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AN ASYMPTOTIC MULTIPARTITE KÜHN–OSTHUS THEOREM∗

RYAN R. MARTIN† , RICHARD MYCROFT‡ , AND JOZEF SKOKAN§

Abstract. In this paper we prove an asymptotic multipartite version of a well-known theorem
of Kühn and Osthus by establishing, for any graph H with chromatic number r, the asymptotic
multipartite minimum degree threshold which ensures that a large r-partite graph G admits a perfect
H-tiling. We also give the threshold for an H-tiling covering all but a linear number of vertices of
G, in a multipartite analogue of results of Komlós and of Shokoufandeh and Zhao.
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1. Introduction.

1.1. Motivation. Given graphs G and H, a simple and natural question to ask
is whether it is possible to perfectly tile G with copies of H, that is, to find vertex-
disjoint copies of H in G which together cover every vertex of G. An obvious necessary
condition for this is that |V (H)| divides |V (G)|, which we assume implicitly through-
out this discussion. In the case where H consists of a single edge, a perfect H-tiling
is simply a perfect matching; a classical theorem of Tutte [23] gives a characterization
of all graphs for which this is possible, and Edmond’s algorithm [4] returns a perfect
matching (or reports that no such matching exists) in polynomial time. However,
if the graph H has a connected component with at least three vertices, then we see
sharply different behavior. In particular Kirkpatrick and Hell [7] showed that, for any
fixed graph H of this form, the problem of determining whether a graph G admits a
perfect H-tiling is NP-hard, so it is unlikely that there exists a “nice” characterization
of such graphs analogous to Tutte’s theorem.

Due to this, there has been much study of sufficient conditions which, for a fixed
graph H, ensure the existence of a perfect H-tiling in a graph G on n vertices. (We
refer the reader to the survey of Kühn and Osthus [13] for a more detailed overview.)
The most natural of these are minimum degree conditions; to discuss these we de-
fine δ(H,n) to be the smallest integer m such that any graph G on n vertices with
δ(G) ≥ m admits a perfect H-tiling. One early sufficient condition was given by
the celebrated Hajnál–Szemerédi theorem [6], which states that for any integer r
we have δ(Kr, n) = r−1

r n. (The case r= 3 was previously given by Corrádi and
Hajnal [3].) Turning to general graphs H, Alon and Yuster [1] later showed that
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δ(H,n) ≤ χ(H)−1
χ(H) n+ o(n); using the blow-up lemma Komlós, Sárközy and Szemerédi

[11] then improved this result by replacing the o(n) error term with an additive con-
stant (which cannot be removed in general). In the other direction, Komlós [9] intro-
duced the critical chromatic number χcr(H) of H and observed that for any H we have

δ(H,n) ≥ χcr(H)−1
χcr(H) n. Finally Kühn and Osthus [14] completed our understanding by

classifying graphs H according to their greatest common divisor and showing that

for any H we have either δ(H,n) = χcr(H)−1
χcr(H) n + O(1) or δ(H,n) = χ(H)−1

χ(H) n + O(1),

according to the value of this parameter.
In parallel with the results described above, much attention has been devoted to

the problem of perfectly tiling multipartite graphs; these have presented significant
additional challenges. There is a natural multipartite notion of minimum degree: for
a r-partite graph G with vertex classes V1, . . . , Vr we define δ∗(G) to be the largest
integer s such that, for any i 6= j, any vertex of Vi has at least s neighbors in Vj . Sim-
ilarly as before, let δ∗(H,n) denote the smallest integer m such that any χ(H)-partite
graph G whose χ(H) vertex classes each have size n and which satisfies δ∗(G) ≥ m
admits a perfect H-tiling. Fischer [5] conjectured the natural multipartite analogue
of the Hajnal–Szemerédi theorem, namely, that δ∗(Kr, n) = r−1

r n. Perhaps surpris-
ingly, Catlin gave counterexamples demonstrating this natural conjecture to be false
for each odd r ≥ 3. However, for large n, Fischer’s conjecture is “almost-true,” in that
Catlin’s counterexamples are the only counterexamples to the conjecture, as shown
by Keevash and Mycroft [8]. (This was previously demonstrated for r = 3 and r = 4
by Magyar and Martin [16] and Martin and Szemerédi [18], respectively, while an
asymptotic form for all r was independently given by Lo and Markström [15].) Sub-
sequently Martin and Skokan [17] continued this direction of research by establishing
a multipartite analogue of the Alon–Yuster theorem, namely, that for any H we have

δ∗(H,n) ≤ χ(H)−1
χ(H) n+ o(n).

Theorem 1.1 (see [17]). Let H be a graph on h vertices with χ(H) = r ≥ 3. For
any α > 0 there exists n0 = n0(α,H) such that if G is a balanced r-partite graph on
rn vertices with δ∗(G) ≥

(
r−1
r + α

)
n, where n ≥ n0 is divisible by h, then G admits

a perfect H-tiling.

In this paper we prove an asymptotic multipartite analogue of the Kühn–Osthus
theorem (Theorem 1.2), which establishes the asymptotic value of δ∗(H,n) for any
graph H with χ(H) ≥ 3. Together with a theorem of Bush and Zhao [2], who
previously gave the corresponding result for bipartite graphs H up to an additive
constant, this determines the asymptotic value of δ∗(H,n) for every graph H.

It is also natural to ask for the minimum degree condition needed to ensure that
we can find an H-tiling in G covering almost all the vertices of G. In the nonpartite

setting Komlós [9] showed that δ(G) ≥ χcr(H)−1
χcr(H) n is sufficient to ensure an H-tiling

covering all but o(n) vertices. He conjectured that in fact this condition guarantees
an H-tiling covering all but a constant number of vertices, and this was subsequently
confirmed by Shokoufandeh and Zhao [22]. Our second main result (Theorem 1.5)
gives a multipartite analogue of Komlós’s result, namely, that any χ(H)-partite graph

G whose vertex classes each have size n and which satisfies δ∗(G) ≥ χcr(H)−1
χcr(H) n admits

an H-tiling covering all but o(n) vertices of G. Again, an analogous result for bipartite
graphs H was previously given by Bush and Zhao [2].

1.2. Main results. Let G and H be graphs. An H-tiling in G is a collection of
vertex-disjoint copies of H in G; it is perfect if every vertex of G is covered by some
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member of the tiling. Let H be a graph with chromatic number χ(H) = r, and let
C denote the set of proper r-colourings of H. Then for any proper r-coloring φ ∈ C
with color classes Xφ

1 , . . . , X
φ
r , we define

D(φ) :=
{
|Xφ

i | − |X
φ
j | : i, j ∈ [r]

}
and D(H) :=

⋃
φ∈C

D(φ).

(Throughout this paper we write [r] to denote the set {1, . . . , r}.) The greatest com-
mon divisor of H, denoted gcd(H), is then defined to be the highest common factor of
the set D(H) if D(H) 6= 0. If D(H) = 0 (that is, if every r-coloring of H is equitable,
meaning that all color classes have the same size), then we write gcd(H) = ∞. We
also define

(1) σ(H) := min
φ∈C,i∈[r]

|Xφ
i |

|V (H)|
.

So 0 < σ(H) ≤ 1/r, with equality if and only if every r-colouring of H is equitable.
The critical chromatic number of H, introduced by Komlós [9], is denoted χcr(H) and
is defined by

(2) χcr(H) :=
χ(H)− 1

1− σ(H)
.

So for any graph H we have χ(H) − 1 < χcr(H) ≤ χ(H), again with equality if and
only if every χ(H)-coloring of H is equitable. Note that the definition of σ(H) that
we use differs by a factor of |V (H)| from that used by Kühn and Osthus [14], but our
definition of χcr(H) is the same. Finally, following Kühn and Osthus [14], we define

χ∗(H) :=

{
χcr(H) if gcd(H) = 1,

χ(H) otherwise.

Recall that if G is an r-partite graph with vertex classes V1, . . . , Vr, then the
multipartite minimum degree of G, denoted δ∗(G), is defined to be the largest integer
m such that for any i 6= j every vertex of Vi has at least m neighbors in Vj . Also, we
say that G is balanced if every vertex class has the same size.

Our first main result is Theorem 1.2 in which the optimal degree condition is
relaxed by an additive factor which is linear in the number of vertices. This is an
asymptotic multipartite version of a theorem of Kühn and Osthus [14].

Theorem 1.2. Let H be a graph on h vertices with χ(H) = r ≥ 3. For any
α > 0 there exists n0 = n0(α,H) such that if G is a balanced r-partite graph G on
rn vertices with δ∗(G) ≥ (1 − 1

χ∗(H) + α)n, where n ≥ n0 is divisible by h, then G

contains a perfect H-tiling.

Remark 1.3. In the case where gcd(H) = 1, the proof of Theorem 1.2 only uses
the weaker assumption that h divides rn (rather than h divides n). However, as
observed in [17], in the case gcd(H) > 1 we do indeed require that h divides n.

Constructions given in section 5 demonstrate that, for any graph H, Theorem 1.2
is best-possible up to the αn error term in the degree condition. A similar but slightly
different result holds in the case r = 2; this case was fully settled by Bush and Zhao [2]
up to an additive constant.
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Theorem 1.4 (Bush and Zhao [2]). For any bipartite graph H there exist con-
stants n0 = n0(H) and c = c(H) such that if G is a balanced bipartite graph with
n ≥ n0 vertices in each part, and |H| divides 2n, then the following statements hold
(where gcd(H) is defined as above and gcdcc(H) is the greatest common divisor of the
sizes of the connected components of H):

(a) If gcd(H) > 1 and gcdcc(H) = 1, then δ(G) ≥ (1− 1/χ(H))n+ c suffices to
ensure a perfect H-tiling in G.

(b) If gcd(H) = 1 or gcdcc(H) > 1, then δ(G) ≥ (1− 1/χcr(H))n+ c suffices to
ensure a perfect H-tiling in G.

The necessity of considering gcdcc(H) is unique to the case of r = 2, which we
discuss in section 2.2, after the proof of Proposition 2.5.

We can also consider almost-perfect H-tilings, that is, H-tilings covering almost
all of the vertices of G. In the nonpartite case the minimum degree condition needed
to ensure a tiling covering all but a linear number of vertices was established by
Komlós [9]; this result was later strengthened by Shokoufandeh and Zhao [22] to
tilings covering all but a constant number of vertices. Our next theorem provides
a multipartite analogue of the result of Komlós.

Theorem 1.5. Let H be a graph with χ(H) = r ≥ 3. For any ψ > 0 there exists
n0 = n0(ψ,H) such that for any n ≥ n0, if G is a balanced r-partite graph on rn
vertices with δ∗(G) ≥ (1 − 1

χcr(H) )n, then G contains an H-tiling covering all but at

most ψn vertices of G.

Bush and Zhao also addressed this problem for the case of r = 2 and obtained
a similar result to Theorem 1.4—one without considering the sizes of the connected
components—but their result gives an H-tiling covering all but a constant number of
vertices.

Theorem 1.6 (Bush and Zhao [2]). For any bipartite graph H, there exist con-
stants n0 = n0(H) and c = c(H) such that whenever G is a balanced bipartite graph
with n ≥ n0 vertices in each part, δ(G) ≥ (1 − 1/χcr(H))n suffices to ensure an
H-tiling of G that covers all but at most c vertices.

To avoid repetition in proving Theorems 1.2 and 1.5, we deduce each from the
following combined statement.

Theorem 1.7. Let H be a graph on h vertices with χ(H) = r ≥ 3. For any α > 0
there exist n0 = n0(α,H) and C = C(α,H) such that the following statements hold
for any balanced r-partite graph G on rn vertices with δ∗(G) ≥ (1− 1

χcr(H) +α)n and
n ≥ n0:

(i) G admits an H-tiling covering all but at most C vertices of G.
(ii) If gcd(H) = 1 and rn is divisible by h, then G admits a perfect H-tiling.

We prove Theorem 1.7 in section 3 after establishing the necessary preliminaries
in section 2. Theorem 1.5 then follows from Theorem 1.7 by a short deduction, which
is given in section 4, while Theorem 1.2 is immediate from combining Theorems 1.1
and 1.7 as follows.

Proof of Theorem 1.2. If gcd(H) > 1, then χ∗(H) = χ(H) = r, so the existence
of such an n0 is given by Theorem 1.1. On the other hand, if gcd(H) = 1, then
χ∗(H) = χcr(H), so the existence of such an n0 is given by Theorem 1.7(ii).

1.3. Notation. We write x � y to mean that for any y > 0 there exists x0 >
0 such that for any x with 0 < x ≤ x0 the subsequent statements hold. Similar
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statements with more variables are defined similarly. We also write x = y±z to mean
that y − z ≤ x ≤ y + z. We omit floor and ceiling symbols when these do not affect
the argument.

2. Preliminaries.

2.1. Fractional tilings via linear programming. We use the well-known
Farkas’s lemma (see [21, Corollary 7.1d]). For this, recall that for a set Y ⊆ Rd the
positive cone PosCone(Y ) of Y is the set of all linear combinations of members of Y
with nonnegative coefficients.

Theorem 2.1 (Farkas’s Lemma). Suppose that v ∈ Rd \ PosCone(Y ) for some
finite set Y ⊆ Rd. Then there is some x ∈ Rd such that x · y ≤ 0 for every y ∈ Y
and x · v > 0.

Let G be a graph on n vertices and let v1, . . . , vn be any fixed ordering of its
vertices. For a subset of vertices S, we denote by 1G(S) the characteristic vector of
S, that is, the vector (x1, . . . , xn) ∈ Rn such that xi = 1 for vi ∈ S and xi = 0 for
vi /∈ S. If H is a subgraph of G, we write 1G(H) instead of 1G(V (H)). We also write
1 for the all-ones vector. (The dimension will always be clear from the context.)

For a graph H, denote by KH(G) the set of subgraphs in G isomorphic to H. A
fractional H-tiling in G assigns a weight w(H ′) ≥ 0 to each H ′ ∈ KH(G) such that
for any vertex x ∈ V (G) we have

(3)
∑
{w(H ′) | H ′ ∈ KH(G), x ∈ V (H ′)} ≤ 1.

The fractional H-tiling is perfect if we have equality in (3) for every x ∈ V (G).
Equivalently, weights form a fractional H-tiling in G if

∑
H′∈KH(G) w(H ′)1G(H ′) ≤ 1,

where the vector inequality is pointwise, and we have equality if and only if the
fractional H-tiling is perfect.

Given an integer r ≥ 2, a rooted copy of Kr in G is a copy of Kr in which one
vertex is designated to be the root. Similarly, given rational numbers a, b > 0, an
(a, b)-weighted rooted copy of Kr in G is a rooted copy of Kr with the root labelled
by a and the remaining vertices by b. With every (a, b)-weighted rooted copy of Kr,
K, we associate the weighted characteristic vector 1a,b,G(K) with a at the coordinate
corresponding to the root, b at the other vertices of K, and 0 otherwise. We denote
by Ka,b,r(G) the set of all (a, b)-weighted rooted copies of Kr in G.

This notion extends to the definition of a weighted fractional tiling of G: an (a, b)-
weighted fractional Kr-tiling in G consists of a weight w(K) for every K ∈ Ka,b,r(G)
such that

∑
K∈Ka,b,r(G) w(K)1a,b,G(K) ≤ 1 (where the inequality should be again

interpreted pointwise). The tiling is perfect if we have equality.

Lemma 2.2. Let r ≥ 3 be an integer, let a and b be rational numbers such that
0 < a ≤ b, and define h := a + (r − 1)b. If G is a balanced r-partite graph on rn
vertices with δ∗(G) ≥ (1 − b/h)n, then G admits a perfect (a, b)-weighted fractional
Kr-tiling.

Proof. We will first prove the lemma using the assumption that bn/h is an integer
and justify that assumption at the end of the proof.

Suppose for a contradiction that some graph G as in the statement of the lemma
does not admit a perfect (a, b)-weighted fractional Kr-tiling and that bn/h is an
integer. This is equivalent to saying that 1 /∈ PosCone(Y ) for the set Y = {1a,b,G(K) :
K ∈ Ka,b,r(G)}. So by Farkas’s lemma, there exists x ∈ Rrn such that
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x · 1 > 0(4)

and

x · 1a,b,G(K) ≤ 0 for every K ∈ Ka,b,r(G).(5)

Fix such an x, and let v1j , . . . , v
n
j be the vertices of the jth vertex class of G, ordered

by decreasing x-coordinate, that is, so that x · 1G({vsj}) ≥ x · 1G({vtj}) for any s ≤ t.
Because bn/h is an integer, each vertex class Vi can be partitioned as follows:

V ji := {v`i : (j − 1) bn/h+ 1 ≤ ` ≤ j bn/h} ∀j ∈ [r − 1],(6)

V ri := {v`i : (r − 1) bn/h+ 1 ≤ ` ≤ n}.(7)

For any permutation π of [r], we can greedily form an (a, b)-weighted rooted copy
Kπ of Kr as follows: First, let u1 be the vertex in Vπ(1) for which the x-coordinate is

largest. In our notation, u1 = v1π(1). Next, for each j ∈ {2, . . . , r}, let uj = v
tj
π(j) be the

vertex in Vπ(j) in the common neighborhood of u1, . . . , uj−1 for which the x-coordinate
is largest. It follows from the minimum degree condition that tj ≤ (j − 1) bn/h + 1,

so for every v`π(j) ∈ V jπ(j) we have ` ≥ tj ; in other words every vertex in V jπ(j) has

x-coordinate at most that of uj . We assign weight b to each of u1, . . . , ur−1 and weight
a to ur (so ur is the root of Kπ).

Since every vertex in V jπ(j) has x-coordinate at most that of uj , we have

x · 1G

 r⋃
j=1

V jπ(j)

 ≤ r−1∑
j=1

x · 1G({uj})
bn

h
+ x · 1G({ur})

(
n− (r − 1)

bn

h

)

=

r−1∑
j=1

x · 1G({uj})
bn

h
+ x · 1G({ur})

an

h

= x ·
(n
h
1a,b,G(Kπ)

)
.(8)

This gives the following contradiction:

0 < (r − 1)!x · 1 =
∑
π

x · 1G

(
r⋃
i=1

V jπ(j)

)
≤ n

h

∑
π

x · 1a,b,G(Kπ) ≤ 0,

where each sum is taken over all permutations π of [r]. The equality in this calculation
is due to the fact that the sets V ji partition V (G), and for any i, j ∈ [r] there are
precisely (r − 1)! permutations of [r] with π(j) = i. The first inequality follows from
(4), the second inequality follows from (8), and the final inequality follows from (5).

In order to complete the proof, we justify the assumption that bn/h is an integer.
To see this, fix an integer m such that bnm/h is an integer, and let G′ be the m-fold
blow-up of G, in which each vertex v ∈ V (G) is replaced by m copies of v in G′,
and each edge uv ∈ E(G) is replaced by m2 edges between the copies of u and v in
G′. Also set n′ := nm. Then G′ is a balanced r-partite graph on rn′ vertices with
δ∗(G′) = mδ∗(G) ≥ (1− b/h)n′, and bn′/h = bnm/h is an integer.

Given that the lemma holds in this case, G′ admits a perfect (a, b)-weighted
fractional Kr-tiling. This naturally yields a perfect (a, b)-weighted fractional Kr-
tiling in G by taking the weight of each rooted copy of Kr in G to be the average of
the weights of the mr corresponding rooted copies of Kr in G′.
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Remark 2.3. A perfect (a, b)-weighted fractional Kr-tiling as guaranteed by
Lemma 2.2 is the solution to a linear programming instance in which all coefficients
are rational. Such an instance must have a rational solution, so we may assume that
all weights in a perfect (a, b)-weighted fractional Kr-tiling given by Lemma 2.2 are
rational.

2.2. Editing cluster sizes. Proposition 2.4 below shows that we may “com-
bine” copies of H to form a complete r-partite graph U(H) whose vertex classes are
all equal except for one class which has one extra vertex and one class which has one
fewer vertex. This will allow us, in the proof of Theorem 1.7, to delete copies of U(H)
and thus modify the sizes of clusters of H modulo rh.

Proposition 2.4. Let H be a graph on h vertices with χ(H) = r ≥ 3 and
gcd(H) = 1. Then there exists an integer s = s(H) for which the complete r-partite
graph U(H) with one vertex class of size srh+ 1, one vertex class of size srh− 1, and
r − 2 vertex classes of size srh admits a perfect H-tiling.

The proof of Proposition 2.4 is straightforward and essentially identical to that of
Proposition 3.6 from [19] (which gave an analogous statement for r-partite r-uniform
hypergraphs H), so we omit it. To apply Proposition 2.4 we make use of the following
elementary proposition, which we will apply in the “reduced graph” and then apply
Proposition 2.4 within the graph induced by the clusters corresponding to K and K ′.

Proposition 2.5. Fix r ≥ 3, and let G be a balanced r-partite graph on rn
vertices with δ∗(G) > (1− 1

r−1 )n. Then for any vertices u, v ∈ V (G) there are copies
K and K ′ of Kr in G such that u ∈ K, v ∈ K ′, and such that K and K ′ have at least
one vertex in common.

Proof. Let V1, . . . , Vr be the vertex classes of G and assume without loss of gen-
erality that u, v /∈ Vr. Since r ≥ 3 we have δ∗(G) > n/2, so we may fix a common
neighbor w of u and v in Vr. It then suffices to extend {u,w} and {v, w} to copies of
Kr in G, and we may do this greedily. Indeed, any set S of j vertices of G has at least
n − j(n − δ∗(G)) > n − jn

r−1 common neighbors in each vertex class not intersected
by S, and in forming a copy of Kr we choose each vertex to be a common neighbor
of at most r − 1 previously chosen vertices, so there is always a common neighbor
available.

Observe that the statement of Proposition 2.5 does not hold for r = 2, as then G
need not be connected. This is the fundamental reason for the different behavior of
Theorem 1.2 compared to Theorem 1.4 (in which the greatest common divisor of the
sizes of connected components plays a role).

2.3. Completing the tiling. At the end of the proof of Theorem 1.7, all the
remaining vertices of our graph G lie in vertex-disjoint r-partite subgraphs G′′ of G
whose vertex classes are pairwise superregular with positive density. We then complete
the H-tiling of G by finding a perfect H-tiling of each G′′. For this it would be natural
to arrange that the sizes of the r vertex classes of G′′ are in the ratio b : b : · · · : b : a,
so that the proportion of vertices of G′′ in the smallest vertex class is the same as the
proportion of vertices of H in the smallest vertex class. But it is to our advantage
to ensure that the smallest class of G′′ actually has a slightly larger proportion of
the vertices. Indeed, Proposition 2.6 below guarantees that such a distribution of
sizes (together with certain divisibility assumptions) ensures a perfect H-tiling in the
complete r-partite graph G′ with the same vertex class sizes. This is enough for the
blow-up lemma to ensure that G′′ also admits a perfect H-tiling.
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Proposition 2.6 (see [19, Corollary 6.13]). Let H be a graph on h vertices with
χ(H) = r ≥ 3 and σ(H) < 1

r . Then for any α > 0 there exist β = β(α,H) > 0 and
n0 = n0(α,H) such that the following statement holds.

Let G′ be a complete r-partite graph on n ≥ n0 vertices with vertex classes
V1, . . . , Vr, where |V1| ≤ |V2|, . . . , |Vr|. Suppose also that

(1) σ(G′) ≥ σ(H) + α,
(2)

∣∣|Vi| − |Vj |∣∣ ≤ βn for any 2 ≤ i, j ≤ r, and
(3) rh · gcd(H) divides |Vj | for each j ∈ [r].

Then G′ admits a perfect H-tiling.

Proposition 2.6 is also taken from [19], where it was stated for r-partite r-uniform
hypergraphs H; here it is easy to see that the r-partite graph form is identical, since
the problem of tiling a complete r-partite r-uniform hypergraph G′ with copies of
a smaller r-partite r-uniform hypergraph H is identical to the problem of tiling a
complete r-partite graph G′ with copies of a smaller r-partite graph H ′.

2.4. Tidying up atypical vertices. In the proof of Theorem 1.7 we will en-
counter “bad” vertices in G which have atypical neighborhoods. At an early stage in
the proof we will greedily remove each such vertex v from G by deleting a copy of H
in G which contains v. The following proposition shows that the degree condition of
Theorem 1.7 is (more than) strong enough to ensure that this is possible.

Proposition 2.7. Let H be a graph on h vertices with χ(H) = r ≥ 3 and
gcd(H) = 1. For any α > 0, there exists n0 = n0(α,H) such that the following
statement holds.

Let G be a balanced r-partite graph on rn vertices such that n ≥ n0 and δ∗(G) ≥
r−2
r−1n+αn. Then, for any vertex v ∈ V (G), there is a copy of H in G which contains v.

We omit any proof of Proposition 2.7 in that it is a straightforward application
of Szemerédi’s regularity lemma and is implicit in many papers, including [2, 14, 17].

2.5. The regularity method. We use a variant of Szemerédi’s regularity
lemma. Before we can state it, we need a few basic definitions. For disjoint ver-
tex sets A and B in some graph, let e(A,B) denote the number of edges with one
endpoint in A and the other in B. Further, let the density of the pair (A,B) be
d(A,B) = e(A,B)/|A||B|. We say that the pair (A,B) is ε-regular if X ⊆ A, Y ⊆ B,
|X| ≥ ε|A|, and |Y | ≥ ε|B| imply |d(X,Y ) − d(A,B)| ≤ ε, and likewise that a pair
(A,B) is (ε, δ)-superregular if (A,B) is ε-regular and also degB(a) ≥ δ|B| for all a ∈ A
and degA(b) ≥ δ|A| for all b ∈ B.

The degree form of Szemerédi’s regularity lemma (see, for instance, [12, Theorem
1.10]) is sufficient here, modified for the multipartite setting.

Theorem 2.8. For every integer r ≥ 2 and every ε > 0, there is an M = M(r, ε)
such that if G = (V1, . . . , Vr;E) is a balanced r-partite graph on rn vertices and d ∈
[0, 1] is any real number, then there exist integers ` and L, a spanning subgraph G′ =
(V1, . . . , Vr;E

′) and, for each i = 1, . . . , r, a partition of Vi into clusters V 0
i , V

1
i , . . . , V

`
i

with the following properties:
(P1) ` ≤M ,
(P2) |V 0

i | ≤ εn for i ∈ [r],

(P3) |V ji | = L ≤ εn for i ∈ [r] and j ∈ [`],
(P4) degG′(v, Vi′) > degG(v, Vi′)− (d+ ε)n for all v ∈ Vi, i 6= i′, and

(P5) all pairs (V ji , V
j′

i′ ), i, i′ ∈ [r], i 6= i′, j, j′ ∈ [`], are ε-regular in G′, each with
density either 0 or exceeding d.
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The final step in the proof of Theorem 1.7 is to apply the blow-up lemma of
Komlós, Sárközy, and Szemerédi [10] in the following form.

Theorem 2.9 (blow-up lemma). For any integers r and ∆ and any δ > 0 there
exist ε = ε(r,∆, δ) > 0 and N0 = N0(r,∆, δ) such that the following holds for any
integer N ≥ N0 and any graph R on vertex set [r].

Let V1, . . . , Vr be pairwise-disjoint sets each of size N , and set V =
⋃
i∈[r] Vi. Let

K be the graph on vertex set V in which (Vi, Vj) is a complete bipartite graph for
ij ∈ E(R) (and which has no other edges than these). Also let G be any graph on
V in which (Vi, Vj) is (ε, δ)-superregular for any ij ∈ E(R). Then for any graph H
with maximum degree ∆(H) ≤ ∆, if H can be embedded in K, then H can also be
embedded in G.

This essentially states that we may treat superregular pairs as being complete
for the sake of embedding bounded degree spanning subgraphs (such as a perfect
H-tiling).

3. Proof of Theorem 1.7. We now give the full proof of Theorem 1.7. Recall
that r = χ(H) ≥ 3 and h = |V (H)|, and set σ := σ(H), a := σh and b := (1 −
σ)h/(r − 1). Then a, b, and σ are positive rational numbers with h = a + (r − 1)b
and σ ≤ 1

r (see (1)). If σ = 1
r , then χcr(H) = r by definition of χcr (see (2)), so

Theorem 1.1 gives the theorem in this case. We may therefore assume that σ < 1
r .

Since both σ and 1
r can be written as rationals with denominator rh it follows that

σ ≤ 1
r −

1
rh , so b− a ≥ 1

r−1 . Without loss of generality we assume that α is rational

and that α ≤ 1
rh . Introduce new constants n0, C,D,M, ε, ε′, β, d with

1
n0
� 1

C �
1
D �

1
M � ε� ε′ � β � d� α, 1r ,

1
h .

Let G be an r-partite graph whose vertex classes V1, . . . , Vr each have size n ≥ n0 and
which satisfies

δ∗(G) ≥
(

1− 1

χcr(H)
+ α

)
n

(2)
=

(
1− 1− σ

r − 1
+ α

)
n =

(
1− b

h

)
n+ αn.

We shall construct an H-tiling in G covering all but at most C vertices of G or, if
gcd(H) = 1 and h divides rn, a perfect H-tiling in G.

Define a′ := a + αh
2 and b′ := b − αh

2(r−1) , so a′ and b′ are rational numbers with

0 < a′ ≤ b′ (the latter inequality follows from our assumption that α ≤ 1
rh ) and

a′+(r−1)b′ = a+(r−1)b = h. Note also that 1− b′

h ≤ 1− b
h + α

2(r−1) ≤ 1− b
h + α

2 , so

(9) δ∗(G) ≥
(

1− b′

h

)
n+

αn

2
.

Step 1 (apply the regularity lemma and define the reduced graph R). We apply
the regularity lemma (Theorem 2.8) to G with r, ε, d, and M playing the same
role there as here to obtain integers ` and L, a spanning subgraph G′ of G, and a
partition of each Vi into clusters V 0

i , V
1
i , . . . , V

`
i which satisfy properties (P1)–(P5).

In particular, (P3) tells us that for any i ∈ [r] and j ∈ [`] the cluster V ji has size L,
so (1 − ε)n/` ≤ L ≤ n/`. We define the reduced graph R of G′ in a standard way:
the vertices of R are the clusters V ji for i ∈ [r] and j ∈ [`], and the edges of R are

those V ji V
j′

i′ for which there is at least one edge of G′ between V ji and V j
′

i′ . (Note

that (P5) then implies that the pair (V ji , V
j′

i′ ) is ε-regular with density at least d.)
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So R is r-partite with vertex classes of size `. Moreover, for any i 6= j, any vertex
v ∈ Vi has at least δ∗(G)− (d+ ε)n neighbors in Vj by (P4). By (P2) at most εn of
these neighbors are in V 0

j , so v has neighbors in at least 1
L · (δ

∗(G)− (d+ 2ε)n) of the

clusters V 1
j , . . . , V

`
j . Since L ≤ n/`, it follows from (9) that

(10) δ∗(R) ≥ `

n

((
1− b′

h

)
n+

αn

2
− (d+ 2ε)n

)
≥
(

1− b′

h

)
`.

Step 2 (obtain a perfect fractional (a′, b′)-weighted Kr-tiling T in R). This can
be done immediately by applying Lemma 2.2 to R. (Inequality (10) tells us that the
minimum degree condition is satisfied.) Let K+ be the set of (a′, b′)-weighted rooted
copies of Kr of nonzero weight in T , that is, K+ = {K ∈ Ka′,b′,r(R) : w(K) > 0}. Also
observe that R has r` ≤ rM vertices, so the number of possibilities for the reduced
graph R is bounded by a function of M . For each possible R, Lemma 2.2 would
give us a perfect fractional (a′, b′)-weighted Kr-tiling of R in which all weights are
rational (see Remark 2.3). So, as observed in section 3.2 from [17], there is a common
denominator, bounded by a function of M , of all weights used in our perfect fractional
(a′, b′)-weighted Kr-tilings for each possible reduced graph R. Since 1/D � 1/M , we
may assume that D! is a multiple of this common denominator, and therefore that
w(K)D! is an integer for any K ∈ K+. In particular, w(K) ≥ 1/D! for every K ∈ K+.

Step 3 (partition the clusters Ui into subclusters according to the fractional tiling
T ). For each i ∈ [r] and j ∈ [`] let K+

i,j consist of all members of K+ which contain

V ji . So each member of K+ appears in precisely r of the sets K+
i,j . Also, since T is

perfect, for any cluster V ji we have∑
K∈K+

w(K)1R({V ji }) · 1a′,b′,R(K) =
∑

K∈K+
i,j

w(K)1R({V ji }) · 1a′,b′,R(K) = 1.

Recall that 1a′,b′,R(K) is the vector where the entries are a at the coordinate corre-
sponding to the root, b at the other vertices ofK, and 0 otherwise. So we may partition
the cluster V ji into parts V ji (K) for K ∈ K+

i,j such that |V ji (K)| = w(K)L1R({V ji }) ·
1a′,b′,R(K); we refer to these parts as subclusters. Having partitioned each cluster in
this manner, for each K ∈ K+ we collect together the corresponding r parts V ij (K).
One of these parts (taken from the root of K) has size a′w(K)L, and we relabel
this subcluster as UK1 ; the remaining r − 1 parts have size b′w(K)L, and we relabel
these subclusters as UK2 , . . . , U

K
r . For each K ∈ K+ define mK

1 := a′w(K)L and
mK
i := b′w(K)L for 2 ≤ i ≤ r, so that each subcluster UKi has size mK

i .
We refer to the cluster from which a subcluster is taken as the parent cluster of

that subcluster. Moreover, we choose the partition into subclusters in such a way that
whenever UKi and UK

′

j are subclusters whose parent clusters form an edge of R, the

pair (UKi , U
K′

j ) is ε′-regular in G′ with density d(UKi , U
K′

j ) ≥ d/2. This is possible
since each subcluster has size at least a′w(K)L ≥ a′L/D!. Indeed, the random slicing
lemma (see, e.g., [17, Lemma 10]) states that the described event holds with high
probability if we choose the partition of each cluster uniformly at random.

For each K ∈ K+ let GK denote the subgraph of G′ induced by UK :=
⋃
i∈[r] U

K
i .

So GK is naturally r-partite with vertex classes UKi for i ∈ [r]. Furthermore, the
graphs GK for K ∈ K+ are vertex-disjoint and collectively cover all vertices of G
other than those in the sets V 0

i for i ∈ [r]. Over the next three steps of the proof
we will remove or delete some vertices from each subcluster UKi ; whenever we do so
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we continue to write UKi , UK and GK for the restriction of these sets/graphs to the
vertices which were not removed or deleted. Note, however, that we do not edit the
quantities mK

i , L, and n as vertices are removed or deleted.

Step 4 (remove some vertices to make each GK superregular). For each K ∈ K+

and i ∈ [r] we say that a vertex v ∈ UKi is bad if |NG′(v) ∩ UKj | < (d/2 − ε′)mK
j

for some j 6= i. By our choice of partition of clusters into subclusters, (UKi , U
K
j ) is

an ε′-regular pair in G′ with d(UKi , U
K
j ) ≥ d/2 for each j 6= i, so there are at most

(r − 1)ε′mK
i bad vertices in UKi . We now remove all bad vertices from UKi for each

K ∈ K+ and i ∈ [r].
Let the set X consist of all removed vertices and also the vertices of V 0

i for each
i ∈ [r], so |X| ≤ (r− 1)ε′n+ rεn ≤ rε′n, and the set X and subclusters UKi partition
V (G). Moreover, since all bad vertices were removed, for each K ∈ K+ and each i 6= j
the pair (UKi , U

K
j ) is now (2ε′, d/3)-superregular.

At this point we note that over the next two steps of the proof at most 2βmK
i +C

vertices will be deleted from each subcluster UKi , in addition to the at most (r−1)ε′mK
i

vertices removed during the current step. Since C ≤ 1
h ·

(1−ε)n
` · 1

D! ≤ a
′Lw(K) ≤ εmK

i ,

this means that in total at most 3βmK
i ≤ d

12m
K
i vertices are removed or deleted from

UKi , and so even after some or all of these deletions it will remain the case that
(S1) if W1 and W2 are subclusters whose parent clusters form an edge of R, then

(W1,W2) is a 2ε′-regular pair in G′ with density at least d/3,
(S2) for any K ∈ K+ and i 6= j the pair (UKi , U

K
j ) is (3ε′, d/4)-superregular in G′.

Step 5 (delete copies of H which cover all vertices of X). We now delete at most
|X| + r vertex-disjoint copies of H from G so that every vertex of X is deleted, at
most 2βmK

i vertices are deleted from any subcluster UKi , and also, if h divides rn,
so that the total number of undeleted vertices is divisible by rh. This can be done
greedily. Indeed, since in total we choose at most |X| + r ≤ 2rε′n copies of H, at
most 2rε′nh vertices are deleted in total.

Prior to any deletion, we “mask” any vertices in any subcluster UKi from which
at least βmK

i vertices (i.e., at least a β-proportion of the vertices) have previously
been deleted; there are then at most 2rε′nh/β ≤ βn vertices which lie in masked
subclusters. Together with the at most 2rε′nh ≤ βn vertices in copies of H already
deleted in this step, this means we must choose the next copy of H so as to avoid
at most 2βn vertices of G. So the restriction of G to the as-yet-undeleted vertices
of G has minimum multipartite degree at least r−2

r−1n + αn. (Recall from (2) that
χcr(H) > χ(H)− 1 = r − 1.) We may therefore select any as-yet-undeleted vertex v
and apply Proposition 2.7 to obtain a copy of H within this restriction which contains
v, which we then delete. While X remains nonempty we always choose v ∈ X, which
ensures that after at most |X| deletions every vertex of X will have been deleted.

If h does not divide rn we are, then done, so suppose now that h divides rn. We
continue as before, now choosing v at each step to be an arbitrary unmasked vertex.
Since each time we delete a copy of H we delete h vertices from G, the number of
undeleted vertices of G is always divisible by h, and so we can ensure that the number
of undeleted vertices of G is divisible by rh by deleting at most a further r− 1 copies
of H, as claimed. Finally, the fact that masked vertices cannot be deleted ensures
that at most βmK

i + h ≤ 2βmK
i vertices are deleted from any subcluster UKi , as

required.

Step 6 (delete vertices or copies of H from G to ensure divisibility of subcluster
sizes). For (i) of Theorem 1.7, in which we only wish to find an H-tiling covering
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all but at most C vertices of G, we now simply delete vertices of G individually so
that, following these deletions, the size of each subcluster is divisible by rh · gcd(H).
(The deleted vertices will not be covered by the H-tiling we construct.) Since we have
r` ≤ rM clusters, each of which was partitioned into at most D! subclusters, we can
achieve this by deleting at most rMD! · rh · gcd(H) ≤ C vertices. These are the only
vertices of G which will not be covered by the H-tiling we are constructing.

Now consider (ii), in which we assume that gcd(H) = 1 and that h divides rn. By
Proposition 2.4, we may choose an integer s for which the complete r-partite graph
U(H) with vertex classes Y1, Y2, . . . , Yr of sizes |Y1| = srh + 1, |Y2| = · · · = |Yr−1| =
srh, and |Yr| = srh − 1 admits a perfect H-tiling. Moreover, since s depends only
on H, and 1/M � 1/h, we may assume that s ≤ M . We now delete vertex-disjoint
copies of U(H) from G so that, following these deletions, the size of each subcluster is
divisible by rh (since U(H) admits a perfect H-tiling, deleting a copy of U(H) from
G is equivalent to deleting sr2 vertex-disjoint copies of H from G). We do this by
iterating the following steps.

If every subcluster has size divisible by rh, then we are done. Otherwise, since the
total number of undeleted vertices is divisible by rh, there must be two subclusters
W1 and W ′1 whose size is not divisible by rh. Let X1 and X ′1 be the parent clusters of
W1 and W ′1, respectively. Then by (10) and Proposition 2.5 we may choose clusters
X2, . . . , Xr and X ′2, . . . , X

′
r−1 such that {X1, X2, . . . , Xr} and {X ′1, X ′2 . . . , X ′r−1, Xr}

each induce copies of Kr in R. Arbitrarily choose subclusters W2, . . . ,Wr and W ′2, . . . ,
W ′r−1 such that Xi and X ′i are the parent clusters of Wi and W ′i , respectively. Now
let z ∈ [rh − 1] be such that |W1| ≡ z modulo rh. Greedily choose and delete z
vertex-disjoint copies of U(H) in G in which Yi is embedded to Wi for each i ∈ [r].
Having done so, greedily choose and delete a further z vertex-disjoint copies of U(H)
in G in which Y1 is embedded to Wr, Yr is embedded to W ′1, and Yi is embedded to
W ′i for each 2 ≤ i ≤ r−1. (We shall explain shortly why it is possible to choose copies
of U(H) in this way.) Then, modulo rh, the effect of these deletions is to reduce |W1|
by z, to increase |W ′1| by z, and to leave the size of all other subclusters unchanged.
So W1 now has size divisible by rh, and so the number of subclusters whose size is
not divisible by rh has been reduced by at least 1. At this point we proceed to the
next round of the iteration.

Since there are at most rMD! subclusters, this process terminates after at most
rMD! iterations, at which point each subcluster has size divisible by rh. In each
iteration we delete fewer than 2rh copies of |U(H)|, each of which has sr2h ≤
Mr2h vertices, so in total at most rMD! · 2rh ·Mr2h ≤ C vertices are deleted in
this step.

It remains only to explain why it is always possible to choose copies of U(H) as
desired. To see this, suppose that we have already deleted copies of U(H) covering up
to C vertices of G and that we next wish to choose and delete a copy of U(H) within
subclusters W1, . . . ,Wr whose parent clusters X1, . . . , Xr form a copy of Kr in R. It
follows from (S1) that at this point (Wi,Wj) is a 2ε′-regular pair in G′ of density at
least d/3 for each i 6= j. The fact that n ≥ n0 is sufficiently large implies that each
subcluster Wi is large enough to apply the counting lemma (see, e.g., [20]), which
guarantees that a copy of U(H) can be found in G′[

⋃
i∈[r]Wi] with vertex classes

embedded in the desired manner.
Observe that since at most 2βmK

i vertices were deleted from any subcluster UKi
in Step 5 and at most C vertices were deleted in total in this step, the total number
of vertices deleted from any subcluster is at most 2βmK

i +C ≤ 3βmK
i , justifying our

assertion at the end of Step 4.
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Step 7 (blow-up a perfect H-tiling in each GK). Consider any K ∈ K+. Recall
that prior to any removals or deletions each subcluster UKi had size mK

i , where mK
1 =

a′w(K)L and mK
i = b′w(K)L for 2 ≤ i ≤ r. Since then we have removed or deleted

at most 3βmK
i vertices (i.e., at most a 3β-proportion) from each UKi , so in particular

(since b′ ≥ a′) each subcluster UKi now has size at least mK
1 − 3βmK

1 . So if we

let ĜK denote the complete r-partite graph whose vertex classes are the subclusters
UK1 , . . . , U

K
r , then we now have

σ(ĜK) =
mini∈[r] |UKi |
|UK |

≥ mK
1 − 3βmK

1∑r
i=1m

K
i

≥ (1− 3β)a′w(K)L

(a′ + (r − 1)b′)w(K)L

= (1− 3β)
a′

h
≥ a

h
+
α

2
− 3β ≥ σ +

α

3
.

Also, we now have |UK | ≥ (1 − 3β)
∑r
i=1m

K
i ≥ mK

2 , so for any 2 ≤ i, j ≤ k we
have ||UKi | − |UKj || ≤ 3βmK

2 ≤ 3β|UK |. Since our deletions in Step 6 ensured that

rh · gcd(H) now divides |UKi | for each i ∈ [r], the graph ĜK satisfies the conditions
of Proposition 2.6 (with α/3, 3β, and |UK | in place of α, β, and n, respectively, with
the smallest subcluster UKi in place of V1, and the remaining subclusters in place of

V2, . . . , Vr). By this proposition ĜK contains a perfect H-tiling. Since by (S2) each
pair (UKi , U

K
j ) is (3ε′, d/4)-superregular in G′, the blow-up lemma (Theorem 2.9)

implies that there is also a perfect H-tiling MK in GK . Let M∗ be the H-tiling
in G consisting of all the copies of H which were deleted in Steps 5 and 6. Then
M := M∗ ∪

⋃
K∈K+ MK is an H-tiling in G which covers all vertices of G except the

at most C vertices deleted individually in Step 6, proving (i). For (ii) recall that in this
case no vertices were deleted individually in Step 6, so M is a perfect H-tiling in G.

4. Proof of Theorem 1.5. The proof of Theorem 1.5 is an immediate corollary
of Theorem 1.7. Indeed, fix 0 < ψ ≤ 1, and let H be a graph on h vertices with
χ(H) = r ≥ 3. Set k := χcr(H) and α := ψ

2rkh and take C and n0 large enough to
apply Theorem 1.7 and such that C ≤ αn0. Consider a balanced r-partite graph G
on rn vertices with δ∗(G) ≥ k−1

k n and n ≥ n0.
We construct an auxiliary graph G′ from G by adding the same number m of

dummy vertices to each vertex class, where m := 2kαn ≤ n. We make these dummy
vertices adjacent to every other vertex, except vertices in their own vertex class. As
a result, G′ is a balanced r-partite graph on rn′ vertices with n′ = n+m and

δ∗(G′) = δ∗(G) +m ≥ k − 1

k
n+m =

k − 1

k
(n+m) +

m

k

=
k − 1

k
n′ + 2αn ≥

(
k − 1

k
+ α

)
n′.

So we may apply Theorem 1.7(i) to G′ to obtain an H-tiling of G′ which covers all
but at most C vertices of G′. There are at most rm copies of H in this tiling that
contain a dummy vertex. We remove these copies of H to obtain an H-tiling of G
that covers all but at most rm(h− 1) + C ≤ 2rkα(h− 1)n+ αn ≤ ψn vertices of G.

5. Lower bound constructions. In this section we present simple construc-
tions which show that the minimum degree condition of Theorem 1.2 is best-possible
up to the error term. These are all variations of the following construction.

Construction 5.1. Let r, n, and nij for i, j ∈ [r] be positive integers with∑
j∈[r] nij = n for each i ∈ [r]. Choose pairwise-disjoint sets V ji with |V ji | = nij
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for each i, j ∈ [r]. Let G = G((nij), r) be the graph with vertex set
⋃
i,j∈[r] V

j
i and in

which the pairs (V ji , V
j′

i′ ) induce complete bipartite graphs whenever both i 6= i′ and

j 6= j′ (and no other edges exist). We refer to the sets V ji as blocks, to the sets

Vi :=
⋃
j∈[r] V

j
i as columns, and to the sets V j :=

⋃
i∈[r] V

j
i as rows. So each vertex

is adjacent to every other vertex which is not in the same row or column. Moreover
we view G as a balanced r-partite graph whose vertex classes are the columns Vi for
i ∈ [r], so each vertex class Vi has size |Vi| =

∑
j∈[r] nij = n. Observe that we then

have δ∗(G) = n−maxi,j∈[r] nij.

Consider any graph H on h vertices with χ(H) = r ≥ 3. Since each row of
G = G((nij), r) induces an independent set in G, each copy H ′ of H in G inherits an
r-coloring from G with colour classes V (H ′)∩V j for j ∈ [r]. It follows from this that
H ′ has at least σ(H)h vertices in each row V j ofG and that |V (H ′)∩V j |−|V (H ′)∩V j′ |
is divisible by gcd(H) for any j, j′ ∈ [r].

Suppose first that gcd(H) > 1 and fix any integer n. If r divides n, then set
n11 = n/r+1, n13 = n/r−1, and nij = n/r for each other pair i, j ∈ [r], and note that
we then have |V 1| − |V 2| = 1. Otherwise, set each nij to be equal to either bn/rc or
dn/re in such a way that

∑
j∈[r] nij = n for each i ∈ [r] but

∑
i∈[r] ni1−

∑
i∈[r] ni2 = 1;

the latter implies that |V 1| − |V 2| = 1. In either case we have δ∗(G) ≥ n − n
r − 1 =

(1− 1
χ∗(H) )n−1 but G has no perfect H-tiling. To see this, let T be an H-tiling in G.

We observed above that gcd(H) divides |V (H ′)∩V 1| − |V (H ′)∩V 2| for any H ′ ∈ T .
It follows that gcd(H) also divides |V (T ) ∩ V 1| − |V (T ) ∩ V 2|; since |V 1| − |V 2| = 1
and gcd(H) > 1 this implies that T is not perfect. This shows that Theorem 1.2 is
best-possible up to the αn error term for any H with gcd(H) > 1 and any n.

Now suppose instead that gcd(H) = 1, and fix any integer n. For each i ∈ [r] set
ni1 := dσ(H)ne−1 and take ni2, . . . , nir to be as equal as possible with

∑n
j=1 nj = n.

Then we have

δ∗(G) = n−
⌈
n− dσ(H)ne+ 1

r − 1

⌉
≥ n− n− σ(H)n

r − 1
− 1

=

(
1− 1− σ(H)

r − 1

)
n− 1 =

(
1− 1

χ∗(H)

)
n− 1.

However we observed above that any copy of H in G has at least σh vertices in the
row V 1, so any H-tiling in G has size at most

|V 1|
σ(H)h

=
r(dσ(H)ne − 1)

σ(H)h
<
rn

h
,

so it is not perfect. This shows that Theorem 1.2 is best-possible up to the αn error
term for any H with gcd(H) = 1 and any n.

6. Concluding remarks.

Comparison to nonpartite results. We note that Theorem 1.2 is strictly
stronger than the analogous result in the nonpartite setting. Indeed, let H be a graph
on h vertices with χ(H) = r ≥ 3, and letG be a balanced r-partite graph on rn vertices
with δ(G) ≥ (1−1/χ∗(H)+α)n, where n is large and h divides rn. We may arbitrarily
delete at most r copies of H from G so that the number of remaining vertices of G is
divisible by r, following which we partition the remaining vertices of G into r vertex
classes of equal size uniformly at random. A standard probabilistic argument shows
that with high probability we then have δ∗(G) ≥ (1 − 1/χ∗(H)) + αn/2, whereupon
we may apply Theorem 1.2 to obtain a perfect H-tiling in G.
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On the other hand, the (nonpartite) minimum degree of G as in Theorem 1.2 may
be as low as (r − 1)(1− 1/χ∗(H))rn < (1− 1/χ∗(H))rn, which is too small for us to
apply the analogous nonpartite result. Similar comments apply to Theorem 1.5.

The case where χ(H) 6= r. In a similar manner, one can extend Theorem 1.2
to the case where G has more vertex classes than H. Indeed, let H be a graph on h
vertices with χ(H) = r ≥ 3, and let G be a balanced k-partite graph on kn vertices
with δ(G) ≥ (1− 1/χ∗(H) + α)n, where n is large and divisible by k. If k < r, then
G does not contain even a single copy of H, while the case k = r is dealt with by
Theorem 1.2. If instead k > r, then we first delete a small number of copies of H
in G similarly as above, which allows us to assume that n is divisible by r. We then
partition each vertex class Vi of G uniformly at random into r parts V 1

i , . . . , V
r
i each

of size n/r. We then arrange these parts into k vertex-disjoint balanced r-partite
graphs G1, . . . , Gk, where V (G`) =

⋃
j∈[r] V

j
`+j (with addition taken modulo k). So

each G` has n vertices in total. Again a standard probabilistic argument shows that
with high probability each G` has δ∗(G`) ≥ (1−1/χ∗(H)+α/2)nr . Theorem 1.2 then
yields a perfect H-tiling in each G`, and together these tilings form a perfect H-tiling
in G.
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[18] R. Martin and E. Szemerédi, Quadripartite version of the Hajnal–Szemerédi theorem, Dis-
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