zero. Let Ml(t) be the number of particles in

region l at resampling time t and define W (l) to be the total weight in region l;

W (l) =
∑M
i=1 Wi1{Xi∈Sl}.

In regional resampling, we resample particles in each region separately. In region
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l we draw Nl particles from the Ml(t) existing particles in that region using any

resampling algorithm (such as combine-split, particle refilling or an existing algorithm

as described in 2.3 with M ′ = Nl). The weights of these new particles are then

renormalized so that the total weight in region l remains equal to W (l). For example,

after multinomial resampling within region Sl, the renormalized weights of each particle

would be W (l)/Nl. It should be noted that between two resampling steps it is possible

that a region may run out of particles and so resampling may fail. This problem will

be tackled using stopping times in Section 5.

In sampling from LCDs we expect that Nl ≥ Ml(t) in most cases, because some

of the particles will have been absorbed. However it is possible that in some regions

Nl < Ml(t) and so if we are applying combine-split or particle refilling it may not be

possible to keep all of the locations. It is therefore necessary to apply an alternative

resampling step such as multinomial resampling in these instances.

It should be noted that one does not need to choose Sl to be a single transient

communicating class. This method can be extended to any complete partition {Sl}Ll=1

of S. As for combine-split resampling, this inherits many convergence properties of

SMC samplers, and using a deterministic resampling timepoint sequence allows for

very effective parallelization of this SMC sampler.

Proposition 4.1. Given a properly weighted sample {(Xj , wj) : 1 ≤ j ≤ M} then

regional resampling, using a resampling method that produces properly weighted samples

within each region, produces properly weighted samples.

Proof. Let (X ′j , w′j) be the location and weight of particle j after resampling. Then

since resampled particles are properly weighted within each region, E[h(X ′j)w′j ] =
L∑
l=1

E[h(X ′j)w′j1{X′
j
∈Sl}] =

L∑
l=1

clEπ[h(X)1{X∈Sl}] = cEπ[h(X)], where c =
∑L
l=1 cl for

all j. Hence regional resampling produces properly weighted particles. �

4.2. Proof of convergence for a simple example

In general it is extremely challenging to prove convergence of such SMC sampler

methods with resampling, except in very specific circumstances. We present here

a simplified model to prove that the algorithm converges in some situations. This

stylised example is chosen because more general reducible processes could be used
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and achieve the same result but the result itself would be more complex without any

additional intuitive illumination. The general SMC method is shown to converge,

under multinomial resampling, and without irreducibility conditions as is also the case

in Proposition 9.4.1 of [4], but our new resampling method extends this, since we also

include the refilling methods defined in Section 2.4.

Consider the pure death process on {0, 1, 2}. Transitions from state 2 to state 1 occur

with rate δ and transitions from state 1 to 0 (absorption) occur with rate 1. When

0 < δ < 1, the 2-LCD is given by (δ, 1− δ); when δ ≥ 1 the 2-LCD is simply (1, 0). We

wish to prove that the SMC sampler with regional resampling converges. Choose two

regions given by S1 = {1}, S2 = {2}. We stipulate N1, N2 with N1 +N2 = M to be the

desired populations of each region. In what follows, we let wl(t) be the unnormalized

weights on the particles in state l at time t. We want to show that the normalized

weights (W1(t),W2(t)) converge to some distribution for any choice of (W1(0), W2(0)),

if we take the limit t→∞ at the sequence of resampling times (tn)n≥1.

We look at the simplest case where combine-split resampling happens within each

region after every event in the simulation. In this case, we can see the unnormalized

weights as moving at points of a Poisson process with rate N1 + δN2, with the jump

chain (w1, w2)(n) = (w1(tn), w2(tn)) moving like

(w1, w2)(n+ 1) =


(
w1(n)N1−1

N1
, w2(n)

)
w.p. N1

N1+δN2
,(

w1(n) + w2(n)
N2

, w2(n)N2−1
N2

)
w.p. δN2

N1+δN2
.

where “w.p.” means “with probability”. Each jump immediately triggers a combine-

split resampling within each region. In this model the regions consist of just one state,

and so the combine-split resampling simply spreads the weight uniformly amongst the

particles in that region.

If we define X(n) := W1(tn), this Markov chain evolves according to:

X(n+ 1) =


X(n)(N1−1)
N1−X(n) w.p. N1

N1+δN2

X(n) + 1−X(n)
N2

w.p. δN2
N1+δN2

(4.1)

Since we know that W2(tn) = 1 − X(n), if we can show convergence in Wasserstein
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Distance of X(n) then we have convergence in Wasserstein distance of both weights.

Let E be a Polish space, and let d : E × E → [0, 1] be a distance-like function

(symmetric, lower-semi-continuous and d(x, y) = 0⇔ x = y). Then the Wasserstein-d

distance between two probability measures µ, ν on E is given by

Wd(µ, ν) = inf
π

∫
E×E

d(u, v)π(du, dv)

where π runs over all probability measures on E × E which have marginals µ, ν.

Theorem 4.1. The distribution of X(n) on (0, 1) defined in (4.1) converges in Wasserstein-

d distance with

d(x, y) = min
{

1,
∣∣(1− x)−1 − (1− y)−1∣∣}

to some stationary distribution π, for all δ ∈ (0, 1), N1 ≥ 2, N2 ≥ max(5, 1
1−δ ).

We prove this be applying the following theorem taken from [11].

Theorem 4.2. Let P be a Markov kernel over a Polish space E and assume that:

1. P has a Lyapunov function V : E → R such that there exists λ ∈ [0, 1) and

K > 0 such that for all x ∈ E,

PV (x) :=
∫
E

V (u)P (x, du) < λV (x) +K

2. P is d-contracting for some distance-like function d : E × E → [0, 1] (d is

symmetric, lower-semi-continuous and d(x, y) = 0⇔ x = y), so that there exists

c ∈ (0, 1) such that for every x, y ∈ E where d(x, y) < 1 we have

Wd(P (x, ·), P (y, ·)) < cd(x, y).

3. The set S = {x : V (x) < 4K} is d-small, so that there exists s ∈ (0, 1) such that

for all x, y ∈ S

Wd(P (x, ·), P (y, ·)) ≤ s.
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Then there exists n ∈ N such that for any two probability measures µ, ν on E we have

Wd̃(µP
n, νPn) ≤ Wd̃(µ, ν),

where d̃(x, y) = (d(x, y)(1 + V (x) + V (y)))1/2, and n is increasing in λ,K, c, s. Hence

there is at most one invariant measure.

Moreover, if the following hold:

4. There exists a complete metric d0 on E such that d0 ≤
√
d

5. P is Feller on E, which holds precisely when for any continuous function f on

E,
∫
E
f(y)P (x, dy) is continuous for every x ∈ E,

then there exists a unique invariant measure µ for P . [Hairer, Stuart, Vollmer]

The statement follows by the application of the following lemmas, proofs of which

can be found in Chapter 5 of [9].

Lemma 4.1. The function V (x) = x(1− x)−1 is Lyapunov for P as above with

λ = 1− N2(1− δ)− 1
(N2 − 1)(N1 + δN2) K = δN2

(N2 − 1)(N1 + δN2) .

Lemma 4.2. P is d-contracting for distance like function

d(x, y) = min
{

1,
∣∣(1− x)−1 − (1− y)−1∣∣} .

Lemma 4.3. The set S = {x : V (x) < 4K} is d-small with V (x) and K as defined in

Lemma 4.1, and d(x, y) as in Lemma 4.2.

Proof of Theorem 4.1. Lemmas 4.1, 4.2 and 4.3 prove that conditions 1,2 and 3 of

Theorem 4.2 hold, which gives us that there exists at most one invariant measure.

To prove the existence of the invariant measure we need to satisfy the additional

conditions 4 and 5. Since P (x, ·) is a finite sum of atomic measures for every x in E,

we get that P is Feller on E, satisfying condition 5. For condition 4 we look for a

complete metric d0 ≤
√
d. Indeed, since we can consider the process X to be defined
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on [0, 1], we do this by extending the distance-like function d to include 0 and 1:

d(x, 1) = 1 d(1, 1) = 0 d(x, 0) = min
{∣∣∣∣ 1

1− x − 1
∣∣∣∣ , 1} .

Since for all x, y ∈ [0, 1] we have that d(x, y) ∈ [0, 1], we have that
√
d(x, y) ≥ d(x, y) =

|x−y|
(1−x)(1−y) ≥ |x− y|. Setting d0 to be the Euclidean metric, which is complete on [0, 1]

gives us the required condition. Therefore condition 4 of Theorem 4.2 is satisfied and

hence there exists a unique invariant measure for the process X. �

Now we know that this Markov chain converges in a Wasserstein distance to some

limiting distribution on (0, 1), we would hope that the mean of the limiting distribution

is close to the true value we want: δ. For linear systems this is simple to compute, but

this is not the case for our process. However, one can see in Figure 5 that for even

modest N1, N2 the process above does converge to a value close to the true δ. We

note that this could be done on a more general reducible process on {0, . . . , L} but

would involve multivariate processes (W1,W2, . . . ) which would make the proof more

complex but give the same result.
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Figure 5: Mean convergence of process as N1, N2 change: δ = 0.4, M = 5000 particles.
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4.3. Example: Pure death process

To further demonstrate regional resampling we consider again the pure death process

on a finite state space: S = {1, 2, . . . ,K} with absorbing state 0, described in Section

1.2. The LCDs of the finite pure death process are classified in Theorem 4.3, which is

proven in [9], and is an extension of a theorem in [22].

Theorem 4.3. Let (Xt)t≥0 be a pure death process on {0, 1, . . . , L} with death rates

{δi : 1 ≤ i ≤ L}. Then for each i ∈ {1, . . . , L} there exists a unique i-LCD which gives

mass to states {1, . . . , L(i)} where L(i) = max{j : 1 ≤ j ≤ i, δk ≥ δj∀k = 1, . . . , j}.

Theorem 4.3 can be understood in terms of bottlenecks in the flow towards zero: the

process conditioned on non-extinction will sit in states up to the narrowest bottleneck

below the starting position. The pure death process has a reducible state space, in fact

no state can be returned to once it has been left. Such reducible state spaces present

problems when simulating the LCD using SMC samplers because if at any point in

time all of the particles have left a transient communicating class then this class can

never be returned to. Regional resampling provides a way to ensure that the number

of particles in each region is maintained.

Consider a toy example of a pure death process with transient states S = {1, . . . , 5}

and death rates given by δ = (δ1, . . . , δ5) = (3, 2, 3, 1, 3). By solving the left eigenvalue

equations we see that this process has 5-LCD given by u = (1/3, 1/3, 1/9, 2/9, 0).

Figure 6 shows the simulated 5-LCDs for this process using particle refilling (6a)

and regional resampling with 2 regions (6b). The regional resampling was performed

over the regions S1 = {1, 2} and S2 = {3, 4, 5}. Under particle refilling at some point

all of the particles leave S2 and so the SMC converges towards the 2-LCD instead

of the 5-LCD. Although 5 regions could have been specified to reflect the 5 transient

communicating classes, in this example 2 regions were sufficient for the SMC sampler

with regional resampling to converge to the correct distribution.

Figures 6c and 6d demonstrate how the proportion of particles and proportion of

weights differ under particle refilling and regional resampling schemes. Although the

number of particles following a resample in region S2 is fixed for regional resampling,

the proportion of weight in S2 is not fixed, gradually converging to some value. Despite

depletion between resampling times, at no point does the number of particles in S2
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Figure 6: Region Resampling for the 5-state Death Process with
δ = (3, 2, 3, 1, 3). M = 100, Tend = 40, Tstep = 1,
For (a),(b) the simulation uses burn-in Tb = 20, sampling delay Td = 2.

reach zero, which ensures that regional resampling converges to the correct LCD.

5. Dynamic resampling schemes

When using an SMC sampler to draw samples from a LCD on a reducible state space,

one potential problem is that all of the particles can leave a transient communicating

class between resampling times. Regional resampling alleviates this to a certain extent,

by ensuring that at each resampling time there are a prespecified number of particles in
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each region, however there still remains a positive probability that all of these particles

could leave the region they started from if the time between resampling events is

fixed. Furthermore, as the duration of the simulation increases so will the number

of resampling events, and hence the probability of a region being left without any

particles converges to 1 – the SMC sampler will almost surely fail in a finite time.

Clearly this property is extremely undesirable. However, if the resampling times are

not fixed in advance, but instead are allowed to depend on the progress of the particles

dynamically via some stopping times [16, 17], then this property can be avoided. Under

typical dynamic resampling schemes, resampling is activated when particle diversity

drops below some threshold, where diversity is measured by the coefficient of variation

of the importance weights. However, in light of the discussion surrounding regional

resampling, here we introduce a sequence of stopping times which activate resampling

based on the diversity of particle locations. Other sequences of stopping times may

be possible, along the lines of multi-level SMC / stopping-time resampling [4, 12].

In those algorithms, particles evolve independently between resampling events and

stopping times are measurable with respect to the trajectory of a single particle.

Suppose that we wish to use an SMC sampler with regional resampling to simulate

from the LCD of a process (X(t))t≥0 on a state space S ∪ {0}. As in Section 4, we

partition the transient states into L regions, where S =
⋃L
l=1 Sl. Let Ml(t) be the

number of particles in region Sl at time t and choose (N1, . . . , NL) to be the desired

number of particles in each region after a resampling event. We wish to initiate a

resampling event whenever the number of particles in region l drops below λNl, where

λ ∈ (0, 1) is some tuning parameter that controls how often resampling occurs.

More formally, we define the following sequence of stopping times. Let T0 = 0,

then for k ∈ N, let Tk = min{T (1)
k , . . . , T

(L)
k , (Tk−1 + Tmax)} where the local stopping

time for region Sl is given by T
(l)
k = inf{t > Tk−1 : Ml(t) ≤ λNl}. The parameter

Tmax ∈ (0,∞] controls the maximum time between resampling events. At each stopping

time T1, T2, . . . , a regional resampling event is triggered in all L regions. Assuming

that Nl ≥ 2 for all l, then there must be at least one particle to resample from within

each region at the time that a resampling event is triggered.
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5.1. Resampling timepoint optimisation

The main advantage to the dynamic resampling is that the SMC sampler will

definitely terminate successfully at the prescribed endpoint, whereas with all the deter-

ministic timepoint methods, there is a non-zero probability that during the simulation,

a resampling step will be unable to take place. The second advantage is also that

one can tune λ, which dictates how low a region’s population must get to trigger a

resampling step. In doing so, one also tunes the number of resampling steps, and the

speed of convergence in mean to the true LCD.

5.2. Example: Transient immunity process.

The transient immunity process is an extension of the linear birth-death process

in which individuals persist after ‘death’ for a random time in an additional non-

reproductive state. The process X(t) = (I(t), R(t))t≥0 ∈ N0 × N0 evolves as follows.

New infectious individuals are created at the points of an inhomogeneous Poisson

Process with rate βI(t), at which point I(t) 7→ I(t) + 1. Each infection lasts an

exponentially-distributed time with rate γ, and so recoveries occur at the points of a

Poisson process with rate γI(t), at which point (I(t), R(t)) 7→ (I(t)−1, R(t)+1). After

recovery, individuals experience a period of immunity which lasts an exponentially

distributed time with rate δ. These loss of immunity events occur at the points of a

Poisson process with rate δR(t), at which R(t) 7→ R(t)− 1.

The state space of the transient immunity process has countably many communi-

cating classes: {(0, r)} for each r > 0 plus S2 = {(i, r) : i > 0, r ≥ 0}. We consider the

absorbing state to be (0, 0) when both the infection and the immunity have left the

population. Despite its relatively simple linear structure, a full characterisation of the

LCDs is not available.

Work from [23] can be extended using a coupling with the linear birth-death process

to show that QSDs exist for all choices of β, γ, δ > 0 such that γ−β > 0. Furthermore

one can show that uniqueness holds for u the v-LCD for all v with finite support

contained in S2. The characterisation of u depends on whether γ−β > δ or γ−β < δ.

If γ − β > δ then u is a unit mass on the point (I,R) = (0, 1). If γ − β < δ, one can

show that u gives mass to all states in S.

We first show how 2-region resampling with dynamic resampling works for the
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transient immunity process to give an idea of the character of the (1, 0)-LCD, making

use the two regions S1 =
⋃∞
r=0{(0, r)} and S2 = {(i, r) : i > 0, r ≥ 0}, so S = S1 ∪ S2.

In Figure 7b, we see that under 2-region resampling, despite having 40% of the particles

in S2 we see a negligible contribution from them. On the other hand, in Figure 7a,

where the true (1, 0)-LCD gives weight to all states in the state space, the simulation

gives a good visualisation of the (1, 0)-LCD.
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(a) γ − β = 0.5, δ = 0.4
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(b) γ − β = 0.5, δ = 0.6

Figure 7: Comparison of simulated LCDs from 2-region resampling: M =
6000, (N1, N2) = (4000, 2000), Tend = 450, Tmax = 12, Tb = 40, Td = 1.

To illustrate how the choice of λ and Tmax affect performance of the model, we

consider how consistently such methods estimate the mean of the QSD for the transient

immunity process seen previously. Under all choices of λ and Tmax we obtained similar

estimates of the mean, but the variability of such estimates is of interest. We first fix

Tmax = 10. By repeating our simulations we measure the Monte Carlo variance of the

estimator of the mean number of infectives, and the mean computation time to run a

single simulation run of M = 500 particles; this computation time is only meant to be

illustrative, and depends on the hardware and software used in general. From Figure

8a we see that the variance does indeed decrease as λ increases, but the improvement

is noticeably smaller beyond λ = 0.25. If we take the product of the variance and mean

computation time, then we see it is indeed optimal at this value of λ. For different
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(a) Performance of estimator under vary-
ing λ: Tmax = 10, computed from 2000
runs.

λ Tmax = 1 2 3 4 5
0 200 100 67 50 40

0.2 200 100 68 61 63
0.4 200 107 105 105 105
0.6 204 182 184 183 180
0.8 395 395 394 397 397

(b) Number of resampling steps as λ and Tmax
change

Figure 8: Comparison of performance under varying λ and Tmax:
β − γ = 0.5, δ = 0.6, Tend = 80, Tb = 0, Td = 1, M = 500, (N1, N2) = (300, 200)
Computation performed on a single core of an Intel Core i5-vPro processor and took
13 seconds for λ = 0.6, Tmax = 3

uses, this optimal value of λ may vary, and if computation time is not an issue, one

can instead choose as large a λ as possible.

If we furthermore vary Tmax we see in Figure 8b that for different values of λ, and

for sufficiently large Tmax, the precise choice of Tmax is unimportant: there seems to

develop a natural frequency of resampling steps. As such, it is felt that one should

include a Tmax which is slightly larger than the natural period of resampling under λ,

since this Tmax then still performs the job of avoiding particle weight degeneracy as in

standard deterministic timepoint resampling schemes, but does not trigger unnecessar-

ily frequent resampling steps. For λ = 0 and Tmax ≥ 3, the probability of a successful

simulation run was low due to the high rate of particle extinction, and so repeated

simulations were required.

6. Estimating the Decay Parameter / Rate of Extinction

Using the tools we have developed, we apply them to tackling an important problem

in the field of QSDs, one of determining the eigenvalue associated to a given QSD or

LCD u: the value of α for which −αuT = uTQ. For irreducible processes, the maximal
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α is known as the decay parameter [24].

To compute the decay parameter when the state space is finite may require finding

the eigenvalues of a large Q matrix, which is computationally intensive and numerically

unstable. In the countable case, the required knowledge of P [X(t) = i|X(0) = j], is

frequently intractable. To this end, we apply the SMC sampler to obtain estimators

for α using the following result from [23].

Proposition 6.1. Let X be an absorbing process on S ∪ {0} with absorbing state 0,

and let u be a QSD for X. If u is α-invariant for Q, that is, −αuT = uTQ, where Q

is the generator matrix Q̃ restricted to S, then we have that α =
∑
s∈S usq̃s0, where

q̃s0 is the rate of moving from s to 0.

In models in which there is only one state from which the process can reach 0 (for

example population processes), only a single term contributes to the sum for α. For

example, in the pure death process we have α = u1δ1. If one can draw iid Xj ∼ u for

j = 1, . . . ,M then

α̂ :=
∑
s∈S

qs0

M∑
j=1

M−1
1{Xj=s}

is an unbiased estimator for α. This estimator can therefore be implemented as follows.

Following a burn-in period Tb, at each sampling time t we record α̂ by replacing M−1

by normalized weights Wj(t).

6.1. Example: Transient immunity process

We estimate the decay parameter α for the transient immunity process defined in

Section 5.2. Since the only exit route is via (I,R) = (0, 1) our estimator α̂ reduces to

α̂ = δ
∑M
j=1 Wj1{Xj=(0,1)}. The eigenvalue α associated to the LCD starting from the

state (1, 0) is given by α = min(δ, γ − β) [9].

Figure 9 uses dynamic regional resampling with combine-split particle reallocation

to estimate α. The estimates are accurate in the two regimes of the process, where δ is

larger (or smaller) than γ − β. However, stochastic effects cause the decay parameter

to be underestimated close to the critical value δ = γ − β.
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Figure 9: Estimate of α as β changes. γ = 1, δ = 0.5, Tend = 60, Tmax = 5, Tb = 20,
Td = 1, M = 400, N = (200, 200)

7. Conclusion

In this paper we have developed a toolbox of techniques for simulating from LCDs on

reducible state spaces using SMC samplers. We have shown how combine-split resam-

pling can improve particle diversity when the state space is discrete. We introduced

regional resampling to allow more control of the distribution of the particles in the

SMC sampler. Although our focus was on simulating LCDs on reducible state spaces,

we anticipate that regional resampling could prove useful for SMC samplers designed

for other purposes. We also demonstrated that by adopting a dynamic resampling

scheme based on the number of particles in each region, we could prevent failures in

the SMC sampler that were otherwise certain to occur in finite time.

Since there is always a finite number of particles in the SMC sampler, it is not

possible to use these techniques to sample from the ‘high energy’ QSDs that sometimes

exist for processes on infinite state spaces, as these distributions have infinite mean.

Designing a mechanism to sample from such LCDs remains an open problem. To

further this work, we would like to know whether there is a more systematic approach

to the selection of λ and (N1, . . . , NL) to best approximate the true LCD. Moreover, in
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the case of complex models where regions of interest are not known, dynamic regional

resampling where regions update according to certain statistics could be investigated.
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