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Report of the Large-Scale Structures in Random Graphs Workshop

Peter Allen, Julia Bottcher and Jozef Skokan are in the discrete mathematics group of the
Department of Mathematics at the London School of Economics and Political Science. They
organised a workshop on “Large-scale structures in random graphs” in December 2016 which was
hosted at Alan Turing Institute and generously jointly funded by the Heilbronn Institute and the
Alan Turing Institute. Their write up of the event is produced below.

While much of the rest of London was busy Christmas shopping, around 25 mathematicians
(some from as far away as Brazil, the US and Israel) spent the week of 12-19 December 2016 on
what mathematicians are accustomed to do: thinking — or rather thinking and discussing. Only this
time the locus of this thinking was the side-wing of the British Library that is the new and shiny
Alan Turing Institute. And the mathematicians met for a workshop on “Large-scale structures in
random graphs”, organised by three LSE academics (Peter Allen, Julia Boéttcher and Jozef
Skokan), and funded jointly by the Heilbronn Institute and the Alan Turing Institute.
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What does this look like?

Well, in the mornings there were lectures; and there was coffee, of course (the great Hungarian
mathematician Paul Erdés famously said that “Mathematicians are machines for turning coffee into
theorems”). The afternoons were spent discussing in small groups, scribbling formulas and
sketching pictures on boards, walls, and meeting room glass panes. (Yes, the Alan Turing Institute
has white-board walls and special markers for writing on glass. Coffee, by the way, comes out of
what looks like an ordinary tap, operated via a tablet.)
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It was an intense and highly successful workshop, pushing further the boundaries of what we
currently know in the area. And it concerned an important topic: the study of how certain types of
large networks form and what we can mathematically say about their global structure, albeit
having only very limited local information. In the current age, where a vast amount of data is
shared on large networks (such as the internet or Facebook), it is vital to acknowledge that,
unsatisfactorily, there are still many features of even simplified mathematical models underlying
such networks that we do not adequately understand.

But what was the workshop really about?

We will now try to give you some insight into this. We should start by explaining some of the words
appearing in the title of the workshop.

What is a graph?

The word ‘graph’ means two things in mathematics. One is the familiar x-y plot which shows us,
for example, how much more expensive Euros have become since Brexit. The other, which is an
abstract representation of two-body interactions, is what this workshop is about (see Figure 1). A
graph has vertices (representing the interacting bodies), some pairs joined by edges (representing
an interaction) and others not. Think of a social network in which people (vertices) may be friends
(an edge is present) or not; or a road network where places are connected by roads (and in this
example some edges, the one-way streets, come with a direction (see Figure 2)). We usually think
of graphs visually, drawing points for the vertices and lines between two points for the edges.

Figure 1. The biggest graph where every vertex is Figure 2. The vertices are wireless transceivers,
in three edges and every pair of vertices is with edges between transceivers which are close
connected by a path with at most three edges enough to communicate

What is a random graph?

A misnomer, really: it's not ‘a graph’. What we mean is a way of generating graphs which uses
some randomness. Most simply, we decide on the number n of vertices we will have, and then for
each pair of vertices we flip a coin to decide whether to put an edge in or not (so we will do a lot
of flipping coins). In this case, each pair of vertices will turn out to be an edge with probability V2,
independently. There are (many) other options. We could use a biased coin, which gives us an
edge with some fixed probability p not necessarily equal to 2. This method of generating random
graphs is called G(n,p), and it is the method most time was spent on, both in mathematics in
general and at the workshop. There are many other methods one could choose, either A lse
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they are supposed to model some real-world phenomenon or because they are mathematically
interesting, but even after 60 years of research there are still many things about the simple G(n,p)
model that we do not understand.

What can you say about random graphs?

The kind of thing we end up writing formally are sentences like ‘With high probability a random
graph generated according to G(n,p) is connected’. The word ‘connected’ means what it sounds
like: you can get from any one vertex to any other by following edges. And ‘with high probability’
means that, as the number n of vertices gets large, the probability gets closer and closer to one.
Informally, we would say ‘A typical random graph G(n,p) is connected’; if you actually follow the
random method G(n,p) of generating a graph, the graph you end up with is very likely to be
connected.

To get a feel for how things work in this area, let’s try to explain why
this statement is true, for a fair coin (p=1/2). We’'ll try to argue that
not only is there a way to get from any x to any other y, actually we
can even always do it using exactly two edges. We start off with our
n vertices. Let’s call two of them x and y. We want to know, to start
with, how likely it is that x and y are connected using exactly two
edges when we generate G(n,p). In other words, we want to know
how likely it is that there is some z such that xz and zy are both
edges (see Figure 3). Apart from x and y, there are n-2 other
vertices, so there are n-2 choices for z.

If we fix any given one of these, the chance that xz and yz both
appear in G(n,1/2) is 1/4 — the chance of getting heads twice when
we flip two coins, because that’'s exactly what we do to decide
whether these two pairs are edges. But if we look at all of the n-2
choices of z, there is that 1/4 chance each time; and the pair x,y
only needs to get lucky once. The probability they don’t get lucky is
(3/4)Mn-2). To fix an example, if n is 8,000, that is even more
unlikely than winning the Lottery a hundred and fifty times in
lucky. succession — we should be pretty confident that x and y turn out to
be connected.

Figure 3. An 8-vertex
example, in this case z5 got

We want to know the whole graph is connected — ideally, we hope that every pair of vertices wins
this little game (and let’s forget about all the other ways they might get connected; taking them into
account can only help us find connections). There are lots of pairs of vertices — roughly n*2/2. It's
easy to check that n*2/2 grows much more slowly than (3/4)*(n-2) shrinks, so on balance, you
should be amazed if even one single pair of vertices loses its little game when n is large.
Returning to the n=8,000 example, in this case n*2/2 is about 32 million; about as many people as
play the Lottery each time. No-one has ever even won the Lottery twice on consecutive draws, let
alone a hundred and fifty times — so you should believe, at least for n=8,000, that it's clear
G(n,1/2) is very likely to be connected.

There is a subtlety here: these little games are not independent; every pair X,y is playing as part of
the one big game of constructing G(n,p), just as when many people play the Lottery, they all get
results based on one set of balls drawn. When people play the Lottery, they could all choose the
same numbers — then there would be a very low chance of anyone winning. Or they could all
choose different numbers — this makes it as likely as possible that someone will win. With 32
million people, they can actually choose all the possibilities and be sure of someone winning. If we
knew how all the players in the Lottery chose numbers, we could calculate the chance that there
will be a winner — the answer is somewhere between 1 in about 14 million (if everyone picked the
same numbers) and certain (if all the players conspired to all choose different numbers). Similarly,
it's easy to find out how likely it is that a given pair x,y loses the little game and turns out be
connected by a two-edge path (not very!) but what we want to know is the chance thata # :of
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all the about n*2/2 pairs loses. Just like with the Lottery, that could be anywhere from (3/4)*(n-2)
up to (3/4)A(n-2).n*2/2, depending on how the little games overlap. The right answer is
somewhere between these extremes, but it gets hard to calculate. If | tell you that there is a
connection from x to y, you should be more confident there is one from x to some other vertex w
as well, for example. But in this example, it's enough to know that the probability of losing in some
litle game can’t be bigger than (3/4)*(n-2).n"2/2 .

That doesn’t seem so hard..?

This example isn't hard, but the reason is that we could get away with being lazy doing
calculations. We wanted to show that typically G(n,p) is connected; we can get from any one
vertex to any other. It turned out to be enough to look only at connections using exactly two edges
(not one, not three, not more) to convince ourselves that this is likely, which made our lives easier.
And it turned out to be enough to pretend the little games of connecting each pair x,y were
conspiring to make our lives hard — a bit like the players of the Lottery conspiring to all choose
different numbers so that there is a winner for certain — even though we know that’s not really the
case. We were playing a game with the odds stacked heavily in our favour. So let's make it harder,
and consider G(n,p) with some p much less than 1/2. Now we flip a biased coin to see whether
each edge appears; we expect to get far fewer edges, and of course if we have less edges then
(intuitively) it should be less likely we will get a connected graph. What we would really like to
know is the ‘threshold’: how small can we make p be and still be fairly confident of getting a
connected graph (with say probability 99%)?

This is too hard to answer properly in a blog post. In fact, it's getting closer
to some open problems in the area — one of our speakers, Asaf Ferber,
talked about some exciting new progress.

You could now skip to the next section — but if you want a vague idea of
what the answer to this ‘threshold’ problem is, here is a vague explanation.
One thing we can say is, if we want to be confident that G(n,p) is
connected, we should certainly be confident that every vertex is in at least
one edge: if a vertex isn’t in any edges, we can’t go anywhere from it and
we certainly do not have a connected graph. It turns out this gives the
answer: if p is large enough that with 99.5% probability every vertex is in
at least one edge, then also with 99% probability the whole graph G(n,p)
will be connected (when n is large, anyway). To see why this is true, you
could try to re-do the explanation above, but consider connecting paths of
all lengths (not just length two) between each x and y. Working out how
likely it is that even one pair x,y wins its little game gets hard — but if you
make life easier by throwing away possibilities as we did above, then what
happens is that you probably threw away all the paths connecting x and vy,
so you don’t see that you won (like turning off the television half-way
through the Lottery draw). Then you would have to put all these little games together, and this time
you would have to work out how much they overlap — the worst case we used above, pretending
that they were conspiring against us, won’t work this time; you would end up thinking you are very
unlikely to get a connected graph, even though that’s not the case. It turns out these little games
do conspire a bit, but not much. Actually, trying to do this whole calculation gets too complicated
for anyone to solve. We do know the answer, but we use a different route to get to it — roughly,
rather than trying to find paths connecting each pair of vertices, we start by arguing that if the
graph is not connected, then that means it splits into two parts with no roads between — like the
Irish Sea between the street-maps of Britain and Ireland — and show that oceans don’t tend to
show up in random graphs.

-
Asaf Ferber

More or less, this is where all the difficulty is in studying random graphs. Even though the edges
are independent — whether one pair turns out to be an edge doesn’t affect another, because one
coin toss doesn’t affect another — the properties we want to know about tend to involve =~ = ja
lot of little games, each one of which we will easily win but which do depend on eact A in
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some complicated way. It’'s hard to figure out if we’re likely to win the big game by winning all the
little ones.

What is this large-scale business?

We want to know about properties for which you have to look at the whole random graph (or at
least most of it), like ‘being connected’. If you only look at part of the random graph, you don’t
know whether it's connected. The other extreme is asking a question like ‘Are there four vertices
with all six possible edges present?’ — if the answer is yes, | can convince you just by showing you
the right four vertices. Usually we can answer questions of this type quite well.

Another example is that we might want to know
whether a travelling salesman can go round all the
vertices of the graph, following edges, until they
return to their start without ever having to revisit
vertices on their way — this is called a Hamilton
cycle.

Again, it's not too hard to show that in G(n,1/2) the
answer is yes; again, if we have less edges — if we
look at G(n,p) for some small p — it obviously gets
less likely. As with connectivity, obviously we need
every vertex to be in at least two edges for this
(otherwise the salesman goes in to a vertex that’s in
only one edge and can’t go out again), and it turns
, _ : out that if p is large enough that with probability
Figure 4. A graph with a Hamilton cycle 99 59 every vertex is in at least two edges, then
highlighted with probability at least 99% we will have the
Hamilton cycle.

What sort of things did we actually do in the workshop?

From the examples above, it sounds like we know a lot about how big p should be in order that we
are confident that a specific structure shows up in G(n,p), like a Hamilton cycle. Actually, that’s not
the case; for a lot of structures, not much more complicated than a Hamilton cycle, we don'’t really
know. We spent quite a bit of time working on a particular class of structures, ‘bounded degree
graphs’, where we think we know what the answer could be. Some of the participants brought
partial answers to the workshop, and putting them together it looks possible that a solution will
come out.

What if the Highways Agency try to obstruct the travelling salesman by doing roadworks to cut him
off? If they dig up too many roads leaving one town, the residents will complain to their MP — so
the agency won'’t do this. Can they still block the salesman? This sort of question is called a
resilience problem. We know only a couple of techniques to work on this kind of problem, and a lot
of the time they don’t work. We tried one of the simplest problems where the known techniques
don’t seem to work, ‘tight Hamilton cycles in hypergraphs’. Some progress was made, but we did
not yet get to a solution.

What about atypical random graphs? We expect
about n?2/4 edges to show up in G(n,1/2); if there
are many less, or many more, than that, then
something weird happened. What does the result
look like, and how likely is the weird event? In this
case, the result looks like you accidentally used a
biased coin: it looks like G(n,p) for some p nnt enual
to 1/2, and we can calculate the chanc , nat
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happening easily. What about if we counted
triangles instead? In this case, if there are too few
triangles again G(n,1/2) probably looks like a typical
G(n,p) for some p<1/2. If there are too many
triangles, though, something else can happen:
probably there are too many triangles because a
little set of vertices gets far more edges than we
expect, while the rest of G(n,1/2) still looks like a
typical G(n,1/2). We don’t understand this sort of
problem very well in general. Simon Griffiths and
Yufei Zhao both talked about these problems, and
two groups worked on different aspects. One group
got results on their problem, the other made
progress but still pieces are missing.

Simon Griffiths

David Conlon

In another direction, Ramsey’s theorem says: for
any graph H, there is a graph G such that however
you colour the edges of G with red and blue, you will
find a copy of H (plus maybe some extra edges)
with either all edges red or all edges blue. Think for
example of a path with n edges; there is a graph G
which, however you colour the edges, will contain
either a red or a blue path with n edges. How many
edges does G need to have? It's obvious that to get
an n-edge path you need at least n edges in G; what
number is enough? It turns out 100n will do. This
problem is the size Ramsey problem; it doesn’t
obviously have anything to do with random graphs.
But there is a surprising connection: for many

graphs (such as the n-edge path), the best graph G we know works is a typical random graph. But
again we usually don’t know any very good answer; the path is one of the few graphs where we
‘only’ have a constant-factor gap between the lower and upper bounds. David Conlon‘s talk was
about how to do better with proving that a random graph with few edges works in general, and the
speaker set as a problem to show that path-like graphs — distance powers of paths — also have
size Ramsey number growing linearly in n. Here it’s clear that a random graph on its own Ane< not
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work: but the group working on this problem came up with a nice construction that modifies a
random graph which they could show works, solving the problem.

We had several more talks and groups, which made good progress on more problems in this sort
of spirit. But this piece is long and technical enough by now — to wrap up, we had a good week
with excellent talks and productive sessions of group work; some of the results will be written up
directly, while other groups will continue collaboration over the next months and years.
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