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ABSTRACT

It is commonplace that the data needed for econometric inference are not contained in a single source.

In this paper we analyze the problem of parametric inference from combined individual-level data when

data combination is based on personal and demographic identifiers such as name, age, or address. Our main

question is the identification of the econometric model based on the combined data when the data do not

contain exact individual identifiers and no parametric assumptions are imposed on the joint distribution of

information that is common across the combined dataset. We demonstrate the conditions on the observable

marginal distributions of data in individual datasets that can and cannot guarantee identification of the

parameters of interest. We also note that the data combination procedure is essential in the semiparametric

setting such as ours. Provided that the (non-parametric) data combination procedure can only be defined

in finite samples, we introduce a new notion of identification based on the concept of limits of statistical

experiments. Our results apply to the setting where the individual data used for inferences are sensitive and

their combination may lead to a substantial increase in the data sensitivity or lead to a de-anonymization

of the previously anonymized information. We demonstrate that the point identification of an econometric

model from combined data is incompatible with restrictions on the risk of individual disclosure. If the

data combination procedure guarantees a bound on the risk of individual disclosure, then the information

available from the combined dataset allows one to identify the parameter of interest only partially, and

the size of the identification region is inversely related to the upper bound guarantee for the disclosure

risk. This result is new in the context of data combination as we notice that the quality of links that

need to be used in the combined data to assure point identification may be much higher than the average

link quality in the entire dataset, and thus point inference requires the use of the most sensitive subset of

the data. Our results provide important insights into the ongoing discourse on the empirical analysis of

merged administrative records as well as discussions on the disclosive nature of policies implemented by

the data-driven companies (such as Internet services companies and medical companies using individual

patient records for policy decisions).
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1 Introduction

Often, data combination is a vital step in a comprehensive analysis of industrial and gov-

ernment data and resulting policy decisions. Typical industrial data are contained in large,

well-indexed databases and linking multiple datasets essentially reduces to finding the pairs

of unique matching identifiers in disjoint databases. Examples of such databases include

the supermarket inventory and scanner data that can be linked by the product UPCs,

patient record and billing data that can be matched by name and social security number.

Non-matches can occur, e.g., due to recording errors. Given that most industrial databases

have a homogenous structure, prediction algorithms can be “trained” on a dataset of manu-

ally resolved linkage errors and then those algorithms can further be used for error control.

These algorithms stem from the long-existing literature in Econometrics and Statistics on

validation samples. Such procedures are on the list of routine daily tasks for database

management companies and are applied in a variety of settings, from medical to tax and

employment databases.1

A distinctive feature of data used in economic research is that the majority of utilized

datasets are unique and, thus, any standardization of the data combination procedure may

be problematic. Moreover, many distinct datasets that may need to be combined do not

contain comprehensive unique identifiers either due to variation in data collection policies

or because of the disclosure and privacy considerations. As a result, data combination tasks

rarely reduce to a simple merger on unique identifiers with a subsequent error control. This

means that in the combination of economic datasets, one may need to use not only the

label-type information (such as the social security number, patient id or user name) but

also some variables that have an economic and behavioral content and may be used in

estimated models. In this case the error of data combination becomes heteroskedastic with

an unknown distribution and does not satisfy the “mismatch-at-random” assumption that

would otherwise allow one to mechanically correct the obtained estimates by incorporating

a constant probability of an incorrect match.2 In addition, economic datasets are usually

more sensitive than typical industrial data and data curators may intentionally remove

potentially identifying information from the data that further complicates combination of

different datasets.

In this paper we introduce a novel framework for the parameter identifiability analysis

from linked data when individual datasets used for combination do not contain unique

individual identifiers. Our framework is suited to situations when only partial information

regarding the quality of the links between the observations of separate datasets (e.g. upper

and lower bounds on these probabilities) is available, and thus, it allows us to avoid making

parametric assumptions regarding the joint distribution of combined variables or the joint

distribution of additional variables utilized in a data combination procedure. This contrasts

1See, e.g. Wright [2010] and Bradley et al. [2010] among others.
2See, for instance, Lahiri and Larsen [2005]
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many existing approaches that rely either on such parametric assumptions or assumptions

about a known distribution of the data combination errors. This paper is an attempt

to build a theoretical framework of how to think about parameter identification from

combined data and to conform it with the tradition existing in the econometric literature

of approaching the issue of identification from the population perspective.

Section 2 describes the problem of econometric inference and characterizes the structure

of the data generating process.

In Section 3 we depict a class of data combination rules used in this paper. The data

combination procedures suggested in this paper are based on infrequent observations of

some numeric or string variables that are either available directly from the data or need to

be constructed by the data curator. We formalize all the conditions that this procedure has

to satisfy in order to give a meaningfully combined dataset. We prove that the accuracy

of this procedure can be controlled and can vary from the “worst” (all the matches are

incorrect) to the “best” (all the matches are correct) as the sizes of split data sets increase.

We establish how exactly the control of its accuracy can be executed by a data curator.

Our framework naturally applies to the analysis of situations where the identifying

information is intentionally removed from the data by the data curators to reduce the

“sensitivity” of the data. In this case, an instance of a successful combination of two

observations from two disjoined datasets means that the variables contain enough infor-

mation to attribute these two observations to the same individual. This implies that the

corresponding individual information can be de-anonymized, i.e. the individual disclosure

can occur. We demonstrate the implications of the suggested data combination rules for

individual identity disclosure. We introduce the notion of a bound on disclosure risk and

show that there exist data combination rules that honor this bound.

In Section 4 we analyze the identifiability of the parameter of interest from combined

data under restrictions on the information about the quality of the data combination rule

that is released by the data curator to secondary users (researchers). Our approach to

the identification analysis is novel as we notice that the data combination procedure in

non-parametric settings can only be defined and implemented in the finite sample and not

in the population. As a result, the identification analysis has to rely on the property of

limits of sequences of data combination rules (as opposed to the property of the population

distribution as in the standard literature on identification). This is a crucial aspect in our

identification method as we provide a new approach to analyzing model identification from

combined datasets as a limiting property in the sequence of statistical experiments.

Namely, we introduce the notion of the pseudo-identified set of model parameters from

combined data through a limit of the set of parameters inferred from the combined data as

the sizes of both datasets approach infinity. These sets and their limiting behavior depend

on several factors: first, they depend on the properties of the data combination proce-

dure; second, they depend on what kind of information about this procedure is provided
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to the researcher by the data curator; and, finally, they could depend on the optimization

criterion employed by researchers. We also study the tradeoff between disclosure limita-

tion (defined by the probability that an individual disclosure can occur) and the quality

of identification of the parameters of interest. To our knowledge, our paper is the first

one to study such a tradeoff. This trade-off between the identifiability of the model and

limitations on individual disclosure implies that whenever a non-zero disclosure restriction

is imposed, the parameter in the model of interest based on the dataset combined from

two separate datasets is not point identified. The analysis of pseudo-identified sets tells us

what estimates e.g. a consumer behavior model can deliver under the constraints on the

identity disclosure. We note that the goal of our work is not to demonstrate the vulnera-

bility of online personal data but to provide a real example of the tradeoff between privacy

and identification.

The importance of the risk of potential disclosure of confidential information is hard to

overstate. With advances in data storage and collection technologies, issues and concerns

regarding data security now generate front-page headlines. Private businesses and govern-

ment entities are collecting and storing increasing amounts of confidential personal data.

This data collection is accompanied by an unprecedented increase in publicly available

(or searchable) individual information that comes from search traffic, social networks and

personal online file depositories (such as photo collections), amongst other sources. One of

the main messages of sections 2-4 is that if one of the data curator’s objectives is to provide

some privacy guarantees and prevent disclosure when conducting the task of combing the

data, then the issues of model identification/estimation and the risk of disclosure should

be analyzed jointly.

Sections 2-4 of the paper consider a scenario in which a data curator conducts the data

combination procedure and the researcher is given a single combined dataset (with auxiliary

variables that helped combine the data removed). This combined dataset is of course not

guaranteed to contain all correct matches. Moreover, if the combined dataset is randomly

selected from all possible constructed combined datasets with the data combination rule

that honors the bound on the disclosure risk, there is a positive probability that all matches

in this dataset will be incorrect. This scenario is likely to occur when a combined dataset is

released into a public domain and thus the researcher does not bear the burden of assuring

that an appropriate bound on the risk of disclosure has been imposed.

Section 5 contains an empirical application, where we illustrate a common situation

where low resolution identifiers are removed from the dataset to protect privacy of individ-

uals which then inhibits the linkage of this dataset with other data which can lead biased

estimates in the models that do not use those additional linked variables. Our applica-

tion uses the data from the Russian Longitudinal Monitoring Survey (RLMS) which is a

comprehensive longitudinal survey of households in Russia. The survey is designed to be

representative on the country level and the data are collected in over 50 geographical region.
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In each region the survey households are typically clustered within small neighborhoods.

The neighborhood identifiers along with demographic data turned out to be sufficient to

single out individual households and de-anonymize them by linking the records with ad-

dress databases. In light of this finding, the neighborhood identifiers were removed from

the RLMS data distribution after year 2009.

In our empirical analysis we demonstrate that such an approach to privacy protection

inhibits the inference of granular household-level decision models. Our main Economic

question is the impact of religious affiliation of the household on the decision to allow the

children in the household to complete schooling. We are also interested to find out whether

in this decision females are withdrawn from schooling on average earlier than males. We

note that in the absense of neighborhood identifiers, it will not be able to distinguish

the group effects whithin local religious communities from the individual decision making

within households.

In our dataset we do have access to the neighborhood identifiers that were subsequently

suppressed. Using the neighborhood identifiers we can link the records in the RLMS with

the religious census data collected by Rosstat (the Russian equivalent of the US Census

Bureau). This allows us to estimate both the model that takes the group effects into

account and the model that does not (i.e. the model that is feasible with the current

RLMS data distribution). We find significant difference in the estimates obtained in the

two models and then use our approach to construct the sets of parameters in the current

data distribution that take into account the fact that the data was de-anonymized.

To relate this paper to other privacy frameworks, we want to note that we focus on the

risk of individual disclosure as it describes the possibility of recovering the true identity

of individuals in the anonymized dataset with sensitive individual information. However,

even if the combined dataset is not publicly released, the estimated model may itself be

disclosive in the sense that consumers’ confidential information may become discoverable

from the inference results based on the combined data. This situation may arise when there

are no common identifiers in the combined data and only particular individuals may qualify

to be included in the combined dataset. If the dataset is sufficiently small, a parametric

model may give an accurate description of the individuals included in the dataset. We

discuss this issue in more detail in Komarova et al. [2015] where we introduce the notion

of a partial disclosure. In this paper we deal only with the identity disclosure.

The setup of this paper can be applied to situations when there are several independent

data curators having access to separate datasets. Private firms and large government agen-

cies collect large socio-economic datasets. The Internal Revenue Service, Social Security

Administration and the US Census Bureau collect large comprehensive datasets that have

large or complete overlaps over individuals whose data has been collected. Each of these

agencies operate as independent data curators meaning that each of them has full control

over their data, full exclusion rights over access to these data. Most existing data cura-
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tors operate based on the vault storage model where the data is stored locally in a secure

location and raw disaggregated data cannot be taken outside of the vault. Within their

data management programs, each such a data owner allows researchers to access the data

vault upon passing some clearance procedure. With this data analysis model there could

be many researchers who can access many of such data vaults. However, provided that

the raw data cannot be removed from the vault, neither of these researchers can combine

individual data from two or more such vaults. Thus, this is the situation where each of the

researchers knows the marginal distribution of the data in each of the vaults. However,

none of the researchers knows the joint distribution of the data across the vaults and thus

cannot estimate the model that contains the variables from multiple sources. Recently,

several empirical researchers have been able to obtain permissions to merge separate ad-

ministrative data sources. We note that while each data curator controls their own dataset,

they also control the “sensitivity” of the variables contained in the dataset. For instance,

some variables can be removed from the researcher’s access based on the disclosure risk

considerations. Such a risk cannot be controlled if the data from one source controlled

by one data curator are combined with the data controlled by another data curator. Pro-

vided that the marginal data distributions from different sources are already known to the

researchers the disclosure threat in this case comes precisely from the data combination.

Related literature.

Our paper is related to several strands in the computer science literature. One of them

is on the optimal structures of linkage attacks as well as the requirements in relation to

data releases. The structure of linkage attacks is based on the optimal record linkage

results that have been long used in the analysis of databases and data mining. To some

extent, these results have been used used in econometrics for combination of datasets

as described in Ridder and Moffitt [2007]. In record linkage, one provides a (possibly)

probabilistic rule that can match the records from one dataset with the records from the

other dataset in an effort to link the data entries corresponding to the same individual.3

In several striking examples, computer scientists have shown that a simple removal of

personal information such as names and social security numbers does not protect data

from individual disclosure. For instance, Sweeney [2002b] identified the medical records

of William Weld, then governor of Massachusetts, by linking voter registration records to

“anonymized” Massachusetts Group Insurance Commission (GIC) medical encounter data,

which retained the birthdate, sex, and zip code of the patient.

In relation to the security of individual data, the computer science literature, e.g. Sama-

rati and Sweeney [1998], Sweeney [2002a], Sweeney [2002b], LeFevre et al. [2005], Aggarwal

et al. [2005], LeFevre et al. [2006], Ciriani et al. [2007], has developed and implemented the

so-called k-anonymity approach. A database instance is said to provide k-anonymity, for

some number k, if every way of singling an individual out of the database returns records for

3This is not what we are using in this paper as our data combination rule is deterministic.
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at least k individuals. In other words, anyone whose information is stored in the database

can be “confused” with k others. Under k-anonymity, a data combination procedure will

respect the required bound on the disclosure risk. We describe it in Section 2.3 and use it

in the empirical part. An alternative solution is in the use of synthetic data and a related

notion of differential privacy, e.g. Dwork and Nissim [2004], Dwork [2006], Abowd and

Vilhuber [2008], as well as Duncan and Lambert [1986], Duncan and Mukherjee [1991],

Duncan and Pearson [1991], Fienberg [1994], and Fienberg [2001], Duncan et al. [2001],

Abowd and Woodcock [2001], Kinney et al. [2011], Hu et al. [2014], among others.

We note that while the computer science literature has alluded to the point that data

protection may lead to certain trade-offs in data analysis, data protection has never been

considered in the context of model identification. For instance, a notion of “data utility”

has been introduced that characterizes the accuracy of a statistical function that can be

evaluated from the released data (e.g. see Lindell and Pinkas [2000], Karr et al. [2006],

Brickell and Shmatikov [2008], Woo et al. [2009]), and it was found that existing data

protection approaches lead to a decreasing quality of inference from the data measured in

terms of this utility.

Our paper is also related to the literature on partial identification of models with con-

taminated or corrupted data, even though our identification approach is new. Manski

[2003], Manski [2007] and Horowitz and Manski [1995] note that data errors or data mod-

ifications pose identification problems and generally result in only set identification of the

parameter of interest. Manski and Tamer [2002] and Magnac and Maurin [2008] give ex-

amples where – for confidentiality or anonymity reasons – the data may be transformed

into interval data or some attributes may be suppressed, leading to the loss of point iden-

tification of the parameters of interest. Consideration of the general setup in Molinari

[2008] allows one to assess the impact of some data “anonymization” as a general misclas-

sification problem. Cross and Manski [2002] and King [1997] study the ecological inference

problem where a researcher needs to use the data from several distinct datasets to conduct

inference on a population of interest. In ecological inference, several datasets usually of

aggregate data are available. Making inferences about micro-units or individual behavior

in this case is extremely difficult because variables that allow identification of units are not

available. Cross and Manski [2002] show that the parameters of interest are only partially

identified. We note that in our case the data contain individual observation on micro-units

and there is a limited overlap between two datasets, making the inference problem dramat-

ically different from ecological inference. Pacini [2016] considers estimation and inference

on identified sets in linear regression models when the dependent variable is not observed

together with covariates but some information available the conditional distribution of

regressors conditional on another variable observed together with the outcome variable.

Our analysis relies on the data combination to estimate the econometric model of inter-

est. A train of recent literature in statistics including Larsen [2005], Tancredi et al. [2011],
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Chipperfield et al. [2011], Kim and Chambers [2012] establishes consistency for estimation

of standard models, such as the regression model, when the data combination procedure

is defined parametrically or it is based on exactly matching observations to combine the

datasets based on one or more pre-defined variables. Our contribution to this literature is

the development of identification properties of econometric models based on combined data

for non-parametric data combination procedure when a deterministic a priori criterion for

matching observations is not available.

Though less directly related to our analysis, there is also a literature within economics

that considers privacy as something that may have a subjective value for consumers (see

Acquisti [2004]) rather than a formal guarantee against intruders’ attacks. Considering

personal information as a “good” valued by consumers leads to important insights in the

economics of privacy. As seen in Varian [2009], this approach allows researchers to analyze

the release of private data in the context of the tradeoff between the network effects created

by the data release and the utility loss associated with this release. The network effect

can be associated with the loss of competitive advantage of the owner of personal data,

as discussed in Taylor [2004], Acquisti and Varian [2005], Calzolari and Pavan [2006].

Consider the setting where firms obtain a comparative advantage due to the possibility of

offering prices that are based on the past consumer behavior. Here, a subjective individual

perception of privacy is important. This is clearly shown in both the lab experiments in

Gross and Acquisti [2005], Acquisti and Grossklags [2008], as well as in the real-world

environment in Acquisti et al. [2006], Miller and Tucker [2009] and Goldfarb and Tucker

[2010]. Given all these findings, we believe that disclosure protection is a central theme in

the privacy discourse, as privacy protection is impossible without the data protection.

2 Econometric model

2.1 Model and data structure

In this section, we formalize the empirical model based on the joint distribution of the

observed outcome variable Y distributed on Y ⊂ Rm and individual characteristics X

distributed on X ⊂ Rk that needs to be estimated from the individual level data. We

assume that the parameter of interest is θ0 ∈ Θ ⊂ Rl, where Θ is a convex compact set.

We characterize the parameter of interest by a conditional moment restriction which,

for instance, can describe the individual demand or decision:

E [ρ(Y,X, θ0) |X = x] = 0, (2.1)

where ρ(·, ·, ·) is a known function with the values in Rp. We assume that ρ(·, ·, ·) is

continuous in θ and for almost all x ∈ X ,

E [‖ρ(Y,X; θ)‖ |X = x] <∞ for any θ ∈ Θ.
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We focus on a linear separable model for ρ(·, ·, ·) as our lead example, which can be

directly extended to monotone nonlinear models.

In a typical Internet environment the outcome variable may reflect individual consumer

choices by characterizing purchases in an online store, specific messages on a discussion

board, comments on a rating website, or a profile on a social networking website. Consumer

characteristics are relevant socio-demographic characteristics such as location, demographic

characteristics, and social links with other individuals. We assume that if the true joint

distribution of (Y,X) were available, one would be able to point identify parameter θ0 from

the condition (2.1). Formally we write this as the following assumption.

ASSUMPTION 1. Parameter θ0 is uniquely determined from the moment equation (2.1)

and the conditional distribution of Y |X.

As an empirical illustration, in Section 5 we estimate a model the relates the household

decision to withdraw the child from the schooling to the religious affiliation of the household

and the child’s gender as well as the characteristics of the neighborhood. The outcome

variable corresponds to the number of completed year of schooling by each child in the

household. In this context, we are interested in separating the household-level effect from

the neighborhood effect. However, the latest distribution of the survey that we use does

not have neighborhood identifiers.

In our data, however, we were able to trace back the original neighborhood identifiers

that were used in the early distributions of the survey that we used. That allowed us to

construct a (now infeasible) merged dataset that combines individual household character-

istics with the neighborhood characteristics that we take from the Russian Census data.

In this case Y corresponds to the set of household-level variables and X corresponds to the

set of neighborhood variables. The current distribution of the survey does not contain the

neighborhood-level variables.

As a result, the variables of interest Y and X are not observed jointly. One can only

separately observe the dataset containing the values of Y and the dataset containing the

values of X for subsets of the same population.

The following assumption formalizes the idea of the data sample broken into two separate

datasets.

ASSUMPTION 2. (i) The population is characterized by the joint distribution of ran-

dom vectors (Y,W,X, V ) distributed on Y ×W ×X × V ⊂ Rm × Rq × Rk × Rr.

(ii) The (infeasible) data sample {yi, wi, xi, vi}N0
i=1 is a random sample from the population

distribution of the data.

(iii) The observable data is formed by two independently created random data subsamples

from the sample of size N0 such that the first data subsample is Dyw = {yj, wj}N
y

j=1
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and the second subsample is Dxv = {xi, vi}N
x

i=1.4

(iv) Any individual in Dyw is present in Dxv. In other words, for each (yj, wj) in Dyw there

exists (xi, vi) in Dxv such that (yj, wj) and (xi, vi) correspond to the same individual.5

Assumption 2 characterizes the observable variables as independently drawn subsamples

of the infeasible “master” dataset. This means that without any additional information,

one can only re-construct distributions FX,V of (X, V ) and FY,W of (Y,W ) but this is not

enough to learn the joint distribution FY,X of (Y,X), even though one can use the Fréchet

sharp bounds on FY,X in terms of the marginal distributions FY and FX , or on FY,W,X,V in

terms of the distributions FY,W and FX,V .

EXAMPLE 1. For linear models, without any additional information identification with

split sample data comes down to computing Fréchet bounds. For example, in a bivariate

linear regression of random variable Y on random variable X with V ar[X] > 0, the slope

coefficient can be expressed as b0 = cov(Y,X)

Var[X]
. Because the joint distribution of Y and X

is unknown, cov (Y,X) cannot be calculated even if the marginal distributions of Y and X

are available.

As a result, the only information that allows to draw conclusions about the joint moments

of the regressor and the outcome can be summarized by the Cauchy-Schwartz inequality

|cov (Y,X)| ≤
√

Var [Y ]
√

Var [X], which gives the sharp bounds on cov (Y,X). Therefore,

we can determine the slope coefficient only up to a set:

−

√
Var [Y ]

Var [X]
≤ b0 ≤

√
Var [Y ]

Var [X]
.

As we can see, the bounds on b0 are extremely wide, especially when there is not much vari-

ation in the regressor. Moreover, we cannot even identify the direction of the relationship

between the regressor and the outcome, which is of interest in many economic applications.

�

The information contained in vectors V and W is not necessarily immediately useful for

the econometric model that is being estimated. However, this information can help us to

construct measures of similarity between observations yj in dataset Dyw and observations xi

in dataset Dxv. Random vectors W and V are very likely to be highly correlated for a given

4Our analysis applies to other frameworks of split datasets. For instance, we could consider the case
when some of the variables in x (but not all of them) are observed together with y. This is the situation
we deal with in our empirical illustration. The important requirement in our analysis is that at least some
of the relevant variables in x are not observed together with y.

5This part of the assumption can be relaxed by allowing Dyw and Dxv to overlap rather than the former
to be nested in the latter. In this case, we would replace the requirement Ny →∞ later in the paper with
the requirement that the size of the overlap goes to infinity. When there is no common individual between
Dyw and Dxv, then the procedures suggested in this paper will not work but some ecological inference
methods can be used – see e.g., Cross and Manski [2002] and King [1997], among others.
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individual but uncorrelated across different individuals. In our empirical example, the main

survey dataset that we use contains the identifier for a large geographic region in Russia

(equivalent to the US State in terms of scale) as well as the identifier for the neighborhood.

The Russian Census data can be obtained on the level of the neighborhood. Thus, if the

neighborhood identifiers are available, then W and V are the perfectly matching placing

a given household in its neighborhood. However, the neighborhood identifiers have been

removed in the recent distributions of our survey. Therefore, V are larger geographic region

identifiers and W (corresponding to the identifier in the Russian Census) contains both

the neighborhood identifier and the larger region identifier. In principle, we can expand

the set of variables in V and W , for instance, including household demographics, income,

property and health data in V and including the neighborhood averages contained in the

Russian Census as a part of W . Then we can use a weighted Euclidean distance between

V and W as a measure of similarity. This measure of similarity will be used to combine

observations in the two datasets.

2.2 Identifiers and decisions rules for data combination

Our data linkage procedure is based on comparing the value of an identifier Zy constructed

for each observation in the main dataset with the value of an identifier Zx constructed for

each observation in the auxiliary dataset. These identifiers are random vectors that can

consist of both numerical and string variables. Zx = Zx(X, V ) is a multivariate function of

X and some auxiliary random vector V observed together with X, whereas Zy = Zy(W )

is a multivariate function of an auxiliary random vector W observed together with Y .

Thus, identifiers constructed in the dataset of outcome variables Y are assumed not to be

determined by the values of those outcomes. We suppose that these identifiers Zy and Zx

are constructed in such a way that they have the same dimension and the same support.

Our combination rule is based on comparing the values of zyi and zxi for each j = 1, . . . , Ny

and each i = 1, . . . , Nx.

Namely, we describe the linkage procedure employed by the data curator by means of a

binary decision rule DN(yj, z
y
j , xi, z

x
i ), where N ≡ (Ny, Nx), such as

DN(yj, z
y
j , xi, z

x
i ) =

{
1, if zyj and zxi satisfy certain conditions,

0, otherwise.

If DN(yj, z
y
j , xi, z

x
i ) = 1, this means that observations j from the main dataset and i from

the auxiliary one can potentially be linked. IfDN(yj, z
y
j , xi, z

x
i ) = 0, then we do not consider

j and i to be a possible match. Conditions in the definition of DN(yj, z
y
j , xi, z

x
i ) are chosen

by the data curator and in general depend on N , features of the data and objectives on the

non-disclosure guarantees discussed later in the paper. A specific feature of such a decision

rule is that these conditions do not depend on the values of yj and xi and only depend on

the values of zyj and zxi .
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Decisions rules used in this paper are based on a chosen distance between zyj and zxi .

Without a loss of generality, suppose that Zy = (Zy,n, Zy,s) and Zx = (Zx,n, Zx,s), where

Zy,n and Zx,n are random subvectors of the same dimension that contain all the numeric

variables in Zy and Zx, respectively, and Zy,s and Zx,s are random subvectors of the same

dimension that contain all the string variables in Zy and Zx. Then we can define a distance

d(zyj , d
x
i ) between zyj and zxi as

d(zyj , d
x
i ) = ωn‖zy,nj − z

x,n
i ‖E + ωs‖zy,sj − z

x,s
i ‖S,

where ‖ · ‖E denotes the Euclidean distance, ‖ · ‖S stands for a distance between strings

(e.g., the edit distance), and ωn, ωs ≥ 0 are weights. Below we give some examples of

decision rules.

Notation. Let mij be the indicator of the event that j and i are the same individual.

EXAMPLE 2. A decision rule can be chosen as

DN(yj, z
y
j , xi, z

x
i ) = 1

{
d(zyj , z

x
i ) < αN

}
. (2.2)

The properties of this decision rule – such as the behavior of probabilities of making linkage

errors as Ny, Nx →∞, – would depend on the behavior of the sequence of thresholds {αN}
and the properties of the joint distribution of (Y, Zy, X, Zx).

Suppose that Zy and Zx contain a common variable (e.g., a binary variable for gender).

It is clear that in this case j and i can be a potential match only if the values of this

variable coincide. Let us denote this variable as Zy,g in the main dataset and as Zx,g in

the auxiliary dataset. Then the distance for the decision rule (2.2) can be defined as

d(zyj , z
x
i ) =

{
ωN‖zy,nj − z

x,n
i ‖E + ωs‖zy,sj − z

x,s
i ‖S, if zy,gj = zx,gi

∞, otherwise.

This idea can be extended to any situation when data linkage is partly based on the values

of discrete variables whose values must coincide exactly for the same individual. �

We focus on two types of data combination procedures. Procedures of the first type look

only at observations with infrequent values of zxi . To the best of our knowledge, this paper

offers the first formal analysis of the record linkage based on infrequent observations. Pro-

cedures of the second type employ decision rules that satisfy the property of k-anonymity

suggested in the computer science literature.

2.3 Data combination from observations with infrequent values

Let us define the norm of zxi as ‖zxi ‖ = ωn‖zx,ni ‖E +ωs‖zx,si ‖S. Analogously, the norm of zyj
is ‖zyj ‖ = ωn‖zy,nj ‖E +ωs‖zy,sj ‖S. By infrequent attributes we mean the values of identifiers

11



in the tails.

We suppose that all the variables in Zx and Zy are either discrete or continuous with

respect to the Lebesgue measure. For technical simplicity, we also suppose that at least

one variable in Zx (and, analogously, in Zy) is continuous with respect to the Lebesgue

measure, which implies that the norms ‖Zx‖ and ‖Zy‖ are continuous with respect to the

Lebesgue measure too.

ASSUMPTION 3. There exists ᾱ > 0 such that for any 0 < α < ᾱ the following hold:

(i) (Proximity of identifiers with extreme values)

Pr

(
d(Zy, Zx) < α

∣∣ X = x, Y = y, ‖Zx‖ > 1

α

)
≥ 1− α.

(ii) (Non-zero probability of extreme values)

lim
α→0

sup
x,y

∣∣∣∣Pr

(
‖Zx‖ > 1

α

∣∣ X = x, Y = y

)
/φ(α)− 1

∣∣∣∣ = 0,

lim
α→0

sup
x,y

∣∣∣∣Pr

(
‖Zy‖ > 1

α

∣∣ X = x, Y = y

)
/ψ(α)− 1

∣∣∣∣ = 0

for some non-decreasing and positive at α > 0 functions φ(·) and ψ(·).

(iii) (Redundancy of identifiers in the full data)6

FY |X,Zx,Zy(y |X = x, Zx = zx, Zy = zy) = FY |X(y |X = x),

where FY |X,Zx,Zy denotes the conditional CDF of Y conditional on X, Zx and Zy,

and FY |X denotes the conditional CDF of Y conditional on X.

(iv) (Uniform conditional decay of the tails of identifiers’ densities) There exist positive

at large z functions g1(·) and g2(·) such that

lim
z→∞

sup
x

∣∣∣∣f‖Zx‖|X(z|X = x)

g1(z)
− 1

∣∣∣∣ = 0,

lim
z→∞

sup
y

∣∣∣∣f‖Zy‖|Y (z|Y = y)

g2(z)
− 1

∣∣∣∣ = 0,

where f‖Zx‖|X denotes the conditional density of ‖Zx‖ conditional on X, and f‖Zy‖|Y

denotes the conditional density of ‖Zy‖ conditional on Y .

6It is enough to just impose Assumption 3(iii) under the event described in Assumption 3(i). In this
case, we can generalize the definition of Zy = Zy(W ) to a function Zy = Zy(Y,W ) that can depend on
Y and requiring the redundancy (conditional independence) only in those infrequence events. This kind
of an extension can be important in some applications where Y directly contains some information on X,
which should help link the two data sets.
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Assumption 3 implies that the ordering of the values of ‖Zy‖ and ‖Zx‖ is meaningful

and that the tails of the distributions of ‖Zx‖ and ‖Zy‖ contains extreme values. If we

considered a situation when all the variables in Zy and Zx were discrete, this would mean

that at least one of these variables has a denumerable support. Ridder and Moffitt [2007]

overview cases where a priori available numeric identifiers Zy and Zx are jointly normally

distributed random variables, but we avoid making such specific distributional assumptions.

Assumption 3 (i) states that for infrequent observations – those for which the values of

‖Zx‖ are in the tail of the distribution f‖Zx‖|X,Y – the values of Zy and Zx are very close,

and that they become arbitrarily close as the mass of the tails approaches 0.

Functions φ(·) and ψ(·) in Assumption 3 (ii) characterize the decay of the marginal

distributions of ‖Zx‖ and ‖Zy‖ at the tail values. The assumptions on these functions

imply that

lim
α→0

Pr

(
‖Zx‖ > 1

α

∣∣ X = x

)
/φ(α) = 1, lim

α→0
Pr

(
‖Zy‖ > 1

α

∣∣ Y = y

)
/ψ(α) = 1,

and therefore φ(·) and ψ(·) can be estimated from the split datasets. Moreover, our as-

sumption on the existence of densities for the distributions of ‖Zx‖|X and ‖Zy‖|Y implies

that without a loss of generality, functions φ(·) and ψ(·) are absolutely continuous.

Assumption 3 (iii) states that for a pair of correctly matched observations from the

two databases, their values of identifiers Zx and Zy do not add any information regarding

the distribution of the outcome Y conditional on X. In other words, if the datasets are

already correctly combined, the constructed identifiers only label observations and do not

improve any knowledge about the economic model that is being estimated. For instance,

if the data combination is based on the names of individuals, then once we extract all

model-relevant information from the name (for instance, whether a specific individual is

likely to be male or female, or white, black or hispanic) and combine the information from

the two databases, the name itself will not be important for the model and will only play

the role of a label for a particular observation. Assumption 3 (iii) can be violated, for

example, if Zx and Zy are proxies for a random vector Z:

Zx = Z + ux, Zy = Z + uy,

and measurement errors ux and uy are not independent of X and Y .

Function g1(·) (g2(·)) in Assumption 3 (iv) describes the uniform over x (over y) rate

of the conditional density of ‖Zx‖ conditional on X (‖Zy‖ conditional on Y ) for extreme

values of ‖Zx‖ (‖Zy‖). If Assumption 3 (iv) holds, then necessarily

lim
z→∞

φ′
(

1
z

)
z2g1(z)

= 1, lim
z→∞

ψ′
(

1
z

)
z2g2(z)

= 1.
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We recognize that Assumption 3 puts restrictions on the behavior of infrequent (tail)

realizations of identifiers Zx and Zy. Specifically, we expect that conditional on ‖Zx‖
taking a high value, the values of identifiers constructed from two datasets must be close.

We illustrate this assumption with our empirical application, where different geographic

regions in Russia have different population density. As a result, linking the regional data

with the household level neighborhood data will lead to higher quality matches in less

populated regions.

REMARK 1. Assumption 3 (iii) can be relaxed to allow for situations when matching is

based on income, health or demographic characteristics that would also be included among

the regressors. But weakening of Assumption 3 (iii) has to be done together with imposing

stricter requirements on the distance function d(·, ·).

Suppose that Zy = (Z̃y, ˜̃Zy), Zx = (Z̃x, ˜̃Zx) and X = (X̃, ˜̃X), where Z̃x = X̃, and Z̃y in

the main dataset and X̃ in the auxiliary dataset contain common variables (e.g., discrete

variables for age and gender). Suppose that the distance for the decision rule is defined in

such a way that

d(zyj , z
x
i ) =∞ if z̃yj 6= x̃i

– that is, individuals j and i with different observations for age or gender cannot possibly be

matched. Then instead of assumption 3 (iii) we can impose the following weaker restriction:

F
Y |X, ˜̃Zx, ˜̃Zy(y |X = x, ˜̃Zx = ˜̃zx, ˜̃Zy = ˜̃zy) = FY |X(y |X = x).

REMARK 2 (k-anonymity). The description of k-anonymity approach can be found

Samarati and Sweeney [1998], Sweeney [2002a], Sweeney [2002b], among others. We de-

scribe it here with the purpose of illustrating how the k-anonymity rule would translate into

the properties of the decision rule.

Given the binary decision rule DN(yj, z
y
j , xi, z

x
i ) in (3.5), we say that the k-anonymity

property is implemented if for each observation j in the main dataset, j = 1, . . . , Ny, one

of the following conditions hold:

either

a) DN(yj, z
y
j , xi, z

x
i ) = 0 for all i = 1, . . . , Nx; that is, j cannot be combined with any

individual i in the auxiliary dataset;

or

b)
Nx∑
i=1

DN(yj, z
y
j , xi, z

x
i ) ≥ k; that is, for j there are at least k equally good matches in

the auxiliary dataset.
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Under the rule of k-anonymity, for any j from Dy and any i from Dx,

Pr
(
mij = 1

∣∣ DN(yj, z
y
j , xi, z

x
i ) = 1,Dy,Dx

)
=


0, if

Nx∑
l=1

DN(yj, z
y
j , xl, z

x
l ) = 0,

1
Nx∑
l=1
DN (yj ,z

y
j ,xl,z

x
l )

, otherwise.

Clealry, it always holds that

Pr
(
mij = 1

∣∣ DN(yj, z
y
j , xi, z

x
i ) = 1,Dy,Dx

)
≤ 1

k
. (2.3)

The binary decision rule for k-anonymity does not have to be based on infrequent observa-

tions and can use much more general ideas. One only has to guarantee that (2.3) holds.

3 Implementation of data combination and implications for iden-

tity disclosure

In this section, we characterize in more detail the class of data combination procedures that

we use in this paper, introduce the formal notion of identity disclosure and characterize a

subclass of data combination procedures that are compatible with a bound for the risk of

the identity disclosure. We suppose henceforth that Assumptions 1-3 hold.

3.1 Implementation of data combination

In our model, the realizations of random variables Y and X are contained in disjoint

datasets. After constructing identifiers Zy and Zx, we directly observe the empirical dis-

tributions of (Y, Zy) and (X,Zx). Even though these two distributions provide some in-

formation about the joint distribution of (Y,X), such as Fréchet bounds, they do not

fully characterize it if no data combination whatsoever is conducted, and thus, there are

many joint distributions of (Y,X) (or, more generally, joint distributions of (Y, Zy, X, Zx))

consistent with the observed distributions of (Y, Zy) and (X,Zx).7

We can hope to identify the econometric model only if the two datasets are combined

for at least some observations and thus, more information becomes available about the

dependence structure between vectors (Y, Zy) and (X,Zx), from which we can consequently

obtain more information about the dependence structure between Y and X. The best case

scenario from the identification point of view occurs if our data combination procedure

allows us to learn the copula describing the true joint distribution of (Y, Zy, X, Zx) as a

function of two separate distributions of (Y, Zy) and (X,Zx). This would automatically give

7This means that we would have to consider all such compatible joint distributions of (Y,X) when
trying to determine the parameter of interest using (2.1). Intuitively, any compatible joint distribution
of (Y,X) would give us a different value of the parameter of interest, which means that the parameter of
interest can only be determined up to a set. Thus, the econometric model of interest is not identified from
the available information about the distributions of (Y,Zy) and (X,Zx).
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us the copula describing the true joint distribution of (Y,X) as a function of the marginal

distributions of Y and X, and then we would be able to point identify θ0 using (2.1).

Whether this scenario will occur clearly depends on the quality of the data combination

procedure.

Now let us describe data combination procedures in more detail. Once the identifiers

Zy and Zx are constructed, we have the following two split data sets:

Dy = {yj, zyj }N
y

j=1, Dx = {xi, zxi }N
x

i=1. (3.4)

Provided that the indexes of matching entries are not known in advance, the entries with

the same index i and j do not necessarily belong to the same individual.

We base our decision rule on the postulated properties in Assumption 3:

DN(yj, z
y
j , xi, z

x
i ) = 1

{
d(zyj , z

x
i ) < αN , ‖zxi ‖ > 1/αN

}
, (3.5)

for a chosen αN such that 0 < αN < ᾱ. We notice that for each rate rN → ∞ there is

a whole class of data combination rules DN(yj, z
y
j , xi, z

x
i ) corresponding to all threshold

sequences for which αNrN converges to a non-zero value as Ny, Nx →∞. As is clear from

our results later in this section, the rate rN is what determines the asymptotic properties of

the data combination procedure. Provided that the focus of this paper is on identification

rather than estimation in the context of data combination, in the remainder of the paper,

our discussion about a data combination rule refers the whole class of data combination

rules characterized by the threshold sequences with a given rate.

Consider an observation i from Dx such that ‖zxi ‖ ≥ 1/αN . If we find a data entry

j from the dataset Dy such that d(zyj , z
x
i ) < αN , then we consider i and j as a potential

match. In other words, if identifiers zxi and zyj are both large and are close, then we consider

(xi, z
x
i ) and (yj, z

y
j ) as observations possibly corresponding to the same individual. This

seems to be a good strategy when αN is small because, according to Assumption 3, when

the pair (Zx, Zy) is drawn from their true joint distribution, the conditional probability

of Zx and Zy taking proximate values when Zx is large in the absolute value is close to

1. Even though the decision rule is independent of the values of xi and yj, the probability

Pr
(
mij = 1 | DN(yj, xi, z

y
j , z

x
i ), xi = x, yj = y,Dx,Dy

)
for a finite N = (Nx, Ny) can de-

pend on these values (and also depend on the sizes of datasets Dx and Dy) and therefore

can differ across pairs of i and j.

Using the combination rule DN(·), for each j ∈ {1, . . . , Ny} from the database Dy we try

to find an observation i from the database Dx that satisfies our matching criteria and thus

presents a potential match for j. We can then add the ”long” vector (yj, z
y
j , xi, z

x
i ) to our

combined dataset if neither (yj, z
y
j ) for this specific j nor (xi, z

x
i ) for this specific i enter the

combined dataset as subvectors of other ”long” observations. In other words, if there are
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several possible matches i from Dx for some j in Dy(or several possible matches j from Dy

for some i in Dx), we can put only one of them in our combined dataset. Mathematically,

each combined dataset GN can be described by an Ny ×Nx matrix {dji, j = 1, . . . , Ny; i =

1, . . . , Nx} of zeros and ones, which satisfies the following conditions:

(a) dji = 1 if observations (yj, z
y
j ) and (xi, z

x
i ) are matched; dji = 0 otherwise.

(b) For each j = 1, . . . , N y,
∑Nx

i=1 dji ≤ 1 (i.e., each j can be added to our combined

dataset with at most one i).

(c) For each i = 1, . . . , Nx,
∑Ny

j=1 dji ≤ 1 (i.e., each i can be added to our combined

dataset with at most one j).

Because some j in Dy or some i in Dx can have several possible matches, several different

combined datasets GN can be constructed. The data curator decides which one of these

combined datasets to use (e.g., it can be chosen randomly, or the data curator could choose

a different selection principle). Once the data curator chooses some GN , from this combined

dataset she deletes the data on zyj and zxi leaving only that data on linked pairs (yj, xi).

This reduced dataset GxyN is released to the public along with some information about

the properties of identifiers. This information is used by the researchers to conduct the

identification analysis. Even though the dataset Dxv = {(xi, vi)} is publicly available and,

thus, the researcher can potentially construct some identifiers (possibly similar to zxi ) from

that dataset, the researcher is not given any data on wj and thus would not be able to

construct identifiers similar to zyj (or any other identifiers for observations yj).

Our identification approach in section 4 will take into account all possible combined

datasets and take into account the probabilities of making data combination errors.

Consider an observation i from Dx such that ‖zxi ‖ ≥ 1/αN . Two kinds of errors can be

made when finding entry i’s counterpart in the dataset Dy.

(1) Data combination errors of the first kind occur when the decision rule links an obser-

vation j from Dy to i, but in fact j and i do not correspond to the same individual.

For the two given split datasets, the probability of the error of this kind is

Pr
(
d(zyj , z

x
i ) < αN

∣∣ ‖zxi ‖ > 1/αN , xi = x, yj = y,mij = 0,Dy,Dx
)
,

or

Pr
(
d(Z̃y, Zx) < αN

∣∣ ‖Zx‖ > 1/αN , X = x, Ỹ = y
)
,

where (X,Zx) and (Ỹ , Z̃y) are independent random vectors with the distributions

FX,Zx and FY,Zy , respectively.

(2) Data combination errors of the second kind occur when observations j and i do belong

to the same individual but the procedure does not identify these two observations
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as a potential match (we still consider i such that ‖zxi ‖ ≥ 1/αN). For the two given

split datasets, the probability of the error of this kind is

Pr
(
d(zyj , z

x
i ) ≥ αN

∣∣ ‖zxi ‖ > 1/αN , xi = x, yj = y,mij = 1,Dy,Dx
)
,

or

Pr
(
d(Zy, Zx) ≥ αN

∣∣ ‖Zx‖ > 1/αN , X = x, Y = y
)
, (3.6)

where (Y,X,Zx, Zy) is distributed with FY,X,Zx,Zy . Assumption 3 guarantees that

(3.6) converges to 0 as αN → 0.

While the second kind of error vanishes as one considers increasingly infrequent values,

the behavior of the probability of the first kind of error depends on the rate of αN and can

be controlled by the data curator. As we establish later in this section, this rate can be

chosen e.g. in such a way that the probability of the first kind of error will be separated

away from 0 even for arbitrarily large split datasets.

3.2 Risk of disclosure

What we notice so far is that given that there is no readily available completely reliable

similarity metric between the two databases we rely on the probabilistic properties of the

data. As a result, in estimation we have to resort to only using the pairs of combined ob-

servations. If correct matches are made with a sufficiently high probability, this may pose a

potential problem if one of the two datasets contains sensitive individual-level information.

The only way to avoid such an information leakage is to control the accuracy of utilized

data combination procedures. In particular, we consider controlling the error of the first

kind.

For technical convenience, in the remainder of the paper we consider the case when Zy

and Zx are random variables, and the distance d(Zy, Zx) is defined as |Zy − Zx|. The the

decision rule is

DN(yj, z
y
j , xi, z

x
i ) = 1

{
|zyj − zxi | < αN , |zxi | > 1/αN

}
. (3.7)

Propositions 1 and 2, which appear later in this section, give conditions on the sequence

of αN , αN → 0, that are sufficient to guarantee that the probability of the error of the first

kind vanishes as Ny →∞. Proposition 3 give conditions on αN , αN → 0, under which the

probability of the error of the first kind is separated away from 0 as Ny →∞.

For given split datasets Dy of size Ny and Dx of size Nx as in (3.4), and given y and x,

consider the conditional probability

pNij (x, y,Dx,Dy) = Pr

(
mij = 1 | xi = x, yj = y, |zxi | >

1

αN
, |zyj − zxi | < αN ,Dx,Dy

)
(3.8)
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of a successful match of (yj, z
y
j ) from Dy with (xi, z

x
i ) from Dx.

According to our discussion, potential privacy threats occur when one establishes that

a particular combined data pair (yj, xi, z
y
j , z

x
i ) is correct with a high probability. This

is the idea that we use to define the notion of the risk of the identity disclosure. Our

definition of the risk of disclosure in possible linkage attacks is similar to the definition of the

pessimistic disclosure risk in Lambert [1993]. We formalize the pessimistic disclosure risk

by considering the maximum probability of a successful linkage attack over all individuals

in a database.

Since by Assumption 2 (iv), Nx ≥ Ny, all of our asymptotic results will be formulated

as the ones obtained when Ny →∞ since this also implies that Nx →∞.

DEFINITION 1. A bound guarantee is given for the risk of disclosure if

sup
x,y

sup
Dx,Dy

sup
i,j

pNij (x, y,Dx,Dy) < 1

for all N , and there exists 0 < γ ≤ 1 such that

sup
x,y

lim sup
Ny→∞

sup
Dx,Dy

sup
i,j

pNij (x, y,Dx,Dy) ≤ 1− γ. (3.9)

The value of γ is called a bound on the disclosure risk.

Our definition of the disclosure guarantee requires, first of all, that for any two finite

datasets Dy and Dx and any matched pair, the value of pNij (x, y,Dx,Dy) is strictly less than

one. In other words, there is always a positive probability of making a linkage mistake.

However, even if probabilities pNij (x, y,Dx,Dy) are strictly less than 1, they may turn out

to be very high when Ny is sufficiently large and αN is sufficiently small. Our definition of

the disclosure guarantee requires that such situations do not arise. The value of γ is the

extent of the non-disclosure risk guarantee.

An important practical question is whether there exist (the classes of the) decision

rules that guarantee a specified bound on the disclosure risk. Below we present results

that indicate, first, that for a given bound on the disclosure risk we can find sequences of

thresholds such that the corresponding decision rules honor this bound, and second, that

the rates of convergence for these sequences depend on the tail behavior of identifiers used

in the data combination procedure. Propositions 1 and 3 give general results.

PROPOSITION 1. Suppose Assumptions 2 and 3 hold. Suppose that for given non-

decreasing and positive for α ∈ (0, ᾱ) functions φ(·) and ψ(·) the sequence of αN → 0 (as

Ny →∞) is chosen in such a way that

Nx

φ(αN)

∞∫
1
αN

(
ψ

(
1

z − αN

)
− ψ

(
1

z + αN

))
φ′
(

1
z

)
z2

dz → 0 (3.10)
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as Ny →∞. Then

inf
x∈X ,y∈Y

inf
Dx,Dy

inf
i,j
pNij (x, y,Dx,Dy)→ 1 as Ny →∞.

The result of Proposition 1 implies the following result in Proposition 2.

PROPOSITION 2. (Absence of non-disclosure risk guarantee). Suppose the

conditions in Proposition 1 hold.

Then non-disclosure is not guaranteed.

The proofs of propositions 1–2 are in Appendix B.

REMARK 3. Here we consider cases when the tails of the distributions of identifiers are

geometric or exponential.

(a) Suppose that for small enough α > 0, we have φ(α) = b1α
c1, b1, c1 > 0 and ψ(α) =

b2α
c2, b2, c2 > 0. If αN > 0 is chosen in such a way that

αN = o

(
1

(Nx)
1

c2+2

)
(3.11)

as Ny →∞, then

inf
x∈X ,y∈Y

inf
Dx,Dy

inf
i,j
pNij (x, y,Dx,Dy)→ 1 as Ny →∞,

and, thus, non-disclosure is not guaranteed.

(b) Alternatively, suppose that for small enough α > 0, we have φ(α) = b1e
−c1/α, b1, c1 >

0, and ψ(α) = b2e
−c2/α, b2, c2 > 0. If αN → 0 is chosen in such a way that

lim
Ny→∞

Nxe
− c2
αN αN = 0, (3.12)

then

inf
x∈X ,y∈Y

inf
Dx,Dy

inf
i,j
pNij (x, y,Dx,Dy)→ 1 as Ny →∞,

and, thus, non-disclosure is not guaranteed.

For instance, sequences αN = a
(Nx)d

when a, d > 0, satisfy this condition.

A more detailed discussion of Remark 3 is in Appendix B.

The next proposition describes instances in which non-disclosure can be guaranteed.

PROPOSITION 3. (Non-disclosure risk guarantee). Suppose Assumptions 2 and

3 hold. Suppose that for given non-decreasing and positive for α ∈ (0, ᾱ) functions φ(·)
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and ψ(·) the sequence of αN → 0 (as Ny →∞) is chosen in such a way that

lim inf
Ny→∞

Nx

φ(αN)

∞∫
1
αN

(
ψ

(
1

z − αN

)
− ψ

(
1

z + αN

))
φ′
(

1
z

)
z2

dz > 0. (3.13)

Then non-disclosure is guaranteed.

The proof of Proposition 3.13 is in Appendix B.

REMARK 4. (a) Suppose for α ∈ (0, ᾱ), φ(α) = b1α
c1, b1, c1 > 0, and ψ(α) = b2α

c2,

b2, c2 > 0. Let the sequence of αN → 0 (as Ny →∞) be chosen in such a way that

lim inf
Ny→∞

αN (Nx)
1

c2+2 > 0. (3.14)

Then non-disclosure is guaranteed.

(b) Suppose for α ∈ (0, ᾱ), φ(α) = b1e
−c1/α, b1, c1 > 0 and ψ(α) = b2e

−c2/α, b2, c2 > 0.

Let the sequence of αN → 0 (as Ny →∞) be chosen in such a way that

lim inf
Ny→∞

Nxe
− c2
αN αN > 0. (3.15)

Then non-disclosure is guaranteed.

For instance, sequences αN = a
logNx when a > c2, satisfy this condition (in this case,

lim
Ny→∞

Nxe
− c2
αN αN =∞).

A more detailed discussion of Remark 3 is in Appendix B.

Propositions 2 and 3 demonstrate that the compliance of the decision rule generated by a

particular threshold sequence with a given bound guarantee for the disclosure risk depends

on the rate at which the threshold sequence converges towards zero as the sizes of Dy and

Dx increase. Informally, consider two threshold sequences αN and α∗N where the former

converges to zero much faster than the latter so that
α∗N
αN
→ ∞. Clearly, for large enough

sizes of the datasets Dy and Dx, the sequence α∗N not only allows more observations to

be included in the combined dataset but also gives a greater number of possible combined

datasets. In fact, all observations with the values of the constructed identifiers zxi between
1
α∗N

and 1
αN

are rejected by the decision rule implied by the sequence αN but could be

approved by the decision rule implied by the sequence α∗N . In addition, the sequence

α∗N is much more liberal in its definition of the proximity between the identifiers zyj and

zxi . As a result, the decision rule implied by the sequence α∗N generates larger combined

datasets. Because the matching information in (− 1
αN
,− 1

α∗N
)∪ ( 1

α∗N
, 1
αN

) is less reliable than

that in (−∞,− 1
αN

) ∪ ( 1
αN
,∞) and linkages for observations with larger distances between

the identifiers are decreasingly reliable, the sequence α∗N results in a larger proportion of

incorrect matches. The effect can be so significant that even for arbitrarily large datasets
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the probability of making a data combination error does not approach 0. In Proposition 2,

where non-disclosure is not guaranteed, and the probability of making a data combination

error of the first kind approaches 0 as Ny and Nx increase, thresholds used for the decision

rule shrink to zero faster than those in Proposition 3, where non-disclosure is guaranteed.

The result of Proposition 1 is stronger than that of Proposition 2 and will provide

an important link between the absence of non-disclosure risk guarantees and the point

identification of the parameter of interest discussed in Theorem 1.

It can be seen in Remarks 3 and 4 that the rates of the threshold sequences used for the

decision rule can be described in terms of the size of the dataset Dx alone rather than both

Dy and Dx. This is quite intuitive because in Assumption 2 that database we assumed

that Dy contains the subset of individuals from the database Dx, and hence Dx is larger.

The size of the larger dataset is the only factor determining how many potential matches

from this dataset we are able to find for any observation in the smaller dataset without

using any additional information from the identifiers.

With this discussion we find that the decision rules that we constructed are well-defined

and there exists a non-empty class of sequences of thresholds that can be used for data com-

bination and that guarantee the avoidance of identity disclosure with a given probability.

The rate of these sequences depends on the tail behavior of the identifiers’ distributions.

4 Analysis of identifiability with combined data

In the previous section we described the decision rule that can be used for combining data

and its implications for potential identity disclosure. In this section, we characterize the

identification of the econometric model from the combined dataset constructed using the

proposed data combination procedure. We also show the implications of the bound on the

disclosure risk for identification.

We emphasize that the structure of our identification argument is non-standard. In

fact, the most common identification argument in the econometrics literature is based

on finding a mapping between the population distribution of the data and parameters

of interest. If the data distribution leads to a single parameter value, this parameter is

called point identified. However, as we explained in the previous section, the population

distribution of the immediately available data in our case is not informative, because it

consists of two unrelated marginal distributions corresponding to population distributions

generating split samples Dy and Dx. Combination of these two samples and construction

of a combined subsample is only possible when these samples are finite. In other words,

knowing the probability that a given household may reside in a certain neighborhood is not

informative to us. For correct inference we need to make sure that a combined observation

contains the split pieces of information regarding the same household and does not mis-

assign a household to a different neighborhood within the same region. As a result, our

identification argument is based on the analysis of the limiting behavior of identified sets of
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parameters that are obtained by applying the (finite sample) data combination procedure

to samples of an increasing size.

The proposition below brings together the conditional moment restriction (2.1) describ-

ing the model and our threshold-based data combination procedure. This proposition

establishes that if there is a “sufficient” number of data entries which we correctly identify

as matched observations, then there is “enough” knowledge about the joint distribution of

(Y,X) to point identify and estimate the model of interest.

PROPOSITION 4. Suppose Assumption 3 holds. For any θ ∈ Θ and any α ∈ (0, ᾱ),

E

[
ρ(Y,X; θ)

∣∣ X = x, |Zx − Zy| < α, |Zx| > 1

α

]
= E

[
ρ(Y,X; θ)

∣∣ X = x
]
. (4.16)

The proof of this proposition is in Appendix B.

The result in Proposition 4 is quite intuitive. Record linkage is based on Zx and Zy,

which are by Assumption 3 are unrelated to Y and hence to ρ(Y,X, θ) given X. This

immediately makes E[ρ(Y,X, θ) |X] = E[ρ(Y,X, θ) |X,G(Zx, Zy)] for any function G, so

we can in particular define G to indicate a high probability of correctly matched data.

In short, we can identify the parameters in the model just using a subpopulation with

relatively infrequent characteristics because are the observations that are very likely to be

correctly matched, because information used for matching is by assumption conditionally

independent of the model.

Thus, if the joint distribution of Y and X is known when the constructed identifiers

are compatible with the data combination rule (
{
|Zx| > 1

α
, |Zx − Zy| < α

}
), then, also

employing Assumption 1, one can conclude that θ0 can be identified and estimated from

the moment equation

E

[
ρ(Y,X; θ0)

∣∣ X = x, |Zx − Zy| < α, |Zx| > 1

α

]
= 0 (4.17)

using only observations from the combined dataset. This is true even for extremely

small α > 0. Using this approach, we effectively ignore a large portion of observa-

tions of covariates and concentrate only on observations with extreme values of identi-

fiers. For the population analysis based on (4.17) it does not matter how small the event

{|Zx − Zy| < α, |Zx| > 1
α
} is because Assumption 3(i)-3(ii) guarantee that its probability

is strictly positive. In a sample, if the set of infrequent observation turns out to be very

small, our recommendation to researchers would be to try increasing the dimension of ZX

and Zy by employing more information contained in auxiliary vectors V and W .

A useful implication of Proposition 4 is that

lim
α↓0

E

[
ρ(Y,X; θ)

∣∣ X = x, |Zx − Zy| < α, |Zx| > 1

α

]
= E

[
ρ(Y,X; θ)

∣∣ X = x
]
.
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EXAMPLE 3. Here we continue Example 1 and illustrate the identification approach

based on infrequent data attributes in a bivariate linear model. Let Y and X be two scalar

random variables, and V ar[X] > 0. Suppose the model of interest is characterized by the

conditional mean restriction

E [Y − a0 − b0X | X = x] = 0,

where θ0 = (a0, b0) is the parameter of interest. If the joint distribution of (Y,X) was

known, then applying the least squares approach, we would find θ0 from the following system

of equations for unconditional means implied by the conditional mean restriction:

0 = E[Y − a0 − b0X]

0 = E[X(Y − a0 − b0X)].

This system gives b0 = Cov(X,Y )

Var[X]
and a0 = E[Y ]− b0E[X].

When using infrequent observations only, we can apply Proposition 4 and identify θ0

from the “trimmed” moments. The solution can be expressed as

b0 =
E [X∗Y ∗]E[1{|Zx − Zy| < α, |Zx| > 1

α
}]− E[X∗]E[Y ∗]

E [X∗2]E[1{|Zx − Zy| < α, |Zx| > 1
α
}]− (E[X∗])2,

a0 =
E[Y ∗]− b0E[X∗]

E[1{|Zx − Zy| < α, |Zx| > 1
α
}]1/2

,

where X∗ =
X1{|Zx−Zy |<α,|Zx|> 1

α
}

E[1{|Zx−Zy |<α,|Zx|> 1
α
}]1/2 and Y ∗ =

Y 1{|Zx−Zy |<α,|Zx|> 1
α
}

E[1{|Zx−Zy |<α,|Zx|> 1
α
}]1/2 . �

It is worth noting that observations with more common values of identifiers (not suf-

ficiently far in the tail of the distribution) have a higher probability of resulting in false

matches and are thus less reliable for the purpose of model identification.

Our next step is to introduce a notion of the pseudo-identified set based on the combined

data. This notion incorporates several features. First, it takes into account the result of

Proposition 4, which tells us that the information obtained from the correctly linked data

is enough to point identify the model. Second, it takes into consideration the fact that it is

possible to make some incorrect matches, and the extent to which the data are mismatched

determines how much we can learn about the model. Third, it takes into account the fact

that the data combination procedure is a finite-sample technique and identification must

therefore be treated as a limiting property as the sizes of both datasets increase. We start

with a discussion of the second feature and then conclude this section with a discussion of

the third feature.

As before, GN denotes some combined dataset of (yj, z
y
j , xi, z

x
i ) constructed from Dx

of size Nx and Dy of size Ny by means of a chosen data combination procedure. The

joint density of observations (yj, z
y
j , xi, z

x
i ) in GN can be expressed in terms of the true
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joint density of the random vector (Y, Zy, X, Zx) and the marginal densities of (Y, Zy) and

(X,Zx):

fY,Zy ,X,Zx(yj, z
y
j , xi, z

x
i )1(mij = 1) + fY,Zy(yj, z

y
j )fX,Zx(xi, z

x
i )1(mij = 0).

In other words, if j and i correspond to the same individual, then (yj, z
y
j , xi, z

x
i ) is a drawing

from the distribution fY,Zy ,X,Zx , whereas if j and i do not correspond to the same individual,

then the subvector (yj, z
y
j ) and the subvector (xi, z

x
i ) are independent and are drawn from

the marginal distributions fY,Zy and fX,Zx respectively.

For a given value y ∈ Y and a given value x ∈ X, let πN(y, x,GN) denote the proportion

of incorrect matches in the set

Syx(GN) = {(yj, zyj ), (xi, z
x
i ) : yj = y, xi = x, (yj, z

y
j , xi, z

x
i ) ∈ GN}.

If this set is empty, then πN(y, x,GN) is not defined.

By πN
(
y, x, {yj, zyj }N

y

j=1, {xi, zxi }N
x

i=1

)
let us denote the average proportion of incorrect

matches across all possible combined datasets GN that can be obtained from Dy and Dx

according to the chosen data combination. Then we find that

πN
(
y, x, {yj, zyj }N

y

j=1, {xi, zxi }N
x

i=1

)
=

∑
GN
πN(y, x,GN)1 (Syx(GN) 6= ∅)∑

GN
1 (Syx(GN) 6= ∅)

if
∑
GN

1 (Syx(GN) 6= ∅) > 0.

This value is not defined otherwise (that is, if (yj, z
y
j ) and (xi, z

x
i ) with yj = y, xi = x are

never combined). Define πN(y, x) as the mean of πN
(
y, x, {yj, zyj }N

y

j=1, {xi, zxi }N
x

i=1

)
over all

possible datasets of Ny observations of (yj, z
y
j ) and all possible datasets of Nx observations

of (xi, z
x
i ) that contain yj that coincide with y and xi that coincide with x. It is assumed

that these datasets originated from split datasets {yj, wj}N
y

j=1 and {xi, vi}N
x

i=1 that satisfy

Assumption 2.

Next, we define the distribution density for an observation in a “generic” combined

dataset of size N = (Nx, Ny):

fNY,Zy ,X,Zx(yj, z
y
j , xi, z

x
i ) = (1−πN(yj, xi))fY,Zy ,X,Zx(yj, z

y
j , xi, z

x
i )+πN(yj, xi)fY,Zy(yj, z

y
j )fX,Zx(xi, z

x
i )

for any pairs (yj, z
y
j ) and (xi, z

x
i ) with DN(yj, z

y
j , xi, z

x
i ) = 1. Using this density we can

define the expectation with respect to the distribution of the data in the combined dataset

and denote it EN [·].
In light of the result in (4.17), we want to consider EN

[
ρ(y, x; θ)

∣∣ X = x
]

and analyze

how close this conditional mean is to 0, and how close it gets to 0 as αN → 0 . If,

for instance, πN(y, x) approaches 0 almost everywhere, then in the limit we expect this

conditional mean to coincide with the left-hand side in (4.17), and thus, take the value of
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0 if and only if θ = θ0. Intuitively, the situation is going to be completely different if even

for arbitrarily small thresholds the values of πN(y, x) will be separated away from 0 for a

positive measure of (y, x) .

We want to introduce a distance r(·) that measures the proximity of the conditional

moment vector EN [ρ(yj, xi; θ) | xi = x] to 0. We want this distance to take only non-

negative values and satisfy the following condition in the special case when πN(y, x) is

equal to 0 a.e.:

r
(
E
[
ρ(Y,X; θ)

∣∣ X = x
])

= 0 =⇒ θ = θ0 (4.18)

The distance function r(·) can be constructed, for instance, by using the idea behind

the generalized method of moments. We consider

r
(
EN

[
ρ(yj, xi; θ)

∣∣ xi = x
])

= gN(θ)′W0g
N(θ),

where

gN(θ) = EX
[
h(x)EN [ρ(yj, xi; θ)|xi = x]

]
= EN [h(xi)ρ(yj, xi; θ)] ,

with a J×J positive definite matrix W0, and a chosen (nonlinear) J×p, J ≥ k instrument

h(·) such that

E

[
sup
θ∈Θ
‖h(X)ρ(Y,X; θ)‖

]
<∞, E∗

[
sup
θ∈Θ
‖h(X)ρ(Ỹ , X; θ)‖

]
<∞ (4.19)

where EX [·] denotes the expectation over the distribution of X, and E∗ denotes the expec-

tation taken over the distribution fY (ỹ)fX(x).

Condition (4.18) is satisfied if and only if for πN(y, x) = 0 a.e.,

E [h(X)ρ(Y,X; θ)] = 0 =⇒ θ = θ0.

In rare situations this condition can be violated for some choices of instruments h(·)8, so

h(·) has to be chosen in a way to guarantee that it holds. Here and thereafter we suppose

that (4.18) is satisfied.

For a given N and a known πN(y, x), the minimizer (or the set of minimizers) of

r
(
EN

[
ρ(yj, xi; θ)

∣∣ xi = x
])

is the best approximation of θ0 under the chosen r(·). The

important question, of course, is how much is known (or, told by the data curator) to the

researcher about the sequences of πN(y, x).

Let ΠN denote the information available to the researcher about the proportions πN(·, ·).
We can interpret ΠN as the set of all functions πN(·, ·) that are possible under the available

8Dominguez and Lobato [2004] give examples of situations when the selected unconditional moment
restrictions may hold for several parameter values even if the conditional restrictions from the are obtained
hold only for one value.
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to the researcher information about the data combination procedure. For instance, the

data curator could provide the researcher with the information that any value of πN(y, x)

is between some known π1 and π2. Then any measurable function πN(·, ·) taking values

between π1 and π2 has to be considered in ΠN . The empirical evidence thus generates a

set of values for θ approximating θ0. We call it the N -identified set and denote it as ΘN :

ΘN =
⋃

πN∈ΠN

Argmin
θ∈Θ

r
(
EN

[
ρ(yj, xi; θ)

∣∣ xi = x
])
. (4.20)

The next step is to consider the behavior of sets ΘN as N →∞, which, of course, depends

on the behavior of ΠN as N →∞.

Let Π∞ denote the set of possible uniform over all y ∈ Y and over all x ∈ X limits

of elements in ΠN . That is, Π∞ is the set of π(·, ·) such that for each N , there exists

πN(·, ·) ∈ ΠN such that sup
y∈Y,x∈X

|πN(y, x)− π(y, x)| → 0.

The fact that the data combination procedure does not depend on the values of y and x

(even though the probability of the match being correct may depend on y and x) implies

that Π∞ is a set of some constant values π. Suppose that this is known to the researcher.

Proposition 5 below shows that in this situation the following set Θ∞ is a limit of the

sequence of N -identified sets ΘN :

Θ∞ =
⋃

π∈Π∞

Argmin
θ∈Θ

r
(

(1− π)E
[
ρ(Y,X; θ)

∣∣X = x
]

+ πE∗
[
ρ(Ỹ , X; θ)|X = x

])
,

(4.21)

where

r
(

(1− π)E
[
ρ(Y,X; θ)

∣∣X = x
]

+ πE∗
[
ρ(Ỹ , X; θ)|X = x

])
= gπ(θ)′W0gπ(θ)

with

gπ(θ) = EX

[
h(x)

(
(1− π)E

[
ρ(Y,X; θ)

∣∣X = x
]

+ πE∗
[
ρ(Ỹ , X; θ)|X = x

])]
= (1− π)E [h(X)ρ(Y,X; θ)] + πE∗

[
h(X)ρ(Ỹ , X; θ)

]
.

PROPOSITION 5. Suppose that Π∞ consists of constant values and for any π ∈ Π∞

there exists πN(·, ·) ∈ ΠN such that

sup
y∈Y,x∈X

|πN(y, x)− π| → 0 as Ny →∞. (4.22)

Also suppose that for any π ∈ Π∞ the function gπ(θ)′W0gπ(θ) has a unique minimizer.

Consider ΘN defined as in (4.20) and Θ∞ defined as in (4.21). Then for any θ ∈ Θ∞ there

exists a sequence {θN}, θN ∈ ΘN , such that θN → θ as Ny →∞.
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The proof of this proposition is in the Appendix.

Proposition 5 can be rewritten in terms of the distances between sets Π∞ and ΠN and

sets Θ∞ and ΘN :

d(Π∞,ΠN) = sup
π∈Π∞

inf
πN∈ΠN

sup
y∈Y,x∈X

|πN(y, x)− π|

d(Θ∞,ΘN) = sup
θ∈Θ∞

inf
θN∈ΘN

‖θN − θ‖.

Indeed, the definition of Π∞ gives that d(Π∞,ΠN)→ 0 as Ny →∞. Proposition 5 estab-

lishes that this condition together with the condition on the uniqueness of the minimizer

of gπ(θ)′W0gπ(θ) for each π ∈ Π∞ gives that d(Θ∞,ΘN)→ 0 as Ny →∞.

DEFINITION 2. Θ∞ is what we call the pseudo-identified set or the set of parameter

values identified from infrequent attribute values.

Obviously, the size of Θ∞ depends on the information set Π∞ because Θ∞ generally

becomes larger if Π∞ becomes a larger interval.

The definition below provides notions of point identification and partial pseudo-identification.

DEFINITION 3. We say that parameter θ0 is point identified (partially pseudo-identified)

from infrequent attribute values if Θ∞ = {θ0} (Θ∞ 6= {θ0}).

Whether the model is point identified depends on the properties of the model, the

distribution of the data, and the matching procedure. Definition 3 implies that if θ0 is

point identified, then at infinity we can construct only one combined data subset using

a chosen matching decision rule and that all the matches are correct (Π∞ = {0}). If for

a chosen h(·) in the definition of the distance r(·) parameter θ0 is point identified in the

sense of Definition 3, then θ0 is point identified under any other choice of function h(·) that

satisfies (4.18), and (4.19).

If the parameter of interest is only partially pseudo-identified from infrequent attribute

values, then Θ∞ is the best approximation to θ0 in the limit in terms of the distance r(·)
under a chosen h(·). In this case, Θ∞ is sensitive to the choice of h(·) and W0 and in

general will be different for different r(·) satisfying (4.18) and (4.19). In the case of partial

pseudo-identification, 0 ∈ Π∞ implies that θ0 ∈ Θ0, but otherwise θ0 does not necessarily

belong to Θ0.

Our next step is to analyze identification from combined data sets obtained using a

decision rule that honors a particular bound on the risk of individual disclosure. Having

the bound on the risk of individual disclosure does not mean that making a correct match

in a particular dataset is impossible. What it implies is that there will be multiple versions

of a combined dataset. One of these versions can correspond to the “true” dataset for which

dji = mij (using the notation from Section 3). However, as is clear from our discussion

before, in addition to this dataset we can also construct combined datasets with varying
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fractions of incorrect matches. This implies that for any x and y, and any Dx = {xi, zxi }N
x

i=1

that contains x as one of the values xi, and any Dy = {yj, zyj }N
y

j=1 that contains y as

one of the values yj, we have that if inf
i,j
πN
(
yj = y, xi = x, {yj, zyj }N

y

j=1, {xi, zxi }N
x

i=1

)
> 0 if

πN
(
yj = y, xi = x, {yj, zyj }N

y

j=1, {xi, zxi }N
x

i=1

)
is defined.

Condition (3.9) in the definition of the disclosure risk implies that

inf
x,y

lim inf
Ny→∞

πN(y, x) ≥ γ.

Taking into account Assumptions 3 (i)-(ii) for αN → 0 and the property of our data

combination procedure – namely, that the values of yj and xi are not taken into account

in matching (yj, z
y
j ) with (xi, z

x
i ) and it only matters whether identifiers satisfy conditions

|zxi − z
y
j | < αN and |zxi | > 1/αN , – we obtain that the limit of πN (y, x) does not depend

on the value of y and x. Denote this limit as π. Uniformity over x ∈ X and y ∈ Y in

Assumptions 3 (i)-(ii) imply that π is the uniform limit of πN (y, x):

sup
y∈Y,x∈X

|πN (y, x)− π| → 0 as Ny →∞.

If the only information released by the data curator about the disclosure risk is a bound

γ, then the researcher can only infer that π ≥ γ, that is, Π∞ = [γ, 1]. This fact will allow us

to establish results on point (partial pseudo-) identification of θ0 in Theorem 1 (Theorem

2).

Theorems 1 and 2 below link point identification and partial pseudo-identification with

the risk of disclosure.

THEOREM 1. (Point identification of θ0). Suppose Assumptions 1-3 hold. Let

αN → 0 as Ny →∞ in such a way that

inf
x∈X ,x∈Y

inf
Dx,Dy

inf
i,j
pNij (x, y,Dx,Dy)→ 1 as Ny →∞.

Then θ0 is point identified from matches of infrequent values of the attributes.

Proof. Condition

lim
Ny→∞

inf
x∈X ,y∈Y

inf
Dx,Dy

inf
i,j
pNij (x, y,Dx,Dy) = 1

can equivalently be written as

lim
Ny→∞

sup
x∈X ,y∈Y

sup
Dx,Dy

sup
i,j

(
1− pNij (x, y,Dx,Dy)

)
= 0,

which means that for any ε > 0, when Nx and Ny are large enough, sup
x∈X ,y∈Y

πN (y, x) < ε.
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Since ε > 0 can be chosen arbitrarily small, we obtain that

lim
Ny→∞

sup
x∈X ,y∈Y

πN(y, x) = 0.

From here we can conclude that Π∞ = {0}, and hence, Θ∞ = {θ0}.

As we can see, Theorem 1 provides the identification result when there is no bound

imposed on disclosure risk. The rates of the sequences of thresholds for which the condition

of this theorem is satisfied are established in Section 3.

Theorem 2 gives a partial pseudo-identification result when data combination rules are

restricted to those that honor a given bound on the disclosure risk and follows from our

discussion earlier in this section.

THEOREM 2. (Absence of point identification of θ0). Suppose Assumptions 1-3

hold. Let αN → 0 as N → ∞ in such a way that there is a bound γ > 0 imposed on the

disclosure risk. Then θ0 is only partially pseudo-identified from the combined dataset which

is constructed by applying the data combination rules that honor the bound γ > 0.

Proof. As discussed earlier in this section, in this case Π∞ = [γ, 1], and thus,

Θ∞ =
⋃

π∈[γ,1]

Argmin
θ∈Θ

r
(
πE
[
ρ(Y,X; θ)

∣∣X = x
]

+ (1− π)E∗
[
ρ(Ỹ , X; θ)|X = x

])
.

In general, r
(
πE
[
ρ(Y,X; θ)

∣∣X = x
]

+ (1− π)E∗
[
ρ(Ỹ , X; θ)|X = x

])
is minimized at

different values for different π meaning that generally Θ∞ is not a singleton.

Using the result of Theorem 2, we are able to provide a clear characterization of the

identified set in the linear case.

COROLLARY 1. Consider a linear model with θ0 defined by

E[Y −X ′θ0|X = x] = 0,

where E[XX ′] has full rank. Suppose Assumptions 2 and 3 hold, and there is a bound

γ > 0 on the disclosure risk. Then θ0 is only partially pseudo-identified from matches on

infrequent attribute values, and, under the distance r(·) chosen in the spirit of least squares,

the pseudo-identified set is the following collection of convex combinations of parameters

θ0 and θ1:

Θ∞ = {θπ, π ∈ [γ, 1] : θπ = (1− π)θ0 + πθ1},

where θ1 is the parameter obtained under the complete independence of X and Y .

The proof of Corollary 1 is in Appendix B.
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Note that θ0 = EX [XX ′]−1E[XY ]. The matrix E[XX ′] can be found from the marginal

distribution of X (we write EX [] to emphasize this fact) and, thus, is identified without

any matching procedure. The value of E[XY ], however, can be found only if the joint

distribution of (Y,X) is known in the limit – that is, only if there is no non-disclosure

guarantee.

When we consider independent X and Y with distributions fX and fY , we have E∗[X(Y−
X ′θ)] = 0. Solving the last equation, we obtain

θ1 = EX [XX ′]−1EX [X]EY [Y ], (4.23)

which can be found from split samples without using any matching methodology. When

the combined data contain a positive proportion of incorrect matches in the limit, the

resulting value of θ is a mixture of two values obtained in two extreme situations: θ0 when

π = 0, and θ1 when π = 1.

The next example illustrates that the pseudo-identified set Θ∞, even if θ0 /∈ Θ∞ is

informative about the true parameter value of θ0.

EXAMPLE 4. As a special case, consider a bivariate linear regression model

E[Y − a0 − b0X|X = x] = 0,

where V ar[X] > 0. Using our previous calculations, we obtain that the pseudo-identified

set for the slope coefficient is

{bπ : bπ = (1− π)b0, π ∈ [γ, 1]}

because b1 = 0. Here we can see that we are able to learn the sign of b0, and in addition to

the sign, we can conclude that |b0| ≥ bπ
1−γ . This result is much more than we were able to

learn about b0 in Example 1.

The pseudo-identified set for the intercept is

{aπ : aπ = (1−π)a0+πEY [Y ], π ∈ [γ, 1]} = {aπ : aπ = EY [Y ]−(1−π)b0EX [X], π ∈ [γ, 1]}.

Thus far, we have shown that using a high quality data combination rule that selects

observations with infrequent values of some attributes allows us to point identify the pa-

rameters of the econometric model. However, given that we may be using a small subset of

individuals to estimate the model, the obtained estimates may reveal sensitive information

on those individuals. To prevent this, the data curator can decide to conduct the data

linkage in a way that guarantees a bound on the risk of disclosure. As we have seen how-

ever, in this case it is generally not possible to point identify the parameter of interest, and

the pseudo-identified set that can be obtained from the data does not generally contain
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the true parameter value.

4.1 Computational illustration

Experiment 1 Consider the bivariate regression model

Y = α0 + β0X + ε,

where X ∼ N (0, 1), ε ∼ N (0, 1) and (α0, β0) = (1, 1). Consider the original identifiers V =

W that are both generated from Poisson distribution with parameter λ = 10 independently

of X and ε. So in the “raw” design all matches are one-to-one.

We then split a sample into subsamples of the observations of Y in the first one and X

in the second one.

Our goal now is to construct identifiers Zx and Zy and construct approximations for the

joint distributions FN(Y,X). To do so in each simulation draw we draw the “raw” sample

of size N .

Then we consider sample {Vi}Ni=1 and split the interval [mini Vi, maxi Vi] into the seg-

ments of the same length. We consider three designs for this:

(A) The bin most to the right contains a single observation.

(B) The bin most to the right contains at least two observations.

(C) The bin most to the right contains at least three observations.

Then we set Zx
i = Zy

i and equal to the average V in the bin that contains Vi.

By an infrequent event we understand the event when observation i is in the bin most to

the right. Thus, the linkage of data will be based on observations in that bin only. We will

say that the values of quasi-identifiers Zx
i and Zy

j are close if Zx
i = Zy

j . This corresponds

to considering the threshold αN = 1
mini{Vi :Vi is in the bin most to the right}−0.5

and then using the

linkage rule based on 1{|Zx
i | > 1

αN
, |Zx

i − Z
y
j | < αN}, as described in the main text of the

paper.

Then in each Monte Carlo draw m = 1, . . . ,M , we construct the empirical joint distribu-

tion FN
m (y, x) = 1

Nm

∑
1{Yj ≤ y}1{Xi ≤ x} for the matched sample of pairs, and empirical

marginal distributions FN
m,Y (y) = 1

N

∑N
j=1 1{Yj ≤ y} and FN

m,X(x) = 1
N

∑N
i=1 1{Xi ≤ x}

from split datasets. The approximate joint and marginal distributions of interest are com-

puted from the Monte Carlo sample as simple averages

F̂N(y, x) =
1

M

M∑
m=1

FN
m (y, x), F̂N

Y (y) =
1

M

M∑
m=1

FN
m,Y (y), F̂N

X (x) =
1

M

M∑
m=1

FN
m,X(x),
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respectively. Then we construct the moment vector with two equations∫ ∫
y x F̂N(dy, dx)−

∫
y F̂N

Y (dy)
∫
x F̂N

X (dx)∫
x2 F̂N

X (dx)−
(∫

x F̂N
X (dx)

)2 = β̃,

and ∫
y F̂N

Y (dy)− β̃
∫
x F̂N

X (dx) = α̃.

Then we solve this system of equations for α̃ and β̃.

In order to construct pseudo-identified sets, in each scenario we proceed in the following

way:

(A) For each simulation we construct only one bin that is most to the right – the bin

with a single observation.9 This corresponds to the case of the lower bound guarantee

γ = 0 ΠN = {0}. This is the case when the identity disclosure is not guaranteed

(B) For each simulation we consider a series of bins that are most to the right – starting

from the case when that bin contain only two observations (this corresponds to the

case γ = 1
2
) and ending with the case when that bin contains all the observations

(this corresponds to the case γ = 1). Overall, this described the situation of the

lower bound guarantee γ = 1
2

and ΠN = [1
2
, 1].

(C) For each simulation we consider a series of bins that are most to the right – starting

from the case when that bin contain only three observations (this corresponds to the

case γ = 2
3
) and ending with the case when that bin contains all the observations

(this corresponds to the case γ = 1). Overall, this described the situation of the

lower bound guarantee γ = 2
3

and ΠN = [2
3
, 1].

The results of the experiment are illustrated in Figure 1. The left panel in Figure 1

shows the N -pseudo-identified sets in scenarios (A), (B) and (C), respectively, obtained

for N = 1000 (with M = 200 simulations). Thus, the left panel in Figure 1 looks at the

situation from the perspective of the data curator (primary user of the dataset).

The right panel in Figure 1 describes what a secondary user (that is, a researcher)

can learn about the true parameter in all three scenarios from just one combined dataset

released to her, where the proportion of correct matches is between 0 and 1−γ in scenarios

(B) and (C) (we choose this proportion randomly on [0, 1− γ]). As discussed in Example

4, we can learn the sign of b0, which in our example we learn to be positive, and then, in

addition to the sign, we can conclude make a conclusion about the range that b0 ≥ bπ
1−γ ,

and then find a respective range for α0. Those ranges are illustrated in the second and

9If we draw a sample that contains several observations with maxi Vi, then we re-draw this sample until
we have only one observation with the maximum value of the variable V
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third graphs in the right panel in Figure 1, for scenarios (B) and (C), respectively (in that

figure the proportion of correct matches is somewhere in the middle of [0, 1− γ]).

Figure 1. Monte Carlo simulation in the case of an exogenous regressor. On the left-hand side –
pseudo-identified sets. On the right-hand side – what can be learned about the true parameter.

Figure 2. Monte Carlo simulation in the case of an endogenous regressor and a strong instrument.
On the left-hand side – pseudo-identified sets. On the right-hand side – what can be learned about
the true parameter.
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Experiment 2 Now we analyze the extension of the regression model to the case of

instrumental variables. We consider the regression model

Y = α0 + β0X
∗ + ε,

where X∗ is not observed. What is observed is its error-ridden version X = X∗ + .1ξ,

where X∗ ∼ N(0, 1), (ε, ξ)T ∼ N(0, I2), and (ε, ξ)T ⊥ X∗. We want to use the IV estimator

with the excluded instrument Z1 = 0.8X∗ + 0.1u, where u ∼ N(0, 1), u ⊥ ε, ξ,X∗. Let

(α0, β0) = (1, 1). Just as in Experiment 1, we consider the original identifiers V = W

that are both generated from Poisson distribution with parameter λ = 10 independently

of anything in the model. So in the “raw” design all matches are one-to-one.

We then split a sample into subsamples of the observations of Y in the first one and

(X,Z) in the second one.

Our goal now is to construct the quasi-identifiers Zz and Zy and construct approxima-

tions for the joint distribution FN(Y, Z). We consider the same three scenarios (A), (B),

(C) as in Experiment 1 and construct blocks and quasi-identifiers in the same way as there.

In each Monte Carlo draw m we construct the empirical distribution function FN
m (y, z) =

1
Nobs

∑
1{Yj ≤ y}1{Zi ≤ z} for the linked sample of pairs of Y and Z, and empirical

distributions FN
m,Y (y) = 1

N

∑N
j=1 1{Yj ≤ y} and FN

m,XZ(x, z) = 1
N

∑N
i=1 1{Xi ≤ x}1{Zi ≤

z} from split datasets. The approximate distributions of interest are computed from the

Monte Carlo sample as simple averages

F̂N(y, z) =
1

M

M∑
m=1

FN
m (y, z), F̂N

Y (y) =
1

M

M∑
m=1

FN
m,Y (y), F̂N

XZ(x, z) =
1

M

M∑
m=1

FN
m,XZ(x, z).

Then we construct the moment vector with two equations∫ ∫
y z F̂N(dy, dz)−

∫
y F̂N

Y (dy)
∫ ∫

x F̂N
XZ(dx, dz)∫ ∫

x z F̂N
XZ(dx, dz)−

∫ ∫
x F̂N

XZ(dx, dz)
∫ ∫

z F̂N
XZ(dx, dz)

= β̃,

and ∫
y F̂N

Y (dy)− β̃
∫ ∫

x F̂N
XZ(dx, dz) = α̃.

Then solve this system of equations for α̃ and β̃.

In order to construct pseudo-identified sets, in each scenario we proceed just as we did

in Experiment 1. The results of the experiment are illustrated in Figure 2. The left panel

of Figure 2 shows the N -pseudo-identified sets in scenarios (A), (B) and (C), respectively,

obtained for N = 1000 (with M = 200 simulations). Thus, the left panel of Figure 2 looks

at the situation from the perspective of the data curator.

The right panel of Figure 2 describes what a a researcher as a secondary user of the data

can learn about the true parameter in all three scenarios from just one combined dataset
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released to her, where the proportion of correct matches is between 0 and 1−γ in scenarios

(B) and (C) (we choose this proportion randomly on [0, 1−γ]). Analogously to Experiment

1, we can learn the sign of b0, which in our example we learn to be positive, and then, in

addition to the sign, we can conclude make a conclusion about the range that b0 ≥ bπ,IV
1−γ ,

and then find a respective range for α0. Those ranges are illustrated in the second and

third graphs on the right panel in Figure 2, for scenarios (B) and (C), respectively (in that

figure the proportion of correct matches is close to zero).

5 Empirical example

In our theoretical analysis we focus on the tradeoff between the quality of identification of

the empirical model from the combined Economic data and the potential privacy threats

that arise from data linkage. If it is possible to identify the model of interest, that means

that there exist “high quality” links between the combined datasets.

In the context where one or both of the combined datasets contain sensitive informa-

tion, the combined records can be significantly more sensitive. We illustrate this idea

and demonstrate the impact of the data security constraints on the identification of the

econometric model using the example of gender-based discrimination.

The anecdotal evidence from the recent news publications indicates that a common prac-

tice in the Christian Orthodox religious communities in Central Russia and in the Muslim

communities of the Caucasus republics of Russia it is a commonplace practice to withdraw

children from schooling (which is mandatory in Russia) and common preventive medical

procedures (such as vaccinations). The press reports that this practice is disproportionally

applied to females. Our goal is to empirically study the presence of this practice.

The clear difficulty that would arise if we were to use aggregate data to address these

questions is that there exist group effects (that are correlated with the religious affiliation)

not accounting for which can significantly bias the analysis. As a result, for analysis we

need to combine the data that contains family-level demographics with the religious census.

Our main source of the household-level characteristics is the Russian Longitudinal Mon-

itoring Survey (RLMS).10 The RLMS is a nationally representative annual longitudinal

survey that covers more than 4,000 households (that include between 1900 and 3682 chil-

dren), starting from 1992 and the last available years is 2014. RLMS provides a survey

of a broad set of variables, including a variety of individual demographic characteristics,

health information, employment and income data. The data are collected from 33 Russian

regions, which include 31 large regions (equivalents of counties in the United States), as

well as two largest cities of Moscow and St. Petersburg. The religious census (conducted by

10This survey is conducted by the Carolina Population Center at the University of North Carolina at
Chapel Hill, and by the Higher School of Economics in Moscow. The official source name is “Russian Lon-
gitudinal Monitoring survey, RLMS-HSE,” conducted by Higher School of Economics and ZAO Demoscope
jointly with Carolina Population Center, University of North Carolina at Chapel Hill and the Institute of
Sociology RAS.
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Rosstat, the equivalent of the Census Bureau in Russia) indicates that 2 out of 33 regions

are dominated by individuals who identify themselves as Muslim, while in the remaining

regions the majority of the population identify as Orthodox Christians.

Due to extremely low population mobility in Russia, the group effects are localized

geographically. In the context of the RLMS data this has been documented in Yakovlev

[2017], where the group effects were associated with the “neighborhood” effects indicating

the common component in the behavior and characteristics of households from the same

geographical area. To identify the neighborhood effects we use the RLMS data on the

neighborhood identifiers, that were available for researchers in initial years the survey was

conducted (also referred to as rounds). These identifiers are available up to year 2009

while in the later rounds these identifiers were withheld due to privacy considerations.

The RLMS covers households within clusters of small neighborhoods (referred to as census

districts by Rosstat). The information on these small neighborhood identifiers allows one

combine the data from the RLMS with the data from Rosstat that contains neighborhood

characteristics, such as the predominant religious affiliation.

The empirical question that we analyze is the impact of the religious affiliation of a

family on the number of completed classes of mandatory schooling. We are particularly

interested in whether the number of completed grades differs for males and females. In

other words, how likely it is that females may be withheld from school by their parents for

religious reasons.

From the perspective of the privacy analysis, our goal is to see how the obfuscation of

small neighborhood identifiers can impact the identification of the causal effect of interest.

First, we consider the status quo situation where the actual neighborhoods are aggregated to

regions and thus eah neighborhood can be confused with 10-15 other neighborhoods within

the same region corresponding to k-anonymity with k equal to the total number of neigh-

borhoods in the region. Then we consider a hypothetical situation of of k = 2-anonymity:

we combine the data from individual neighborhoods into pairs of neighborhoods within the

same region.

In the context of model specification, we want to determine the importance of the

neighborhood effects and determine to which extent the observed disparities in schooling

are affected by differential treatment of males and females in families as opposed to just

reflect the difference in school attendance across different neighborhoods. To do this,

we estimate two empirical models where the unit of observation is each child. The first

empirical model analyzes the number of completed grades in school as a function of child’s

gender and age, religious affiliation of the family as well as demographic characteristics of

the family. The second model adds neighborhood characteristics to the first model.

After we estimated the “infeasible” model that uses the neighborhood identifiers, we

proceed to implement the “”feasible” procedure. This application combines (i) the actual

data combination procedure; (ii) the empirical characterization of functions and parameters
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used in the theorems and assumptions. For our data coming from the RLMS this imply

the illustration of the actual situation where the data curator suppressed the ability of

researchers for data linkage for privacy considerations.

For each household in the data we take available demographic information: size of the

household, number of children, age of the head of the household, gender of the head of

household, income, education, occupation. We take each region (oblast, republic, etc.) at

a time and perform clustering of households using the demographic variables and known

average neighborhood demographics that are de-linked from the individual demographic

data. The distance function that we use for such a clustering is

d(x, y) =

√√√√ K∑
k=1

(xk − yk)2/σ2
k,

where K is the number of demographic variables used for clustering and σ2
k is the overall

sample variance of a given variable. The points are selected into a given cluster simply by

verifying the distance between a given household and the nearest average characteristics of

the neighborhood is smaller than the pre-specified threshold 1/αN . We restrict the number

of clusters to be smaller than the (“infeasibly known” to us) the maximum number of

neighborhoods in a region. Each recovered cluster will be associated with the “inferred

neighborhood.”

Set constant αN such that the number of households over all clusters for which the

minimum over all neighborhoods included in the region d(x, xc) < 1/αN constitutes fraction

θ = .9 of the samples. We use this data-driven definition of αN to construct a “scale-

free” measure of frequency and proximity of observations. Our notion of “infrequent”

observations is slightly changed from the theoretical definition and we now focus on the set

of observations that are the closest to the mean characteristics of a given neighborhood. To

do this in practice, we drop all the points from each cluster for each d(x, xc) > 1/αN and for

each remaining household, call its cluster identifier the “inferred neighborhood.” Now we

re-run our main two models but using the subsample of points that satisfy d(x, xc) < 1/αN

and using their “inferred” neighborhoods instead of the true neighborhoods.

Then we consider the case of k = 2-anonymity. To do that take the neighborhood iden-

tifiers and randomly select pairs of neighborhoods within each region without replacement

and create a new identifier that now corresponds to the pair (rather than the individual

neighborhoods). If there is a neighborhood left without a pair, we randomly join it with

any of the selected pairs within the region.

After that we again isolate the clusters of the neighborhoods within each aggregated

neighborhood using our distance criterion. Then we estimate our two specifications of the

econometric model using the data across all the clusters.

Estimation results for each model are presented in Table 1. In our models the reli-

38



Table 1. The impact of religious affiliation, family and neighborhood characteristics on
school completion

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Female × Muslim -0.2464 ∗∗∗ -0.0491 -0.1728∗∗∗ -0.1720 -0.1333∗∗ 0.0293

(0.051) (0.104) (0.066) (0.131) (0.064) (0.126)
Female × Orthodox -0.1 ∗∗∗ -0.0883 ∗∗ -0.0699 -0.0577 -0.0949∗∗ -0.0998∗∗

(0.033) (0.037) (0.043) (0.046) (0.042) (0.045)
Female 0.1385 ∗∗∗ 0.1279 ∗∗∗ 0.1403∗∗∗ 0.1351∗∗∗ 0.1272∗∗∗ 0.1143∗∗∗

(0.018) (0.019) (0.023) (0.024) (0.022) (0.023)
Orthodox 0.0023 0.0149 0.0174 0.0060 0.0268 0.0316

(0.023) (0.026) [0.032) (0.030) (0.032)
Muslim 0.2326 ∗∗∗ -0.0246 0.3302∗∗∗ 0.0400 0.3319∗∗∗ -0.0063

(0.036) (0.074) (0.045) (0.091) (0.045) (0.092)
Share College 0.1566 ∗∗∗ 0.2163 ∗∗∗ .2052∗∗∗ 0.2391∗∗∗ 0.1901∗∗∗ 0.2206∗∗∗

(0.023) (0.024) (0.029) (0.029) (0.029) (0.029)
log(Income) 0.0216 ∗∗∗ 0.0146 ∗∗∗ 0.0244∗∗∗ 0.0162∗∗∗ 0.0249∗∗∗ 0.0171∗∗∗

(0.004) (0.004) 0.004) (0.005) (0.004) (0.004)
City -0.0452 ∗∗∗ -0.0178 -0.0640∗∗∗ -0.0325 -0.0779∗∗∗ -0.0466∗∗

(0.017) (0.018) 0.022) (0.022) (0.021) (0.021)
Child’s Age 1.0449 ∗∗∗ 1.0464 ∗∗∗ 1.0626∗∗∗ 1.0620∗∗∗ 1.0621∗∗∗ 1.0617∗∗∗

(0.003) (0.003) (0.004) (0.004) (0.004) (0.004)
Female × Share College -0.0926 ∗∗∗ -0.1079 ∗∗∗ -0.1181∗∗∗ -0.1220∗∗∗ -0.1042∗∗ -0.1043∗∗∗

(0.032) (0.033) (0.042) (0.041) (0.040) (0.040)
Female × log(Income) -0.0126 ∗∗ -0.013 ∗∗ -0.0127∗∗ -0.0125∗∗ -0.0089 -0.0092

(0.005) (0.005) (0.006) (0.006) (0.006) (0.006)
Female × City -0.0257 -0.0208 -0.0195 -0.0154 -0.0208 -0.0159

(0.025) (0.026) (0.031) (0.031) (0.031) (0.031)
Female × Muslim neighb -0.2171 ∗ -0.0054 -0.1986

(0.120) (0.151) (0.144)
Female × Orthodox neighb -0.0338 -0.0332 0.0239

(0.075) (0.092) (0.090)
Muslim neighb 0.3607 ∗∗∗ 0.3717∗∗∗ 0.4173∗∗∗

(0.086) (0.106) (0.106)
Orthodox neighb 0.0868 ∗ 0.1096∗ 0.0510

(0.052) (0.065) (0.062)
log(Avg. Neighb Income) -0.063 ∗∗∗ -0.0448∗∗∗ -0.0437∗∗∗

(0.004) (0.005) (0.005)
Constant -7.6509 ∗∗∗ -7.6561 ∗∗∗ -7.7849∗∗∗ -7.7694∗∗∗ -7.7669∗∗∗ -7.7581∗∗∗

(0.035) (0.037) (0.047) (0.047) (0.045) (0.045)

Observations 13,580 12,349 8,218 8,216 8,742 8,741
R2 0.898 0.899 0.896 0.898 0.895 0.897

Robust standard errors are given in parentheses. ∗∗∗ indicates the significance of a given variable on 1%

significance level, ∗∗ on 5% level, and ∗ on a 10% level.

gious affiliations are dummies for each household, Income stands for the household income,

Share College is the share of the individuals in the household who have a college degree

and City is the dummy indicating that a given neighborhood is within a city. We notice

that in the model that does not take the group effects into account the estimates indicate

the potential adverse effect of both considered religious denominations on the school com-
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pletion by women. The effect appears to be stronger for Muslim families where a female

child has a lower average number of school grades completed. The model that does take

the group effects into account shows a different picture. While the significant effect of re-

ligious affiliation of the household on the schooling of females is still present for Orthodox

Christian households, it disappears for households that identify as Muslim. This can partly

be explained by the lower overall school completion rates in the traditionally Muslim parts

of Russia. Our estimate, therefore, indicate that it is important to have neighborhood

identification of households to estimate the true causal effect in the Econometric model.

In Table 1 the unit of observation is a child in a given round of the RLMS. The depen-

dent variable is the number of grade completed. Models 1,3 and 5 are estimated without

accounting for the neighbothood identifiers. Models 2,4 and 6 account for neighborhoods.

Model 2 uses actual neighborhoods, while Models 4 and 6 use neighborhoods constructed

from matches between the individual data and actual neighborhoods. The sample in Models

3 and 4 is restricted to the observations where the weighted Euclidian distance between the

average neighborhood characteristis and individual households is smaller than the thresh-

old that eliminates 10% of the households overall that are too far from the distance. The

sample in Models 5 and 6 is restricted to the observations where the weighted Euclid-

ian distance between the average neighborhood characteristis and individual households

is smaller than the threshold that eliminates 10% of the households overall that are too

far from the distance, but instead the data on grouped neighborhoods are available that

preserve 2-anonymity.

The analysis of the results for the data combination procedure with the actual data

and the case of 2-anonymity demonstrates that the previously observed pattern where we

observe a significant negative effect of a muslim family on the years of schooling for female

without controling for neighborhood religios affiliation and do not observe this effect in

case where we control for the dominating religion of the neighborhood remains in place.

However, we also observe that the negative significant effect of the orthodox families (ob-

served even controlling for the neighborhood effect in the “infeasible” estimation) vanishes

with the use of the actual data and only becomes significant in case of 2-anonymity. This

clearly indicates that privacy constraints can significantly affect the model estimates (and,

therefore, the policy implications).

We note also, that the effects of several other demographic characteristics (unrelated to

religion) remain consistent through the model and preserve both the sign and the general

magnitude.

Recall that we construct an adaptive clustering procedure where the threshold αN used

in our theoretical analysis is chosen such that a fraction θ of households overall are dropped

from the sample for being “too far” from any average neighborhood characteristics. While

Table 1 reports the results for θ = .9, we also analyze the cases of θ = .5 and θ = .1.

To illustrate the performance of our data combination procedure, we report the empir-
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Figure 3. Empirical πN for the data combination procedure (θ = .9). On the left: with the
actual data. On the right: with 2-anonymity.
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Figure 4. Empirical πN for the data combination procedure (θ = .5). On the left: with the
actual data. On the right: with 2-anonymity.
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Figure 5. Empirical πN for the data combination procedure (θ = .1). On the left: with the
actual data. On the right: with 2-anonymity.
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ical analog of the parameter πN corresponding to the expected fraction of the correctly

identified mathed observations over a distribution of combined datasets. To do this for

each inferred neighborhood we count the number of households that indeed belong to the

same neighborhood. On figures 3 -5 we illustrate the impact of the stringency of the data

combination constraint and the degree of anonymity of the data on the quality of matches

by showing the distribution of the number of correct matches across neighborhoods.

We note that in general, with the actual data the modal number of correct matches is

1 per per neighborhood. This pattern is generally preserved for all choices of the fraction

of dropped observations. However, in the dataset with 2-anonymity, the modal number of

correctly identified matches varies between 2 and 3.

6 Conclusion

In this paper we analyze an important problem of identification of econometric model

from the split sample data without common numeric variables. Data combination with

combined string an numeric variables requires the measures of proximity between strings,

which we borrow from the data mining literature. Model identification from combined data

cannot be established using the traditional machinery as the population distributions only

characterize the marginal distribution of the data in the split samples without providing

the guidance regarding the joint data distribution. As a result, we need to embed the

data combination procedure (which is an intrinsically finite sample procedure) into the

identification argument. Then the model identification can be defined in terms of the limit

of the sequence of parameters inferred from the samples with increasing sizes. We discover,

however, that in order to provide identification, one needs to establish some strong links

between the two databases. The presence of these links means that the identities of the

corresponding individuals will be disclosed with a very high probability.
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Appendix

A Construction of individual identifiers

The key element of our identification argument is based on the construction of the identi-

fying variables Zy and Zx such that we can merge some or all observations in the disjoint

databases to be able to estimate the econometric model of interest. While we took the

existence of these variables as given, their construction in itself is an important issue and

there is a vast literature in applied statistics and computer science that is devoted to the

analysis of the broken record linkage. For completeness of the analysis in our paper we

present some highlights from that literature.

In general the task of merging disjoint databases is a routine necessity in may practical

applications. In many cases there do exist perfect cross-database identifiers of individual

entries. There could be multiple reasons why that is the case. For instance, there could be

errors in data entry and processing, wrong variable formatting, and duplicate data entry.

The idea that has arisen in Newcombe et al. [1959] and was later formalized in Fellegi

and Sunter [1969] was to treat the record linkage problem as a problem of classification of

record subsets into matches, non-matches and uncertain cases. This classification is based

on defining the similarity metric between each two records. Then given the similarity

metric one can compute the probability of particular pair of records being a match or non-

match. The classification of pairs is then performed by fixing the probability of erroneous

identification of a non-matched pair of records as a match and a matched pair of records as

a non-match by minimizing the total proportion of pairs that are uncertain. This matching

technique is based on the underlying assumption of randomness of records being broken.

As a result, using the sample of perfectly matched records one can recover the distribution

of the similarity metric for the matched and unmatched pairs of records. Moreover, as in

hypothesis testing, one needs to fix the probability of record mis-identification. Finally,

the origin of the similarity metric remains arbitrary.

A large fraction of the further literature was devoted to, on one hand, development of

classes of similarity metrics that accommodate non-numeric data and, on the other hand,

development of fast and scalable record classification algorithms. For obvious reasons,

measuring the similarity of string data turns out to be the most challenging. Edit distance

(see, Gusfield [1997] for instance) is a metric that can be used to measure the string

similarity. The distance between the two strings is determined as the minimum number of

insert, delete and replace operations required to transform one string into another. Another

measure developed in Jaro [1989] and elaborated in Winkler [1999] is based on the length

of matched strings, the number of common characters and their position within the string.

In its modification it also allows for the prefixes in the names and is mainly intended to

linking relatively short strings such as individual names. Alternative metrics are based
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on splitting strings into individual “tokens” that are substrings of a particular length and

then analyzing the power of sets of overlapping and non-overlapping tokens. For instance,

Jaccard coefficient is based on the relative number of overlapping and overall tokens in

two strings. More advanced metrics include the “TF/IDF” metric that is based on the

term frequency, or the number of times the term (or token) appears in the document (or

string) and the inverse document frequency, or the number of documents containing the

given term. The structure of the TF/IDF-based metric construction is outlined in Salton

and Harman [2003]. The distance measures may include combination of the edit distance

and the TF/IDF distance such as a fuzzy match similarity metric described in Chaudhuri

et al. [2003].

Given a specific definition of the distance, the practical aspects of matching observations

will entail calibration and application of a particular technique for matching observations.

The structure of those techniques is based on, first, the assumption regarding the data

structure and the nature of the record errors. Second, it depends on the availability of

known matches, and, thus, allows empirical validation of a particular matching technique.

When such a validation sample is available, one can estimate the distribution of the simi-

larity measures for matched and non-matched pairs for the validation sample. Then, using

the estimated distribution one can assign the matches for the pairs outside the validation

sample. When one can use numeric information in addition to the string information, one

can use hybrid metrics that combine the known properties of numeric data entries and the

properties of string entries.

Ridder and Moffitt [2007] overviews some techniques for purely numeric data combina-

tion. In the absence of validation subsamples that may incorporate distributional assump-

tions on the “similar” numeric variables. For instance, joint normality assumption with a

known sign of correlation can allow one to invoke likelihood-based techniques for record

linkage.

B Proofs

Proof of Proposition 1. Probability pNij (x, y,Dx,Dy) in (3.8) is equal to

pNij (x, y,Dx,Dy) pij(x, y,Dx,Dy)
pNij (x, y,Dx,Dy) pij(x, y,Dx,Dy) + pN

ij
(x, y,Dx,Dy) (1− pij(x, y,Dx,Dy))

, (B.24)

where

pij(x, y,Dx,Dy) = Pr(mij = 1 |xi = x, yj = y,Dx,Dy),

pNij (x, y,Dx,Dy) = Pr

(
|zyj − z

x
i | < αN , |zxi | >

1

αN

∣∣mij = 1, xi = x, yj = y,Dx,Dy
)
,

pN
ij

(x, y,Dx,Dy) = Pr

(
|zyj − z

x
i | < αN , |zxi | >

1

αN

∣∣mij = 0, xi = x, yj = y,Dx,Dy
)
.
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Note that Pr(mij = 1 |xi = x, yj = y,Dx,Dy) = 1
Nx . By Assumption 3, for αN ∈ (0, ᾱ),

inf
Dx,Dy

inf
i,j
pNij (x, y,Dx,Dy) ≥ (1− αN )(φ(αN ) + o(φ(αN ))).

Therefore, inf
Dx,Dy

inf
i,j
pNij (x, y,Dx,Dy) is bounded from below by

(1− αN )(φ(αN ) + o(φ(αN ))) 1
Nx

(1− αN )(φ(αN ) + o(φ(αN ))) 1
Nx + sup

Dx,Dy
sup
i,j

pN
ij

(x, y,Dx,Dy)
.

The last ratio will converge to 1 as Ny → ∞ if Nx

φ(αN ) sup
Dx,Dy

sup
i,j

pN
ij

(x, y,Dx,Dy) converges to 0.

Note that

pN
ij

(x, y,Dx,Dy) =

∫
|zxi |>

1
αN

∫ zxi +αN

zxi −αN
fZy |Y (zyj |yj = y)fZx|X(zxi |xi = x) dzyj dz

x
i .

From Assumption 3, for small αN ,

pN
ij

(x, y,Dx,Dy) =

∫
|zxi |>

1
αN

(
ψ

(
1

|zxi | − αN

)
− ψ

(
1

|zxi |+ αN

))
(1 + oy(1))g1(|zxi |)(1 + oxzx(1)) dzxi ,

where sup
|zxi |>

1
αN

sup
xi∈X

|oxzx(1)| → 0 and sup
yi∈Y

|oy(1)| → 0 as αN → 0. Thus, for any x and y,

Nx

φ(αN )
sup
Dx,Dy

sup
i,j

pN
ij

(x, y,Dx,Dy) ≤ Nx

φ(αN )

∫
|z|> 1

αN

(
ψ

(
1

|z| − αN

)
− ψ

(
1

|z|+ αN

))
g1(|z|) dz+

+

 sup
|zxi |>

1
αN

sup
xi∈X

|oxzx(1)|+ sup
yi∈Y

|oy(1)|

 Nx

φ(αN )

∫
|z|> 1

αN

(
ψ

(
1

|z| − αN

)
− ψ

(
1

|z|+ αN

))
g1(|z|) dz.

Taking into account the relationship between g1(z) and φ
(

1
z

)
, we obtain the result in the propo-

sition. �

Proof of Proposition 2. This result of this proposition obviously follows from Proposition 1

because sup
Dx,Dy

sup
i,j

pNij (x, y,Dx,Dy) ≥ inf
Dx,Dy

inf
i,j
pNij (x, y,Dx,Dy). �

Discussion of Remark 3. (a) Let us check that if a sequence αN is chosen as in (3.11), then

it satisfies (3.10). In other words, let us check that

Nx

αc1N

∞∫
1
αN

((
1

z − αN

)c2
−
(

1

z + αN

)c2) 1

zc1+1
dz → 0 as Ny →∞.
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Indeed,

Nx

αc1N

∞∫
1
αN

((
1

z − αN

)c2
−
(

1

z + αN

)c2) 1

zc1+1
dz =

Nx

αc1N

∞∫
1
αN

(
1−

(
1− 2αN

z + αN

)c2) (z − αN )−c2

zc1+1
dz.

If αN is small enough, then for all z ≥ 1
αN

, it holds that 1 −
(

1− 2αN
z+αN

)c2
≤ q1

αN
z+αN

for some

constant q1 > 0. Therefore, if αN is small enough, then for all z ≥ 1
αN

we have

(
1−

(
1− 2αN

z + αN

)c2) (z − αN )−c2

zc1+1
≤ q2

αN
zc1+c2+2

for some constant q2 > 0. Finally, note that

q2N
x

αc1−1
N

∞∫
1
αN

1

zc1+c2+2
dz =

q2N
x

1 + c1 + c2
αc2+2
N → 0 as Ny →∞

if αN is chosen as in (3.11).

(b) Let us check that if a sequence αN is chosen as in (3.12), then it satisfies (3.10). In other

words, let us check that

Nxe
c1
αN

∞∫
1
αN

(
e−c2(z−αN ) − e−c2(z+αN )

)
e−c1z dz → 0 as Ny →∞.

Indeed,

Nxe
c1
αN

∞∫
1
αN

(
e−c2(z−αN ) − e−c2(z+αN )

)
e−c1z dz = Nxe

− c2
αN

ec2αN − e−c2αN
c1 + c2

.

Note that for some constant r > 0

ec2αN − e−c2αN ≤ rαN .

Now it is clear that if αN is chosen as in (3.12), then (3.10) holds. �

Proof of Proposition 3. From (B.24), using Assumption 3 obtain that for αN ∈ (0, ᾱ)

pNij (x, y,Dx,Dy) ≤ 1

1 + Nx

φ(αN )+oxy(φ(αN ))

(
1− 1

Nx

)
pN
ij

(x, y,Dx,Dy)
,

and, thus,

sup
Dx,Dy

sup
i,j

pNij (x, y,Dx,Dy) ≤ 1

1 + Nx

φ(αN )+oxy(φ(αN ))

(
1− 1

Nx

)
inf
Dx,Dy

inf
i,j
pN
ij

(x, y,Dx,Dy)
.
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Now obtain that sup
x,y

sup
Dx,Dy

sup
i,j

pNij (x, y,Dx,Dy) will be bounded away from 1 as Ny →∞ if

Nx

φ(αN )
inf
x,y

inf
Dx,Dy

inf
i,j
pN
ij

(x, y,Dx,Dy)

is bounded away from 0 as Ny →∞, that is, if

lim inf
Ny→∞

Nx

φ(αN )
inf
x,y

inf
Dx,Dy

inf
i,j
pN
ij

(x, y,Dx,Dy) > 0. (B.25)

Using the expression for pN
ij

(x, y,Dx,Dy) from the proof of Proposition 1, for small αN obtain

Nx

φ(αN )
pN
ij

(x, y,Dx,Dy) ≥

1− sup
|zxi |>

1
αN

sup
xi∈X

|oxzx(1)| − sup
yi∈Y

|oy(1)|

×
Nx

φ(αN )

∫
|zxi |>

1
αN

(
ψ

(
1

|zxi | − αN

)
− ψ

(
1

|zxi |+ αN

))
g1(|zxi |) dzxi .

Clearly, the expression on the right-hand side of the last inequality is also a lower bound for
Nx

φ(αN ) inf
x,y

inf
Dx,Dy

inf
i,j
pN
ij

(x, y,Dx,Dy). Taking into account the relationship between g1(z) and φ
(

1
z

)
,

and the fact that sup
|zxi |>

1
αN

sup
xi∈X

|oxzx(1)| → 0 and sup
yi∈Y

|oy(1)| → 0 as αN → 0, we obtain that the

condition (3.13) guarantees then that (B.25) holds. �

Discussion of Remark 4. (a) Let us check that if a sequence αN is chosen as in (3.14), then

it satisfies (3.13). In other words, let us check that

lim inf
Ny→∞

b2c1
Nx

αc1N

∞∫
1
αN

((
1

z − αN

)c2
−
(

1

z + αN

)c2) 1

zc1+1
dz > 0.

Use
((

1
z−αN

)c2
−
(

1
z+αN

)c2)
1

zc1+1 =
(

1−
(

1− 2αN
z+αN

)c2) (z−αN )−c2

zc1+1 and note that if αN is small

enough, then for all z ≥ 1
αN

,

1−
(

1− 2αN
z + αN

)c2
≥ q̃1

αN
z + αN

for some constant q̃1 > 0. Therefore, if αN is small enough, then for all z ≥ 1
αN

we have

(
1−

(
1− 2αN

z + αN

)c2)( 1

z − αN

)c2 1

zc1+1
≥ q̃2

αN
zc1+c2+2

for some constant q̃2 > 0. Finally, note that if αN is chosen as in (3.14), then

lim inf
Ny→∞

q̃2b2c1
Nx

αc1−1
N

∞∫
1
αN

1

zc1+c2+2
dz = lim inf

Ny→∞
q̃2b2c1

Nx

1 + c1 + c2
αc2+2
N > 0.
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(b) Let us check that if a sequence αN is chosen as in (3.15), then it satisfies (3.13). In other

words, we want to check that

lim inf
Ny→∞

c1N
xe

c1
αN

∞∫
1
αN

(
e−c2(z−αN ) − e−c2(z+αN )

)
e−c1z dz > 0.

Note that

Nxe
c1
αN

∞∫
1
αN

(
e−c2(z−αN ) − e−c2(z+αN )

)
e−c1z dz = Nxe

− c2
αN

ec2αN − e−c2αN
c1 + c2

and for some constant r̃ > 0

ec2αN − e−c2αN ≥ r̃αN .

Thus, if αN is chosen as in (3.15), then (3.13) holds. �

Proof of Proposition 4. Using Assumption 3 (iii) and the law of iterated expectations,

E

[
1

(
|Zx| > 1

α
, |Zx − Zy| < α

)
ρ(Y,X; θ)

∣∣ X = x

]
=

E

[
E

[
1

(
|Zx| > 1

α
, |Zx − Zy| < α

)
ρ(Y,X; θ)

∣∣ X = x, Zx = zx, Zy = zy
] ∣∣ X = x

]
=

E

[
1

(
|Zx| > 1

α
, |Zx − Zy| < α

)
E

[
ρ(Y,X; θ)

∣∣ X = x, Zx = zx, Zy = zy
] ∣∣ X = x

]
=

E

[
1

(
|Zx| > 1

α
, |Zx − Zy| < α

)
E

[
ρ(Y,X; θ)

∣∣ X = x

] ∣∣ X = x

]
=

E

[
1

(
|Zx| > 1

α
, |Zx − Zy| < α

) ∣∣ X = x

]
· E
[
ρ(Y,X; θ)

∣∣ X = x

]
.

By Assumption 3 (i) and (ii),

E

[
1

(
|Zx| > 1

α
, |Zx − Zy| < α

) ∣∣ X = x

]
> 0.

This implies

E

[
1
(
|Zx| > 1

α , |Z
x − Zy| < α

)
ρ(Y,X; θ)

∣∣ X = x

]
E

[
1
(
|Zx| > 1

α , |Zx − Zy| < α
) ∣∣ X = x

] = E [ρ(Y,X; θ) | X = x] ,

which is equivalent to (4.16). �

Proof of Proposition 5. Fix θ̃ ∈ Θ∞. Let π ∈ Π∞ be such that θ̃ minimizes

Q(θ, π) ≡ gπ(θ)′W0gπ(θ).

We can find a sequence {πN (·, ·)} that converges to π uniformly over all y and all x. Let θN be
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any value that minimizes

QN (θ, πN ) ≡ gN (θ)′W0g
N (θ)

for the chosen πN (·, ·). Clearly, θN ∈ ΘN . Let us show that θN → θ̃.

First, we establish that sup
θ∈Θ
|QN (θ, πN )−Q(θ, π)| → 0. Note that

QN (θ, πN )−Q(θ, π) =
(
gN (θ)− gπ(θ)

)′
W0

(
gN (θ)− gπ(θ)

)
+ 2gπ(θ)′W0

(
gN (θ)− gπ(θ)

)
.

Therefore,

sup
θ∈Θ
|QN (θ, πN )−Q(θ, π)| ≤ sup

θ∈Θ
‖gN (θ)− gπ(θ)‖2‖W0‖+ 2 sup

θ∈Θ
‖gπ(θ)‖ sup

θ∈Θ
‖gN (θ)− gπ(θ)‖‖W0‖.

Conditions (4.19) imply that sup
θ∈Θ
‖gπ(θ)‖ <∞. Thus, we only need to establish that sup

θ∈Θ
‖gN (θ)−

gπ(θ)‖ → 0. Using condition (4.22), we can show that gN (θ) can be represented as the sum of

four terms –

gN (θ) = AN1 +AN2 +BN1 +BN2,

where

AN1

1− π
=

∫ ∫ ∫
|zxi |>

1
αN

∫
|zyj−zxi |<αN

h(xi)ρ(yj , xi; θ)fY,X|Zy ,Zx(yj , xi|zyj , zxi )fZy ,Zx(zyj , z
x
i ) dzyj dz

x
i dyj dxi∫ ∫ ∫

|zxi |>
1
αN

∫
|zyj−zxi |<αN

fY,X|Zy ,Zx(yj , xi|zyj , zxi )fZy ,Zx(zyj , z
x
i ) dzyj dz

x
i dyj dxi

AN2 =

∫ ∫
|zxi |>

1
αN

∫
|zyj−zxi |<αN

oyx(1)h(xi)ρ(yj , xi; θ)fY,X|Zy ,Zx(yj , xi|zyj , zxi )fZy ,Zx(zyj , z
x
i ) dzyj dz

x
i dyj dxi∫ ∫ ∫

|zxi |>
1
αN

∫
|zyj−zxi |<αN

fY,X|Zy ,Zx(yj , xi|zyj , zxi )fZy ,Zx(zyj , z
x
i ) dzyj dz

x
i dyj dxi

BN1

π
=

∫ ∫ ∫
|zxi |>

1
αN

∫
|zxi −z

y
j |<αN

h(xi)ρ(yj , xi; θ)fY,Zy(yj , z
y
j )fX,Zx(xi, z

x
i ) dzyj dz

x
i dyj dxi∫ ∫ ∫

|zxi |>
1
αN

∫
|zxi −z

y
j |<αN

fY,Zy(yj , z
y
j )fX,Zx(xi, zxi ) dzyj dz

x
i dyj dxi

BN2 =

∫ ∫ ∫
|zxi |>

1
αN

∫
|zxi −z

y
j |<αN

oyx(1)h(xi)ρ(yj , xi; θ)fY,Zy(yj , z
y
j )fX,Zx(xi, z

x
i ) dzyj dz

x
i dyj dxi∫ ∫ ∫

|zxi |>
1
αN

∫
|zxi −z

y
j |<αN

fY,Zy(yj , z
y
j )fX,Zx(xi, zxi ) dzyj dz

x
i dyj dxi

,

and terms oyx(1) do not depend on θ and are such that sup
yj∈Y,xi∈X

|oyx(1)| → 0 as αN → 0.

Proposition 4 implies that E
[
h(X)ρ(Y,X; θ)

∣∣ |Zx| > 1
α , |Z

x − Zy| < α
]

= E[h(X)ρ(Y,X; θ)].

Therefore,

AN1 = (1− π)E[h(X)ρ(Y,X; θ)],

and thus,

gN (θ)− gπ(θ) = AN2 +BN1 +BN2 − πE∗
[
h(X)ρ(Ỹ , X; θ)

]
.

Note that

sup
θ∈Θ
‖AN2‖ ≤ sup

yj ,xi
|oyx(1)| · E

[
sup
θ∈Θ
‖h(X)ρ(Y,X; θ)‖

∣∣∣∣ |Zx| > 1

α
, |Zx − Zy| < α

]
= sup

yj ,xi
|oyx(1)| · E

[
sup
θ∈Θ
‖h(X)ρ(Y,X; θ)‖

]
→ 0
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as αN → 0. From Assumption 3 (iv), for small αN the denominator in BN1/π is the sum∫
|zxi |>

1
αN

∫
|zxi −z

y
j |<αN

g2(zyj )g1(zxi ) dzyj dz
x
i +

∫ ∫ ∫
|zxi |>

1
αN

∫
|zxi −z

y
j |<αN

(oxzx(1) + ozyy(1) + ozyy(1)oxzx(1))×

× g2(zyj )g1(zxi )fY (yj)fX(xi) dz
y
j dz

x
i dyj dxi,

and, similarly, the numerator is the sum∫ ∫
h(xi)ρ(yj , xi; θ)fY (yj)fX(xi) dyj dxi ·

∫
|zxi |>

1
αN

∫
|zxi −z

y
j |<αN

g2(zyj )g1(zxi ) dzyj dz
x
i +

+

∫ ∫
h(xi)ρ(yj , xi; θ)

∫
|zxi |>

1
αN

∫
|zxi −z

y
j |<αN

(oxzx(1) + ozyy(1) + ozyy(1)oxzx(1))×

× g2(zyj )g1(zxi )fY (yj)fX(xi) dz
y
j dz

x
i dyj dxi,

where oyzy(1) and oxzx(1) do not depend on θ and are such that sup
|zyj |>

1
αN
−αN

sup
yj
|oyzy(1)| → 0

and sup
|zxi |>

1
αN

sup
xi
|oxzx(1)| → 0 as αN → 0. Then BN1 − πE∗

[
h(X)ρ(Ỹ , X; θ)

]
is the sum of the

following two terms:

πE∗
[
h(X)ρ(Ỹ , X; θ)

]
·
(

CN1

CN1 +
∫ ∫

DN1(yj , xi)fY (yj)fX(xi) dyj dxi
− 1

)
(B.26)

and

π ·
∫ ∫

h(xi)ρ(yj , xi; θ)DN1(yj , xi)fY (yj)fX(xi) dyj dxi
CN1 +

∫ ∫
DN1(yj , xi)fY (yj)fX(xi) dyj dxi

, (B.27)

where

CN1 =

∫
|zxi |>

1
αN

∫
|zxi −z

y
j |<αN

g2(zyj )g1(zxi ) dzyj dz
x
i ,

DN1(yj , xi) =

∫
|zxi |>

1
αN

∫
|zxi −z

y
j |<αN

(oxzx(1) + ozyy(1) + ozyy(1)oxzx(1)) g2(zyj )g1(zxi ) dzyj dz
x
i .

The supremum over θ ∈ Θ of the norm of the term in (B.26) is bounded from above by

πE∗
[
sup
θ∈Θ
‖h(X)ρ(Ỹ , X; θ)‖

]
·
∣∣∣∣ CN1

CN1 +
∫ ∫

DN1(yj , xi)fY (yj)fX(xi) dyj dxi
− 1

∣∣∣∣ .
Because

|DN1(yj , xi)| ≤ sup
|zxi |>

1
αN

sup
|zyj |>

1
αN
−αN

sup
yj ,xi

|oyzyxzx(1)| · CN1

with sup
|zxi |>

1
αN

sup
|zyj |>

1
αN
−αN

sup
yj ,xi

|oyzyxzx(1)| → 0, then CN1

CN1+
∫ ∫

DN1(yj ,xi)fY (yj)fX(xi) dyj dxi
→ 1 as

αN → 0. Hence, (B.26) converges to 0 uniformly over θ ∈ Θ.
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The supremum over θ ∈ Θ of the norm of the term in (B.27) is bounded from above by

π ·

∫ ∫
sup
θ∈Θ
‖h(xi)ρ(yj , xi; θ)‖|DN1(yj , xi)|fY (yj)fX(xi) dyj dxi

CN1 +
∫ ∫

DN1(yj , xi)fY (yj)fX(xi) dyj dxi
≤

π · sup
|zxi |>

1
αN

sup
|zyj |>

1
αN
−αN

sup
yj ,xi

|oyzyxzx(1)| ·
CN1 · E∗

[
supθ∈Θ ‖h(X)ρ(Ỹ , X; θ)‖

]
CN1 +

∫ ∫
DN1(yj , xi)fY (yj)fX(xi) dyj dxi

,

which converges to 0 as αN → 0. Thus, we obtain that sup
θ∈Θ

∥∥∥BN1 − πE∗
[
h(X)ρ(Ỹ , X; θ)

]∥∥∥→ 0.

Finally, consider sup
θ∈Θ
‖BN2‖. This norm is bounded from above by the sum of

sup
yj ,xi

|oyx(1)|·
∫

sup
θ∈Θ
‖h(xi)ρ(yj , xi; θ)‖fY (yj)fX(xi) dyj dxi·

CN1

CN1 +
∫ ∫

DN1(yj , xi)fY (yj)fX(xi) dyj dxi

and

sup
yj ,xi

|oyx(1)|· sup
|zxi |>

1
αN

sup
|zyj |>

1
αN
−αN

sup
yj ,xi

|oyzyxzx(1)|·
CN1

∫
sup
θ∈Θ
‖h(xi)ρ(yj , xi; θ)‖fY (yj)fX(xi) dyj dxi

CN1 +
∫ ∫

DN1(yj , xi)fY (yj)fX(xi) dyj dxi
,

and, hence, sup
θ∈Θ
‖BN2‖ → 0 as αN → 0.

To summarize our results so far, we showed that

sup
θ∈Θ
‖gN (θ)− gπ(θ)‖ ≤ sup

θ∈Θ
‖AN2‖+ sup

θ∈Θ

∥∥∥BN1 − πE∗
[
h(X)ρ(Ỹ , X; θ)

]∥∥∥+ sup
θ∈Θ
‖BN2‖,

and, thus, sup
θ∈Θ
‖gN (θ)− gπ(θ)‖ → 0 as αN → 0. This implies that

sup
θ∈Θ
|QN (θ, πN )−Q(θ, π)| → 0. (B.28)

Now, fix ε > 0. Let us show that for large enough Nx, Ny, Q(θN , π) < Q(θ̃, π) + ε. In-

deed, (B.28) implies that when Nx, Ny are large enough, Q(θN , π) < QN (θN , πN ) + ε/3. Also,

QN (θN , πN ) < QN (θ̃, πN ) + ε/3 because θN is an argmin of QN (θN , πN ). Finally, (B.28) implies

that when Nx, Ny are large enough, QN (θ̃, πN ) < Q(θ̃, π) + ε/3.

Let S be any open neighborhood of θ̃ and let Sc be its complement in Rl . From the com-

pactness of Θ and the continuity of ρ(·, ·, ·) in θ, we conclude that min
Sc∩Θ

Q(θ, π) is attained.

The fact that θ̃ is the unique minimizer of Q(θ, π) gives that min
Sc∩Θ

Q(θ, π) > Q(θ̃, π). Denote

ε = min
Sc∩Θ

Q(θ, π)−Q(θ̃, π). As we showed above, for this ε we have that when Nx, Ny are large

enough,

Q(θN , π) < Q(θ̃, π) + ε = min
Sc∩Θ

Q(θ, π),

which for large enough Nx, Ny gives θN ∈ S. Since S can be chosen arbitrarily small, this means

that θN → θ̃. �

Proof of Corollary 1. Here ρ(Y,X, θ) = Y − X ′θ. From the conditional moment restriction
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we obtain that E [X(Y −X ′θ0)] = 0 and, thus, θ0 = EX [XX ′]−1E[XY ]. When Ỹ is drawn from

fY (·) independently of X, then E∗
[
X(Ỹ −X ′θ1)

]
= 0 gives θ1 = EX [XX ′]−1EX [X]EY [Ỹ ].

As established in Theorem 2, the identified set is

Θ∞ =
⋃

π∈[γ,1]

Argmin
θ∈Θ

r
(
πE
[
ρ(Y,X; θ)

∣∣X = x
]

+ (1− π)E∗
[
ρ(Ỹ , X; θ)|X = x

])
.

Here ρ(Y,X, θ) = Y − X ′θ. In the spirit of least squares, let us choose instruments h(X) = X

and consider the distance

r
(
πE
[
ρ(Y,X; θ)

∣∣X = x
]

+ (1− π)E∗
[
ρ(Ỹ , X; θ)|X = x

])
= gπ(θ)′gπ(θ),

where

gπ(θ) = (1− π)E[X(Y −X ′θ)] + πE∗[X(Ỹ −X ′θ)].

Note that

gπ(θ) = (1− π)E[XY ]− (1− π)EX [XX ′]θ + πEX [X]EY [Ỹ ]− πEX [XX ′]θ

= (1− π)E[XY ] + πEX [X]EY [Y ]− EX [XX ′]θ

= EX [XX ′]
(
(1− π)EX [XX ′]−1E[XY ] + πEX [XX ′]−1EX [X]EY [Y ]− θ

)
= EX [XX ′] ((1− π)θ0 + πθ1 − θ) .

Clearly, gπ(θ)′gπ(θ) takes the value of 0 if and only if gπ(θ) takes the value of 0, which happens

if and only if θ = (1− π)θ0 + πθ1. Thus for each π ∈ [γ, 1],

θπ = (1− π)θ0 + πθ1

is the unique minimizer of r
(
πE
[
ρ(Y,X; θ)

∣∣X = x
]

+ (1− π)E∗
[
ρ(Ỹ , X; θ)|X = x

])
. There-

fore,

Θ∞ =
{
θπ, π ∈ [γ, 1] : θπ = (1− π)θ0 + πθ1

}
. �
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