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Asymptotic multipartite version of the Alon-Yuster
theorem

Ryan R. Martina,1, Jozef Skokanb

aDepartment of Mathematics, Iowa State University, Ames, Iowa 50011
bDepartment of Mathematics, London School of Economics, London, WC2A 2AE, UK and
Department of Mathematics, University of Illinois, 1409 W. Green Street, Urbana, IL 61801

Abstract

In this paper, we prove the asymptotic multipartite version of the Alon-Yuster
theorem, which is a generalization of the Hajnal-Szemerédi theorem: If k ≥ 3
is an integer, H is a k-colorable graph and γ > 0 is fixed, then, for every
sufficiently large n, where |V (H)| divides n, and for every balanced k-partite
graph G on kn vertices with each of its corresponding

(
k
2

)
bipartite subgraphs

having minimum degree at least (k − 1)n/k + γn, G has a subgraph consisting
of kn/|V (H)| vertex-disjoint copies of H.

The proof uses the Regularity method together with linear programming.

Keywords: tiling, Hajnal-Szemerédi, Alon-Yuster, multipartite, regularity,
linear programming
2010 AMS Subject Classification: 05C35, 05C70

1. Introduction

1.1. Motivation

One of the celebrated results of extremal graph theory is the theorem of
Hajnal and Szemerédi on tiling simple graphs with vertex-disjoint copies of a
given complete graph Kk on k vertices. Let G be a simple graph with vertex-set
V (G) and edge-set E(G). We denote by degG(v), or simply deg(v), the degree
of a vertex v ∈ V (G) and we denote by δ(G) the minimum degree of the graph
G. For a graph H such that |V (H)| divides |V (G)|, we say that G has a perfect
H-tiling (also a perfect H-factor or perfect H-packing) if there is a subgraph of
G that consists of |V (G)|/|V (H)| vertex-disjoint copies of H.

The theorem of Hajnal and Szemerédi can be then stated in the following
way:
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Theorem 1 (Hajnal, Szemerédi [10]). If G is a graph on n vertices, k | n,
and δ(G) ≥ (k − 1)n/k, then G has a perfect Kk-tiling.

The case of k = 3 was first proven by Corrádi and Hajnal [5] before the general
case. The original proof in [10] was relatively long and intricate. A shorter proof
was provided later by Kierstead and Kostochka [16]. Kierstead, Kostochka,
Mydlarz and Szemerédi [17] improved this proof and gave a fast algorithm for
finding Kk-tilings in n-vertex graphs with minimum degree at least (k− 1)n/k.

The question of finding a minimum-degree condition for the existence of a
perfect H-tiling in the case when H is not a clique and n obeys some divisibility
conditions was first considered by Alon and Yuster [1]:

Theorem 2 (Alon, Yuster [1]). Let H be an h-vertex graph with chromatic
number k and let γ > 0. If n is large enough, h | n and G is a graph on n
vertices with δ(G) ≥ (k − 1)n/k + γn, then G has a perfect H-tiling.

Komlós, Sárközy and Szemerédi [20] removed the γn term from the minimum
degree condition and replaced it with a constant that depends only on H.

Kühn and Osthus [23] determined that (1− 1/χ∗(H))n + C was the nec-
essary minimum degree to guarantee an H-tiling in an n-vertex graph for n
sufficiently large, and they also showed that this was best possible up to the
additive constant. The constant C = C(H) depends only on H and χ∗ is an
invariant related to the so-called critical chromatic number of H, which was
introduced by Komlós [18].

1.2. Background

In this paper, we consider the multipartite variant of Theorem 2. Before we
can state the problem, we need a few definitions.

Given a graph G, the blow-up of G by m, denoted by G(m), is the graph
obtained by replacing each vertex v ∈ V (G) with a set Uv of m vertices and
replacing every edge {v1, v2} ∈ E(G) with the complete bipartite graph Km,m

on vertex sets Uv1 and Uv2 .
A k-partite graph G = (V1, . . . , Vk;E) is balanced if |V1| = · · · = |Vk|. The

natural bipartite subgraphs of G are those induced by the pairs (Vi, Vj), and
which we denote by G[Vi, Vj ]. For a k-partite graph G = (V1, . . . , Vk;E), we

define the minimum bipartite degree, δ̂k(G), to be the smallest minimum degree
among all of the natural bipartite subgraphs of G, that is,

δ̂k(G) = min
1≤i<j≤k

δ(G[Vi, Vj ]).

Now we can state the conjecture that inspired this work, a slightly weaker
version of which appeared in [6].

Conjecture 3. Fix an integer k ≥ 3. If G is a balanced k-partite graph on kn
vertices such that δ̂k(G) ≥ (k − 1)n/k, then either G has a perfect Kk-tiling or
both k and n/k are odd integers and G is isomorphic to the fixed graph Γk,n.
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The exceptional graphs Γk,n, where n is an integer divisible by k, are due to
Catlin [3] who called them “type 2 graphs”. The graph Γk,k has vertex set
{hij : i, j ∈ {1, . . . , k}} and hij is adjacent to hi′j′ if i 6= i′ and either j = j′ ∈
{k − 1, k} or j 6= j′ and at least one of j, j′ is in {1, . . . , k − 2}. For n divisible
by k, the graph Γk,n is the blow-up graph Γk,k(n/k).

We notice that if G satisfies the minimum bipartite degree condition in Con-
jecture 3, then its minimum degree δ(G) can still be as small as (k−1)

(
k−1
k

)
n =(

k−1
k

)2
(kn), which is not enough to apply Theorem 1 directly.

The case of k = 2 of Conjecture 3 is an immediate corollary of the classical
matching theorem due to König [22] and Hall [11]. Fischer [8] observed that if

G is a balanced k-partite graph on kn vertices with δ̂k(G) ≥ (1− 1/2(k − 1))n,
then G has a perfect Kk-tiling.

Some partial results were obtained, for k = 3, by Johansson [13] and, for
k = 3, 4, by Fischer [8]. The case of k = 3 was settled for n sufficiently large
by Magyar and the first author [25], and the case of k = 4 was settled for n
sufficiently large by Szemerédi and the first author [26]. The results in [25, 26]
each have as a key lemma a variation of the results of Fischer. However, it
seems that such techniques are impossible for k ≥ 5. An interesting result
toward proving Conjecture 3 for general k is due to Csaba and Mydlarz [6] who

proved that if G is a balanced k-partite graph on kn vertices, δ̂k(G) ≥ qk
qk+1n and

n is large enough, then G has a perfect Kk-tiling. Here, qk := k− 3
2 + 1

2

k∑
i=1

1
i =

k +O(log k).
Recently, Keevash and Mycroft [14] proved that, for any γ > 0, if n is

large enough, then δ̂k(G) ≥ (k − 1)n/k + γn guarantees a perfect Kk-tiling in
a balanced k-partite graph G on kn vertices. Their result is a consequence of
a more general theorem on hypergraph matching, the proof of which uses the
hypergraph regularity method and a hypergraph version of the Blow-up Lemma.
Very shortly thereafter, Lo and Markström [24] proved the same result using
methods from linear programming and the so-called “absorbing method”. This
effort culminated in [15], in which Keevash and Mycroft proved Conjecture 3.

In this paper, we are interested in more general problem of tiling k-partite
balanced graphs by a fixed k-colorable graph H. More precisely, if H is a k-
colorable graph and n obeys certain natural divisibility conditions, we look for
a condition on δ̂k(G) to ensure that every balanced k-partite graph G on kn
vertices satisfying this condition has a perfect H-tiling.

Zhao [31] found that the minimum degree required to perfectly tile a bal-
anced bipartite graph on 2n vertices with copies of Kh,h (h divides n) is n/2 +
C(h), where C(h) differs sharply as to whether n/h is odd or even. Zhao and
the first author [27, 28] showed similar results for tiling with Kh,h,h. Hladký and
Schacht [12] and then Czygrinow and DeBiasio [7] improved the results of [31]
by finding the minimum degree for copies of Ks,t, where s+ t divides n. Bush
and Zhao [2] proved a Kühn-Osthus-type result by finding the asymptotically
best-possible minimum degree condition in a balanced bipartite graph on 2n
vertices in order to ensure its perfect H-tiling, for any bipartite H. All results
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are for n sufficiently large.

1.3. Main Result

We prove a multipartite version of the Alon-Yuster theorem (Theorem 2).
Let Kk

h denote a k-partite graph with h vertices in each partite set. For example,
the complete bipartite graph Kh,h would be denoted K2

h. Since the partite sets
can be rotated, it is easy to see that any k-chromatic graphH of order h perfectly
tiles the graph Kk

h . Hence, the following theorem gives a sufficient condition for
a perfect H-tiling.

Theorem 4. Fix an integer k ≥ 2, an integer h ≥ 1 and γ ∈ (0, 1). If n
is sufficiently large, divisible by h, and G is a balanced k-partite graph on kn
vertices with δ̂k(G) ≥

(
k−1
k + γ

)
n, then G has a perfect Kk

h-tiling.

Our proof relies on the regularity method for graphs and linear programming
and it differs from approaches in [14, 24].

1.4. Structure of the Paper

In Section 2, we prove a fractional version of the multipartite Hajnal-Szemerédi
theorem. This is the main tool in proving Theorem 4. Section 3 is the main
proof and Section 4 gives the proofs of the supporting lemmas. We finish with
Section 5, which has some concluding remarks.

2. Linear Programming

In this section, we shall prove a fractional version of Conjecture 3.

Definition 5. For any graph G, let Tk(G) denote the set of all copies of Kk in
G. The fractional Kk-tiling number τ∗k (G) is defined as:

τ∗k (G) = max
∑

T∈Tk(G)

w(T ) (1)

s.t.
∑

T ∈ Tk(G)
V (T ) 3 v

w(T ) ≤ 1, ∀v ∈ V (G),

w(T ) ≥ 0, ∀T ∈ Tk(G).

From the Duality Theorem of linear programming (see [29, Section 7.4]), we
obtain that

τ∗k (G) = min
∑

v∈V (G)

x(v) (2)

s.t.
∑

v∈V (T )

x(v) ≥ 1, ∀T ∈ Tk(G),

x(v) ≥ 0, ∀v ∈ V (G).
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Let w∗ be a function that achieves an optimal solution to (1). If there
exists a vertex v ∈ V (G) such that

∑
T∈Tk(G),V (T )3v w

∗(T ) < 1, then we call
v a slack vertex or just say that v is slack. Similarly, if x∗ is a function that
achieves an optimal solution to (2) and there exists a T ∈ Tk(G) such that∑
v∈V (T ) x

∗(v) > 1, then we say that T is slack.

Remark 6. Consider an optimal solution to (1), call it w∗. We may assume
that w∗(T ) is rational for each T ∈ Tk(G). To see this, observe that the set
of feasible solutions is a polyhedron for which each vertex is the solution to a
system of equations that result from setting a subset of the constraints of the
program (1) to equality. (For more details, see [4, Theorem 18.1].) Since the
objective function achieves its maximum at such a vertex (See [9, Section 3.2].)
we may choose an optimal solution w∗(T ) with rational entries.

Now we can state and prove a fractional version of the multipartite Hajnal-
Szemerédi Theorem.

Theorem 7. Let k ≥ 2. If G is a balanced k-partite graph on kn vertices such
that δ̂k(G) ≥ (k − 1)n/k, then τ∗k (G) = n.

Proof. Setting x(v) = 1/k for all vertices v ∈ V (G) gives a feasible solution
x to (2), and so τ∗k (G) ≤

∑
v∈V (G)

x(v) = n. We establish that τ∗k (G) ≥ n by

induction on k.

Base Case. k = 2. This case follows from the fact that Hall’s matching con-
dition implies that a balanced bipartite graph on 2n vertices with minimum
degree at least n/2 has a perfect matching. Setting w(e) equal to 1 if edge e is
in the matching and equal to 0 otherwise, gives a feasible solution to (1), thus
establishing that τ∗2 (G) ≥ n.

Induction step. k ≥ 3. Now we assume k ≥ 3 and suppose, for any balanced
(k− 1)-partite graph G′ on a total of (k− 1)n′ vertices with δ̂k−1(G′) ≥ k−2

k−1n
′,

that τ∗k−1(G′) ≥ n′.
Let w∗ be an optimal solution to (1). Let x∗ be an optimal solution cor-

responding to (2) such that x∗(z) = 0 whenever vertex z is slack. This is
guaranteed by the Complementary Slackness Theorem [29, Section 7.9]. Denote
by S the set of slack vertices, and, for i ∈ [k], set Si = S ∩ Vi. If some Si = ∅,
then Vi having no slack vertices gives that

∑
T3v w

∗(T ) = 1 for each v ∈ Vi.
Since each T ∈ Tk(G) has exactly one vertex in Vk(G), then τ∗k (G) = n. Hence,
we may assume that every Si is non-empty.

Denote [k] := {1, . . . , k}. For every i ∈ [k], fix some zi ∈ Si, choose exactly
n′ :=

⌈
k−1
k n

⌉
neighbors of zi in each Vj , j ∈ [k] − {i}, and denote by Gi the

subgraph of G induced on these (k − 1)n′ neighbors.
Observe that the set of weights {x∗(v) : v ∈ V (Gi)} must be a feasible

solution to the minimization problem (2) defined by the (k−1)-partite graph Gi.
This is because every copy of Kk−1 in Gi extends to a copy of Kk in G containing
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the vertex zi and the sum of the weights of the vertices on that Kk−1 must be
at least 1 because x∗(zi) = 0. Hence, we have that

∑
v∈V (Gi)

x∗(v) ≥ τ∗k−1(Gi).

Each vertex of Gi has at most n− n′ neighbors outside of V (Gi) in each of
its classes. Thus,

δ̂k−1(Gi) ≥ n′ − (n− n′) =
k − 2

k − 1
n′ +

(
k

k − 1
n′ − n

)
≥ k − 2

k − 1
n′.

So, for every i, we may apply the inductive hypothesis to Gi and conclude that
τ∗k−1(Gi) = n′.

Combining the previous two observations with the fact that each vertex v is
in at most k − 1 of the subgraphs Gi, we get

(k − 1)τ∗k (G) = (k − 1)
∑

v∈V (G)

x∗(v) ≥
k∑
i=1

∑
v∈V (Gi)

x∗(v) ≥
k∑
i=1

τ∗k−1(Gi) = kn′.

So, τ∗k (G) ≥ k
k−1n

′ = k
k−1

⌈
k−1
k n

⌉
≥ n. This concludes the proof of Theo-

rem 7. �

3. Proof of Theorem 4

First, we will have a sequence of constants and the notation a � b means
that the constant b is sufficiently small compared to a. We fix k ≥ 2 and h ≥ 1
and let

min{k−1, h−1, γ} � d� ε′ � ζ � n−1, (3)

We have an additional parameter ε and specify that ε = (ε′)5/16.

3.1. Applying the Regularity Lemma

We are going to use a variant of Szemerédi’s Regularity Lemma. Before we
can state it, we need a few basic definitions. If G is a graph with S ⊂ V (G) and
x ∈ V (G), then degG(x, S) (or deg(x, S) if G is understood) denotes |N(x)∩S|.

For disjoint vertex sets A and B in some graph, let e(A,B) denote the
number of edges with one endpoint in A and the other in B. Further, let the
density of the pair (A,B) be d(A,B) = e(A,B)/|A||B|. The pair (A,B) is ε-
regular if X ⊆ A, Y ⊆ B, |X| ≥ ε|A| and |Y | ≥ ε|B| imply |d(X,Y )−d(A,B)| ≤
ε.

We say that a pair (A,B) is (ε, δ)-super-regular if it is ε-regular and deg(a,B) ≥
δ|B| for all a ∈ A and deg(b, A) ≥ δ|A| for all b ∈ B.

The degree form of Szemerédi’s Regularity Lemma (see, for instance, [21])
is sufficient here, modified for the multipartite setting.
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Theorem 8. For every integer k ≥ 2 and every ε > 0, there is an M =
M(k, ε) such that if G = (V1, . . . , Vk;E) is a balanced k-partite graph on kn
vertices and d ∈ [0, 1] is any real number, then there is an integer `, a sub-
graph G′ = (V1, . . . , Vk;E′) and, for i = 1, . . . , k, partitions of Vi into clusters

V
(0)
i , V

(1)
i , . . . , V

(`)
i with the following properties:

(P1) dε−1e ≤ ` ≤M ,

(P2) |V (0)
i | ≤ εn for i ∈ [`],

(P3) |V (j)
i | = L ≤ εn for i ∈ [k] and j ∈ [`],

(P4) degG′(v, Vi′) > degG(v, Vi′)− (d+ ε)n for all v ∈ Vi, i 6= i′, and

(P5) all pairs (V
(j)
i , V

(j′)
i′ ), i, i′ ∈ [k], i 6= i′, j, j′ ∈ [`], are ε-regular in G′, each

with density either 0 or exceeding d.

We omit the proof of Theorem 8, which follows from the proof given in [30].

Given a balanced k-partite graphG on kn vertices with δ̂k(G) ≥
(
k−1
k + γ

)
n,

and given d and ε, we construct the reduced graph Gr on k` vertices correspond-

ing to the clusters V
(j)
i , 1 ≤ i ≤ k, 1 ≤ j ≤ `, obtained from Theorem 8. Each

edge of Gr corresponds to an ε-regular pair with density at least d in G′. Ob-
serve that Gr is k-partite and balanced. Lemma 9 shows that Gr has a similar
minimum-degree condition to that of G.

Lemma 9. Let G be a balanced k-partite graph G on kn vertices with δ̂k(G) ≥(
k−1
k + γ

)
n. Then, for the reduced graph Gr defined as above, we have δ̂k(Gr) ≥(

k−1
k + γ − ((k + 2)ε+ d)

)
`. Furthermore, if (k + 2)ε+ d ≤ γ/2, then

δ̂k(Gr) ≥
(
k − 1

k
+ γ/2

)
`.

The proof of Lemma 9 is immediate (see [6]).

3.2. Partitioning the clusters

We first apply the fractional version of the k-partite Hajnal-Szemerédi The-
orem (Theorem 7) to Gr and obtain that the value of τ∗k (Gr) is equal to `.
Consider a corresponding optimal solution w∗ to the linear program (1) as it is
applied to Gr. By Remark 6, we may fix a corresponding solution w∗(T ) that is
rational for every T ∈ Tk(Gr). We will call this w∗ a rational-entry solution for
Gr and denote by D(Gr) the common denominator of all of the entries of w∗.

Since the linear program (1) depends only on Gr and the number of such
reduced graphs is only dependent on M(k, ε), the number of possible linear
programs is only dependent only on k and ε. For each possible linear program
we fix one rational-entry solution.
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Therefore, the least common multiple of all of the common denominators
D(Gr) for these reduced graphs is a function only of k and ε. Call itD = D(k, ε).
In sum, D has the property that for every reduced graph Gr, there is a rational-
entry solution w∗ of the linear program (1) such that D ·w∗(T ) is an integer for
every T ∈ Tk(Gr).

The next step is to partition, uniformly at random, each set V
(j)
i into D

parts of size hbL/(Dh)c as well as a single (possibly empty) set of size L −
DhbL/(Dh)c < Dh. The vertices of the latter set of less than Dh vertices will

be added to the corresponding leftover set, V
(0)
i . The resulting leftover set Ṽ

(0)
i

has size less than εn+Dh` < 2εn.
Thus, for L′ = hbL/(Dh)c, we obtain k(D`) clusters Ṽ

(j)
i , i ∈ [k], j ∈ [D`],

such that each of them has size exactly L′. This new partition has the following
properties:

(P1′) `′ = D`,

(P2′) |Ṽ (0)
i | ≤ 2εn for i ∈ [k],

(P3′) |Ṽ (j)
i | = L′ = hbL/(Dh)c for i ∈ [k] and j ∈ [`′],

(P4′) degG′(v, Vi′) > degG(v, Vi′)− (d+ ε)n for all i, i′ ∈ [k], i 6= i′, v ∈ Vi and

Now we prove that a property similar to property (P5) holds.

(P5′) all pairs (Ṽ
(j)
i , Ṽ

(j′)
i′ ), i, i′ ∈ [k], i 6= i′, j, j′ ∈ [`′] are ε′-regular in G′, each

with density either 0 or exceeding d′ := d− ε.

Recall from (3) that ε = (ε′)5/16 and, consequently, ε′ = (16ε)1/5.
The upcoming Lemma 10, a slight modification of a similar lemma by Csaba

and Mydlarz [6, Lemma 14], implies that, in fact, (P5′) holds with probability
going to 1 as n→∞. The proof follows easily from theirs and so we omit it.

Lemma 10 (Random Slicing Lemma). Let 0 < d < 1, 0 < ε < min{d/4, (1−
d)/4, 1/9} and D be a positive integer. There exists a C = C(ε,D) > 0 such
that the following holds: Let (X,Y ) be an ε-regular pair of density d with
|X| = |Y | = DL′. If X and Y are randomly partitioned into sets A1, . . . , AD,
and B1, . . . , BD, respectively, each of size L′, then, with probability at least
1− exp{−C ·DL′}, all pairs (Ai, Bj) are (16ε)1/5-regular with density at least
d− ε.

Using Lemma 10, the property (P5′) holds with probability at least 1 −(
k
2

)
`2 exp{−CDL′} = 1 −

(
k
2

)
`2 exp{−O(L)}. Since ` ≤ M = M(k, ε) and

L ≥ n(1− ε)/M , then for every sufficiently large n, a partition satisfying (P1′)-
(P5′) exists (with high probability). We fix a partition that satisfies (P1′)-(P5′).

The sets Ṽ
(j)
j are called sub-clusters.

To understand this new partition, we define its reduced graph G′r with vertex

set
⋃k
i=1{u

(1)
i , . . . , u

(`′)
i }. The vertex u

(j)
i corresponds to the cluster Ṽ

(j)
i . The

8



vertices u
(j)
i and u

(j′)
i′ are adjacent in G′r if and only if the pair (Ṽ

(j)
i , Ṽ

(j′)
i′ )

is ε′-regular with density at least d′. The graph G′r clearly has the following
properties:

• G′r is k-partite and balanced on k`′ vertices. We denote its partite sets

U ′i = {u(1)i , . . . , u
(`′)
i }, i ∈ [k].

• δ̂k(G′r) ≥
(
k−1
k + γ/2

)
`′.

The usefulness of G′r is that it has a Kk-tiling, which is derived from the
fractional Kk-tiling of Gr:

Fact 11. The reduced graph G′r has a perfect Kk-tiling.

Proof of Fact 11. Observe first that, by (P5) and (P5′), G′r is simply the
blow-up graph Gr(D). Let w∗ be the previously-chosen rational-valued solution
to the linear program (1) as applied to Gr.

Consider some T ∈ Tk(Gr) with vertices {v1, . . . , vk}. Observe that, by the
definition of D, Dw∗(T ) is an integer. Then, we take Dw∗(T ) of the vertices
from Uv1 , Dw∗(T ) of the vertices from Uv2 and so on until taking Dw∗(T ) of
the vertices from Uvk . This selection produces Dw∗(T ) vertex-disjoint copies of
Kk in G′r.

By the constraint inequalities in (1), the total number of vertices used from
Uv is ∑

T∈Tk(Gr),V (T )3v

Dw∗(T ) ≤ D = |Uv|,

hence the process never fails. The total number of vertex-disjoint Kk-s that are
created in this way is

∑
T∈Tk(Gr)

Dw∗(T ) = D` = `′. This uses each of the k`′

vertices of G′r. �

Since G′r has a perfect tiling, we may re-index its vertices so that vertices
of G′r (the vertices of G′r correspond to the sub-clusters of G) with the same
upper-index are in the same copy of the tiling from Fact 11. More precisely,

• for j = 1, . . . , `′, the k-tuple (u
(j)
1 , . . . , u

(j)
k ) forms a Kk in G′r. We refer to

the k-tuples (Ṽ
(j)
1 , . . . , Ṽ

(j)
k ) as columns.2

3.3. Making the cliques super-regular

In preparation for using the Blow-up Lemma (Lemma 18 below), we need

to make each k-tuple (Ṽ
(j)
1 , . . . , Ṽ

(j)
k ), j ∈ [`′], pairwise super-regular by placing

some vertices from the corresponding sub-clusters into the respective leftover
set. This is easy to do by a simple fact which is proven in Section 4:

2We visualize the vertex sets Vi as being horizontal, like rows in a matrix, so it is natural
to think of these k-tuples as columns.
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Fact 12. Let ε′ > 0 and ε′ < d′/(2k + 2). Let (A1, . . . , Ak) be a k-tuple that is
pairwise ε′-regular of density at least d′ with |A1| = · · · = |Ak| = L′. There exist
subsets A′i ⊂ Ai for i ∈ [k] such that |Ai| = hd(1− (k−1)ε′)L′/he and each pair
of (A′1, . . . , A

′
k) is (2ε′, d′ − kε′)-super-regular (with density at least d′ − ε′).

Fact 12 follows from well-known properties of regular pairs. We apply it to

each k-tuple (Ṽ
(j)
1 , . . . , Ṽ

(j)
k ), j ∈ [`′]. We do not rename the sets Ṽ

(j)
i since

they only shrink in magnitude only by (k − 1)ε′L′. Consequently,

• the leftover sets Ṽ
(0)
i , 1 ≤ i ≤ k, are of size at most 2εn+ (k − 1)ε′L′`′ <

kε′n,

• each pair (Ṽ
(j)
i , Ṽ

(j)
i′ ), i 6= i′, is (2ε′, d′/2)-super-regular, and

• each pair (Ṽ
(j)
i , Ṽ

(j′)
i′ ) is 2ε′-regular with density either 0 or at least d′−ε′,

regardless of whether or not j = j′.

If we use the Blow-up Lemma (Lemma 18) at this point, we would obtain
a Kk

h-tiling that covers every vertex of G except those in the leftover sets. The
remainder of the proof is to establish that we can, in fact, ensure that the leftover
vertices can be absorbed by the sub-clusters and we can obtain a Kk

h-tiling that
covers all the vertices of G.

3.4. Preparing for absorption

In order to absorb the vertices from the leftover sets, we need to prepare
some copies of Kk

h throughout G that may be included in the final Kk
h-tiling.

Their purpose is to ensure that, after inserting vertices from the leftover sets
to the sub-clusters, the number of vertices in each of the sub-clusters can be
balanced so that the Blow-up Lemma (Lemma 18) can be used. These copies
of Kk

h will be specially designated and colored either red or blue according to
their role.

The Reachability Lemma (Lemma 13) is how we transfer the imbalance of
the sizes of one column to the first column.

Lemma 13 (Reachability Lemma). Let G′r be a balanced k-partite graph

with partite sets U ′i = {u(j)i : j ∈ [`′]}, i ∈ [k]. Let δ̂k(G′r) ≥ k−1
k `′ + 2.

Then, for each i ∈ [k] and j ∈ {2, . . . , `′}, there is a pair (T1, T2) of copies of

Kk such that their symmetric difference is {u(1)i , u
(j)
i } and T1 and T2 contain

no additional vertices from {u(1)1 , . . . , u
(1)
k , u

(j)
1 , . . . , u

(j)
k }. See Figure 3.4.

Proof of Lemma 13. Without loss of generality, it suffices to prove the lemma

for i = 1 and j = `′. The vertices u
(1)
1 and u

(`′)
1 have at least `′−2(`′− δ̂k(G′r)) ≥

`′ − 2
(
`′ − k−1

k `′ − 2
)

=
(
k−2
k

)
`′ + 4 common neighbors in each of U ′2, . . . , U

′
k.

Hence, one can choose a sequence w2, . . . , wk of vertices so that, for i = 2, . . . , k,

10
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1
TT (j)

(j)

(j)

(1)

(1)

(1)

k

2

. .
 .

2

. .
 .

. .
 .

u

u

u u

u

u
1

2

k

1

Figure 1: Diagram for T1 and T2 formed in reaching u
(1)
1 from u

(j)
1 .

wi is in U ′i − {u
(1)
i , u

(`′)
i } and is a common neighbor of u

(1)
1 , u

(`′)
1 , w2, . . . , wi−1.

Note that at each stage, the number of available choices for wi is at least(
k − 2

k
`′ + 4

)
− (i− 2)

(
`′ − k − 1

k
`′ − 2

)
− 2 =

k − i
k

`′ + 2i− 2.

This quantity is positive since 1 ≤ i ≤ k and k ≥ 2. �
In preparation to insert the vertices, we create a set of special vertex-disjoint

copies of Kk
h .

Lemma 14. There exist disjoint sets Xi(j) ⊂ Ṽ (1)
i , i ∈ [k], j ∈ [`′]−{1}, such

that for every i ∈ [k], j ∈ [`′]− {1}:

(1) |Xi(j)| = 3hζn.

(2) For every v ∈ Xi(j), there exist two vertex-disjoint copies of Kk
h , call them

R(v) and B(v), such that

(i) R(v) contains v,

(ii) R(v) contains h − 1 vertices from Ṽ
(j)
i and B(v) contains h vertices

from Ṽ
(j)
i , and

(iii) for every i′ 6= i, there exists a j′ 6∈ {1, j} such that both R(v) and B(v)

each have h vertices from Ṽ
(j′)
i′ .

(3) The 2|Xi(j)| copies of Kk
h , namely R(v) and B(v) for all v ∈ Xi(j), are all

pairwise-disjoint.

Proof of Lemma 14. The proof will proceed as follows: We will have some
arbitrary order on the pairs {(i, j) : i ∈ [k], j ∈ [`′]− {1}} and dynamically de-
fine

X =
⋃

(i′,j′)≺(i,j)

⋃
v∈Xi′ (j

′)

(V (R(v)) ∪ V (B(v))) .

11



That is, X is the set of all vertices belonging to a R(v) or a B(v) for all (i′, j′)
that precede the current (i, j).

We will show that, for all v ∈ X(j)
i the vertex-disjoint R(v) and B(v) can be

found among vertices not in X, as long as |X| ≤ ζ1/2L′.
Fix i ∈ [k] and j ∈ [`′]. Let (T1, T2) be a pair of Kk-s in G′r from Lemma 13

for these values of i and j. Consider the subgraph F of G′ induced on the sub-

clusters Ṽ
(j′)
i′ such that u

(j′)
i′ form V (T2). Since T2 is a Kk in the reduced graph

G′r, every pair of sub-clusters in this subgraph is ε′-regular with density at least

d′. Since |X| ≤ ζ1/2L′, |Ṽ (j′)
i′ −X| ≥ 1

2 |Ṽ
(j′)
i′ | and it follows from the definition

of regularity that each pair of sub-clusters of F −X is 2ε′-regular with density
at least d′ − ε′. By the Key Lemma (Lemma 2.1 from [21]), F −X contains at
least 3hζn vertex-disjoint copies of Kk

h as long as 3hζn� ε′L′. This is satisfied
because

3hζn
(P2′)

≤ 3hζ
`′L′

1− 2ε
≤ 4hζ`′L′ = 4hζ`DL′ ≤ 4hζMDL′

(3)
� ε′L′.

In the above inequality, we use the fact that `′ = ` ·D ≤ M ·D and M and D
depend only on k and ε. In addition, ζ � ε. We refer to these 3hζn copies of
Kk
h as blue copies of Kk

h and we add their vertices to X.
In a similar fashion, let F now be the graph induced on the sub-clusters

Ṽ
(j′)
i′ such that u

(j′)
i′ is in V (T1) ∪ V (T2). The graph F − X also satisfies the

assumptions of the Key Lemma and therefore we can find 3hζn copies of Kk
h

in such a way that each copy has one vertex in Ṽ
(1)
i −X and h− 1 vertices in

Ṽ
(j)
i −X. The remaining vertices of Kk

h are in the sub-clusters of V (T1)∩V (T2).
We refer to these 3hζn copies of Kk

h as red copies of Kk
h and add their vertices

to X. For each red copy of Kk
h , we put its unique vertex in V

(1)
i into Xi(j) and

call this copy R(v). For each v ∈ Xi(j), let B(v) be a distinct blue copy of Kk
h

as found above.
For this process to work, we need to ensure that |X| ≤ ζ1/2L′ at each

step. This is true because each member of each Xi(j) corresponds to two Kk
h-

s which have a total of 2hk vertices and, hence, |X| ≤ 2hk
∑
i

∑
j |Xi(j)| =

2hk(k`′) · (3hζn) = 6h2k2`′ζn� ζ1/2L′. �
We color the vertices of each R(v) red and the vertices of each B(v) blue.

3.5. Nearly-equalizing the sizes of the sub-clusters

Let us summarize where we are: We have a designated first column (we
call the first column the receptacle column and its sub-clusters receptacle sub-
clusters) with each sub-cluster of size L′ and each sub-cluster having the same
number of red vertices, which is at most ζ1/2L′. Each such red vertex is in a
different vertex-disjoint red copy of Kk

h . In the remaining columns, each sub-
cluster has L′ original vertices, of which at most ζ1/2L′ are colored red and at
most ζ1/2L′ are colored blue. The total number of red vertices in each Vi is
the same multiple of h. Moreover, in every column, every pair of sub-clusters is

12



(2ε′, d′/2)-super regular. Finally, for each i ∈ [k], there is a leftover set Ṽ
(0)
i of

size at most kε′n.
We shall now re-distribute the vertices from leftover sets Ṽ

(0)
i , i ∈ [k], to non-

receptacle sub-clusters in such a way that the size of leftover sets becomes O(n)
and each non-receptacle sub-cluster will contain exactly h d(1− d′/4) (L′/h)e
non-red vertices. These two properties will be essential for our procedure for
finding perfect Kk

h-tiling to work.

We say that a vertex v ∈ Vi belongs in the sub-cluster Ṽ
(j)
i if v is adjacent

to at least (d′/2)L′ vertices in each of the other sub-clusters Ṽ
(j)
i′ , i 6= i′, in the

j-th column.

Fact 15. For every i ∈ [k], we can partition the leftover set Ṽ
(0)
i into subsets

Y
(2)
i , . . . , Y

(`′)
i where, for every j ∈ {2, . . . , `′}, the members of Y

(j)
i belong in

sub-cluster Ṽ
(j)
i and ∣∣∣Y (j)

i

∣∣∣ ≤ kε′n

(1/k + γ/2)`′
≤ k2ε′L′.

The number of red vertices in each sub-cluster may vary, but it is always less
than ζ1/2L′. Hence, after applying Fact 15, the number of non-red vertices in
each sub-cluster is in the interval

(
(1− ζ1/2)L′, (1 + k2ε′)L′

)
. Fact 15 is proved

in Section 4.
Next, we wish to remove copies of Kk

h in such a way that the number of
non-red vertices in each non-receptacle sub-cluster is the same and there are
new leftover sets of size O(ζn). This is accomplished via Lemma 16. After we
insert vertices via Fact 15 and remove some to create a (much smaller) leftover

set via Lemma 16, the sets Ṽ
(j)
i will be slightly changed into sets V̂

(j)
i for i ∈ [k]

and j ∈ {0, 1, . . . , `′}.

Lemma 16. For each i ∈ [k], there exist disjoint vertex sets V̂
(0)
i , V̂

(1)
i , . . . , V̂

(`′)
i

in Vi such that the following occurs:

• |V̂ (0)
i | ≤ 3hζn,

• V̂ (1)
i = Ṽ

(1)
i , has exactly (`′ − 1)3hζn red vertices and exactly L′ vertices

total,

• for j ∈ {2, . . . , `′}, V̂ (j)
i ⊂ Ṽ (j)

i and V̂
(j)
i contains all red and blue vertices

of Ṽ
(j)
i ,

• for j ∈ {2, . . . , `′}, V̂ (j)
i contains exactly h

⌈(
1− d′

4

)
L′

h

⌉
non-red vertices,

and

• the graph induced by V (G′) −
⋃k
i=1

⋃`′
j=0 V̂

(j)
i is spanned by the union of

vertex-disjoint copies of Kk
h .
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Proof of Lemma 16. In this proof, we will remove some copies of Kk
h to thin

the graph so that the sub-clusters satisfy the conditions above. We shall do this
by taking the reduced graph Gr and creating an auxiliary graph Ar and then
we apply Theorem 7 to Ar. From the resulting fractional Kk-tiling in Ar, we
will produce a family of vertex-disjoint Kk

h-s in G that we shall remove.
From Section 3.2, recall that D = D(k, ε) was the least common multiple of a

common denominator of a rational-valued solution to linear program (1) over all
balanced k-partite graphs with at most k ·M = k ·M(k, ε) vertices. In a similar
way, we may define D0 = D0(k, ε, ζ) to be the least common multiple of the
common denominator of a rational-valued solution to linear program (1) over

all balanced k-partite graphs with at most d′

3hζ `
′ ≤ 1

3hζD(k, ε)M(k, ε) vertices
in each class.

Now we will define the auxiliary reduced graph Ar by blowing up the vertices

and edges of the subgraph of G′r induced by V (G′r)−{u
(1)
1 , u

(1)
2 , . . . , u

(1)
k }. The

number of copies of each vertex, however, will not be the same. For i ∈ [k]

and j ∈ {2, . . . , `′}, define ν(u
(j)
i ) to be the number of non-red vertices in sub-

cluster Ṽ
(j)
i .

For V (Ar), replace each vertex u
(j)
i with the following number of copies:

either the ceiling or the floor of

ν(u
(j)
i )− d(1− d′/4)L′e
hD0dζL′/D0e

− 1.

The choice of ceiling or floor is made arbitrarily, but only to ensure that the

resulting graph is balanced. This is always possible because
∑`′

j=2 ν(u
(j)
i ) is the

same for all i ∈ [k]. For E(Ar), we replace each edge in G′r by a complete
bipartite graph and each nonedge by an empty bipartite graph.

First, we need to check that the number of vertices of Ar is not too large.

Since (1−ζ1/2)L′ ≤ ν(u
(j)
i ) ≤ (1+k2ε′)L′, the number of vertices in each partite

set of Ar is at most

`′∑
j=2

⌈
ν(u

(j)
i )− d(1− d′/4)L′e
hD0dζL′/D0e

− 1

⌉

≤ (`′ − 1)

⌈
(1 + k2ε′)L′ − (1− d′/4)L′

hζL′
− 1

⌉
< (`′ − 1)

d′/4 + k2ε′

hζ
. (4)

This quantity is at most d′

3hζ `
′ because ε′ � d′.

Second, we need to check that each vertex Ar has sufficiently large degrees

in order to apply Theorem 7. We observe that if u were adjacent to u
(j)
i in G′r,

then every copy of u in V (Ar) is adjacent to at least⌊
(1− ζ1/2)L′ − d(1− d′/4)L′e

hD0dζL′/D0e
− 1

⌋
≥ d′/4− 2ζ1/2

hζ

14



copies of u
(j)
i in V (Ar). So, each vertex in V (Ar) is adjacent to at least[(
k − 1

k
+
γ

2

)
`′ − 1

]
d′/4− 2ζ1/2

hζ
≥ (`′ − 1)

(
k − 1

k
+
γ

3

)
d′

4hζ

vertices in each of the other partite sets of V (Ar). By (4), every partite set of

V (Ar) has size at most (`′− 1)d
′/4+k2ε′

hζ . Using (3), the proportion of neighbors

of a vertex in V (Ar) in any other vertex class is at least

(`′ − 1)
(
k−1
k + γ

3

)
d′

4hζ

(`′ − 1)d
′/4+k2ε′

hζ

≥ k − 1

k
.

So, we can apply Theorem 7 to the auxiliary reduced graph Ar and obtain
an optimal solution to linear program (1) with the property that D0w(T ) is an
integer for every T ∈ Tk(Ar).

As in Fact 11, this implies that the blow-up graph Ar(D0) must have a
perfect Kk-tiling. For each Kk in this tiling, we will remove dζL′/D0e vertex-
disjoint copies of Kk

h from the uncolored vertices of the corresponding sub-
clusters of G′r.

It is easy to find such vertex-disjoint copies of Kk
h in a k-tuple. Observe

that every sub-cluster has at most k2ε′L′ uncolored vertices added to the sub-
cluster. Moreover, a set of hD0dζL′/D0e vertices will be removed from a sub-
cluster at most d′/(2ζ) times as long as ε′ � d′. So, there will always be at
least d(1− d′/4)L′e − k2ε′L′ − hd′L′/2 ≥ (1− d′)L′ uncolored vertices from the
original sub-cluster. Using the Slicing Lemma (Fact 19), any pair of them form
a 2(2ε′)-regular pair. As long as ζ � ε′ � d′, we could apply, say, the Key
Lemma from [21] to ensure the existence of at most dζL′/D0e vertex-disjoint
copies of Kk

h in the k-tuple.

So, the total number of vertices removed from sub-cluster V
(j)
i is

hD0dζL′/D0e ×

⌊
ν(u

(j)
i )− d(1− d′/4)L′e
hD0dζL′/D0e

− 1

⌉
,

where b·e is either the floor or ceiling of its argument.
Removing these copies of Kk

h has the effect of making the number of uncol-
ored vertices in each sub-cluster nearly identical, that is, within hζL′ of each
other. For i ∈ [k], place into the new leftover set of Vi at most hD0dζL′/D0e−1
uncolored vertices from each sub-cluster to ensure that every sub-cluster retains
either d(1 − d′/4)L′e or d(1 − d′/4)L′e + hD0dζL′/D0e uncolored vertices, de-
pending on whether the ceiling or floor function was chosen for rounding. In
the latter case, place an additional hD0dζL′/D0e uncolored vertices from the
sub-cluster to the leftover set.

Summarizing:

• We placed into each leftover set at most 2hD0dζL′/D0e vertices from

each sub-cluster, so each new leftover set V̂
(0)
i has a size of at most `′ ·

2hD0dζL′/D0e ≤ 3hζn.

15



• The sets Ṽ
(1)
i are unchanged.

• For j ∈ {2, . . . , `′}, V̂ (j)
i is formed by removing uncolored vertices from Ṽ

(j)
i .

• For j ∈ {2, . . . , `′}, the number of non-red vertices in V̂
(j)
i is explicitly pre-

scribed to be h d(1− d′/4) (L′/h)e because later we need it to be divisible
by h.

• The vertices that are removed are all in vertex-disjoint copies of Kk
h .

�

3.6. Inserting the leftover vertices and construction of perfect Kk
h-tiling

We first insert the leftover vertices from
⋃k
i=1 V̂

(0)
i to non-receptacle sub-

clusters in such a way that we shall be able to find a perfect Kk
h-tiling in every

column using the Blow-up Lemma. That is, each sub-cluster in the column will
have the same number of vertices (divisible by h) and each pair of sub-clusters
will be super-regular.

Suppose that vertex w ∈ V̂ (0)
i belongs in the sub-cluster Ṽ

(j)
i , j ∈ {2, . . . , `′}.

We then take any v ∈ X
(j)
i and the red and blue copies R(v),B(v) of Kk

h

guaranteed by Lemma 14. We uncolor the vertices of R(v), remove the vertices
of B(v) from their respective sub-clusters and place B(v) aside to be included

in the final tiling of G. We also add w to the sub-cluster Ṽ
(j)
i and remove v

from X
(j)
i .

Each time this procedure is undertaken, the number of non-red vertices in
each non-receptacle sub-cluster does not change and it is equal to h d(1− d′/4) (L′/h)e.

After doing this procedure for every vertex in the leftover sets, we remove all
the remaining (unused) red copies of of Kk

h and place them aside to be included
in the final tiling of G. The sub-clusters in the first (receptacle) column have
the same number of non-red vertices as each other and the number of non-red
vertices in each receptacle sub-cluster has the same congruency modulo h as n
does. That is, if we remove n − hbn/hc non-red vertices from each receptacle
sub-cluster, the remaining number of non-red vertices is divisible by h.

The non-red vertices in each receptacle sub-cluster form pairwise (4ε′, d′/4)-
super-regular pairs, this follows from the Slicing Lemma (Fact 19) because no
vertices were added to these sub-clusters. So we focus on the non-receptacle
sub-clusters.

Throughout this proof, in every non-receptacle sub-cluster, at most ε′L′

vertices were colored red and at most ε′L′ red vertices will be uncolored (i.e.,
they become non-red). In addition, the non-red vertices in any non-receptacle
sub-cluster will have cardinality exactly hd(1 − d′/4)L′/he. Recall that the
original sub-clusters formed (2ε′, d′)-super-regular pairs in each column. There
were at most k2ε′L′ new vertices added to each sub-cluster, each of which were
adjacent to at least (d′/2)L′ vertices in each of the original sub-clusters of the
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column. The next lemma will imply that the non-red vertices in every non-
receptacle column will form super-regular pairs.

Fact 17. Let (A,B) be an (ε1, δ1)-super-regular pair. Furthermore, let A′ ⊃ A
and B′ ⊃ B be such that |A′ −A| ≤ ε2|A| and |B′ −B| ≤ ε2|B|. If

• every vertex in A′ −A has at least δ2|B| neighbors in B and

• every vertex in B′ −B has at least δ2|A| neighbors in A,

then the pair (A′, B′) is (ε0, δ0)-super-regular, where δ0 = min{δ1,δ2}
(1+ε2)2

and ε0 =
ε1 + ε2.

We apply Fact 17 with ε1 = 2ε′, δ1 = d′, ε2 = kε′ and δ2 = d′/2. Conse-

quently, we use ε1 + ε2 ≤ (k + 2)ε′ ≤
√
ε′ and min{δ1,δ2}

(1+ε2)2
= d′/2

(1+kε′)2 ≥ d′/3 to

conclude that the augmented pairs in each column are (
√
ε′, d′/3)-super-regular.

Finally, to finish the tiling, apply the Blow-up Lemma to non-red vertices in
each non-receptacle column (recall that the number of such vertices is the same
and is divisible by h). We can also apply the Blow-up Lemma to the non-red
vertices in the receptacle column as well, because the sizes of those sets are
divisible by h.

Lemma 18 (Blow-up Lemma, Komlós-Sárközy-Szemerédi [19]). Given
a graph R of order r and positive parameters δ,∆, there exists an εBL > 0 such
that the following holds: Let N be an arbitrary positive integer, and let us re-
place the vertices of R with pairwise disjoint N -sets V1, V2, . . . , Vr (blowing up).
We construct two graphs on the same vertex-set V =

⋃
Vi. The graph R(N)

the graph which is the blow-up of R by N and a sparser graph G is constructed
by replacing the edges of R with some (εBL, δ)-super-regular pairs. If a graph
H with maximum degree ∆(H) ≤ ∆ can be embedded into R(N), then it can be
embedded into G.

Our Kk
h-tiling consists of

(i) the copies of Kk
h that are outside of the sets V̂

(j)
i , as established in

Lemma 16,

(ii) the red copies of Kk
h that were not uncolored in the process of absorbing

vertices from the leftover sets V̂
(0)
i to non-receptacle sub-clusters, and

(iii) the copies of Kk
h found by applying the Blow-up Lemma to the non-red

vertices in each column.

This is the tiling of G with n/h copies of Kk
h .

What remains to show is that we can choose our constants to satisfy (3)
so that all inequalities in our proof will be satisfied for sufficiently large n. In-
deed, for given γ > 0 and h, we let d = γ/4. We also set R = Kk, r = k,
∆ = (k− 1)h and δ = γ/12 and apply Lemma 18 to obtain εBL. Now we define
ε′ = min{ε218, d/(12k2)} and we let ε = min{(ε′)5/16, d/4(k + 2)}. Finally, we
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set ζ = 1/(12h2k2M(k, ε)2D(k, ε)2), where M(k, ε) comes from the Regularity
Lemma (Theorem 8) and D(k, ε) is defined in Section 3.2. This concludes the
proof of Theorem 4.

4. Proofs of Facts

For convenience, we restate the facts to be proven.

Fact 15. For every i ∈ [k], we can partition the leftover set Ṽ
(0)
i into subsets

Y
(2)
i , . . . , Y

(`′)
i where, for every j ∈ {2, . . . , `′}, the members of Y

(j)
i belong in

sub-cluster Ṽ
(j)
i and |Y (j)

i | ≤ kε′n
(1/k+γ/2)`′ ≤ k

2ε′L′.

Proof of Fact 15. First, we show that each vertex belongs in at least (1/k +
γ/2)`′ sub-clusters. To see this, let x be the number of sub-clusters in Vi′ , i

′ 6= i
such that v is adjacent to less than (d′/2)L′ vertices of that sub-cluster. Then,
since n− `′L′ ≤ 2εn,

x
d′

2
L′ + (`′ − x)L′ + (n− `′L′) ≥

(
k − 1

k
+ γ

)
n.

From this it is easy to derive that with d′, ε′ small enough relative to γ, it is the
case that x < (1/k−γ/2)`′. By a simple union bound, the number of sub-clusters
in which v belongs is greater than `′ − (k − 1)(1/k − γ/2)`′ ≥ (1/k + γ/2)`′.
Hence, there are at least (1/k + γ/2)`′ sub-clusters outside of the receptacle
column in which v belongs.

Sequentially and arbitrarily assign v ∈ Ṽ (0)
i to Y

(j)
i if both v belongs in Ṽ

(j)
i

and |Y (j)
i | < kε′n

(1/k+γ/2)`′ . Since the size of Ṽ
(0)
i is at most kε′n, we can always

find a place for v. �

Fact 12. Let ε′ > 0 and ε′ < d′/(2k + 2). Let (A1, . . . , Ak) be a k-tuple that
is pairwise ε′-regular of density at least d′ with |A1| = · · · = |Ak| = L′. There
exist subsets A′i ⊂ Ai for i ∈ [k] such that |Ai| = hd(1−(k−1)ε′)L′/he and each
pair of (A′1, . . . , A

′
k) is (2ε′, d′−kε′)-super-regular (with density at least d′−ε′).

Proof of Fact 12. We use the so-called Slicing Lemma [21, Fact 1.5].

Fact 19 (Slicing Lemma [21]). Given ε, α, d such that 0 < ε < α < 1 and
d, 1− d ≥ max{2ε, ε/α}. Let (A,B) be an ε-regular pair with density d, A′ ⊂ A
with |A′| ≥ α|A| and B′ ⊂ B with |B′| ≥ α|B|. Then (A′, B′) is ε0-regular with
ε0 = max{2ε, ε/α} and density in [d− ε, d+ ε].

It follows from the ε′-regularity of (Ai, Aj) that all but at most ε′|Ai| vertices
of Ai have at least (d′−ε′)|Aj | neighbors in Aj . So, there is a set A′i ⊂ Ai of size
(1− (k−1)ε′)|Ai| such that each vertex of A′i has at least (d′−ε′)|Aj | neighbors
in Aj for every j 6= i and, consequently, at least (d′ − ε′)|Aj | − (k − 1)ε′|Aj | =
(d′ − kε′)|A′j | neighbors in A′j for every j 6= i.
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Since ε′ < d′/(2k+2) and (1−(k−1)ε′) > 1/2, the Slicing Lemma (Fact 19)
with α = 1/2 and ε′ < d′/(2k+ 2) gives that each pair (A′i, A

′
j) is (2ε′, d− kε′)-

super-regular. �

Fact 17. Let (A,B) be an (ε1, δ1)-super-regular pair. Furthermore, let A′ ⊃ A
and B′ ⊃ B be such that |A′−A| ≤ ε2|A| and |B′−B| ≤ ε2|B|. If every vertex
in A′ − A has at least δ2|B| neighbors in B and every vertex in B′ − B has at
least δ2|A| neighbors in A, then the pair (A′, B′) is (ε0, δ0)-super-regular, where

ε0 = ε1 + ε2 and δ0 = min{δ1,δ2}
(1+ε2)2

.

Proof of Fact 17. First we establish the minimum degree condition. Each of

the vertices in A is adjacent to at least δ1|B| = δ1
|B|
|B′| |B

′| vertices in B′. Each

of the vertices in A′ − A is adjacent to at least δ2|B| = δ2
|B|
|B′| |B

′| neighbors in

B′. Similar conditions hold for vertices in B′.
Since

δ0 ≤
min{δ1, δ2}
(1 + ε2)2

≤ min

{
δ1
|A|
|A′|

, δ2
|A|
|A′|

, δ1
|B|
|B′|

, δ2
|B|
|B′|

}
,

each vertex a ∈ A′ has at least δ0|B′| neighbors in B′ and each vertex b ∈ B′
has at least δ0|A′| neighbors in A′.

Now, consider any X ′ ⊆ A′ and Y ′ ⊆ B′ such that |X ′| ≥ ε0|A′| and
|Y ′| ≥ ε0|B′|. Consider X = X ′ − (A′ −A) and Y = Y ′ − (B′ −B). Note that

|X| ≥ |X ′| − ε2|A| ≥ ε0|A′| − ε2|A| ≥ ε1|A|.

Similarly, |Y | ≥ ε1|B| and so d(X,Y ) ≥ δ1.
Consequently,

d(X ′, Y ′) ≥ d(X,Y )
|X||Y |
|X ′||Y ′|

≥ δ1
(1 + ε2)2

≥ δ0,

and the pair is (ε0, δ0)-super-regular. �

5. Concluding Remarks

The common denominator D = D(k, ε) used in Section 3.2 can, in principle,
be astronomically large, as it is the common denominator of values of rational-
valued solutions for all balanced k-partite graphs on at most M = M(k, ε)
vertices. We chose this value for the convenience of the proof. Indeed, the
constant M is quite large itself and so D is not so large, relatively speaking.

We could utilize a much smaller integer value of D by choosing a D such
that if w∗ is the rational-valued solution of (1), then for every v ∈ V (Gr) and
every T ∈ Tk(Gr) for which V (T ) 3 v, we assign bDw∗(T )c vertices of G′r to
copies of T . Because Dw∗(T ) is not necessarily an integer, we end up with
D−

∑
V (T )3vbDw∗(T )c unused vertices. Choose D large enough to ensure that
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this is always small (O(εMk−1) suffices), and they can be placed in the leftover
set.

We should also note that, asymptotically, Conjecture 3 is stronger than
the Hajnal-Szemerédi Theorem. That is, if G is a graph on kn vertices with
minimum degree at least

(
k−1
k + γ

)
kn, then a random partition of the vertex

set into k equal parts gives a k-partite graph G̃ with δ̂k(G̃) ≥
(
k−1
k + γ

)
kn −

O(
√
n log n) and applying Conjecture 3 would give a Kk-tiling in G̃ and, hence,

G itself.
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[23] D. Kühn and D. Osthus, The minimum degree threshold for perfect graph
packings. Combinatorica 29 (2009), no. 1, 65–107.

[24] A. Lo and K. Markström, A multipartite version of the Hajnal-Szemerédi
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