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Abstract— Robotic vehicles and especially autonomous
robotic vehicles can be attractive targets for attacks that cross
the cyber-physical divide, that is cyber attacks or sensory chan-
nel attacks affecting the ability to navigate or complete a mis-
sion. Detection of such threats is typically limited to knowledge-
based and vehicle-specific methods, which are applicable to only
specific known attacks, or methods that require computation
power that is prohibitive for resource-constrained vehicles.
Here, we present a method based on Bayesian Networks that
can not only tell whether an autonomous vehicle is under attack,
but also whether the attack has originated from the cyber or the
physical domain. We demonstrate the feasibility of the approach
on an autonomous robotic vehicle built in accordance with the
Generic Vehicle Architecture specification and equipped with
a variety of popular communication and sensing technologies.
The results of experiments involving command injection, rogue
node and magnetic interference attacks show that the approach
is promising.

I. INTRODUCTION

Due to their dependence on sensing, communication and
artificial intelligence, cyber-physical systems, such as cars,
drones and unmanned vehicles are attractive targets for
attacks that cross the cyber-physical divide [1], [2], [3],
from forcing a car to veer off road, to hijacking a drone or
overwhelming a driverless car’s lidar sensors. Here, we use
the terminology introduced in [2], where a cyber-physical
attack is a security breach in cyber space that has an adverse
effect in physical space, and vice-versa, a physical-cyber
attack is a security breach in physical space with adverse
effect in cyber space. Detecting such threats is challenging,
especially for resource-constrained systems, where highly ac-
curate intrusion detection algorithms cannot be run on board
and continuously. Here, we present an intrusion detection
approach that is based on Bayesian Networks, and is able to
determine not only whether there is an attack, but also from
what domain it has originated (cyber or physical).

II. RELATED WORK

The security of cyber-physical systems and especially of
vehicles is a relatively new area of study. Relevant research
has focused primarily on proof-of-concept attacks [4] on
the integrity of sensing and actuation or the availability
of communications. In most cases, the proposed defence is
limited to survivability and resilience through redundancy [5]

or prevention through authentication and encrypted commu-
nication [6]. However, this is an overly optimistic approach,
as attacks, especially zero-day attacks, do get through these
defences and so need to be detected. The focus here is on
intrusion detection techniques designed specifically for mo-
bile cyber-physical systems and robotic vehicles. Depending
on its architecture and application, a robotic vehicle may
be able to benefit from communication with other agents or
may need to rely solely on its own sensing capabilities and
monitoring processes.

There is on-going research on the development of an
intrusion detection system specifically for the in-vehicle net-
work. Waszecki et al. [7] have proposed monitoring internal
network traffic using a simple Leaky Bucket approach. They
have applied this approach to a single CAN bus feature,
which is the frame arrival time. In this manner, although
the particular approach is very limited and is not easily
transferable to other aspects of a vehicle’s operation, it has
indeed demonstrated that a relatively simple and lightweight
method is capable of detecting some malicious activity on
the bus.

Taking into account the system’s resource restrictions,
other approaches may still apply, such as the work by Kang
et al. [8], who have proposed the use of a Deep Neural
Network (DNN) for monitoring the CAN bus network and
detecting malicious activity. However, DNNs are computa-
tionally heavy as they require a lot of processing power to
teach the neurons using the data, and with resource constraint
systems this approach would be unlikely to be integrated. In
contrast, the work by Vuong et al. [9], [10], [11] using the
relatively lightweight approach of decision trees trained on
existing attacks is highly practical, but can only work for
known attacks.

A further step was made by Theissler et al.[12], where
multiple methodologies were combined to form a hybrid for
detecting known and unknown attacks in automotive systems
using an ensemble-based anomaly detection approach. They
have used four Two-Class classifiers (Mixture of Gaussians,
Naive Bayes, Random Forest and Support Vector Machines)
and four One-Class classifiers (Extreme-Value, Mahalanobis,
One-Class Support Vector Machine and a Support Vector
Data Description). All these classifiers in combination have
shown excellent results for known faults, as well as for

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Greenwich Academic Literature Archive

https://core.ac.uk/display/82964357?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


unknown faults. A One-Class Support Vector Machine based
approach has proven useful in cyber threat identification of
autonomous avionic systems [13], where researchers were
able to detect Teardrop, Fuzzing, Port Scan and ARP scan
attacks. Loukas et al. [14] have shown that very accurate,
but also computationally heavy approaches, such as deep
learning can also be used if offloaded to a more powerful
infrastructure, as long as the network is sufficiently reliable.
This can both reduce detection latency and perhaps more
importantly also reduce energy consumption, but of course,
it has the major drawback that it depends on the availability
of an offloading infrastructure, which is impractical in many
application areas of robotic vehicles.

In general, most detection approaches for vehicles are
explicitly or implicitly system-specific. There is a need for
an approach that can be applied across a variety of vehicles
and can adapt by learning what is normal for that vehicle
and detecting deviations, so that it is also applicable to
unknown/future threats. In addition, existing detection ap-
proaches can only tell whether there is an attack in progress,
not what domain it has originated from (cyber or physical).
Here, we present an approach that addresses both gaps in the
landscape of related research.

III. METHODOLOGY

A. Experiment Setup

For the purpose of this research, we have developed a
modular robotic vehicle (Figure 1) from the ground up, as
described in detail in [15], [16]. Here, we limit the discussion
of the testbed to a high-level overview.

Fig. 1. Robotic vehicle testbed

The robotic vehicle was developed with practicability in
mind. We have used the Generic Vehicle Architecture (GVA)
[17] to keep the testbed modular, scalable and representative
of existing vehicular systems. It is equipped with a variety of
sensors, actuators and communication protocols widely used
in the industry, including CAN, RS-485, WiFi and ZigBee.
Communication between the operator and the testbed is
carried out using ZigBee, while the audio/video feed is
transmitted over a WiFi connection. This topology can be
seen in Figure 2. Internal communication is carried out
using the CAN bus, while RS-485 and I2C are used to
communicate through the gateways. The monitored features

TABLE I
DESCRIPTION OF THE DATA SOURCES

Physical Features Cyber Features
Name Abbr. Name Abbr.
Battery Voltage DS2 Packet Arrival Time DS1
Compass Bearing DS3 Action Indicator DS11
Pitch DS4 Sequence Number DS12
Roll DS5 CAN Packet Rate DS13
Front Distance DS6
Back Distance DS7
Left Distance DS8
Right Distance DS9
Temperature DS10
Motor #1 DS14
Motor #2 DS15
Motor #3 DS16
Motor #4 DS17

and their abbreviations are illustrated in Table I. Note that
by cyber features we refer to features corresponding to data
processing and transmission (DS1 and DS11-DS13), and
by physical features to the ones corresponding to actuation
and sensing (DS2-DS10 and DS14-DS17). The data from
the data sources is being collected and aggregated every
1 s. This is due to the fact that the sampling rate for
the different features ranges between 30 Hz and 0.5 Hz
and a communication protocol optimisation of the particular
ZigBee hardware implementation we used limits it to a new
transmission every 1 s.

Fig. 2. Attack vectors of the attack scenarios

The autonomy of the robotic vehicle allows the system
to undertake several missions. The results discussed here
have been derived from a routine mission scenario, where the
robotic vehicle has a target which is to reach a destination, on
the ground, with stochastic elements that divert the robotic
vehicle testbed.

B. Cyber-Physical Attacks

Here, we consider attacks of low to medium complexity,
originating from both the cyber and physical domain (Figure
3):

• Cyber-Physical: False Data Injection, replaying sensor
setup data packets on a ZigBee network. The assump-
tion is that the attacker was able to collect commu-



nication data externally at an earlier stage, e.g. at the
production stage.

• Cyber-Physical: Rogue Node, replaying packets on a
CAN bus. The rogue node is assumed to have been
planted through a supply chain attack. The aim here is
to amplify the traffic transmitted on the CAN bus.

• Physical-Cyber (sensory channel attack): Magnetic dis-
ruption of compass readings, with the aim to impede
the navigation capabilities of the autonomous vehicle.

C. Heuristic Binary Classification

The data that we feed into the Bayesian Network system
presented here is the output of a heuristic binary classification
mechanism described in [15], [16]. The particular mechanism
uses an anomaly detection approach based on the defined
signature characteristics which are described in Table II.

TABLE II
SIGNATURE CHARACTERISTICS

Value Type Characteristic

Raw Minimum
Maximum

Exponential Smoothing

Minimum
Maximum

Lowest Difference
Highest Difference

Deviation Standard Deviation (Std)

Spike Regions

0.5*Std - 1.0*Std
1.0*Std - 1.5*Std
1.5*Std - 2.0*Std

Over 2.0*Std

The mechanism itself learns the signature characteristics
from the data being transmitted to the CAN bus. The key
feature is that it uses a simple form of generalisation of
the sensor into the data source format thus producing a
behaviour signature for the sensor ignoring specific sensor
context, such as distance, temperature or bearing. It extracts
the metadata from the numeric data stream. This data set is
transformed into a data behaviour format which is defined
as a set of signature characteristics. The example of such
metadata extraction is to observe a frequency of occurrences
of the data samples within the deviation region (for example
the region between 0.5 and 1.0 of the standard deviation).
These occurrences are observed during a specific time slot
accompanied by the learnt range between the minimum and
the maximum from the data samples. These attributes act as
the boundaries of an anomaly filter i.e. any incoming data
samples violating these boundaries will raise an anomaly on
one of the characteristics. The heuristic binary classifier uses
raw data values as an input producing a binary output in a
signature format as described in Table II.

D. Bayesian Network Implementation

The heuristic method presented above has been imple-
mented as a prototype in a restricted resource environment
and achieves reasonably high detection rates. However, it
does not have the ability to tell anything more about the
nature of a threat beyond its existence. To address this, we

have added a complementary mechanism using Bayesian
Networks, which have been previously used in evaluating
cyber-threats in smart grids[18] or evaluating cyber-security
risks in nuclear instrumentation and control systems[19].
Here, we use them to determine the domain from which a
threat originates.

Bayesian networks can be used in statistical analysis pro-
viding a probability of events based on certain evidence. We
have already described that the heuristic binary classification
method is capable of identifying normal behaviour using
a sensor agnostic approach, i.e. not taking into account
the sensor context information. The methodology uses a
self-learning approach to generalise the sensor data into
signatures and use these signatures as the data source’s
unique description that demonstrates a sensor’s specifics. We
have used a Bayesian network based approach because it is
capable of working with discreet data, that can be in any
generic form. In addition, Bayesian networks are able to infer
the unknown variables which are useful in a situation where
an intrusion detection mechanism has to make a decision
based on the request of the operator or any other on-demand
request. There is obviously a vast range of other popular
models that can be used, such as Neural Networks, Decision
Trees or Random Forest, but they cannot infer the unknown
variables within a reasonable precision range. This capability
provides multiple ways on how to use such a model. As it can
learn and create relationships between the nodes, no expert
knowledge is required to identify the conditional probabil-
ities of various events. Here, we have used the statistical
analysis environment R, which is an open-source statistical
analysis environment with publicly available libraries for
Bayesian networks [20] provided by the bnlearn library.
The process of threat domain identification is illustrated in
Figure 4. An initial process starts by training a heuristic
binary classifier (1) that will learn the behaviour of all
data sources. Thereafter, the output of the heuristic binary
classifier is fed to the Bayesian Network as an input to
train the Bayesian Network model (2). When the training
phase has been completed, the sensor readings are classified
using the heuristic binary classifier (3) and then the output
is used to query the Bayesian Network on the probability
of the Normality, Cyber Threat or Physical Threat given the
evidence (4). This methodology becomes a hybrid that is
using both unsupervised and supervised learning requiring
prior knowledge of a threat situation. When the learning
phase has been completed, the raw data from the data sources
is fed to the heuristic binary classifier to transform the data
in an anomaly signature format. The output is then used as
a query argument to the Bayesian network.

The first step is to identify the relationships between the
entities in the data. Researchers have published a variety
of algorithms for identification of relationships between
entities for Bayesian Networks, which have their strengths
and weaknesses. We have used the Hill-Climbing algorithm
to construct a Direct Acyclic Graph (DAG), which creates
all connections so that the graph does not have cycles or
disconnected entities in the end. Other provided algorithms



Fig. 3. Attack vectors of the attack scenarios

Fig. 4. Raw sensor data is fed to the Heuristic binary classifier where data
sources are classified as having normal behaviour (green) or anomalous
(red), then the Bayesian Network is using the output of the heuristic binary
classifier as an input

were used, including Incremental Association Markov Blan-
ket, Max-Min Parents & Children, Tabu Search and other

algorithms that are provided by the bnlearn library packages.
The Hill-Climbing algorithm demonstrated that it is capable
of generating a closed DAG taking into account all entities
that are given to the Bayesian Network. The weakness of
the Bayesian network is that it uses a Supervised Learning
approach, in that the data set needs to have data for the
events that are being queried. In this work, we use a data
set with Normal, Cyber Attack and Physical Attack data.
These are the events that will be queried, given the evidence,
which is the data source heuristic binary classification output.
We used a 70/30 training/testing dataset split.

IV. PERFORMANCE EVALUATION

Here, we use Receiver Operator Characteric (ROC) curves
to evaluate the performance of the approach in terms of true
positive and false positive rates, and specifically the Area
Under Curve (AUC) metric, which is a standard approach
in classification comparison. Figure 5 contains a variety
of events that the Bayesian network is being queried for.
The evaluated cases are the detection of Normal Behaviour,
Cyber Threat Behaviour and Physical threat behaviour. For
reference, we also include the case where detection would
be random (the (0,0)(1,1) line, with AUC score of 0.5).

We observe very high accuracy of detection of cyber
attacks, and a little lower accuracy for normal states and
physical attacks. This is due to mission behaviour which is
producing a large amount of noise which is cancelling out
the attacks themselves. However, it is still performing well
and can produce a high probability identification of a threat
domain from the learnt data set. We have also experimented
with a variety of data sources looking at the cyber features
and physical features separately.

Figure 6 demonstrates the performance of threat detec-
tion using only cyber features. It is noticeable that the
performance of cyber threat identification has not changed,



Fig. 5. Bayesian network performance identifying cyber-physical domain
threat using both physical and cyber features

Fig. 6. Bayesian network performance identifying cyber-physical domain
threat using only cyber features

but, as expected, detection of physical domain attacks and
of normal behaviour have decreased. This shows that it
is beneficial to monitor not only cyber features, as in
conventional computing systems, but also using physical
features. Physical threat detection shows promising results
as it is capable of identifying physical threats with a lower
confidence level, based only on the cyber features. This
means that it is necessary to monitor the physical features
as they are affected by the malicious activity of the system.

Figure 7 demonstrates the capability of this methodology
to produce accurate probabilities by only monitoring the
physical features. The detection rate produces reasonably
high performance for cyber-physical domain threat detection.
However, we observe an interesting fact if we compare Fig-
ure 7 with Figure 5 and focus on Physical domain detection.
AUC performance is slightly lower than that produced in
Figure 7. This shows that there is a potential situation when
the combinations of various domain features may act as noisy
evidence when the probability is calculated for a specific

Fig. 7. Bayesian network performance identifying cyber-physical domain
threat using only physical features

event, probing cyber and physical threat domains. However,
the difference is relatively small. Using all cyber and physical
features generally leads to improved identification of normal
behaviour as well as of cyber domain threats.

V. CONCLUSION

The challenge that we have addressed here is how to
determine the domain from which a threat has originated
in a cyber-physical system vehicle, such as an autonomous
vehicle, which relies on the integrity and availability of
a variety of sensing and communication technologies to
perform its mission. To address this, we have presented a
mechanism based on Bayesian networks which can receive
information in real-time from a vehicle’s sensors, processing
and communication modules and determine whether there is
an attack and if so, whether it originates from the cyber or the
physical domain. This is particularly useful for attacks that
cross the cyber-physical divide, such as a sensory channel
attack (here, magnetic interference) affecting the ability to
reason with correct data and carry out a mission, and cyber
security breaches (e.g. a rogue node or command injection
attack) affecting a vehicle’s physical behaviour. A limitation
of this mechanism that we will address in future work is that
it performs effectively only for the relatively low sampling
frequency of one sample per second. That is because with a
higher sampling frequency, lack of precise synchronisation
between the heterogeneous data sources used would mean
that the data could be received out of order. Furthermore, we
will apply the approach on much larger and much smaller
vehicles to evaluate its scalability and applicability across
different systems.
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