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Abstract The frequentist forward search yields a flexible and informative form of
robust regression. The device of fictitious observations provides a natural way to
include prior information in the search. However, this extension is not straightforward,
requiring weighted regression. Bayesian versions of forward plots are used to exhibit
the presence of multiple outliers in a data set from banking with 1903 observations
and nine explanatory variables which shows, in this case, the clear advantages from
including prior information in the forward search. Use of observation weights from
frequentist robust regression is shown to provide a simple general method for robust
Bayesian regression.

Keywords Consistency factor · Fictitious observation · Forward search · Graphical
methods · Outliers · Weighted regression
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1 Introduction

Frequentist methods for robust regression are increasingly studied and applied. The
foundations of robust statistical methods are presented in the books of Hampel et al.
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(1986), of Maronna et al. (2006) and of Huber and Ronchetti (2009). Book length
treatments of robust regression include Rousseeuw and Leroy (1987) and Atkinson
and Riani (2000). However, none of these methods includes prior information; they
can all be thought of as robust developments of least squares. The present paper
describes a procedure for robust regression incorporatingprior information, determines
its properties and illustrates its use in the analysis of a dataset with 1903 observations.

The purpose of the robust analysis is to detect outlying observations; these may
be isolated or form clusters, or indicate systematic departures from the fitted model.
Once the outliers have been downweighted or deleted, there remains a set of “clean”
data, in agreement with the fitted model. It is helpful to divide frequentist methods of
robust regression into three classes.

1. Hard (0,1) Trimming. In Least Trimmed Squares (LTS: Hampel 1975; Rousseeuw
1984) the amount of trimming of then observationswhen the number of parameters
in the full-rank model is p, is determined by the choice of the trimming parameter
h, [n/2] + [(p + 1)/2] ≤ h ≤ n, which is specified in advance. The LTS estimate
is intended to minimize the sum of squares of the residuals of h observations.
In Least Median of Squares (LMS: Rousseeuw 1984) the estimate minimizes the
median of h squared residuals.

2. Adaptive Hard Trimming. In the Forward Search (FS), the observations are again
hard trimmed, but the value of h is determined by the data, being found adaptively
by the search. Data analysis starts from a very robust fit to a few, carefully selected,
observations found by LMS or LTS with the minimum value of h. The number of
observations used in fitting then increases until all are included.

3. Soft Trimming (downweighting). M estimation and derived methods (Huber and
Ronchetti 2009). The intention is that observations near the centre of the distribu-
tion retain their value, but the function ρ, which determines the form of trimming,
ensures that increasingly remote observations have a weight that decreases with
distance from the centre.

We use the Forward Search as the basis for our proposedmethod of robust Bayesian
regression. Other methods, such as LTS, S or MM, included in the comparisons of
Riani et al. (2014c) of frequentist methods of robust regression, could also be extended
to provide robust procedures incorporating prior information. In Sect. 6 we briefly
indicate one method of doing this.

As we describe in more detail in the next section, the FS uses least squares to fit the
model to subsets ofm observations, chosen tohave them smallest squared residuals, the
subset size increasing during the search. The results of the FS are typically presented
through a forward plot of quantities of interest as a function of m. As a result, it is
possible to connect individual observations with changes in residuals and parameter
estimates, thus identifying outliers and systematic failures of the fitted model. (See
Atkinson et al. (2010) for a general survey of the FS,with discussion). In addition, since
the method is based on the repeated use of least squares, it is relatively straightforward
to introduce prior information into the search.

Whichever of the three forms of robust regression given above is used, the aim in
outlier detection is to obtain a “clean” set of data providing estimates of the parameters
uncorrupted by any outliers. Inclusion of outlying observations in the data subset used
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for parameter estimation can yield biased estimates of the parameters, making the
outliers seem less remote, a phenomenon called “masking”. The FS avoids masking
by the use, for as large a value of m as possible, of observations believed not to be
outlying. The complementary “backward” procedure starts with diagnostic measures
calculated fromall the data and thendeletes themost outlying. Theprocedure continues
until no further outliers are identified. Such procedures, described in the books of
Cook and Weisberg (1982) and Atkinson (1985), are prone to the effect of masking.
Illustrations of this effect for several different models are in Atkinson and Riani (2000)
and demonstrate the failure of the method to identify outliers. The Bayesian outlier
detection methods ofWest (1984) and Chaloner and Brant (1988) start from parameter
estimates from the full sample and so can also be expected to suffer from masking.

Although it is straightforward to introduce prior information into the FS, an inter-
esting technical problem arises in estimation of the error variance σ 2. Since the sample
estimate in the frequentist search comes from a set of order statistics of the residuals,
the estimate ofσ 2 has to be rescaled. In theBayesian search,we need to combine a prior
estimate with one obtained from such a set of order statistics from the subsample of
observations. This estimate has likewise to be rescaled before being combinedwith the
prior estimate of σ 2; parameter estimation then uses weighted least squares. A similar
calculation could be used to provide a version of least trimmed squares (Rousseeuw
1984) that incorporates prior information.Our focus throughout is on linear regression,
but our technique of representing prior information by fictitious observations can read-
ily be extended to more complicated models such as those based on ordinal regression
described in Croux et al. (2013) or for sparse regression (Hoffmann et al. 2015).

The paper is structured as follows. Notation and parameter estimation for Bayesian
regression are introduced in Sect. 2. Section 2.3 describes the introduction into the
FS of prior information in the form of fictitious observations, leading to a form of
weighted least squares which is central to our algorithm. We describe the Bayesian
FS in Sect. 3 and, in Sect. 4, use forward plots to elucidate the change in properties of
the search with variation of the amount of prior information. The example, in Sect. 5,
shows the effect of the outliers on parameter estimation and a strong contrast with the
frequentist analysis which indicated over twelve times as many outliers. In Sect. 6 a
comparison of the forward search with a weighted likelihood procedure (Agostinelli
2001) leads to a general method for the extension of robust frequentist regression
to include prior information. A simulation study in Sect. 7 compares the power of
frequentist and Bayesian procedures, both when the prior specification is correct and
when it is not. The paper concludes with a more general discussion in Sect. 8.

2 Parameter estimation

2.1 No prior information

We first, to establish notation, consider parameter estimation in the absence of prior
information, that is least squares.

In the regression model y = Xβ + ε, y is the n × 1 vector of responses, X is an
n × p full-rank matrix of known constants, with i th row xTi , and β is a vector of p
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unknown parameters. The normal theory assumptions are that the errors εi are i.i.d.
N (0, σ 2).

The least squares estimator of β is β̂. Then the vector of n least squares residuals
is e = y − ŷ = y − X β̂ = (I − H)y, where H = X (XTX)−1XT is the ‘hat’ matrix,
with diagonal elements hi and off-diagonal elements hi j . The residual mean square
estimator of σ 2 is s2 = eTe/(n − p) = ∑n

i=1 e
2
i /(n − p).

In order to detect outliers and departures from the fitted regression model, FS uses
least squares to fit themodel to subsets ofm observations. The subset is increased from
sizem tom+1 by forming the new subset from the observationswith them+1 smallest
squared residuals. For eachm (m0 ≤ m ≤ n−1), we use deletion residuals to test for
the presence of outliers. These tests require an estimate of σ 2. If we estimated σ 2 from
all n observations, the statisticswould have a t distribution on n−p degrees of freedom.
However, in the search we select the central m out of n observations to provide the
estimate s2(m), so that the variability is underestimated. To allow for estimation from
this truncated distribution, let the variance of the symmetrically truncated standard
normal distribution containing the central m/n portion of the full distribution be

c(m, n) = 1 − 2n

m
Φ−1

(
n + m

2n

)

φ

{

Φ−1
(
n + m

2n

)}

, (1)

where φ(.) and Φ(.) are, respectively, the standard normal density and c.d.f. See
Riani et al. (2009) for a derivation from the general method of Tallis (1963). We take
s2(m)/c(m, n) as our approximately unbiased estimate of variance. In the robustness
literature, the important quantity c(m, n) is called a consistency factor (Riani et al.
2014b; Johansen and Nielsen 2016).

2.2 The normal inverse-gamma prior distribution

We represent prior information using the conjugate prior for the normal theory
regression model leading to a normal prior distribution for β and an inverse-gamma
distribution for σ 2.

If the density of the gamma distribution G(a, b) is written

fG(x, a, b) = ba

Γ (a)
xa−1 exp(−bx),

G(a, b) has mean a/b and variance a/b2.
If X ∼ G(a, b), then Y = 1/X has an inverse-gamma distribution IG(a, b) with

density

f IG(x, a, b) = ba

Γ (a)
(1/x)a+1 exp(−b/x) (x > 0),

shape parameter a and scale parameter b. The mean (for a > 1) is b/(a − 1), and the
variance (for a > 2) is b2/(a − 1)2(a − 2).

Let the values of the parameters specifying the prior distribution be a0, b0, β0 and
R. Then the normal inverse-gamma conjugate family of prior distributions for β and
σ 2 has the form
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f (β, σ 2) ∝ (1/σ 2)a0+1+ p
2 exp

{

− (β − β0)
TR(β − β0)

2σ 2 − b0
σ 2

}

.

The marginal distribution of σ 2 is IG(a0, b0). Let τ = 1/σ 2. Then f (τ ) ∝
τ a0−1 exp(−b0τ), that is G(a0, b0). The prior distribution of β conditional on τ is
N {β0, (1/τ)R−1}.

2.3 Prior distribution from fictitious observations

The device of fictitious prior observations provides a convenient representation of this
conjugate prior information. We follow, for example, Chaloner and Brant (1988), who
are interested in outlier detection, and describe the parameter values of these prior
distributions in terms of n0 fictitious observations.

We start with σ 2. Let the estimate of σ 2 from the n0 fictitious observations be s20
on n0 − p degrees of freedom. Then in f (τ ),

a0 = ν0/2 = (n0 − p)/2 and b0 = ν0s
2
0/2 = S0/2,

where S0 is the residual sum of squares of the fictitious observations.
Prior information for the linear model is given as the scaled information matrix

R = XT
0 X0 and the prior mean β̂0 = R−1XT

0 y0. Then S0 = yT0 y0 − β̂T
0 Rβ̂0. Thus,

given n0 prior observations the parameters for the normal inverse-gamma prior may
readily be calculated.

2.4 Posterior distributions

The posterior distribution of β conditional on τ is N {β̂1, (1/τ)(R + XTX)−1} where

β̂1 = (R + XTX)−1(Rβ0 + XTy)

= (R + XTX)−1(Rβ0 + XTX β̂)

= (I − A)β0 + Aβ̂, (2)

and A = (R + XTX)−1XTX . The last expression shows that the posterior estimate
β̂1 is a matrix weighted average of the prior mean β0 and the classical OLS estimate
β̂, with weights I − A and A. If prior information is strong, the elements of R will
be large, and A will be small, so that the posterior mean gives most weight to the
prior mean. In the classical approach these weights are fixed, while with the forward
search, as the subset size grows, the weight assigned to A increases with m; we can
dynamically see how the estimate changes as the effect of the prior decreases.

The posterior distribution of τ is G(a1, b1) where

a1 = a + n/2 = (n0 + n − p)/2 and (3)

b1 =
{
(n0 − p)/τ0 + (y − Xβ1)

Ty + (β0 − β1)
TRβ0

}
/2. (4)
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The posterior distribution of σ 2 is IG(a1, b1). The posterior mean estimates of τ and
σ 2 are, respectively,

τ1 = a1/b1, and σ̃ 2
1 = b1/(a1 − 1). (5)

In our calculations, we take σ̂ 2
1 = 1/τ1 as the estimate of σ 2. Unless a1 is very small,

the difference between σ̂ 2
1 and σ̃ 2

1 is negligible.
The posterior marginal distribution of β is multivariate t with parameters

β̂1, (1/τ1){R + XTX}−1, n0 + n − p.

3 The Bayesian search

3.1 Parameter estimation

The posterior distributions of Sect. 2.4 arise from the combination of n0 prior obser-
vations, perhaps fictitious, and the n actual observations. In the FS we combine the n0
prior observationswith a carefully selectedm out of the n observations. The search pro-
ceeds from m = 0, when the fictitious observations provide the parameter values for
all n residuals from the data. It then continues with the fictitious observations always
included amongst those used for parameter estimation; their residuals are ignored in
the selection of successive subsets.

Asmentioned inSect. 1, there is one complication in this procedure. Then0 fictitious
observations are treated as a sample with population variance σ 2. However, the m
observations from the actual data are, as in Sect. 2.1, from a truncated distribution
of m out of n observations and so asymptotically have a variance c(m, n)σ 2. An
adjustment must be made before the two samples are combined. This becomes a
problem in weighted least squares (for example, Rao 1973, p. 230). Let y+ be the
(n0 +m) × 1 vector of responses from the fictitious observations and the subset, with
X+ the corresponding matrix of explanatory variables. The covariance matrix of the
independent observations is σ 2G, with G a diagonal matrix; the first n0 elements of
the diagonal of G equal one and the last m elements have the value c(m, n). The
information matrix for the n0 + m observations is

(X+TWX+)/σ 2 = {XT
0 X0 + X (m)TX (m)/c(m, n)}/σ 2, (6)

where W = G−1. In the least squares calculations, we need only to multiply the
elements of the sample values y(m) and X (m) by c(m, n)−1/2. However, care is
needed to obtain the correct expressions for leverages and variances of parameter
estimates.

Since, during the forward search, n in (3) is replaced by the subset size m, X and
y in (4) become y(m)/

√
c(m, n) and X (m)/

√
c(m, n), giving rise to posterior values

a1(m), b1(m), τ1(m) and σ̂ 2
1 (m).
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The estimate of β from n0 prior observations andm sample observations can, from
(6), be written

β̂1(m) = (X+TWX+)−1X+TWy+. (7)

In Sect. 2.3 β̂0 = R−1XT
0 y0, so that XT

0 y0 = XT
0 X0 β̂0. Then the estimate in (7) can

be written in full as

β̂1(m) = {XT
0 X0 + X (m)TX (m)/c(m, n)}−1{XT

0 y0 + X (m)Ty(m)/c(m, n)}
= {XT

0 X0 + X (m)TX (m)/c(m, n)}−1{XT
0 X0 β̂0 + X (m)Ty(m)/c(m, n)}.

(8)

3.2 Forward highest posterior density intervals

Inference about the parameters of the regression model comes from regions of highest
posterior density. These are calculated from the prior information and the subset at
size m. Let

V (m) = (X+TX+)−1 = {XT
0 X0 + X (m)TX (m)}−1, (9)

with ( j, j)th element Vj j (m). Likewise, the j-th element of β̂1(m), j = 1, 2, . . . , p
is denoted β̂1 j (m). Then

var β̂1 j (m) = σ̂ 2(m)Vj j (m).

The (1 − α)% highest posterior density (HPD) interval for β1 j is

β̂1 j (m) ± tν,1−α/2

√
σ̂ 2(m)Vj j ,

with tν,γ the γ% point of the t distribution on ν degrees of freedom. Here ν =
n0 + m − p.

The highest posterior density intervals for τ and σ 2 are, respectively, given by

[ga1(m),b1(m),α/2, ga1(m),b1(m),1−α/2] and [iga1(m),b1(m),α/2, iga1(m),b1(m),1−α/2],

where ga,b,γ and iga,b,γ are the γ% points of the G(a, b) and IG(a, b) distributions.

3.3 Outlier detection

We detect outliers using a form of deletion residual that includes the prior information.
Let S∗(m) be the subset of size m found by FS, for which the matrix of regressors
is X (m). Weighted least squares on this subset of observations (8) yields parameter
estimates β̂1(m) and σ̂ 2(m), an estimate of σ 2 on n0 + m − p degrees of freedom.
The residuals for all n observations, including those not in S∗(m), are

ei (m) = yi − xTi β̂1(m) (i = 1, . . . , n). (10)
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The search moves forward with the augmented subset S∗(m + 1) consisting of the
observations with them+1 smallest absolute values of ei (m). To start we takem0 = 0,
since the prior information specifies the values of β and σ 2.

To test for outliers, the deletion residuals are calculated for the n −m observations
not in S∗(m). These residuals are

ri (m) = yi − xTi β̂1(m)
√

σ̂ 2(m){1 + hi (m)} = ei (m)
√

σ̂ 2(m){1 + hi (m)} , (11)

where, from (8), the leverage hi (m) = xTi {XT
0 X0 + X (m)TX (m)/c(m, n)}−1xi . Let

the observation nearest to those forming S∗(m) be imin where

imin = arg min
i /∈S∗(m)

|ri (m)|.

To test whether observation imin is an outlier, we use the absolute value of theminimum
deletion residual

rimin(m) = eimin(m)
√

σ̂ 2(m){1 + himin(m)} , (12)

as a test statistic. If the absolute value of (12) is too large, the observation imin is
considered to be an outlier, as well as all other observations not in S∗(m).

3.4 Envelopes and multiple testing

A Bayesian FS through the data provides a set of n absolute minimum deletion resid-
uals. We require the null pointwise distribution of this set of values and find, for each
value of m, a numerical estimate of, for example, the 99% quantile of the distribution
of |rimin(m)|.

When used as the boundary of critical regions for outlier testing, these envelopes
have a pointwise size of 1%. Performing n tests of outlyingness of this size leads to
a procedure for the whole sample which has a size much greater than the pointwise
size. In order to obtain a procedure with a 1% samplewise size, we require a rule
which allows for the simple behaviour in which a few outliers enter at the end of
the search and the more complicated behaviour when there are many outliers which
may be apparent away from the end of the search. However, at the end of the search
such outliers may be masked and not evident. Our chosen rule achieves this by using
exceedances of several envelopes to give a “signal” that outliers may be present.

In cases of appreciable contamination, the signal may occur too early, indicating an
excessive number of outliers. This happens because of the way in which the envelopes
increase towards the end of the search.Accordingly,we check the sample size indicated
by the signal for outliers and then increase it, checking the 99% envelope for outliers as
the value ofn increases, a process knownas resuperimposition.Thenotation rmin(m, n)

indicates the dependence of this process on a series of values of n.
In the next section, where interest is in envelopes over the whole search, we find

selected percentage points of the null distribution of |rimin(m)|by simulation.However,
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in the data analyses of Sect. 5 the focus is on the detection of outliers in the second
half of the search. Here we use a procedure derived from the distribution of order
statistics to calculate the envelopes for the many values of rmin(m, n) required in the
resuperimposition of envelopes. Further details of the algorithm and its application to
the frequentist analysis of multivariate data are in Riani et al. (2009).

4 Prior information and simulation envelopes

We now illustrate the effect of prior information on the envelopes. Figure 1 shows the
results of 10,000 simulations of normally distributed observations from a regression
model with four variables and a constant (p = 5), the values of the explanatory vari-
ables having independent standard normal distributions. These envelopes are invariant
to the numerical values of β and σ 2. The left-hand panel shows 1, 50 and 99% sim-
ulation envelopes for weak prior information when n0 = 30 (and n = 500), along
with the envelopes in the absence of any prior information. As m increases the two
sets of envelopes become virtually indistinguishable, illustrating the irrelevance of this
amount of prior information for such large samples. On the other hand, the right-hand
panel keeps n = 500, but now n0 has the same value. There is again good agreement
between the two sets of envelopes towards the end of the search, especially for the
upper envelope.

In our example in Sect. 5, we not only look at outlier detection, but also at parameter
estimation. The left-hand panel of Fig. 2 shows empirical quantiles for the distribution
of β̂3(m) from 10,000 simulations when β3 = 0. Because of the symmetry of our
simulations, this is indistinguishable from the plots for the other parameters of the
linear model. The right-hand panel shows the forward plot of σ̂ 2(m), simulated with
σ 2 = 1. In this simulation the prior information, with n0 = 30, is small compared
with the sample information. In the forward plot for β̂3 the bands are initially wide, but
rapidly narrow, being symmetrical about the simulation value of zero. There are two

0 100 200 300 400 500
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1.5

2

2.5

3

3.5

4

4.5

Subset size m
0 100 200 300 400 500

1

1.5

2

2.5

3

3.5

4

4.5

Subset size m

Fig. 1 The effect of correct prior information on forward plots of envelopes of absolute Bayesian minimum
deletion residuals. Left-hand panel, weak prior information (n0 = 30; n = 500). Right-hand panel, strong
prior information (n0 = 500; n = 500), 10,000 simulations; 1, 50 and 99% empirical quantiles. Dashed
lines, without prior information; heavy lines, with prior information

123



A. C. Atkinson et al.
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Fig. 2 Distribution of parameter estimates when β3 = 0 and σ 2 = 1. Left-hand panel β̂3(m), right-hand
panel σ̂ 2(m); weak prior information (n0 = 30; n = 500). 1, 5, 50, 95 and 99% empirical quantiles
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Fig. 3 Distribution of parameter estimates. Left-hand panel β̂3(m), right-hand panel σ̂ 2(m); strong prior
information (n0 = 500; n = 500). 1, 5, 50, 95 and 99% empirical quantiles. Vertical scale the same as that
of Fig. 2

effects causing the initial rapid decrease in the width of the interval during the FS. The
first is under-estimation of σ 2 which, as the right-hand panel shows, has a minimum
value around 0.73. This under-estimation occurs because c(m, n) is an asymptotic
correction factor. Further correction is needed in finite samples. Pison et al. (2002) use
simulation to make such corrections in robust regression, but not for FS. The second
effect is again connected with the value of c(m, n), which is small for small m/n (for
example 0.00525 for 10%). Then, from (6), the earliest observations to enter the search
will have a strong effect on reducing var β̂(m).

The panels of Fig. 3 are for similar simulations, but now with n0 and n both 500.
The main differences from Fig. 2 are that the widths of the bands now decrease only
slightly with m and that the estimate of σ 2 is relatively close to one throughout the
search; the minimum value in this simulation is 0.97.

The widths of the intervals for β̂3(m) depend on the information matrices. If, as
here, the prior data and the observations come from the same population, the ratio of
the widths of the prior band to that at the end of the search is

√{(n0+n− p)/(n0− p)},
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Table 1 Bank profit data: prior estimates of parameters

Parameter β0 β1 β2 β3 β4 β5

Mean −0.5 9.1 0.001 0.0002 0.002 0.12

Parameter β6 β7 β8 β9 s20
Mean 0.0004 −0.0004 1.3 0.00004 10,000

here
√

(525/25), or approximately 4.58, for the results plotted in Fig. 2. In Fig. 3 the
ratio is virtually

√
2. This difference is clearly reflected in the figures.

5 Example: bank profit data

As an example of the application of the Bayesian FS, we now analyse data on the
profitability to an Italian bank of customers with a variety of profiles, as measured by
nine explanatory variables.

The data are the annual profit from 1903 customers, all of whom were selected by
the bank as the target for a specific campaign. The data are available in the FSDA
toolbox under the title BankProfit. The nine explanatory variables are either amounts
at a particular time point, or totals over the year. Together with the response they are:

• yi : annual profit or loss per customer;
• x1i : number of products bought by the customers;
• x2i : current account balance plus holding of bonds issued by the bank;
• x3i : holding of investments for which the bank acted as an agent;
• x4i : amount in deposit and savings accounts with the bank;
• x5i : number of activities in all accounts;
• x6i : total value of all transactions;
• x7i : total value of debit card spending (recorded with a negative sign);
• x8i : number of credit and debit cards;
• x9i : total value of credit card spending.

The prior values of the eleven parameters, directly supplied by the bank, are given
in Table 1. The values of n0 and a0 are 1500 and 745, appreciable compared to the
1903 observations; b0 = 7,450,000. The matrix R is 10 × 10 and is therefore only
given in the toolbox. Apart from the intercept and β7, all parameter values are positive.
However the values of x7 are recorded as negative values, so that profit is expected to
increase with large negative values of the variable.

The prior estimates of the parameters come from a non-robust analysis of earlier
data. The purpose of the present analysis is to see what are the most striking changes
in the importance of the variables for predicting profitability when a robust analysis
is used which removes masked outliers and their associated effects on parameter
estimates.

Figure 4 shows the forward plot of absolute Bayesian deletion residuals from m =
1700. There is a signal at m = 1763. However, the use of resuperimposition of
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Fig. 4 Bank profit data; forward plot of absolute Bayesian minimum deletion residuals. There is a signal
indicating outliers from m = 1763. Prior information as in Table 1

envelopes leads to the identification of 48 outliers; the signal occurs at a smaller value
of m than would be expected from the number of outliers finally identified.

Scatter plots of the data, showing the outliers, are in Fig. 5. The figure shows there
are eleven exceptionally profitable customers and three exceptionally unprofitable
ones. The data for these individuals should clearly be checked to determine whether
they appear so exceptional due to data errors. Otherwise, the observations mostly fall
in clusters or around lines, although further outliers are generated by anomalously
high values of some of the explanatory variables. The main exception is x4 where
the outliers show as a vertical line in the plot, distinct from the strip containing the
majority of the observations.

Figure 6 shows the forward plots of the HPD regions, together with 95 and 99%
envelopes. The horizontal lines indicate the prior values of the parameters and the
vertical line indicates the point at which outliers start to be included in the subset used
for parameter estimation.

These results show very clearly the effect of the outliers. In the left-hand part of
the panels and, indeed, in the earlier part of the search not included in the figure, the
parameter estimates are stable, inmost cases lying close to their prior values. However,
inclusion of the outliers causes changes in the estimates. Some, such as β̂1(m), β̂3(m)

and β̂7(m), move steadily in one direction. Others, such as β̂6(m) and β̂9(m), oscillate,
especially towards the very end of the search. The most dramatic change is in β̂4(m)

which goes from positive to negative as the vertical strip of outliers is included. From
a banking point of view, the most interesting results are those for the two parameters
with negative prior values. It might be expected that the intercept would be zero or
slightly negative. But β̂7(m) remains positive throughout the search, thus changing
understanding of the importance of x7, debit card spending. More generally important
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Fig. 5 Bank profit data; scatter plots of y against the nine x variables, indicating the outliers found by the
Bayesian FS. Outliers ◦, other observations +

is the appreciable increase in the estimate of σ 2. In the figure this has been truncated,
so that the stability of the estimate in the earlier part of the search is visible. However,
when all observations are used in fitting, the estimate has a value of 3.14e+04, as
opposed to a value close to 1.0e+04 for much of the outlier free search. Such a
large value renders inferences imprecise, with some loss of information. This shows
particularly clearly in the plots of those estimates less affected by outliers, such as
β̂0(m), β̂5(m) and β̂8(m).

The 95 and 99% HPD regions in Fig. 6 also provide information about the impor-
tance of the predictors in the model. In the absence of outliers, only the regions for
β̂0(m), β̂8(m) and β̂9(m) include zero, so that these terms might be dropped from the
model, although dropping one term might cause changes in the HPD regions for the
remaining variables. The effect of the outliers is to increase the seeming importance
of some other variables, such as x1 and x3. Only β̂4(m) shows a change of sign.

We do not make a detailed comparison with the frequentist forward search which
declares 586 observations as outliers. This apparent abundance of outliers is caused
by anomalously high values of some of the explanatory variables. Such high leverage
points can occasionally cause misleading fluctuations in the forward search trajectory
leading to early stopping. However, such behaviour can be detected by visual inspec-
tion of such plots as the frequentist version of Fig. 4. The Bayesian analysis provides
a stability in the procedure which avoids an unnecessary rejection of almost one third
of the data.
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Fig. 6 Bank profit data; forward plots of 95 and 99% HPD regions for the parameters of the linear model
and, bottom right-hand panel, the estimate of σ 2. The last part of the search fromm = 1700. The horizontal
lines correspond to prior values, the vertical line to the point at which outliers start to enter the subset

6 A comparison with weighted likelihood

6.1 Background

The fundamental output of a robust analysis is the weight attached to each observation.
In the forward search, the adaptively calculated weights have the values 0 and 1; in
the analysis of the bank profit data the weights from the forward search contain 48
zeroes.

Many other robust methods, such as MM- and S-estimation (Maronna et al. 2006),
downweight observations in a more smooth way, resulting in weights that have values
in [0,1]. As an example, we use the trimmed likelihood weights from the R package
wle (Agostinelli 2001). The calculation of these robust weights, which forms a first
stage of their Bayesian analysis, is described in Agostinelli and Greco (2013, §2).
Incorporation of prior information forms a second stage.

Once the output of a robust analysis is viewed as a set of weights, it is straightfor-
ward to incorporate prior information into the analysis using the results on parameter
estimation from Sect. 3.1. In particular, the posterior estimate of the vector of param-
eters in the linear model follows immediately from (8) as
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β̂1 = {XT
0 X0 + XTWRX}−1{XT

0 y0 + XTWRy} (13)

= {XT
0 X0 + XTWRX}−1{XT

0 X0 β̂0 + XTWRy},

where WR is the n × n diagonal matrix of robust weights.

6.2 Comparison of methods on the bank profit data

Observations with small robust weights are outliers. Agostinelli (2001) suggests a
threshold value of 0.5. For the bank profit data, we find 46 observations with weights
below 0.5, all of which are also found by the forward search. In the Bayesian analysis
using (13), we use the same prior as in the forward search and obtain parameter
estimates differing (apart from the last two variables) by no more than 1.3%. The
maximum difference is 17%.

The agreement between the two methods is not surprising in this example, where
virtually the same set of outliers is declared and the same prior distribution is used.
In other examples, such as the Boston housing data (Anglin and Gençay 1996), the
differences between the two analyses are greater than those for the bank profit data, but
not sufficient to change any conclusions drawn from the analysis of the data. Amongst
the comparisons of severalmethods for frequentist robust regressionpresentedbyRiani
et al. (2014a), we prefer the forward search because it adds to parameter estimation
the monitoring of inferential quantities during the search. As an example, Fig. 6 shows
the effect of the outliers which enter towards the end of the search on the HPD regions
for the parameters.

7 Power of Bayesian and frequentist procedures

The incorporation of correct prior information into the analysis of data leads to param-
eter estimates with higher precision than those based just on the sample. There is a
consequential increase in the power of tests about the values of the parameters and
in the detection of outliers. This section focuses on tests for outlier detection in the
presence of correctly and incorrectly specified priors.

We simulate normally distributed observations from a regression model with four
variables and a constant (p = 5), the values of the explanatory variables having inde-
pendent standard normal distributions. The simulation envelopes for the distribution
of the residuals are invariant to the numerical values of β and σ 2, so we take β0 = 0
and σ 2

0 = 1. The outliers were generated by adding a constant, in the range 0.5 to
seven, to a specified proportion of observations, and n0 was taken as 500. To increase
the power of our comparisons, the explanatory variables were generated once for each
simulation study.We calculated several measures of power, all of which gave a similar
pattern. Here we present results from 10,000 simulations on the average power, that
is the average proportion of contaminated observations correctly identified.

Figure 7 shows power curves for Bayesian and frequentist procedures and also for
Bayesian procedures with incorrectly specified priors when the contamination rate
is 5%. The curves do not cross for powers a little <0.2 and above. The procedure
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Fig. 7 Average power in the
presence and absence of prior
information: σ 2 = 1. Reading
across at a power of 0.6:
Bayesian, solid line; frequentist,
dashed line; wrong β0 = −1.5,
dashed line with circles; wrong
σ 2
0 = 3, dotted line; wrong

β0 = 1.5, dotted and dashed
line. Contamination 5%, 2000
simulations, strong prior
information; n0 = 500
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with highest power is the curve that is furthest to the left which, in the figure, is the
correctly specified Bayesian procedure. The next best is the frequentist one, ignoring
prior information. The central power curve is that in which the mean of β0 is wrongly
specified as−1.5. This is the most powerful procedure for small shifts, as the incorrect
prior is in the opposite direction to the positive quantity used to generate outliers. With
large shifts, this effect becomes less important. For most values of average power, the
curve formis-specifiedσ 2 comes next, with positivemis-specification ofβ worst. Over
these values, three of the four best procedures have power curves which are virtually
translated horizontally. However, the curve for mis-specified β has a rather different
shape at the lower end caused by the shape of the forward envelopes for minimum
deletion residuals. With β mis-specified, the envelopes for large m sometimes lie
slightly above the frequentist envelopes. The effect is to give occasional indication of
outliers for relatively small values of the shift generating the outliers.

In Fig. 8, for 30% contamination, the Bayesian procedure is appreciably more
powerful than the frequentist one, which is slightly less powerful than that with mis-
specified σ 2

0 . The rule for mis-specified β0 = 1.5 has the lowest power, appreciably
less than that in which β0 = −1.5. Although the curves cross over for shifts around
3.5, the Bayesian procedure with correctly specified prior has the best performance
until the shift is sufficiently small that the power is negligible.

8 Discussion

Data do contain outliers. Our Bayesian analysis of the bank profit data has revealed
46 outliers out of 1906 observations. Working backwards from a full fit using single
or multiple deletion statistics cannot be relied upon to detect such outliers. Robust
methods are essential.
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Fig. 8 Average power in the
presence and absence of prior
information: σ 2 = 1. Reading
across at a power of 0.6:
Bayesian, solid line; wrong
σ 2
0 = 3, dotted line; frequentist,

dashed line; wrong β0 = −1.5,
dashed line with circles; wrong
β0 = 1.5, dotted and dashed
line. Contamination 30%, 2000
simulations, strong prior
information; n0 = 500
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The results of Sect. 6 indicate how prior information may be introduced into a wide
class ofmethods for robust regression.However, in this paperwe have used the forward
search as the method of robust regression into which to introduce prior information.
There were two main reasons for this choice. One is that our comparisons with other
methods of robust regression showed the superiority of the frequentist forward search
in terms of power of outlier detection and the closeness of empirical power to the
nominal value. A minor advantage is the absence of adjustable parameters; it is not
necessary to choose trimming proportion or breakdown point a priori. A second, and
very important, advantage is that the structure of the searchmakes clear the relationship
between individual observations entering the search and changes in inferences. This
is illustrated in the final part of the plots of parameter estimates and HPD regions in
Fig. 6. The structure can also make evident divergencies between prior estimates and
the data in the initial part of the search.

A closely-related second application of the method of fictitious observations com-
bined with the FS would be to multivariate analysis. Atkinson et al. (2018) use the
frequentist FS for outlier detection and clustering of normally distributed data. The
extension to the inclusion of prior information can be expected to bring the advantages
of stability and inferential clarity we have seen here.

The advantage of prior information in stabilising inference in the bank profit data
is impressive; as we record, the frequentist analysis found 586 outliers. Since many
forms of data, for example the bank data, become available annually, statistical value
is certainly added by carrying forward, from year to year, the prior information found
from previous robust analyses.

Routines for the robust Bayesian regression described here are included in the
FSDA toolbox downloadable from http://fsda.jrc.ec.europa.eu/ or http://www.riani.
it/ MATLAB. Computation for our analysis of the bank profit data took <10 s on a
standard laptop computer. Since, from the expressions for parameter estimation and
inference in Sect. 3, the order of complexity of calculation is the same as that for the
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frequentist forward search, guidelines for computational time can be taken from Riani
et al. (2015).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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