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On the construction of non-affine jump-diffusion models

Pavel V. Gapeev∗ Yavor I. Stoev†

We describe a method for construction of jump analogues of certain one-dimensional diffusion
processes satisfying solvable stochastic differential equations. The method is based on the reduction
of the original stochastic differential equations to the ones with linear diffusion coefficients, which
are reducible to the associated ordinary differential equations, by using the appropriate integrating
factor processes. The analogues are constructed by means of adding the jump components linearly
into the reduced stochastic differential equations. We illustrate the method by constructing jump
analogues of several diffusion processes and expand the notion of market price of risk to the resulting
non-affine jump-diffusion models.

1 Introduction

Stochastic differential equations play an important role in the theory of stochastic processes and
are commonly used to describe the dynamics of assets of random nature in various models of insur-
ance and finance. The standard methods based on Picard iterations are used for the construction
of pathwise solutions of such equations in the case of regular drift and diffusion coefficients. Al-
ternatively, one can study certain classes of the so-called solvable stochastic differential equations
which can either admit explicit solutions or at least be reduced to the corresponding first-order
ordinary differential equations. The former class was considered in Gard [12; Chapter IV], where
closed-form strong solutions were obtained to stochastic differential equations with linear coeffi-
cients, by introducing the appropriate integrating factor processes. The latter class was studied in
Øksendal [23; Chapter V], where the equations with general drift and linear diffusion coefficients
were reduced to the ordinary differential form. The extensions of the Ornstein-Uhlenbeck processes
to the case of driving Lévy processes was proposed in Barndorff-Nielsen [1]. The general class of
solvable stochastic differential equations was expanded in [10] to the case of jump-diffusion processes
driven by Wiener processes and Poisson random measures of finite intensities. The tractability of
the resulting analytic solutions of the constructed equations was shown in İyigünler, Çağlar, and
Ünal [16], by analysing the accuracy of the numerical approximations obtained from the appropriate
discretisation schemes. The Laplace transforms of the first exit times from two-sided intervals for
certain one-dimensional jump-diffusion processes satisfying solvable stochastic differential equations
were recently computed in [11].
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It is known that exponential Lévy processes are widely used for the description of the price
dynamics of risky assets in models of financial markets (see, e.g. Cont and Tankov [3] for an extensive
overview containing various theoretical and numerical issues). Along with the classical models based
on compound Poisson processes, modern examples include exponential variance gamma processes,
normal inverse Gaussian processes, and hyperbolic processes (see, e.g. Madan and Seneta [22],
Barndorff-Nielsen [1], and Eberlein and Keller [9] for the description of the corresponding models).
An introduction to jump-diffusion modelling for asset prices and the term structure of interest
rates was provided in Runggaldier [24] in the context of the pricing and hedging problems. The
definition and a complete characterisation of the class of regular affine processes was carried out in
Duffie, Filipović, and Schachermayer [8], which laid the foundations for a wide range of financial
applications. The popularity of the affine class can be explained by the fact that the logarithms
of the characteristic functions of the transition distributions of such time-homogeneous Markov
processes represent affine functions of the initial states. The analytical tractability of the affine
models is implied from the properties of the coefficients defining these affine relationships, which
solve an associated family of ordinary differential equations. These features made the affine processes
widely applicable for the description of the dynamics of term structures of interest rates, the models
of credit risk and stochastic volatility, as well as the pricing of contingent claims by means of
Fourier transforms (see, e.g. Duffie et al. [8; Chapter XIII], Duffie [7], Kallsen [18], and Kallsen,
Muhle-Karbe, and Voß [19] and the references therein, respectively).

Despite an obvious recent focus on the affine and more general polynomial processes (see, e.g.
Cuchiero, Keller-Ressel, and Teichmann [6] for the definition of the latter processes and their applica-
tions), some alternative models have attracted a considerable attention in the financial mathematics
literature. Such non-affine examples include the constant elasticity of variance (CEV) and the re-
lated SABR models for local and stochastic volatility introduced in Cox [4] and Hagan et al. [15],
respectively (see also the latter reference for model-dependent calibration methods). An overview
of various continuous diffusion models of stochastic interest rates was provided in Shiryaev [25;
Chapter III, Section 4]. In the present paper, we develop the method for construction of non-affine
jump analogues of certain diffusion processes in the case of driving Wiener processes and Poisson
random measures of infinite intensity. We also describe how the notion of market price of risk, or
relative risk, can be extended to the constructed non-affine jump-diffusion models in relation with
the pricing of derivative securities.

The paper is structured as follows. In Section 2, we first apply the method of [12; Chapter IV]
to obtain explicit solutions to linear jump-diffusion stochastic differential equations driven by a
Wiener process and a Poisson random measure of infinite intensity. Then, we follow [23; Chapter V,
Example 5.16] to reduce the equations with general drift and linear diffusion and jump coefficients to
the corresponding first-order ordinary differential equations that are solvable in the pathwise sense.
In Section 3, we extend the class of solvable stochastic differential equations to the reducible ones
by means of applying smooth invertible transformations. We present sufficient conditions for the
reducibility of the general stochastic differential equations to the solvable ones. We also construct
jump analogues of continuous diffusions and illustrate our results on several examples of non-affine
jump-diffusion processes. In Section 4, we discuss the extension of the notion of market price of
risk, or relative risk, for the constructed jump-diffusion models, which stays in accordance with the
same notions for the appropriate continuous diffusion models of financial markets.

2 Solvable stochastic differential equations

In this section, we describe a class of stochastic differential equations which can either be solved
explicitly or reduced to ordinary differential equations, by means of integrating factor processes.
For this purpose, we suppose that on a complete probability space (Ω,F , P ) there exists a standard
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Wiener process W = (Wt)t≥0 and a homogeneous Poisson random measure µ(dt, dv) on (R+ ×
R,B(R+) ⊗ B(R)) with the intensity (compensator) measure ν(dt, dv) = dtF (dv) (see, e.g. [17;
Chapter II, Definition 1.20]), where F (dv) is a positive σ -finite measure on (R,B(R)) such that
F ({0}) = 0, and W is assumed to be independent of µ(dt, dv).

2.1 The setting. Let us consider the stochastic differential equation

dXt = β(t,Xt) dt+ γ(t,Xt) dWt (2.1)

+

∫
h(δ(t,Xt−, v)) (µ− ν)(dt, dv) +

∫
h(δ(t,Xt−, v))µ(dt, dv),

where h(x) = xI{|x|≤1} with I{·} as the indicator function, h(x) = x − h(x), x ∈ R , and β(t, x),
γ(t, x) > 0, and δ(t, x, v) are continuous functions on R+ × R and R+ × R2 , respectively. Assume
that, for any n ∈ N , there exist a constant Cn > 0 and a function ρn(v) with

∫
ρ2
n(v)F (dv) < ∞

such that the equalities

|β(t, x)− β(t, y)| ≤ Cn |x− y|, |β(t, x)| ≤ Cn (1 + |x|), (2.2)

|h(δ(t, x, v))− h(δ(t, y, v))| ≤ ρn(v) |x− y|, (2.3)

|h(δ(t, x, v))| ≤ ρn(v) (1 + |x|), (2.4)

|h(δ(t, x, v))− h(δ(t, y, v))| ≤ ρ2
n(v) |x− y|, (2.5)

|h(δ(t, x, v))| ≤ (ρ2
n(v) ∧ ρ4

n(v)) (1 + |x|), (2.6)

are satisfied, for all 0 ≤ t ≤ n and x, y, v ∈ R . We additionally assume that

γ(t, x) = γ0(t) + γ1(t)x and δ(t, x, v) = δ0(t, v) + δ1(t, v)x (2.7)

holds, where γi(t) and δi(t, v) for i = 0, 1 are continuous functions such that δ1(t, v) > −1, for
all t ≥ 0 and x, v ∈ R . These conditions guarantee the existence of a unique strong solution
X = (Xt)t≥0 to (2.1) for a given X0 ∈ R (see, e.g. [17; Chapter III, Theorem 2.32]). Finally, the
equation in (2.1) takes the form

dXt = β(t,Xt) dt+ (γ0(t) + γ1(t)Xt) dWt (2.8)

+

∫
h(δ0(t, v) + δ1(t, v)Xt−) (µ− ν)(dt, dv) +

∫
h(δ0(t, v) + δ1(t, v)Xt−)µ(dt, dv).

2.2 The case of affine coefficients. Following the arguments in [12; Chapter IV], we see that
when

β(t, x) = β0(t) + β1(t)x (2.9)

holds, for all t ≥ 0 and x ∈ R , the stochastic differential equation (2.8) for X can be solved
explicitly, and X represents a polynomial process (see, e.g. [6] for the definition and applications
of this concept). Let us assume that the condition∫ t

0

∫ (
δ2

1(s, v)I{|δ(s,x,v)|≤1}

1 + |δ1(s, v)|
+
∣∣ ln(1 + δ1(s, v))− δ1(s, v) I{|δ(s,x,v)|≤1}

∣∣)F (dv) ds <∞ (2.10)
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holds, for all t ≥ 0 and x ∈ R . Therefore, the integrating factor process Z = (Zt)t≥0 given by

Zt = exp

(∫ t

0

γ2
1(s)

2
ds−

∫ t

0
γ1(s) dWs −

∫ t

0

∫
δ1(s, v) I{|δ(s,Xs−,v)|≤1} (µ− ν)(ds, dv) (2.11)

−
∫ t

0

∫ (
ln(1 + δ1(s, v))− δ1(s, v) I{|δ(s,Xs−,v)|≤1}

)
µ(ds, dv)

)
is well-defined according to [25; Chapter VII, Section 3, Theorem 2]. Hence, applying Itô’s formula
(see, e.g. [17; Chapter I, Theorem 4.57]) to (2.11), we get that the process Z satisfies the equation

dZt = Zt−

(
γ2

1(t) dt− γ1(t) dWt −
∫
δ1(t, v) I{|δ(s,Xs−,v)|≤1} (µ− ν)(dt, dv) (2.12)

−
∫
δ1(t, v)I{|δ(s,Xs−,v)|>1} − δ2

1(t, v) I{|δ(s,Xs−,v)|≤1}

1 + δ1(t, v)
µ(dt, dv)

)
.

It follows from the expressions in (2.8) and (2.9) that the process F = (Ft)t≥0 defined by

Ft =
ZtXt

Rt
with Rt = exp

(∫ t

0
β1(s) ds

)
(2.13)

admits the representation

dFt =
1

Rt

(
Zt− dXt +Xt− dZt + d〈Zc, Xc〉t + ∆Zt∆Xt − Zt−Xt−β1(t) dt

)
(2.14)

=
Zt−
Rt

((
β0(t)− γ0(t)γ1(t)

)
dt+ γ0(t) dWt +

∫
δ0(t, v) I{|δ(s,Xs−,v)|≤1} (µ− ν)(dt, dv)

+

∫ (
δ0(t, v)

1 + δ1(t, v)
− δ0(t, v) I{|δ(s,Xs−,v)|≤1}

)
µ(dt, dv)

)
.

Therefore, we may conclude from the expressions in (2.13) and (2.14) that the process X = (Xt)t≥0

given by

Xt =
Rt
Zt

(
X0 +

∫ t

0

Zs
Rs

(
β0(s)− γ0(s)γ1(s)

)
ds+

∫ t

0

Zs
Rs

γ0(s) dWs (2.15)

+

∫ t

0

Zs−
Rs

(∫
δ0(s, v) I{|δ(s,Xs−,v)|≤1} (µ− ν)(ds, dv)

+

∫ (
δ0(s, v)

1 + δ1(s, v)
− δ0(s, v) I{|δ(s,Xs−,v)|≤1}

)
µ(ds, dv)

))
provides a (unique strong) solution of the equation in (2.8) under the condition of (2.9), for a given
X0 ∈ R . In this case, we call the stochastic differential equation of the form of (2.8) solvable in an
explicit form.

2.3 The case of linear diffusion coefficients. Following the arguments in [23; Chapter V,
Example 5.16], we now show that the stochastic differential equation in (2.8) can be reduced to an
ordinary differential equation, if we assume that γ0(t) = δ0(t, v) = 0 holds in (2.7), for all t ≥ 0
and v ∈ R . By applying the integration-by-parts formula to the process G = (Gt)t≥0 given by
Gt = ZtXt and using the form of the functions h(x) and h(x), and the expressions in (2.8) and
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(2.12), we obtain

dGt = Zt− dXt +Xt− dZt + d〈Zc, Xc〉t + ∆Zt ∆Xt (2.16)

= Zt−

(
β(t,Xt−) dt+ γ1(t)Xt− dWt

+

∫
h(δ1(t, v)Xt−) (µ− ν)(dt, dv) +

∫
h(δ1(t, v)Xt−)µ(dt, dv)

)
+ Zt−Xt−

(
γ2

1(t) dt− γ1(t) dWt −
∫
h(δ1(t, v)Xt−)

Xt−
(µ− ν)(dt, dv)

−
∫
h(δ1(t, v)Xt−)− δ1(t, v)h(δ1(t, v)Xt−)

(1 + δ1(t, v))Xt−
µ(dt, dv)

)
− Zt−Xt−γ

2
1(t) dt− Zt−Xt−

∫
δ2

1(t, v)

1 + δ1(t, v)
µ(dt, dv).

Note that the all the fractions in the expression of (2.16) above are well-defined, since we use the
notation h(δ1(t, v)x)/x = δ1(t, v) for x = 0. Therefore, if β(t, x) satisfies the conditions in (2.2),
then the (unique strong) solution X of (2.8) is given by Xt = Gt/Zt , where for all ω ∈ Ω the
process G(ω) = (Gt(ω))t≥0 is the unique solution of the ordinary differential equation

dGt(ω) = Zt(ω)β(t, Gt(ω)/Zt(ω)) dt. (2.17)

Since the solution to the first-order ordinary differential equation in (2.17) can be obtained by
means of Picard iterations, under certain regularity conditions, we further also call the stochastic
differential equation of the form of (2.8) solvable in a closed form.

2.4 An example with a special semimartingale. Let us finally consider the stochastic dif-
ferential equation in (2.1) with the truncation function h(x) = x , x ∈ R , so that it takes the
form

dXt = β(t,Xt) dt+ γ(t,Xt) dWt +

∫
δ(t,Xt−, v) (µ− ν)(dt, dv). (2.18)

Then, the conditions of (2.3)-(2.6) can be written as

|δ(t, x, v)− δ(t, y, v)| ≤ ρn(v) |x− y| and |δ(t, x, v)| ≤ ρn(v) (1 + |x|), (2.19)

for all 0 ≤ t ≤ n , n ∈ N , and x, y, v ∈ R . In this case, the equation in (2.8) takes the form

dXt = β(t,Xt) dt+ (γ0(t) + γ1(t)Xt) dWt +

∫
(δ0(t, v) + δ1(t, v)Xt−) (µ− ν)(dt, dv) (2.20)

and the condition of (2.10) can be simplified to∫ t

0

∫ (
δ2

1(s, v)

1 + |δ1(s, v)|
+
∣∣ ln(1 + δ1(s, v))− δ1(s, v)

∣∣)F (dv) ds <∞. (2.21)
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Thus, the integrating factor process Z from (2.11) admits the representation

Zt = exp

(∫ t

0

γ2
1(s)

2
ds−

∫ t

0
γ1(s) dWs −

∫ t

0

∫
δ1(s, v) (µ− ν)(ds, dv) (2.22)

−
∫ t

0

∫ (
ln(1 + δ1(s, v))− δ1(s, v)

)
µ(ds, dv)

)
.

Hence, the application of Itô’s formula to the expression in (2.22) yields

dZt = Zt−

(
γ2

1(t) dt− γ1(t) dWt −
∫
δ1(t, v) (µ− ν)(dt, dv) +

∫
δ2

1(t, v)

1 + δ1(t, v)
µ(dt, dv)

)
. (2.23)

In a way similar to the one presented above, by using the expressions in (2.20) and (2.23), we
can apply the Itô’s formula to the processes F and G defined as in (2.13) and Subsection 2.3,
respectively, and obtain the equations of (2.14) and (2.16). We conclude again that if β(t, x)
satisfies the conditions of (2.2), then the (unique strong) solution X of the equation in (2.18) is
given by (2.15) in the setting of Subsection 2.2 and by Xt = Gt/Zt in the setting of Subsection 2.3.
Note that, in this case, however, the indicator functions appearing in (2.14)-(2.15) are equal to one
and h(x) = 0, x ∈ R , holds in (2.16).

3 Reducibility to solvable equations

In this section, we extend the class of solvable stochastic differential equations by means of smooth
invertible transformations and provide sufficient conditions for the reducibility of the stochastic
differential equations to the solvable ones.

3.1 The invertible transformations. Let us consider the stochastic differential equation

dYt = η(t, Yt) dt+ σ(t, Yt) dWt (3.1)

+

∫
h(θ(t, Yt−, v)) (µ− ν)(dt, dv) +

∫
h(θ(t, Yt−, v))µ(dt, dv),

where η(t, y), σ(t, y) > 0, and θ(t, y, v) are continuous functions on R+ ×DY and R+ ×DY × R ,
respectively, for some open set DY ⊆ R . Suppose that f(t, y) is an invertible function from the
class C1,2(R+,DY ) in the sense that there exists a function g(t, x) such that f(t, g(t, x)) = x and
g(t, f(t, y)) = y , for all t ≥ 0, x ∈ DX , and y ∈ DY , where DX denotes the range of f(t, y). Let
the functions β(t, x), γ(t, x), and δ(t, x, v) be given by

β(t, x) = ∂tf(t, g(t, x)) + η(t, g(t, x)) ∂yf(t, g(t, x)) +
σ2(t, g(t, x))

2
∂yyf(t, g(t, x)), (3.2)

γ(t, x) = σ(t, g(t, x)) ∂yf(t, g(t, x)), (3.3)

h(δ(t, x, v)) = h(θ(t, g(t, x), v)) ∂yf(t, g(t, x)), (3.4)

h(δ(t, x, v)) = f(t, g(t, x) + θ(t, g(t, x), v))− f(t, g(t, x))− h(θ(t, g(t, x), v)) ∂yf(t, g(t, x)), (3.5)

for t ≥ 0, x ∈ DX , and v ∈ R , and assume that they satisfy the conditions (2.2)-(2.6), so that the
equation for X in (2.1) has a (unique strong) solution with a state space DX , and X0 ∈ DX . By
virtue of the invertibility of the function f(t, y) and an application of Itô’s formula, we conclude
that Y defined as Yt = g(t,Xt) is a (unique strong) solution to the equation (3.1) with a state
space DY and Y0 = g(0, X0) ∈ DY . Moreover, by virtue of the arguments of the previous section,
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when the functions γ(t, x) and δ(t, x, v) satisfy the conditions of (2.7), the stochastic differential
equation in (3.1) is reduced to the one in (2.8), which is solvable in a closed form under either the
conditions of (2.9) or the assumption γ0(t) = δ0(t, v) = 0, for all t ≥ 0 and v ∈ R .

On the other hand, if the equation in (3.1) has a (unique strong) solution Y with a state space
DY , by means of Itô’s formula applied to the process Xt = f(t, Yt), we get

dXt =
(
∂tf(t, Yt) + η(t, Yt) ∂yf(t, Yt) +

σ2(t, Yt)

2
∂yyf(t, Yt)

)
dt (3.6)

+ σ(t, Yt) ∂yf(t, Yt) dWt +

∫
h(θ(t, Yt−, v)) ∂yf(t, Yt−) (µ(dt, dv)− ν(dt, dv))

+

∫ (
f(t, Yt− + θ(t, Yt−, v))− f(t, Yt−)− h(θ(t, Yt−, v)) ∂yf(t, Yt−)

)
µ(dt, dv).

Therefore, when f(t, y) solves the equations

β(t, f(t, y)) = ∂tf(t, y) + η(t, y) ∂yf(t, y) +
σ2(t, y)

2
∂yyf(t, y), (3.7)

γ0(t) + γ1(t)f(t, y) = σ(t, y) ∂yf(t, y), (3.8)

h(δ0(t, v) + δ1(t, v)f(t, y)) = h(θ(t, y, v)) ∂yf(t, y), (3.9)

h(δ0(t, v) + δ1(t, v)f(t, y)) = f(t, y + θ(t, y, v))− f(t, y)− h(θ(t, y, v)) ∂yf(t, y), (3.10)

for some continuous functions β(t, x), γi(t), and δi(t, v), i = 0, 1, and all t ≥ 0, x ∈ DX , y ∈ DY ,
and v ∈ R , we obtain that the equation in (3.1) is reduced to the one of (2.8), which is solvable
in a closed form under either the conditions of (2.9) or the assumption γ0(t) = δ0(t, v) = 0, for all
t ≥ 0 and v ∈ R . In this case, we call the stochastic differential equation in (3.1) reducible to a
solvable equation, by means of the invertible transformation f(t, y) described above (see also [12;
Chapter IV], [23; Chapter V, Example 5.16], [10], and [16] for definitions of the related concepts).

Example 3.1. (Black-Karasinski model [2].) Suppose that in (3.1) we have η(t, y) = y(η0(t) +
η1(t) ln y), σ(t, y) = σ0(t)y , and θ(t, y, v) = 0, for all t ≥ 0, y > 0 and v ∈ R . Then the
function f(t, y) = ln y , y > 0, with the inverse g(t, x) = ex , x ∈ R , reduces the equation in (3.1)
to the equation of (2.8) with (2.9), where β0(t) = η0(t) − σ2

0(t)/2, β1(t) = η1(t), γ0(t) = σ0(t),
γ1(t) = δi(t, v) = 0, i = 0, 1, for all t ≥ 0 and v ∈ R .

Example 3.2. (Stochastic population model [23; Chapter V, Example 5.15].) Suppose that in (3.1)
we have η(t, y) = η0(t)y(η1(t)− y), η0(t) > 0, η1(t) > 0, σ(t, y) = σ0(t)y , and θ(t, y, v) = 0, for all
t ≥ 0, y > 0 and v ∈ R . Then the function f(t, y) = 1/y , y > 0, with the inverse g(t, x) = 1/x ,
x > 0, reduces the equation in (3.1) to the equation (2.8) with (2.9), where β0(t) = η0(t), β1(t) =
σ2

0(t)− η0(t)η1(t), γ1(t) = −σ0(t), γ0(t) = δi(t, v) = 0, i = 0, 1, for all t ≥ 0 and v ∈ R .

Remark 3.3. Observe that, in Examples 3.1 and 3.2, the function η(t, y) does not satisfy the
second part of the conditions of (2.2), but we see that the equation in (3.1) has a unique solution,
since it is reducible to the linear equation in (2.8) with (2.9).

3.2 The reducibility criterion. Let us now describe the invertible transformations f(t, y)
which reduce the stochastic differential equation in (3.1) to the solvable one in (2.8), in the time-
homogeneous case. Suppose that (3.1) has a (unique strong) solution Y , where η(t, y) = η(y),
σ(t, y) = σ(y), θ(t, y, v) = θ(y, v), and f(t, y) = f(y), g(t, x) = g(x), for all t ≥ 0, x ∈ DX ,
y ∈ DY , and v ∈ R . Assume that η(y), σ(y) > 0, and θ(y, v) are twice continuously differentiable
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functions, and define

r(y) =

∫ y dz

σ(z)
, p(y) =

η(y)

σ(y)
− σ′(y)

2
, and q(y, v) = er(y+θ(y,v))−r(y), (3.11)

for all y ∈ DY and v ∈ R . We are now ready to state the reducibility assertions for jump-diffusion
processes solving the equation in (3.1).

Theorem 3.4. The equation in (3.1) is reducible to the one of (2.8), where the appropriate invertible
transformation f(y) is given by

f(y) = c eγ1r(y) − γ0

γ1
, (3.12)

for all y ∈ DY and some constant γ0 ∈ R, if the following conditions are satisfied:
(i) either the equality

(q∂yq + σ(∂yq)
2)(y, v) = (q∂yσ∂yq − σ(∂yq)

2 + σ∂yyq)(y, v) = 0 (3.13)

or the equality (
q∂yσ∂yq − σ(∂yq)

2 + σ∂yyq

q∂yq + σ(∂yq)2

)
(y, v) = c1 (3.14)

holds, for some constant c1 ∈ R and all y ∈ DY , v ∈ R;
(ii) the conditions

|θ(y, v)| > 1 if and only if
∣∣c (eγ1r(y+θ(y,v)) − eγ1r(y)

)∣∣ > 1, (3.15)

|θ(y, v)| ≤ 1 if and only if eγ1(r(y+θ(y,v))−r(y)) = γ1
θ(y, v)

σ(y)
+ 1 (3.16)

hold, for all y ∈ DY and v ∈ R, and some constants c ∈ R and γ1 6= 0.
The solution of the equation in (2.8) is given by the expression in (2.15) if, in addition, the following
condition is satisfied:

(iii) either the equality p′(y) = 0 or the equalities(
(σp′)′

p′

)
(y) = c2 (3.17)

and

(σp′)′

p′
=
q∂yσ∂yq − σ(∂yq)

2 + σ∂yyq

q∂yq + σ(∂yq)2
with (3.14) (3.18)

hold, for some constant c2 ∈ R, and all y ∈ DY and v ∈ R.
On the other hand, solving the stochastic differential equation in (2.8) can be reduced to solving the
ordinary differential equation in (2.17) if the equality (∂yq)(y, v) = 0 holds, for all y ∈ DY and
v ∈ R.

Proof. In order to prove the reducibility of the equation in (3.1) to the one of (2.8), we need
to check whether the equalities in (3.7)-(3.10) are satisfied for some β(t, x) = β(x), γi(t) = γi ,
δi(t, v) = δi(v), i = 0, 1, and f(t, y) = f(y), for all t ≥ 0, y ∈ DY , and v ∈ R .

By using the notations of (3.11) and the fact that σ(y) > 0 for y ∈ DY , we obtain that the
function f(y) given by (3.12) is invertible. It can be shown by means of direct calculations that
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the equality in (3.8) is satisfied. Then, by summing up the equations in (3.9) and (3.10), instead of
checking the equality in (3.10), we can verify whether

f(y + θ(y, v))− f(y) = δ0(v) + δ1(v) f(y) (3.19)

holds. It follows by substituting the expressions of (3.12) with the notation of (3.11) for f(y) that
the equality in (3.19) is equivalent to

(
qγ1(y, v)− (1 + δ1(v))

)
eγ1r(y) =

γ1δ0(v)− γ0δ1(v)

cγ1
. (3.20)

Then, by differentiating the expression in (3.20), we see that it should be verified whether the
equality (

qγ1(y, v)− (1 + δ1(v)) +
σ(y)

γ1
∂yq

γ1(y, v)

)
γ1

σ(y)
eγ1r(y) = 0 (3.21)

holds, while after multiplying both parts of the expression in (3.21) by e−γ1r(y)σ(y) and differenti-
ating again, we get that the equality

γ1 ∂yq
γ1(y, v) + ∂y(σ∂yq

γ1)(y, v) = 0 (3.22)

needs to be verified. Applying the chain rule and dividing by γ1q
γ1−2 , we get that the equality in

(3.22) is equivalent to

γ1 (q∂yq + σ(∂yq)
2)(y, v) + (q∂yσ∂yq − σ(∂yq)

2 + σ∂yyq)(y, v) = 0. (3.23)

Hence, the equality in (3.22) can be verified by means of either the equality in (3.13) or

γ0 = 0 and γ1 = −
(
q∂yσ∂yq − σ(∂yq)

2 + σ∂yyq

q∂yq + σ(∂yq)2

)
(y, v), (3.24)

combined with the one of (3.14). By choosing

δ1(v) = qγ1(y, v)− 1 +
σ(y)

γ1
∂yq

γ1(y, v), (3.25)

we get that the equality (3.21) is also verified. Thus, when we set γ0 = 0 and

δ0(v) =
(
qγ1(y, v)− (1 + δ1(v))

)
c eγ1r(y), (3.26)

we obtain that the equality in (3.19) holds.
Let us now check whether the equality in (3.9) is satisfied. For this purpose, we define the

auxiliary sets

Θ0 = {(y, v) ∈ DY × R : |θ(y, v)| = 0} , (3.27)

Θ1 = {(y, v) ∈ DY × R : |θ(y, v)| > 1} , (3.28)

∆0 = {(y, v) ∈ DY × R : |δ(f(y), v)| = 0} , (3.29)

∆1 = {(y, v) ∈ DY × R : |δ(f(y), v)| > 1} , (3.30)

and note that from the invertibility of f(y) and the equality in (3.19) we have Θ0 = ∆0 . It follows
from the equality in (3.9) that we should verify whether Θ1 ⊆ ∆1 holds, but we have f ′(y) = 0
for y ∈ ∆1 \ Θ1 , that contradicts the invertibility of f(y). Therefore, we need to verify whether
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Θ1 = ∆1 holds, but the former represents the condition of (3.15), by virtue of the equality in (3.19).
Then, substituting the expression in (3.19) into the equality of (3.9), we also need to verify whether

f(y + θ(y, v))− f(y) = θ(y, v) f ′(y) (3.31)

holds, for y ∈ (DY ×R) \ (∆0 ∪∆1), but the latter equality is equivalent to the condition of (3.16).
Thus, the conditions of (3.15)-(3.16) are equivalent to the one of (3.9). Finally, the equality (3.7)
is satisfied when we choose β(x) as in (3.2), for x ∈ DX .

Assuming additionally that the condition of (iii) holds, let us now check whether the equality
in (3.7) is satisfied with β(x) of the form (2.9), for some constants β0, β1 ∈ R . Observe that when
the expressions in (3.17)-(3.18) are satisfied, we can set

γ0 = 0 and γ1 = −
(

(σp′)′

p′

)
(y) (3.32)

and note that if the expression in (3.14) holds then γ0 and γ1 agree with the ones from (3.24).
Substituting the expression from (3.12) with (3.11) for f(y) into (3.7) and using the assumption of
(2.9), we need to verify whether(

γ1 p(y) +
γ2

1

2
− β1

)
eγ1r(y) =

γ1β0 − γ0β1

cγ1
(3.33)

holds. It follows by differentiating the expression in (3.33) and using the notations of (3.11) that
the equality (

γ1 p(y) +
γ2

1

2
− β1 + σ(y) p′(y)

)
γ1

σ(y)
eγ1r(y) = 0 (3.34)

needs to be verified, and multiplying both parts of (3.34) by e−γ1r(y)σ(y)/γ1 and differentiating
again, we see that the equality

γ1 p
′(y) + (σp′)′(y) = 0 (3.35)

should also be satisfied. Hence, the equality in (3.35) is satisfied under the condition p′(y) = 0 or
the ones of (3.17)-(3.18) with (3.32). It follows that the equality in (3.34) holds when we set

β1 = γ1 p(y) +
γ2

1

2
+ σ(y) p′(y). (3.36)

Thus, the equality in (3.33) is verified when we set γ0 = 0 and

β0 =

(
γ1 p(y) +

γ2
1

2
− β1

)
c eγ1r(y). (3.37)

We may therefore conclude that the equality in (3.7) holds with β(x) of the form (2.9), and we can
solve the equation in (2.8) by the expression of (2.15).

On the other hand, when the equality (∂yq)(y, v) = 0 holds, for all y ∈ DY and v ∈ R , it follows
from the expressions in (3.25)-(3.26) that δ0(v) = 0 holds, so that we can set γ0 = 0 and reduce
the equation in (2.8) to the ordinary differential equation of (2.17).

Theorem 3.5. The equation in (3.1) is reducible to the one of (2.8) with γ1 = 0, where the
appropriate invertible transformation f(y) is given by

f(y) = γ0 r(y) + c, (3.38)

for all y ∈ DY and some constant c ∈ R, if the following conditions are satisfied:
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(iv) the equality (
σ∂yq

q

)
(y, v) = c3(v) (3.39)

holds, for some function c3(v), and all y ∈ DY and v ∈ R;
(v) the conditions

|θ(y, v)| > 1 if and only if
∣∣γ0

(
r(y + θ(y, v))− r(y)

)∣∣ > 1, (3.40)

|θ(y, v)| ≤ 1 if and only if r(y + θ(y, v))− r(y) =
θ(y, v)

σ(y)
(3.41)

hold, for some γ0 6= 0, y ∈ DY , and v ∈ R.
The solution of (2.8) is given by (2.15) if, in addition, the equality (σp′)′(y) = 0 holds, for all
y ∈ DY .

Proof. By using the notations of (3.11) and the assumption that σ(y) > 0 holds, for y ∈ DY ,
we obtain that the function f(y) given by (3.38) is invertible. Direct calculations show that f(y)
satisfies the equality in (3.8). It follows by substituting the expression of (3.38) with (3.11) for f(y)
into (3.19) that we can equivalently check whether(

ln q(y, v)− δ1(v) r(y)
)
γ0 = δ0(v) + δ1(v) c (3.42)

holds. Then, differentiating the equality in (3.42) and multiplying both parts of the resulting
expression by σ(y), we see that we can verify whether(

σ∂yq

q

)
(y, v) = δ1(v) (3.43)

holds. It follows from the expression in (3.39) that the equality in (3.43) is satisfied when we set

δ1(v) =

(
σ∂yq

q

)
(y, v), (3.44)

for all y ∈ DY and v ∈ R . Hence, the equality in (3.42) is verified when we choose

δ0(v) =
(

ln q(y, v)− δ1(v) r(y)
)
γ0 − δ1(v) c, (3.45)

for some c ∈ R . By means of the arguments similar to the ones used in Theorem 3.4, the conditions
of (3.40)-(3.41) are equivalent to the ones of (3.9). Again, the equality in (3.7) holds when we
choose β(x) as in (3.2), for x ∈ DX .

Finally, assuming additionally that the equality (σp′)′(y) = 0 holds, for all y ∈ DY , let us verify
whether the equality in (3.7) is satisfied with β(x) of the form (2.9), for some constants β0, β1 ∈ R .
By means of substituting the expression of (3.38) with (3.11) for f(y) into the one of (3.7) with
(2.9), it follows that we can equivalently verify whether(

p(y)− β1 r(y)
)
γ0 = β0 + c β1 (3.46)

holds, for some constant c ∈ R . Then, by differentiating the equality in (3.46), applying the
notations of (3.11) and multiplying both parts of the resulting expression by σ(y), we see that it
should be verified whether the equality

σ(y) p′(y)− β1 = 0 (3.47)
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holds. Hence, by using the equality (σp′)′(y) = 0, we get that the equality in (3.47) is satisfied
when we set

β1 = σ(y) p′(y), (3.48)

for all y ∈ DY . Thus, the equality in (3.46) is verified when we set

β0 = c β1 −
(
p(y)− β1 r(y)

)
γ0. (3.49)

We may therefore conclude that the equality in (3.7) holds with β(x) of the form (2.9) and any
γ0 6= 0, so that we can solve the equation in (2.8) by the expression of (2.15).

Remark 3.6. It follows from the proof presented above that if the truncation function h(x) is
non-zero, that is, if the equation in (3.9) is not trivially satisfied, then the process Y should have
a diffusion coefficient σ(y) which satisfies either the condition of (3.16) or (3.41). This is relevant
only in the case of infinite jump intensity, because the condition (3.9) is always satisfied by putting
h(x) ≡ 0 for the finite jump intensity case. We also note that the transformation equations of
(3.12) and (3.38) are similar to the equations of (3.10)-(3.12) in [10] for a single Poisson random
measure and the equations of (8) and (16) in [16] for multiple Poisson random measures in the time-
inhomogeneous setting. However, in the present paper, the conditions of (ii) and (v) of Theorems
3.4-3.5 reflect the fact that we work in the infinite jump intensity case.

Example 3.7. (Cox-Ingersoll-Ross model I [5].) Suppose that in (3.1) we have η(y) = η0 + η1y ,
σ(y) = σ0

√
y , η0 ≥ σ2

0/2, η1 6= 0, and θ(y, v) = 0, for all y > 0 and v ∈ R . Then the function
f(y) = exp(2

√
y), y > 0, with the inverse g(x) = (lnx/2)2 , x > 1, reduces the equation in

(3.1) to the one of (2.8), where β(x) = x(2η0 + η1 ln2 x/2 + σ2
0(lnx − 1)/2)/ lnx , γ1 = σ0 , and

γ0 = δ0(v) = δ1(v) = 0, for all x > 1 and v ∈ R .

Example 3.8. (Cox-Ingersoll-Ross model II [5].) Suppose that in (3.1) we have η(y) = η0y(η1−y),
σ(y) = σ0

√
y3 and θ(y, v) = 0, for all y > 0 and v ∈ R , where η0 , η1 ∈ R , and σ0 > 0. Then

the function f(y) = exp(−2/
√
y), y > 0, with the inverse g(x) = 4/ ln2 x , x ∈ (0, 1), reduces the

equation in (3.1) to the one of (2.8), where β(x) = −η0x(η1 lnx − 4/ lnx)/2 + σ2
0x(1 + 3/ lnx)/2,

γ1 = σ0 , and γ0 = δ0(v) = δ1(v) = 0, for all x ∈ (0, 1) and v ∈ R .

Example 3.9. (Constant elasticity of variance model [4] and [15].) Suppose that in (3.1) we have
η(y) = η1y , σ(y) = σ0y

α and θ(y, v) = 0, for all y > 0 and v ∈ R , where η1 ∈ R , σ0 , and α > 0. In
the case when α = 1, the function f(y) = y , y > 0, with the inverse g(x) = x , x > 0, reduces the
equation in (3.1) to the one of (2.8), where β(x) = xη1 , γ1 = σ0 and γ0 = δ0(v) = δ1(v) = 0, for all
x > 0 and v ∈ R . In the case when α ∈ (0, 1), the function f(y) = exp(y1−α/(1−α)), y > 0, with
the inverse g(x) = (ln(x)(1 − α))1/(1−α) , x > 1, reduces the equation in (3.1) to the one of (2.8),
where β(x) = η1(1− α)x lnx+ σ2

0x(1− α/((1− α) lnx))/2, γ1 = σ0 , and γ0 = δ0(v) = δ1(v) = 0,
for all x > 1 and v ∈ R . The case α > 1 yields the same reduced equation as the case α ∈ (0, 1)
does, but with the same β(x) defined for x ∈ (0, 1).

Example 3.10. (Shiryaev filtering model [21; Chapter IX].) Suppose that in (3.1) we have η(y) =
η0(1 − y), σ(y) = σ0y(1 − y) and θ(y, v) = 0, for all y ∈ (0, 1) and v ∈ R . Then the function
f(y) = y/(1−y), y ∈ (0, 1), with the inverse g(x) = x/(1+x), x > 0, reduces the equation in (3.1)
to the one of (2.8), where β(x) = η0(1 + x) + σ2

0x
2/(1 + x), γ1 = σ0 , and γ0 = δ0(v) = δ1(v) = 0,

for all x > 0 and v ∈ R .

3.3 The jump analogues of some diffusions. In the rest of this section, we will construct
jump analogues of several diffusion processes, by adding the jump components in the models of
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their solvable counterparts. To this purpose, we will use the Wiener process W = (Wt)t≥0 and
the Poisson random measure µ(dt, dv) with the compensator ν(dt, dv) = dtF (dv) existing on the
probability space (Ω,F , P ).

Let Y = (Yt)t≥0 be a continuous process with a state space DY solving the stochastic differential
equation (3.1) with θ(t, y, v) = 0 for all t ≥ 0, y ∈ DY , and v ∈ R . Suppose that there exists an
invertible transformation f(t, y) ∈ C1,2(R+,DY ) satisfying (3.7)-(3.10) and such that the process
X = (Xt)t≥0 , Xt = f(t, Yt), solves the equation in (2.8) with δi(t, v) = 0, for i = 0, 1, t ≥ 0, and

v ∈ R . Let us take a continuous function δ̂(t, x, v) = δ̂0(t, v) + δ̂1(t, v)x such that δ̂1(t, v) > −1
holds and the expression in (2.10) is satisfied with δ(t, x, v) replaced by δ̂(t, x, v). Assume also that

δ̂i(t, v) 6= 0 if and only if γi(t) 6= 0 (3.50)

holds, for i = 0, 1, and all t ≥ 0 and v ∈ R . Consider the stochastic differential equation

dX̂t = β(t, X̂t) dt+ (γ0(t) + γ1(t)X̂t) dWt (3.51)

+

∫
h(δ̂0(t, v) + δ̂1(t, v)X̂t−) (µ(dt, dv)− ν(dt, dv)) +

∫
h(δ̂0(t, v) + δ̂1(t, v)X̂t−)µ(dt, dv),

where β(t, x) satisfies either the condition of (2.9) or γ0(t) = δ̂0(t, v) = 0 holds, for all t ≥ 0 and
v ∈ R , and assume that its (unique strong) solution X̂ = (X̂t)t≥0 has the state space DX . Then,
according to the arguments of Section 2, we conclude that equation in (3.51) is solvable in a closed
form, and applying the inverse transformation g(t, x), for t ≥ 0 and x ∈ DX , to the solution X̂ ,
we obtain that the process Ŷt = g(t, X̂t) solves the equation

dŶt = η(t, Ŷt) dt+ σ(t, Ŷt) dWt (3.52)

+

∫
θ̂0(t, Ŷt−, v) (µ(dt, dv)− ν(dt, dv)) +

∫
θ̂1(t, Ŷt−, v)µ(dt, dv),

with

θ̂0(t, y, v) = h(δ̂0(t, v) + δ̂1(t, v)f(t, y))∂xg(t, f(t, y)), (3.53)

θ̂1(t, y, v) = g(t, δ̂0(t, v) + (1 + δ̂1(t, v))f(t, y))− g(t, f(t, y))− θ̂0(t, y, v), (3.54)

for t ≥ 0, y ∈ DY , and v ∈ R . We will call such process Ŷ = (Ŷt)t≥0 a jump analogue of the
diffusion process Y = (Yt)t≥0 (see [10; Section 4]). Note that when h(x) = 0, x ∈ R , holds the

jump analogue Ŷ also solves the equation of the form of (3.1).

Remark 3.11. Let us now introduce the pure jump analogue Ỹ = (Ỹt)t≥0 of the given Y = (Yt)t≥0 ,

by setting σ(t, y) = 0 in (3.52), for all t ≥ 0 and y ∈ DY . Such a process Ỹ can be defined as a
(unique strong) solution of the stochastic differential equation

dỸt = η(t, Ỹt) dt+

∫
θ̂0(t, Ỹt−, v) (µ(dt, dv)− ν(dt, dv)) +

∫
θ̂1(t, Ỹt−, v)µ(dt, dv), (3.55)

with θ̂i(t, y, v), i = 0, 1, given by (3.53)-(3.54).

Let us now give some examples of jump analogues of diffusion processes presented above. We
assume throughout that the truncation function is h(x) = 0, x ∈ R , and therefore θ̂0(t, y, v) = 0
holds, for t ≥ 0, y ∈ DY , and v ∈ R .

Example 3.12. (Extended Black-Karasinski model.) Suppose that in (3.52) we have the same
η(t, y) and σ(t, y) as in Example 3.1. Then, for a jump analogue in (3.54) we can take δ̂1(t, v) = 0,
and thus θ̂1(t, y, v) = y(exp(δ̂0(t, v))− 1), for all t ≥ 0, y > 0, and v ∈ R .
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Example 3.13. (Extended stochastic population model.) Suppose that in (3.52) we have the same
η(t, y) and σ(t, y) as in Example 3.2. Then, for a jump analogue in (3.54) we can take δ̂0(t, v) = 0,
and thus θ̂1(t, y, v) = −y(δ̂1(t, v)/(1 + δ̂1(t, v))), for all t ≥ 0, y > 0, and v ∈ R .

Example 3.14. (Extended Cox-Ingersoll-Ross model I.) Suppose that in (3.52) we have the same
η(y) and σ(y) as in Example 3.7. Then, for a jump analogue in (3.54) we can take θ̂1(y, v) =√
y ln(1 + δ̂1(v)) + ln2(1 + δ̂1(v))/4, for all y > 0 and v ∈ R .

Example 3.15. (Extended Cox-Ingersoll-Ross model II.) Suppose that in (3.52) we have the same
η(y) and σ(y) as in Example 3.8. Then, for a jump analogue in (3.54) we can take θ̂1(y, v) =

y
√
y ln

√
1 + δ̂1(v)(2−

√
y ln

√
1 + δ̂1(v))/(

√
y ln

√
1 + δ̂1(v)− 1)2 , for all y > 0 and v ∈ R .

Example 3.16. (Extended constant elasticity of variance model.) Suppose that in (3.52) we have
the same η(y) and σ(y) as in Example 3.9. In the case when α = 1, for a jump analogue in (3.54),
we can take θ̂1(y, v) = δ̂0(v) + δ̂1(v)y , for all y > 0 and v ∈ R . In the cases when α ∈ (0, 1) or
α > 1, for a jump analogue in (3.54), we can put δ̂0(v) = 0 and θ̂1(y, v) = (y1−α+(1−α) ln1−α(1+
δ̂1(v)))1/(1−α) − y , for all y > 0 and v ∈ R .

Example 3.17. (Extended Shiryaev filtering model.) Suppose that in (3.52) we have the same
η(y) and σ(y) as in Example 3.10. Then, for a jump analogue in (3.54) we can take θ̂1(y, v) =
y(1− y)δ̂1(v)/(1 + yδ̂1(v)), for all y ∈ (0, 1) and v ∈ R (see, e.g. [21; Chapter XIX]).

4 Market price of risk

In this section, we expand the notion of market price of risk, or relative risk, to the constructed
jump-diffusion models driven by natural exponential families of Lévy processes, in respect to their
applications to financial markets.

4.1 The relative risk representations. In the setting of the previous sections, suppose that
there exists a process S = (St)t≥0 defined as

St = exp

(
β1 t+ γ1Wt +

∫ t

0

∫
v (µ− ν)(du, dv)

)
, (4.1)

and thus, solving the stochastic differential equation

dSt = β1 St dt+ γ1 St dWt + St−

∫ (
ev − 1

)
(µ− ν)(dt, dv) (4.2)

with

β1 = β1 +
γ2

1

2
+

∫ (
ev − 1− v

)
F (dv), (4.3)

where β1 ∈ R , γ1 > 0, the compensator of the measure µ(dt, dv) has the form ν(dt, dv) = dtF (dv)
with respect to the probability measure P , and the condition∫ (

(v2 ∧ |v|) + ev I{|v|>1}

)
F (dv) <∞ (4.4)

holds. Then, lnS = (lnSt)t≥0 forms a Lévy process with the triplet of characteristics (β1, γ
2
1 , F (dv))

with respect to the truncation function h(x) = x , x ∈ R .
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Let (Pλ)λ∈Λ be a parametric set of probability measures which are locally absolutely continuous
with respect to P0 ≡ P on the filtration (Ft)t≥0 , where Λ ⊆ R is an open subset. Assume that the
probability measure Pλ admits the density

dPλ
dP0

∣∣∣∣
Ft

= exp
(
λ lnSt −K(λ) t

)
, (4.5)

with respect to the dominating measure P0 ≡ P , where the cumulant function K(λ) is given by

K(λ) = λβ1 +
λ2γ2

1

2
+

∫ (
eλv − 1− λv

)
F (dv), (4.6)

and the condition ∫ (
(v2 ∧ |v|) + I{|v|>1}

)
eλv F (dv) <∞ (4.7)

holds, for any λ ∈ Λ. In this case, the set (Pλ)λ∈Λ forms a natural exponential family generated
by the Lévy process lnS (see, e.g. [25; Chapter X, Section 2] and [20; Chapter II]). We further
assume that the characteristics of the triplet (β1(λ), γ2

1 , F (dx;λ)) of the process lnS with respect
to Pλ satisfy the conditions

β1(λ′) = β1(λ) + (λ′ − λ) γ2
1 +

∫
v
(
e(λ′−λ)v − 1

)
F (dv;λ), (4.8)

F (dv;λ′)

F (dv;λ)
= e(λ′−λ)v, and

∫ (
e(λ′−λ)v/2 − 1

)2
F (dv;λ) <∞, (4.9)

for any λ, λ′ ∈ Λ. Hence, it follows from Girsanov’s theorem (see, e.g. [17; Chapter III, Theo-
rem 5.34]) that the probability measures Pλ and Pλ′ are locally equivalent on the filtration (Ft)t≥0

and the density process takes the form

dPλ′

dPλ

∣∣∣∣
Ft

= exp
(

(λ′ − λ) lnSt −
(
K(λ′)−K(λ)

)
t
)
, (4.10)

so that any measure Pλ , λ ∈ Λ, can be taken as dominating.
Suppose that the process S = (St)t≥0 expresses the dynamics of the price of a risky asset (e.g.

a stock) in a model of a financial market in which the riskless asset (e.g. a bank account) has
a constant value. Assume that there exists λ∗ ∈ Λ such that S is a (local) martingale on the
filtration (Ft)t≥0 under the probability measure Pλ∗ , for some λ∗ ∈ Λ. Thus, it follows from the
structure of the density of the probability measures in (4.5) and (4.10) that λ∗ represents a root of
the arithmetic equation

K(λ+ 1)−K(λ) ≡ β1 +
γ2

1

2
−
∫
v F (dv) + λ γ2

1 +

∫ (
ev − 1

)
F (dv;λ) = 0, (4.11)

whenever it exists (see, e.g. [13]-[14] and [25; Chapter VII, Section 3]). The value λ∗ is called the
market price of risk, or relative risk, for the model of financial market with the risky asset price S .
The associated with λ∗ probability measure Pλ∗ is called the risk-neutral measure for the process
S and is used for the no-arbitrage pricing of derivative securities in the related models of financial
markets. Thus, the process S admits the (local martingale) representation

dSt = γ1 St dW
∗
t + St−

∫ (
ev − 1

)
(µ− ν)(dt, dv;λ∗), (4.12)
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where the process W ∗ = (W ∗t )t≥0 and the measure ν(dt, dv;λ∗) defined by

W ∗t = Wt − λ∗ t and ν(dt, dv;λ∗) = dt F (dv;λ∗) ≡ dt eλ∗v F (dv) (4.13)

are the standard Brownian motion and the compensator of the Poisson random measure µ(dt, dv)
with respect to Pλ∗ , respectively.

Suppose that there exists a strictly positive and twice continuously differentiable functions g(s)
and its inverse f(q) such as the ones considered in the previous section. Then, define the process
Q = (Qt)t≥0 by Qt = g(St), and assume that the function

η(q;λ∗) =

∫ (
g(f(q)(ev − 1))− q − (ev − 1) f(q) g′(f(q))

)
F (dv;λ∗) (4.14)

is finite, for all q > 0. Hence, by means of the Itô’s formula, we get that the process Q satisfies the
stochastic differential equation

dQt = η(Qt;λ∗) dt+ σ(Qt) dW
∗
t +

∫
θ(Qt−, v) (µ− ν)(dt, dv;λ∗), (4.15)

where the functions η(q;λ∗), σ(q), and θ(q, v;λ∗) are given by

η(q;λ∗) =
γ2

1f
2(q)

2
g′′(f(q)) + η(q;λ∗), (4.16)

σ(q) = γ1 f(q) g′(f(q)), and θ(q, v) = g(f(q)(ev − 1))− q, (4.17)

for all q > 0 and v ∈ R , and the function η(q;λ∗) is defined in (4.14). The process Q can express the
price dynamics of another risky asset (e.g. an interest rate) in the considered financial market model.
We also observe from the expressions in (4.12)-(4.13) and (4.15)-(4.17) that the processes S and Q
have the structure of coefficients under the probability measure Pλ∗ which is similar to the one of
the processes X and Y from (2.18) and (3.1) with (3.7)-(3.10), and β(t, x) = γ0(t) = δ0(t, v) = 0
and δ1(t, v) = ev − 1, for all t ≥ 0, x ∈ DX , and v ∈ R .

Remark 4.1. Note that, for any process Q satisfying the stochastic differential equation in (4.15)
with the coefficients of the form of (4.16)-(4.17) and (4.14), we can construct a process S by
setting St = f(Qt), which satisfies the stochastic differential equation in (4.12) with (4.13). We
can therefore expand the notion of relative risk λ∗ defined for the process S by the equation in
(4.11) on the process Q such that Qt = g(St), for all t ≥ 0. In this case, the payoff of a derivative
of the form H(Qt), for some measurable function H(q), q ∈ DQ , can be represented in the form
H(g(St)), for each t ≥ 0. In other words, the process S can be considered as the price of an
auxiliary underlying risky asset, which is a (local) martingale under the probability measure Pλ∗ .
In this respect, we can regard the expression in (4.15) as the risk-neutral representation for Q under
the probability measure Pλ∗ , where the value λ∗ is chosen by the market. Such an expansion of
this notion stays in accordance with the other ones considered in the literature and is related to
the several particular examples of continuous models from the previous section. One can also say
that this expansion defines the appropriate risk-neutral probability measure which can be used for
the no-arbitrage pricing of derivatives on the associated financial assets with the price processes
satisfying solvable stochastic differential equations.

4.2 Some natural exponential families. We conclude the section by referring several exam-
ples of natural exponential families of Lévy processes.

Example 4.2. Suppose that the process lnS has the triplet (−λ, 1, 0) with respect to the measure
Pλ , λ ∈ Λ = R , that is, lnS is a Brownian motion with the local drift rate (−λ) ∈ R and the
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marginal density function pλt (x) = exp(−(x + λ)2/(2t))/
√

2πt , t > 0, x ∈ R . Then (Pλ)λ∈Λ is a
natural exponential family with the dominating measure P0 and the cumulant function K(λ) =
λ2/2, λ ∈ Λ = R .

Example 4.3. Suppose that the process lnS has the triplet (eλ, 0, I{x=1}e
λxdx) with respect

to the measure Pλ , λ ∈ Λ = R , that is, lnS is a Poisson process of intensity eλ , λ ∈ R , so that
Pλ(lnSt = n) = (eλt)n exp(−eλt)/(n!), t > 0, n ∈ N . Then (Pλ)λ∈Λ is a natural exponential family
with the dominating measure P0 and the cumulant function K(λ) = exp(eλ)− 1, λ ∈ Λ = R .

Example 4.4. Suppose that the process lnS admits the representation lnSt =
∑Nt

j=1 Ξj , where
N = (Nt)t≥0 is a Poisson process of intensity (−η/λ) and (Ξj)j∈N is a sequence of independent (also
of N ) identically distributed random variables with probability density function pλΞ(x) = −λeλx ,
x > 0, with respect to the measure Pλ , λ ∈ Λ = (−∞, 0). The process lnS is a compound Poisson
process with exponential jumps, where the value (−η/λ) plays the role of the jump intensity (see, e.g.
[25; Chapter III, Section 1]). In this case, the process lnS has the triplet (η/λ2, 0, I{x>0}ηe

λxdx)
with respect to the probability measure Pλ , λ ∈ Λ. Hence (Pλ)λ∈Λ is a natural exponential family
with the cumulant function K(λ) = η/(2λ), λ ∈ Λ = (−∞, 0).

Example 4.5. Suppose that the process lnS admits the representation lnSt =
∑Nt

j=1 Ξj , where

N = (Nt)t≥0 is a Poisson process of intensity ηeλ
2/2 and (Ξj)j∈N is a sequence of independent

(also of N ) identically distributed random variables with probability density function pλΞ(x) =

(1/
√

2π)e−(x−λ)2/2 , x ∈ R , with respect to the measure Pλ , λ ∈ Λ = R . The process lnS is a
compound Poisson process with normal jumps, where the value ηeλ

2/2 plays the role of the jump
intensity (see, e.g. [25; Chapter III, Section 1]). In this case, the process lnS has the triplet
(ηeλ

2/2, 0, (ηeλ
2/2/
√

2π)e−(x−λ)2/2dx) with respect to the probability measure Pλ , λ ∈ Λ. Hence
(Pλ)λ∈Λ is a natural exponential family with the dominating measure P0 and the cumulant function
K(λ) = η(eλ

2/2 − 1), λ ∈ Λ = R .

Example 4.6. Suppose that the process lnS has the triplet (−1/λ, 0, I{x>0}
(eλx/x)dx) with respect to the measure Pλ , λ ∈ Λ = (−∞, 0), so that it is a gamma process
with parameter (−λ) and the marginal density function pλt (x) = xt−1 exp(x/λ)/((−λ)tΓ(t)), t > 0,
x > 0 (see, e.g. [25; Chapter III, Section 1]). Then (Pλ)λ∈Λ is a natural exponential family with
the cumulant function K(λ) = ln(−λ), λ ∈ Λ = (−∞, 0).

Example 4.7. Suppose that the process lnS has the triplet (δ/
√

(−2λ), 0,

(δI{x>0}e
λx/
√

2πx3)dx), δ > 0, with respect to the measure Pλ , λ ∈ Λ = (−∞, 0), so that lnS is

an inverse Gaussian process with one of the parameters
√

(−2λ), and the density of the random

variable lnS1 has the form pλ1(x) = δeδ
√

(−2λ) exp(−(δ2x−1−2λx)/2)/
√

2πx3 , x > 0. Then (Pλ)λ∈Λ

is a natural exponential family with the cumulant function K(λ) = δ
√

(−2λ), λ ∈ Λ = (−∞, 0).

Example 4.8. Suppose that the process lnS has the triplet (µ + δλ/
√
α2 − λ2, 0,

αδK1(α|x|)eλx/(π|x|)dx), α > 0, 0 ≤ |λ| < α , µ ∈ R , δ > 0, with respect to the measure
Pλ , λ ∈ Λ = (−α, α), where K1(x) is the modified Bessel function of the third kind with index 1.
The process lnS is a normal inverse Gaussian process, where λ is one of the parameters and the
marginal density is pλ1(x) = αeδ

√
α2−λ2K1(αδ

√
1 + (x− µ)2/δ2)eλ(x−µ)/(π

√
1 + (x− µ)2/δ2) (see,

e.g. [1] or [25; Chapter III, Section 1]). Then (Pλ)λ∈Λ is a natural exponential family generated by
lnS with the dominating measure P0 and the cumulant function K(λ) = δ(α −

√
α2 − λ2) + µλ ,

λ ∈ Λ = (−α, α).

Example 4.9. Suppose that the process lnS has the triplet
(µ + δλK2(δα)/(

√
α2 − λ2K1(δα)), 0, f0(x)eλxdx), α > 0, 0 ≤ |λ| < α , µ ∈ R , δ > 0, with
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respect to the measure Pλ , λ ∈ Λ = (−α, α). Here, we have the density of the compensator

f0(x) =
1

π2|x|

∫ ∞
0

exp(−|x|
√

2y + α2)

y(J2
1 (δ
√

2y) + Y 2
1 (δ
√

2y))
dy +

exp(−|x|)
|x|

, (4.18)

where J1 , Y1 are Bessel function of the first and second kind, respectively, and K2 is the modified
Bessel function of the third kind with index 2. The process lnS is a hyperbolic process, where λ
is one of the parameters of the marginal density pλ1(x) =

√
α2 − λ2 exp(−α

√
δ2 + (x− µ)2 + λ(x−

µ))/(2αδK1(δ
√
α2 − λ2)) (see, e.g. [9] or [25; Chapter III, Section 1]). Then (Pλ)λ∈Λ is a natural

exponential family generated by lnS with the dominating measure P0 and the cumulant function
K(λ) = ln(αK1(δ

√
α2 − λ2)/(K1(δα)

√
α2 − λ2)) + µλ , λ ∈ Λ = (−α, α).
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