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ABSTRACT 

The airway epithelium together with the mucus layer coating it form a protective system that 

efficiently filters and removes potentially harmful particles contained in inhaled air. The same 

mechanism, however, serves to entrap particulate drug carriers, precluding their interaction with 

their target. The mucus barrier is often neglected in in vitro testing setups employed for the 

assessment of pulmonary drug delivery strategies. Therefore, our aim was to more accurately 

model the bronchial barrier, by developing an in vitro system comprising a tight epithelial cell 

layer which may be optionally supplemented with a layer of human tracheal mucus. To form the 

epithelium in vitro, we used the cystic fibrosis cell line CFBE41o-, which can be grown as 

monolayers on Transwell® supports, expressing tight junctions as well as relevant transport 

proteins. In contrast to the cell line Calu-3, however, CFBE41o- does not produce mucus. 

Therefore, native human mucus, obtained from tracheal tubes of patients undergoing elective 

surgery, was used as a supplement. The compatibility of CFBE41o- cells with the human mucus 

was addressed with the MTT assay, and confirmed by fluorescein diacetate/propidium iodide 

live/dead staining. Moreover, the CFBE41o- cells retained their epithelial barrier properties after 

being supplemented with mucus, as evidenced by the high trans-epithelial electrical resistance 

values (~1000 Ω*cm2) together with a continued low level of paracellular transport of sodium 

fluorescein. Fluorescently-labelled chitosan-coated PLGA nanoparticles (NP, ~168 nm) were 

used as a model drug delivery system to evaluate the suitability of this in vitro model for studying 

mucus permeation and cell uptake. Comparing CFBE41o- cell monolayers with and without 

mucus, resp., showed that the NP uptake was dramatically reduced in the presence of mucus. This 

model may therefore be used as a tool to study potential mucus interactions of aerosolized drugs, 

and more specifically NP-based drug delivery systems designed to exert their effect in the 

bronchial region.     
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1. INTRODUCTION 

The conducting airways of the lungs are coated with a viscoelastic secretion, the pulmonary 

mucus, which moisturizes the inhaled air and acts as a filter for inhaled particles. In the healthy 

state, mucus is composed of water (95% w/w), glycoproteins (mucins, 2–5%), salts, non-mucin 

proteins, lipids, DNA, enzymes, cells and bacteria (1-3). The mucins are continuously secreted 

into the airway lumen by specialized secretory cells, and polymerize to form a mesh-like 

structure that is constantly being propelled out of the lungs by the ciliary beating of the airway 

epithelial cells - this creates a dynamic barrier termed as mucociliary clearance (4-6). In disease 

states such as asthma, chronic obstructive pulmonary disease (COPD), and in particular cystic 

fibrosis (CF) considerable changes in the mucus can occur, leading to mucus oversecretion and 

mucus thickening (7-10); this in turn can compromise the mucus clearance mechanism, providing 

optimal conditions for bacterial growth and chronic infection (11).  

CF is a lethal genetic disease caused by a mutation of the CF transmembrane conductance 

regulator (CFTR). This results in numerous irregularities including an abnormal hydration of the 

airways, which leads to an impairment of the mucociliary machinery, recurrent infections, and 

eventually premature death (11). The clinical management of CF focuses primarily on improving 

the mucociliary clearance and combating chronic infections rather than targeting the primary 

cause, namely correcting the genetic disease. The potential of nanomedicine to improve the 

efficiency of gene-therapy in such diseases by using nanoparticle (NP)-based drug delivery 

systems is considerable, as evidenced by efficient transfection of cell-based in vitro models 

including the CF cell line CFBE41o- (12-14). This cell line was generated by transformation of 

CF airway cells with the SV40 virus and is homozygous for the most common CF mutation, the 

F508-CFTR mutation. Of particular interest to pharmaceutical research is the ability of this cell 
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line to express tight-junction proteins such as claudin-1, ZO-1, and occludin (15), which confer 

on CFBE41o- monolayers significant epithelial barrier properties evidenced by high 

transepithelial electrical resistance (TEER) values (15-18). This cell line also expresses a number 

of proteins relevant for pulmonary drug transport, including P-glycoprotein (P-gp), lung 

resistance-related P protein (LRP), and caveolin-1 (15). Unfortunately, unlike other pulmonary 

cell lines such as Calu-3, which are able to secret mucus (19-21), the CFBE41o- cell line lacks 

the capacity to synthesize and secret mucus onto the cell monolayer - a key feature that must be 

taken into account in the context of airway research. In particular, with regard to the use of NP-

based drug delivery systems to treat bronchial diseases, our work and that of others has 

previously shown that particles with a diameter above 200 nm are almost exclusively trapped 

within the pulmonary mucus (3, 22, 23). Moreover, with a net negative charge under 

physiological conditions (24, 25), mucus represents a significant barrier to positively charged 

nanocarriers (21, 26), which are often used in the context of nucleic acid delivery for transfection 

purposes (27-29). 

Therefore, in the present study we explored the possibility to develop an in vitro model of the 

airways composed of a CFBE41o- cell layer coated with human tracheal mucus. Our aim was to 

take a step forward in accurately mimicking the scenario within the CF lung, by utilizing the 

positive features of the CFBE41o- cell line in the context of pharmaceutical research and further 

introducing mucus as a key non-cellular barrier of the airways. For this purpose we cultured 

CFBE41o- cells in Transwell® supports and added a layer of human tracheal mucus on top of the 

cell monolayer, creating an air-mucus interface. The biocompatibility of CFBE41o- cells with the 

human tracheal mucus was investigated by measurement of epithelial barrier properties upon 

incubation with the exogenous mucus. Ultimately, as a proof-of-concept validation of the 

implemented in vitro model, we produced chitosan-poly(d,l-lactide-co-glycolide; PLGA) 
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nanoparticles and determined the effect of the mucus layer on the cellular uptake of such 

particles.   
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2. METHODS 

2.1 Human mucus sample collection 

Undiluted human tracheal mucus samples were collected by the endotracheal tube method (3, 30, 

31), after obtaining informed consent from patients and in compliance with a protocol approved 

by the Ethics Commission of The Chamber of Medicine Doctors of the Saarland (file number 

19/15). The tracheal tube of patients undergoing elective surgery with general anesthesia, non-

related to pulmonary conditions, was collected after surgery. The distal portion of the tracheal 

tube (5-10 cm), including the balloon, was cut and placed in a 50 ml centrifuge tube. The mucus 

of each tracheal tube was collected by centrifuging the samples at 190 g for 30 s. Samples with 

visible blood contamination were excluded from the analysis. Mucus samples were stored at -20 

°C until further use. In total 16 mucus samples from independent patients were used in this study. 

The mean age of the patients was 56.8 ± 4.8 years, the male: female ratio was 12:4, and 6 out of 

16 patients were smokers.  

2.2 Freeze-dried Mucus disk preparation 

Mucus samples frozen and stored at -20°C were thawed gradually and allowed to reach room 

temperature. Thereafter, single mucus drops with an approximate weight of 30-40 mg (34.17 ± 

1.82 mg, n=45 mucus drops) were placed over a Teflon® surface and spread over delineated 

circular surfaces of 1.12 cm2. The samples were then placed into an autoclavable sealing bag, 

stored at -80 °C for 4 h, and ultimately, freeze-dried overnight (Alpha 2-4 LSC, Christ, 

Germany). After completion of the preset freeze-drying program, the bag containing the mucus 

disks (1.7 ± 0.1 mg estimated solid content, for an estimated water content of 95%) was 
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immediately sealed and stored in a dry atmosphere at room temperature until further use. Five 

different batches with 14-20 mucus disks per batch were used in this study. 

2.3 Mucus Characterization 

2.3.1 Mucus bulk rheology 

Experiments were conducted on an Anton-Paar MCR 102 rheometer (Graz, Austria) equipped 

with cone-plate geometry (diameter: 25 mm, cone angle: 2°) at room temperature. Strain 

amplitude (γ) sweeps were performed at a frequency of 1 Hz in the range of 0.1-10%. Frequency 

(ω) dependency of the storage modulus G’ and the loss modulus G’’ was measured in the range 

between 0.1 and 40 rad/s at a strain amplitude of 1%.  

In the first set of experiments native undiluted tracheal mucus samples were gradually thawed 

and allowed to reach room temperature. Thereafter, an approximate volume of 150 µl of mucus 

was placed in the rheometer and the aforementioned protocol was conducted. In the second set of 

experiments previously freeze-dried and rehydrated mucus samples were analyzed. Mucus 

samples contained in 1.5 ml Eppendorf tubes were allowed to equilibrate to room temperature 

and weighed using a precision balance (CPA 224S, Sartorius, Göttingen, Germany). Afterwards, 

the samples were stored at -80 °C for 4 h followed by overnight freeze-drying (Alpha 2-4 LSC, 

Christ, Osterode am Harz, Germany). The freeze-dried (solid) content of the samples was 

weighed again to determine the water content of mucus. Mucus samples were then re-hydrated 

with exactly the same volume of sublimed water (Milli-Q water, Advantage A10, Merck 

Millipore, Billerica, MA), and were allowed to mix in a 360° multi-rotator (PTR-35, Grant 

instruments, UK) for at least two hours at room temperature. Thereafter, re-hydrated mucus 

samples were placed in the rheometer to perform the measurements as described above.  
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2.3.2 Scanning electron microscopy 

The structure of pulmonary mucus was imaged by means of scanning electron 

microscopy (SEM). Human tracheal mucus samples were gradually thawed and spread over the 

surface of a SEM-imaging carbon disk. The mucus was freeze-dried in situ following the freeze-

drying protocol as in section 2.2. Freeze-dried mucus samples were gold-sputtered (QUORUM 

Q150R ES, Gala Instrumente, Germany) and then transferred to the SEM (EVO HD15, Zeiss, 

Germany) for imaging. 

In order to image the CFBE41o- cell monolayer and the combined model comprising the 

cell monolayer and the overlying mucus, the cells were seeded onto Transwell® permeable 

supports and were cultured until a confluent monolayer was reached (see section 2.4). The day 

before the SEM fixation the apical culture medium was removed and a mucus disk together with 

100 µl of fresh medium were added to the apical compartment, creating an air mucus interface. 

The cells with the mucus disks in place were incubated for 24 h at 37 °C, 5% CO2, in a horizontal 

shaker. After incubation the basolateral medium was aspirated and fixation was performed by 

adding 1 ml of glutaraldehyde (Sigma) 3%in PBS to the basolateral compartment for 2 h. 

Subsequently, dehydration was carried out through a graded series of ethanol (30–100%, 10 min 

each). In the final step 150 µl of hexamethyldisilazane (Fluka) were added to the apical 

compartment. The filter of the Transwells® was then cut with a scalpel and mounted onto SEM-

stacks. Samples were further sputtered with gold and transferred to the electron microscope. 

2.4 Cell Culture of CFBE41o- 

CFBE41o- cells were a kind gift of Dr. Dieter C. Gruenert (University of California, San 

Francisco, CA, USA). Passages 78 to 90 were used in this study. Cells were passaged on a 

weekly basis (0.2 x 106 cells in a T75 flask) and grown in minimum essential medium (MEM, 
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Gibco) supplemented with 10% fetal calf serum (FCS, Lonza), 5% non-essential amino acids 

(NEAA 100x, Gibco), 0.54 mg/ml of D-(+)-glucose (Sigma), and 100 μg/ml streptomycin and 

100 U/ml penicillin, at 37 °C in a 5% CO2 incubator. For experimental purposes cells were 

seeded onto Transwell® permeable supports (3640, Insert diameter 12 mm, growth area 1.12 cm2, 

pore size 0.4 μm; Corning, Wiesbaden, Germany) at a density of 1.5×105 cells/cm2 and grown 

under submerged conditions with apical/basolateral fluid volumes of 500 μl/1100 μl, 

respectively.  The culture medium was replaced every 2-3 days. 

2.5 Nanoparticle preparation and characterization 

PLGA (50:50; Resomer RG 503H) was purchased from Evonik Industries AG (Darmstadt, 

Germany); ultrapure chitosan chloride salt (Protasan UP CL113) was obtained from FMC 

Biopolymer AS NovaMatrix (Sandvika, Norway). Polyvinyl alcohol (PVA) Mowiol®4-88 was 

purchased from Sigma-Aldrich (Germany); the lipophilic fluorescent dye 1,1'-dioctadecyl-

3,3,3',3'-tetramethylindodicarbocyanine perchlorate (DiD) was obtained from Thermofisher 

Scientific (Oregon, USA). Ethyl acetate was purchased from Sigma-Aldrich (Germany), and 

purified water was produced freshly by a Milli-Q water purification system (Merck Millipore, 

Billerica, MA).  

Drug free, DiD-labeled chitosan-PLGA NPs were used as a model drug delivery system to 

evaluate the uptake behavior on CFBE41o- cell monolayers with and without mucus. Such NPs 

were prepared by using a modified double-emulsion method according to Mittal et al. (33). 

Briefly, a 0.2% w/v chitosan solution was first prepared by dissolving Protasan UP CL113 in a 

2% w/v PVA solution. A 50 mg amount of PLGA was dissolved in 2 ml ethyl acetate and 

equilibrated with 15 µg/20 µl of DiD ethanolic solution under continuous stirring for 1 h at room 

temperature. A 400 µl volume of water was then added to the PLGA organic phase and sonicated 
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with ultrasound (Branson Ultrasonic Corporation, USA) at 20% amplitude for 20 s to allow the 

primary emulsion to form. Immediately afterwards, the PVA chitosan solution was applied to the 

primary emulsion and sonicated using the same settings, leading to the formation of a w/o/w 

emulsion. Milli-Q water was added dropwise to the w/o/w emulsion to allow for the evaporation 

of the organic solvent. The resulting chitosan coated PLGA NPs were purified by centrifugation 

at 15 000 g for 15 min and washed once with milli -Q water to remove any excess free dye. The 

size, polydispersity index (PDI) and ζ-potential of the DiD labeled chitosan-PLGA NPs were 

characterized using a Zetasizer Nano (Malvern Instruments, Malvern, UK). The morphological 

appearance of the carrier system was visualized using Transmission Electron Microscopy (TEM, 

JEM 2011, JEOL) and further with SEM (EVO HD15, Zeiss, Germany). Prior to the SEM 

measurements, NPs were put onto a carbon disc and gold-sputtered. In order to improve the 

contrast of the TEM images, NPs were further stained with 0.5% w/v phosphotungstic acid 

(Sigma). 

2.6 Cytotoxicity assays 

2.6.1 MTT assay 

CFBE41o- cells were seeded in 96 well plates at a density of 20 000 cells per well and grown for 

4 days. Cells were then washed twice with Hank's balanced salt solution (HBSS, Gibco) buffer, 

and 200 µl of fresh culture medium together with a freeze-dried mucus disk were added to the 

test wells. The cells were incubated for 24 h at 37 °C and 5% CO2 in a horizontal shaker. Cells 

incubated with cell culture medium only served as positive controls (100% viability) and cells 

incubated with Triton-X 1% (Sigma) served as negative controls (0% viability). Following 

incubation, the mucus was removed by aspiration and the cells were washed twice with HBSS 

buffer. A 200 µl volume of the tetrazolium dye MTT (5 mg/ml) was added to each well, followed 

by 4 h incubation at 37 °C, 5% CO2, in a horizontal shaker. Formed formazan crystals were then 
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solubilized by adding 200 µl of dimethyl sulfoxide (DMSO, Sigma). The absorbance of each well 

at 560 nm was measured with a plate reader (Infinite M200 Pro, TECAN), and the percentage of 

viable cells in each well was calculated as previously described (32). 

2.6.2  Live/dead staining with fluorescein diacetate (FDA) and propidium iodide 

(PI) 

CFBE41o- cells were seeded onto Transwell® permeable supports as described in 2.4 and were 

cultured for at least 10 days under submerged conditions. Live cells can take up and convert the 

non-fluorescent FDA into its fluorescent product fluorescein by means of cytosolic esterases, 

whereas PI cannot cross the membrane of viable cells but will stain the nuclei of non-viable cells 

by intercalating with the double helix DNA. Approximately 24 h before live/dead staining the 

apical medium was removed from each culture well, and a mucus disk together with 100 µl of 

fresh culture medium were added to apical compartments. The cells with the mucus disks in place 

were incubated for 24 h at 37 °C and 5% CO2 in a horizontal shaker. After 24 h, the mucus disks 

had dissolved creating an air-mucus interface in the apical compartment of each Transwell®. To 

proceed with the live/dead staining, medium was aspirated from mucus-containing apical 

compartments which were then washed twice with fresh medium. The cells were allowed to 

equilibrate for 30 min with 500 µl of freshly added cell culture medium, before this was replaced 

by 500 µl of the working solution of the FDA/PI live/dead stain (Sigma). The working solution 

itself was prepared in a 5 ml volume by adding 20 µl of FDA (5 mg/ml in acetone) and 100 µl of 

PI (2 mg/ml in PBS) to 4.88 ml of Phosphate-buffered saline (PBS, pH 7.4). The cells were 

incubated with the working solution for 5 min at room temperature, in the dark. The apical 

compartment of each well was then washed twice with cold PBS and the culture plate 

immediately transferred to a confocal laser scanning microscope (Leica TCS SP 8; Leica, 

Mannheim, Germany). Images of cell monolayers were acquired at 1024×1024 resolution, using 
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either a 25x water immersion (Fluotar VISIR 25x/0.95) or a 63x water immersion objective (HC 

APO CS2 63x/1.20). Image analysis was performed using LAS X software (Leica Application 

Suite X; Leica, Mannheim, Germany). Non-stained cells were used to preset the initial confocal 

settings. Cells that were not exposed to mucus served as positive controls and cells incubated 

with Triton-X 1% served as negative controls. 

2.7 Functional mucosal barrier property assays 

2.7.1 Evolution of TEER values of CFBE41o- cells cultured under submerged 

conditions 

CFBE41o- cells were seeded onto Transwells® and grown under submerged conditions. TEER 

values were measured every 2-3 days for three weeks with an epithelial voltohmmeter equipped 

with STX2 chopstick manual electrodes (EVOM, World Precision Instruments, USA). A sharp 

increase in TEER values is associated with a confluent cell monolayer and the development of 

tight-junctions between neighboring cells. The raw TEER values were corrected according to the 

background resistance value of the Transwell® filter itself, and the growth area of the filter (1.12 

cm2). 

2.7.2 TEER measurements with and without mucus incubation 

CFBE41o- cells were seeded onto Transwell® permeable supports as described in 2.4 and were 

cultured for at least 10 days under submerged conditions. The apical medium was aspirated and a 

mucus disk together with 100 µl of fresh medium was added to the apical compartment. The cells 

with the mucus disks in place were incubated for 24 h at 37 °C and 5% CO2, in a horizontal 

shaker. The next day, the mucus-containing apical compartment was aspirated, washed twice 

with fresh culture medium, and the cells were allowed to equilibrate for 30 min with 500 µl of 
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freshly added cell culture medium in the apical compartment. Thereafter, TEER values were 

measured. Cells not exposed to mucus served as controls. 

2.7.3 Permeability of sodium fluorescein 

CFBE41o- cells were seeded onto Transwell® permeable supports as described in 2.4 and were 

cultured under submerged conditions for 7 days (the time point at which CFBE41o- cells 

displayed the highest epithelial barrier properties, according to TEER measurements). Apical 

compartments were then washed with Krebs-Ringer buffer (KRB) (NaCl 142.03 mM, KCl 2.95 

mM, K2HPO4*3H2O 1.49 mM, HEPES 10.07 mM, D-glucose 4.00 mM, MgCl2*6H2O 1.18 

mM, CaCl2*2H2O 4.22 mM; pH 7.4) and a mucus disk together with 100 µl of KRB buffer were 

added, and incubated for 4 h. Control wells incubated with just 100 µl of KRB served as controls. 

After the incubation, the basolateral culture medium was aspirated and the cells were washed 

twice with KRB. A volume of 1.5 ml of fresh KRB was then added to the basolateral 

compartment. The transport study was initiated by adding 500 µl of sodium fluorescein (10 

µg/ml) to the apical (donor) compartment. The paracellular transport of sodium fluorescein was 

determined by sampling 200 µl from the basolateral (acceptor) compartment at various time 

points (0, 5, 15, 30, 60, 90 and 120 min). The withdrawn basolateral volume at each sampling 

point was replaced by the same volume of fresh pre-warmed KRB buffer. Throughout the 

experiment the cells were incubated at 37 °C and 5% CO2 on a horizontal shaker. The permeated 

amount of sodium fluorescein at each time-point was assessed by means of fluorescence intensity 

using a plate reader (Infinite M200PRO, Tecan, Germany) at excitation and emission 

wavelengths of 488 and 530 nm respectively.  The apparent permeability coefficient (Papp) was 

then calculated by applying the formula: 

Papp = (dQ/dt) / (A*C0)   (1) 
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 where dQ/dt is the flux (µg/s of permeated sodium fluorescein, obtained from the slope of the 

linear region of each individual permeation profile), A the area of the filter insert (1.12 cm2), and 

C0 the initial donor concentration of sodium fluorescein. C0 was assumed to be 8.33 µg/ml in all 

wells, considering that 500 µl of sodium fluorescein (10 µg/ml) were added to a pre-existing 

apical volume of 100 µl. 

2.7.4 Permeability through mucus and cellular uptake of nanoparticles 

CFBE41o- cells were seeded onto Transwell® permeable supports as described in 2.4 and were 

cultured under submerged conditions for at least 10 days. The apical medium was then aspirated 

and a mucus disk with 100 µl of medium was added to the apical compartment followed by a 24 

h incubation to allow for disk dissolution and creation of an air-mucus interface. Volumes of 400 

µl of the DiD-labeled chitosan-PLGA NPs were then added to the apical compartment at a 

concentration of 40 µg/ml and were incubated for an additional 24 h. After incubation, the apical 

compartment, including the mucus, was aspirated and the cells were washed twice with PBS. In 

the following step 100 µl of wheat germ agglutinin (10 µg/ml, Vector Labs, CA, USA) were 

added to the apical compartment in order to stain the cell membrane. The cells were again 

washed twice with PBS and fixed with 3% paraformaldehyde (PFA, 15710-5, Electron 

Microscopy Science, USA) in PBS, for 30 min, at room temperature. After fixation cells were 

washed twice with PBS and then 200 µl of 4',6-diamidino-2-phenylindole (0.1 µg/ml, DAPI, Life 

Technologies, Darmstadt, Germany) were added to the apical compartment (10-15 min), 

followed by two further washes with PBS. Cell monolayers underwent a total of 8 PBS washes, 

which removed almost all the mucus as well as extracellular NPs. Finally, the filter membrane of 

each Transwell® insert was cut out with a scalpel and mounted on a glass slide with mounting 

medium (DAKO, Product No 85 5302380-2, USA). Mounted samples were stored at 4° C until 
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analysis by confocal laser scanning microscopy (Leica TCS SP 8; Leica, Mannheim, Germany). 

Images were acquired at 1024×1024 resolution, using a 63x water immersion objective (HC APO 

CS2 63x/1.20). Image analysis was performed using LAS X software (Leica Application Suite X; 

Leica, Mannheim, Germany). 

2.8 Statistical analysis 

All values are given as mean ± standard error of the mean (SE). Statistical analysis was 

performed with the SPSS statistics software (IBM, Germany). The storage and loss moduli of the 

native versus the freeze-dried and re-suspended mucus were compared using one-way ANOVA. 

The TEER values before and after mucus addition, Papp values, and permeated amounts of sodium 

fluorescein were compared using an independent samples t-test with Levene’s test for equality of 

variances. A P < 0.05 was accepted as significant. 

  

  



16 

 

3. RESULTS AND DISCUSSION 

3.1 CFBE41o- monolayers display high TEER values already after 5 days in submerged 

culture  

CFBE41o- cells grown under submerged conditions displayed high TEER values within just 5 

days of being seeded on Transwell® supports (Figure 1). The TEER values peaked between days 

5-9 with values above 1500 Ω*cm2. TEER values stabilized after day 10 (with the exception of a 

slight decrease between days 10-15) at approximately 1000 Ω*cm2, indicating optimal epithelial 

barrier properties within this time period.  

 

Figure 1. Time-course of TEER values measured for the CFBE41o- cell line cultured under submerged conditions. 

The horizontal line at 300 Ω*cm2 indicates the threshold values deemed to indicate the presence of a tight barrier.  

The mean±SE for n=25, from 4 independent experiments are shown. 

The noted TEER values are in line with previous studies and suggest the expression of 

functional tight junctions already within a few days of cell seeding on Transwell® membranes 

(15, 16). Equivalent bioelectric properties have been also described for other bronchial cell lines 

grown under submerged conditions such as 16HBE14o- cells, and the widely used Calu-3 cell 
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line (33-35). The Calu-3 cell line can secrete mucus, provided that cells are cultured at the air-

liquid interface (20, 21). However, growing Calu-3 cells under this condition significantly 

decreases the TEER values (19, 36) and significantly increases the culture time needed to achieve 

both a tight epithelial barrier (≥ 300 Ω*cm2) and a confluent mucus layer on top of the cells (20, 

21). The TEER values of CFBE41o- cells are similarly low when cultured at the air-liquid 

interface (15), bordering on the threshold values deemed to indicate the presence of a tight 

barrier. In order to develop a relevant model that mimics the CF airway for pharmaceutical 

testing purposes, we therefore sought to combine the optimal epithelial barrier properties 

displayed by the CFBE41o- cell line grown under submerged conditions with the option to either 

add, or not to add, a supplementary human mucus layer.  

3.2 In vitro model concept 

The concept of the novel in vitro model involves growing CFBE41o- cells in Transwell® 

supports under submerged conditions until the monolayer develops optimal barrier properties. At 

this time-point the overlying culture medium is removed and the apical compartment is 

supplemented with freeze-dried human mucus in combination with a minimal volume of medium, 

creating an air-mucus interface. The human tracheal mucus samples obtained for the present 

work were initially nonsterile and highly elastic. Mucus samples are difficult to manipulate, 

precluding the possibility of pipetting precise mucus volumes or efficiently distributing mucus 

over a cell monolayer without damaging it. To overcome this limitation, we found a feasible 

alternative to freeze-dry small amounts of mucus in order to form thin disks, which could then be 

placed onto the cell monolayers and re-hydrated with a minimal amount of culture medium. 

Moreover, we speculate that the freeze-drying process may have accounted for a reduction in the 

microbial load of the exogenous human material. 
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3.3 Freeze-dried, re-suspended tracheal mucus show similar rheological properties to 

undiluted native mucus 

The rheological properties of native undiluted mucus were compared to those of mucus samples that 

had undergone freeze-drying and subsequent re-hydration. With regard to the undiluted native 

tracheal mucus, in the tested strain range (0.1 to 10%) airway mucus was within the viscoelastic 

linear range (Figure 2A, black symbols). A strain of 1% was therefore chosen to determine the 

frequency dependence of the viscoelastic moduli. In the tested frequencies (0.1 to 40 rad/s) G’ 

dominated over G’’ in all the three decades of frequencies tested (Figure 2B, black symbols). These 

rheological properties are characteristic of cross-linked gels and are in line with previous studies 

reporting on the bulk rheological behavior of airway mucus (3, 10, 30). The G’’/G’ ratio of mucus 

determined at 1 rad/s represents a frequency value that is often used in mucus rheology to 

approximate the low velocities of mucociliary clearance (30, 31, 37). Materials with a ratio ranging 

between 0 ≤ G’’/G’ ≤ 1 are classified as viscoelastic solids. The G’’/G’ ratio achieved here for the 

native tracheal mucus shows a mean value of 0.27±0.01, in good agreement with the values reported 

by Schuster et al. and Rubin et al. in which a G’’/G’ of 0.30 and 0.28 were respectively determined 

for airway mucus samples collected by the same method as employed in the current work (3, 31). 
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Figure 2. Bulk rheology of native human tracheal mucus (solid symbols) compared to native airway mucus which was 

freeze-dried and re-suspended (open symbols). (A) Strain (γ)-dependent viscous (G’’, triangles) and elastic (G’, squares) 

moduli from 0.1 to 10% strain at a frequency of 6.28 rad/s (1 Hz). (B) Frequency-dependent viscous (G’’, triangles) and 

elastic (G’, squares) moduli from 0.1 to 50 rad/s at 1% strain. The mean±SE for n=5 are shown. 

Since our aim was to implement a mucus layer on top of the CFBE41o- cell monolayer using freeze-

dried tracheal mucus, we investigated whether, upon re-hydration, the freeze-dried mucus would 

partially or completely recover the viscoelastic properties shown by the native material.  

 

The water percentage of the mucus samples was 95.79 ± 0.62%, being the percentage of solid 

content of 4.20  0.62. After re-hydration with exactly the same volume of sublimed water and 2 h 
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of mixing in a 360° rotator, the freeze-dried mucus displayed very similar viscoelastic properties as 

the undiluted human mucus, with no statistical difference between the elastic or viscous moduli at 

any of the strains or frequencies tested. As with the native material, G’ exceeded G’’ in both the 

amplitude and the frequency sweep test (Figure 2, white symbols). The viscoelastic moduli were 

slightly, but not significantly, higher in the case of the freeze-dried and re-hydrated mucus in 

comparison to the native material. The mean G’’/G’ ratio at 1 rad/s demonstrated a mean value of 

0.29 ± 0.01, which confirms that intermolecular cross-linking and the characteristic mucus 

viscoelastic behavior were recovered after re-hydration.   

3.4 CFBE41o- cells remain viable and retain their  barrier properties after addition of 

external human freeze-dried mucus 

The primary concern of adding an exogenous mucus to the CFBE41o- monolayers was a 

potential adverse effect that the human-derived tracheal mucus could exert on the cells. Previous 

studies attempting to implement exogenous mucus onto cell monolayers, had shown a clear 

disruption of the epithelial barrier properties and even some cytotoxicity (38, 39). Boegh et al. 

found a significant barrier disruption after incubating Caco-2 cells with native porcine intestinal 

mucus, as evidenced by the dramatic decrease in TEER values (38), whereas Teubl et al. reported 

a reduced viability of the oral epithelial cell line TR146 after a 24 hour incubation with mucins 

derived from bovine submaxillary glands (39). We hypothesized that due to the common human 

origin of both the CFBE41o- cells and the tracheal mucus, the cells and the mucus would be 

better compatible. To assess any potential toxic effects that the exogenous freeze-dried mucus 

could exert on the cells, the MTT assay was performed on proliferating CFBE41o- cells. 

However, after 24 hours of incubating the cells with mucus the viability was slightly higher than 



21 

 

in untreated control cells, suggesting even a positive effect of human mucus on the human-

derived CFBE41o-cells under such conditions (Figure 3A).  

In a subsequent step we sought to confirm the cell viability of CFBE41o- monolayers that were 

allowed to differentiate and to develop tight junctions in Transwell® using the so called live dead 

staining: in the case that cells are alive, the diffusion and subsequent esterase-mediated 

hydrolysis of the non-fluorescent dye FDA to the fluorescent product fluorescein will occur. In 

the case that cells are dead, PI will bind to DNA within the nuclei of cells in which the cell 

membrane is disrupted (Figure 3B). After staining with the working solution of FDA/PI we 

observed tightly packed CFBE41o- cells in confluent monolayers emitting high fluorescence 

intensity in the fluorescein detection range (Figure 3C, D, and E), confirming the high cell 

viability previously observed in proliferating cells with the MTT assay. 
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Figure 3. The viability of CFBE41o- cells upon contact with exogenous human mucus was assessed with the MTT 

assay and by live/dead staining with fluorescein diacetate (FDA) and propidium iodide (PI). (A) CFBE41o- cells 

exposed to mucus for 24 hours had a viability over 100 % (grey bar), slightly greater than that of control cells 

incubated with the appropriate medium (black bar); CFBE41o- cells incubated with the detergent Triton-X served as 

a negative control with 0% viability. (B) Representative fluorescence microphotographs of the negative (left) and 

positive (right) controls for the live/dead staining; cells with their nuclei stained in red represent non-viable cells, 

whereas cells with a green cytoplasm represent viable cells. (C) and (D) Representative fluorescence 

microphotographs of independent experiments at different magnifications, showing different Transwells® (wells 1-6) 

supporting CFBE41o- monolayers that had been incubated for 24 hours with human mucus in the apical 

compartment. (E) X-Z cross-sectional view of viable CFBE41o- monolayers that had been incubated for 24 hours 

with human mucus. 
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Having confirmed with two different methods the compatibility of the CFBE41o- monolayers 

with exogenous mucus, the next step consisted of addressing whether CFBE41o- monolayers 

would retain their epithelial barrier properties after adding exogenous mucus. For that purpose we 

indirectly assessed the presence of tight junctions by comparing the TEER values of the cells 

before and 24 h after coating the monolayer with mucus (Figure 4). Monolayers incubated 

without mucus but under the same experimental conditions were used as controls. Under both 

conditions the barrier properties of the CFBE41o- cell monolayers remained intact. Thus, unlike 

in the work of Boegh et al., where the TEER values dropped after adding external pig gastric 

mucus to Caco-2 cells (38), in the present constellation the barrier properties were maintained 

after mucus addition. The most plausible explanation for the compatibility between the 

CFBE41o- cells and the exogenous pulmonary mucus may be the common human origin of both 

materials. In addition, the freeze-drying process may have contributed, in combination with the 

antibiotics in the cell culture medium, to keep the model sterile and to maintain high cell viability 

and intact barrier properties. No signs of bacterial contamination were observed with the use of 

freeze-dried mucus.      
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Figure 4. The barrier properties of the CFBE41o- monolayers grown for at least 10 days under submerged 

conditions were monitored for 24 h. The TEER values were measured before (initial) and 24 h after addition of 

(CFBE41o- + Mucus, right). CFBE41o-cells not exposed to mucus but incubated under submerged conditions with 

regular medium served as controls (CFBE41o-, left). The horizontal line at 300 Ω*cm2 indicates the threshold values 

deemed to indicate the presence of a tight barrier. The mean ± SE of n=12 (CFBE41o-) and n=16 (CFBE41o- + 

mucus) from three independent experiments are shown. No significant (n.s.) differences were found. 

3.5 Sodium fluorescein transport  

The pulmonary mucus is a selective barrier that allows the permeation of small molecules such as 

nutrients, growth factors, and antibodies, but significantly hinders the movement of particulates 

with a size greater than 100-200 nm (8, 22, 23). The apical-to-basolateral transport of the small 

hydrophilic model drug sodium fluorescein (376.3 Da) is routinely used to assess the paracellular 

transport and the barrier properties of in vitro epithelial models (20, 40, 41). We hypothesized 

that sodium fluorescein is small enough to permeate through the mucus pores and would not 

significantly interact with the mucus fibers due to its negative charge. Therefore, one could 

expect a similar transport rate of the molecule through the CFBE41o- monolayers, as well as 

equivalent Papp values, in either the presence or absence of mucus. CFBE41o- monolayers, with 

or without mucus, were indeed observed to act similarly as a barrier to paracellular transport 

(Figure 5A), with both conditions resulting in Papp values below 1 x 10-6 cm/s. A slight although 

not significant lower extent of permeation of sodium fluorescein could however be observed in 

the CFBE41o- monolayers incubated with human mucus (Figure 5B), most probably due to 
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interactions between the compound and mucus elements in a setting of two unstirred layers of 

different viscosity within the first hour after sodium fluorescein addition.  

 

Figure 5. The barrier properties of the CFBE41o- monolayers after their exposure to mucus were determined by 

measuring the permeability of sodium fluorescein (NaFluo) over time. (A) Apparent permeability (Papp) of sodium 

fluorescein through CFBE41o- monolayers compared to CFBE41o- monolayers supplemented with human mucus. 

(B) Permeated total amount of NaFluo over time through CFBE41o- monolayers (solid squares) compared to 

CFBE41o- monolayers supplemented with human mucus (empty circles). The mean ± SE for n=20 from 3 

independent experiments are shown. No significant (n.s.) differences were found.     

3.6 Mucus is a barrier to polymeric nanoparticles 
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The mesh-like structure of pulmonary mucus is mainly given by a highly cross-linked mucin 

network (Figure 6A). The size of the pores of the mucus mesh is highly heterogeneous and ranges 

from very small pores of just a few nanometers to larger pores on the microscale (22, 23). 

Therefore, mucus represents a steric barrier to the diffusion of NPs. In addition, mucus can also 

filter NPs by specific chemical interactions. For instance, the sialic acid-rich glycan side-chains 

of the mucins confer a negative charge on mucus (42); mucins also possess non-glycosylated 

regions with a high capacity for hydrophobic interactions (43). As a result, a large fraction of NPs 

with a size above 100 nm that theoretically can chemically interact with mucus will become 

immobilized within the mucus mesh (3, 8, 22, 23). These findings highlight the outstanding 

filtering properties of pulmonary mucus against NP-based drug delivery systems. As a proof of 

concept for the developed in vitro model, we incubated chitosan coated PLGA NPs for 24 h 

together with “naked” CFBE41o- cell monolayers (Figure 6B), as well as with CFBE41o- cell 

monolayers supplemented with an additional mucus layer (Figure 6B). Thereafter we 

qualitatively addressed NP uptake by means of confocal microscopy. 

 

 

 Figure 6. (A) Scanning electron microscopy (SEM) image of freeze-dried human tracheal mucus. (B) 

Representative SEM image of a CFBE41o- monolayer; cell boundaries between neighboring cells are visible. (C) 

SEM image of human tracheal mucus on top of a CFBE41o- cell monolayer; the mucus mesh structure seen in (A) is 

lost due to the chemical fixation. Scale bar = 4 µm. 
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The produced chitosan-PLGA NPs had a size of 167.8 ± 3.6 nm (PDI 0.1 ± 0.01, Figure 7) and 

were positively charged, as evidenced by a ζ-potential of 12.9 ± 1.9 mV.  

 

Figure 7. (A) Scanning electron microscope (SEM) and (B) transmission electron microscope (TEM) images 

showing the morphology of DiD labeled chitosan-PLGA nanoparticles.  

This type of NPs was chosen because they have been already used for several applications of 

pulmonary nucleic acid delivery (44-46). Additionally, chitosan coatings have been shown to 

induce efficient transfection in various cell lines (27, 28), including CFBE41o- (12). We 

hypothesized, however, that with a NP diameter close to 200 nm and due to the known 

mucoadhesive properties of chitosan (47), most of the NPs would be trapped within the mucus 

layer, precluding their cellular uptake. When NPs were incubated with the “naked” CFBE41o- 

cell monolayers, a significant uptake could be observed from the confocal images (Figure 8A). 

On the other hand, when the chitosan-PLGA NPs were incubated with CFBE41o- monolayers 

that were supplemented with a layer of mucus, the number of NPs in close proximity to the cells 

was negligible, indicating that most of the NPs had been entrapped by the mucus layer (Figure 

8B) which was itself washed away during the staining/fixation procedure. This finding further 
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confirmed our hypothesis, and indicates that the drug delivery efficiency of NP-based systems is 

dramatically reduced in mucosal tissues.  

 

Figure 8. Confocal laser scanning microscopy images of the cellular uptake study performed with DiD-labeled 

chitosan-PLGA nanoparticles (NP) on CFBE41o- cells with and without mucus. (A) CFBE41o- monolayers were 

incubated with 400 µl of the NP suspension (40 µg/ml) for 24 h; after incubation, although the apical surface was 

thoroughly washed with PBS, a widespread presence of NPs either in close contact with or internalized by cells was 

noted, as evidenced by the 3D rendering (top) and the X-Z cross-sections (wells 1-3). (B) CFBE41o- monolayers 

supplemented with human tracheal mucus were incubated with 400 µl of the NP suspension (40 µg/ml) for 24 h. 

After incubation, the apical surface was thoroughly washed with PBS, resulting in the removal of both mucus and 

entrapped NPs. The absence of NPs in contact with cells in this case indicates that a vast majority of the NPs were 
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trapped within the mucus and washed away. Nuclei were stained with DAPI (blue), the cell membrane was stained 

with wheat germ agglutinin (green), and the DiD-labelled chitosan-PLGA NPs were labelled with DiD (red). 

4. CONCLUSION 

The aim of this work was to develop an in vitro model of the bronchial region comprising 

minimally an epithelial cell layer and a layer of pulmonary mucus. As a cellular element, we used 

the CF cell line CFBE41o-, which possesses a number of interesting features for pharmaceutical 

research such as the expression of tight junction proteins and proteins relevant for pulmonary 

drug transport. Nevertheless, this cell line is unable to secrete mucus, and therefore the cell 

monolayer alone as an in vitro model lacks a key protective element found in the airways in vivo. 

To complement the cell monolayer, small amounts of freeze-dried human tracheal mucus were 

placed on top of the CFBE41o- cells, creating an air-mucus interface. The rheological properties 

of the re-hydrated mucus were very similar to the native material. Moreover, the biocompatibility 

of the exogenous mucus with the cells could be demonstrated. The re-hydrated mucus behaved as 

a semi-permeable layer, allowing the small molecule sodium fluorescein to permeate but severely 

hindering the passage of positively-charged 168 nm diameter polymeric NPs, as evidenced by the 

low degree of particle uptake by CFBE41o- cells in the presence of mucus. Hence, this model 

combines the excellent epithelial barrier properties of CFBE41o- cells with the option to 

implement an additional mucus barrier. Moreover, the relatively short culture time needed to 

achieve a tight epithelial monolayer allows having a cell line-based mucus-containing in vitro 

model ready for experiments within a timeframe of less than a week. The model may therefore 

prove a useful tool to study inhalation pharmaceuticals targeted to the bronchial mucosa and in 

particular to address the role of mucus in this context.  
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