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Abstract Non-isometric surface registration, aiming to
align two surfaces with different sizes and details, has been
widely used in computer animation industry. Various existing
surface registration approaches have been proposed for accu-
rate template fitting; nevertheless, two challenges remain.
One is how to avoid the mesh distortion and fold over of sur-
faces during transformation. The other is how to reduce the
amount of landmarks that have to be specified manually. To
tackle these challenges simultaneously, we propose a con-
sistent as-similar-as-possible (CASAP) surface registration
approach. With a novel defined energy, it not only achieves
the consistent discretization for the surfaces to produce accu-
rate result, but also requires a small number of landmarks
with little user effort only. Besides, CASAP is constrained
as-similar-as-possible so that angles of triangle meshes are
preserved and local scales are allowed to change. Extensive
experimental results have demonstrated the effectiveness of
CASAP in comparison with the state-of-the-art approaches.

Keywords Surface Registration · As-Similar-As-Possible ·
Consistent · Non-Isometric

1 Introduction

With the development of 3D geometry acquisition technol-
ogy, 3D scanning allows us to capture high-resolution and
highly detailed 3Dgeometries.However, the scanneddata are
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often incomplete or noisy and cannot be used directly. There-
fore, plenty of manual efforts are required to create usable
and high-fidelity 3Dmodels from scanning data. To deal with
this problem, one typical solution is to deform an existing
highly crafted character model (template) to fit the scanned
data (target). Surface registration as an essential technique
to do so has been arousing intensive attentions. The goal of
the surface registration is to find a deformation mapping f
that transforms the template surface S to the target T . The
classes of mappings [8] and their corresponding geometrical
properties are listed in Table 1.

It can be seen that surface registration is roughly divided
into two categories: rigid and non-rigid. Rigid registration
is to find a global transformation between two surfaces;
however, it cannot handle local transformations. Non-rigid
registration is then divided into isometric and non-isometric.
Isometric registration aims at finding a set of local rigid
transformations but lacks local scalability due to its length-
preserving property. Non-isometric registration can be fur-
ther classified into: equiareal, smooth and similar. Specif-
ically, equiareal registration has scale-preserving property
but is unable to address size difference between the tem-
plate and the target. In contrast, smooth registration based on
smoothness regularization is robust to size difference. How-
ever, it allows piecewise stretching transformation,which can
result in shear distortion and losing template details. Similar
registration fits the deformation gradient into a similarity
matrix, which is an isotropic scale factor s times a rotation
matrix R. The scale factor is able to handle size difference,
while the rotation matrix part prevents local stretch and dis-
tortion. Thus, it has been widely used in methods [21,30,32]
to align surfaces with different sizes and details. However,
the energies they adopt to constrain the local deformation
similarity are not consistent. This may tend to produce fold
over and self-intersection during transformation. Here, con-
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Fig. 1 Consistent as-similar-as-possible (CASAP) non-isometric reg-
istration. Given a small number of feature correspondences (seven for
the head registration and nine for the whole-body registration) only,
CASAP not only is capable of fitting the template toward the target
with different size (revealed in the whole-body registration example),
but also captures the details well (shown in the face registration exam-
ple) and preserves the structure of the template (seen from the colored
wireframe shading mode)

Table 1 Classes of mapping. d f is the deformation gradient, s is a
scalar, I is an identity matrix, R is a rotation matrix

Mapping d f Property

Rigid I Shape-preserving

Non-rigid

Isometric R Length-preserving

Non-isometric

Equiareal det(d f )=1 Scale-preserving

Harmonic min ‖d f ‖2 Smooth deformation

Similar sR Angle-preserving

sistent indicates that the discrete energy should converge to
the continuous case as the discretization refined.

To our best knowledge, there is no such a surface regis-
tration method which takes all the factors mentioned above
into consideration. In this paper, we propose a consistent as-
similar-as-possible (CASAP) surface registration approach.
Given a small number of feature points, CASAP not only
is capable of fitting the template to the target with different
size and poses, but also preserves the structure of the template
well.

The main contributions of this work are summarized as
follows:

– Introducing local scaling to the rotation in the prior SR-
ARAP energy, we propose a novel consistent energy
called CASAP energy, which is used to deform surface
meshes in an as-similar-as-possible manner. It results in
consistent discretization for surfaces and improves the
quality of the surface deformation and registration.

– With CASAP energy as regularization, we further pro-
pose a non-isometric surface registration approach. It not
only producesmore accurate fitting results with requiring
little user effort only, but also preserves angles of triangle
meshes and allows local scales to change. Furthermore,
a coarse-to-fine strategy is proposed to further improve
the robustness and efficiency of our approach.

– Taking local geometrical feature descriptors into account,
we propose amatching energy to choosemore reasonable
correspondent pairs between template and target models.

2 Related works

Over the last two decades, non-rigid registration has been
an active research topic [29]. In this paper, we only focus on
registration techniques related to our work: isometric regis-
tration, smooth registration and similar registration. As the
deformation technique is quite essential and critical during
registration, influencing theoverall geometry quality directly,
we will provide a brief summary of these registration meth-
ods and their underlying deformation techniques.

Isometric registration approaches aim to preserve the local
rigidity of surfaces. Techniques in this class are based on
minimizing as-rigid-as-possible (ARAP) energy. TheARAP
energy measures the local deviation of the differential of a
mapping between two shapes from rigidity. In order to apply
this scheme to discretization cases, rigid regularization needs
to be enforced on each discrete cell. There are four typical
kinds of discrete cell introduced in [14]: triangle, tetrahe-
dron, spokes, and spokes and rims. Apart from all of these
cells above, Muller et al. [19] provided a meshless defor-
mation technique, in which the discrete cell is defined as
a cluster. The discrete cell adopted in as-rigid-as-possible
deformation technique [23] is spokes; however, this method
requires the use of a positive weighting scheme to guarantee
the correct minimization of the energy. Chao et al. [7] took
into account all the opposite edges in the triangles incident
to a vertex, and the discrete cell in their work is spokes and
rims. Compared with ARAP deformation, this technique is
guaranteed to always correctly minimize the energy even if
the weights are negative. However, the discretization of [7] is
only consistent for volumetric case with tetrahedron cells in
3D or parameterization with triangle cells in 2D, and it is not
consistent for the surface case with spokes and rims cells in
3D. In order to come up with a consistent discretization for
surface in 3D, Levi et at. [14] introduced a new ARAP-type
energy, named SR-ARAP (ARAP with smooth rotations);
they add a bending term onto the ARAP energy to enable
the discretization consistent. Li et al. [15] achieved isomet-
ric registration using the deformation model of [26]. Huang
et al. [22] constrained transformations locally as rigid as pos-
sible. However, these approaches are incapable of handling
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Consistent as-similar-as-possible non-isometric surface registration 893

surfaces with different sizes since they try to reserve the local
rigidity.

Smooth registration techniques are based on harmonic
mappings or other smoothness regularizations. Jacobson [10]
introduced that the harmonic, biharmonic, triharmonic equa-
tions w.r.t. surface displacement fields correspond to mini-
mizers of the Dirichlet, Laplacian, Laplacian gradient ener-
gies. Jacobson [10] offered a detailed derivation to obtain
a linear system to solve this second-order elliptic par-
tial differential equation. Jacobson et al. [12] used mixed
finite elements to provide a discretization for biharmonic
and triharmonic equations on meshes. Bounded biharmonic
weights are proposed in [11] to minimize the Laplacian
energy subject to bound constraints. There are someworks [1,
2] based on other smoothness regularization whose purpose
are to make the deformation between neighbors as smooth
as possible; this idea is similar to the bending term added
in [14]. Although these techniques are robust to different
sizes, they are too weak to preserve mesh structures against
shear distortions because they allow stretch transformations.
They require a great number of landmarks to avoid distortion
and achieve a desirable result.

Similar registration method is to preserve the local simi-
larity of surfaces; it remains the angle of intersection of every
pair of the intersecting arcs unchanged during deformation
process. Sorkine et al. [24] offer a linear approximation of
similarity matrix to make deformed Laplacian coordinates
consistent. However, this method only works well under
small rotations as the approximation removes the quadratic
term. Thus, it cannot handle large rotation. Yamazaki et
al. [30] extended ARAP energy to as-similar-as-possible
(ASAP) energy with spokes discrete cells. The work in [21]
is a variation of shape matching [19] called similarity shape
matching. Although these techniques utilize similar mapping
to enable them to address size difference and shear distortion,
they do not consider the smoothness regularization, which
shows that they are incapable of handling large changes in
pose or shape. Yoshiyasu et al. [32] incorporated smooth reg-
ularization into the total energy; however, it is a unweighted
energy, which does not take into account the impact of the
length of edges. Moreover, the discrete cell they adopt is
spokes, which leads to an inconsistent energy.

In this paper, we employ spokes and rims discrete cells
and incorporate a bending term to produce consistent ASAP
energy, allowing us to address large deformation desirably.
The experiments demonstrate that the results obtained by our
method outperform existing methods.

3 Registration

Given a template surface S and a target one T , the goal of
surface registration is to deform the surface S into S ′ so that

S ′ can be sufficiently close to surface T with structure pre-
served and less distortion. With that purpose in mind, we
enforce consistent as-similar-as-possible (ASAP) regular-
ization on the template surface when we are attracting it to
the target. Let p,p′,q denote the vertex positions on surface
S,S ′, T respectively; we define the cost function as

E(p′) = wd Ed(p′) + wcEc(p′) + w f E f (p′), (1)

where Ed constrains deformation ASAP consistently, Ec

penalizes distances between the points of template and their
correspondences on the target, and E f penalizes distances
between the feature points of template and target surface.
The weights before these energy terms adjust the influence
they account for in total energy. In the next subsections, we
introduce each energy term, respectively.

3.1 Consistent ASAP Energy

Assuming we are deforming a mesh S into S ′ with the same
connectivity as similar as possible, the piecewise linear geo-
metric embedding of S is defined by the vertex positions
pi ∈ R3, which is deformed into a different geometric
embedding p′

i . Given the cell Ci on mesh S correspond-
ing to vertex i , and its deformed version C′

i on mesh S ′, we
define the approximate similar transformation between the
two cells. Unlike [23,30,32] regarding spokes as the cell, the
cell chosen in our paper is spokes and rims (denoted as Ei ) in
order to arrive at an analyzable energy [7]. If the deformation
Ci → C′

i is similar, then there exists a scale factor si > 0 and
a rotation matrix Ri such that

p′
j − p′

k = siRi (p j − pk),∀( j, k) ∈ Ei , (2)

where Ei consists of the set of edges incident to vertex i (the
spokes) and the set of edges in the link (the rims) of vertex i
in the surface mesh S. When the deformation is not similar,
we can still find the best approximating scale factor si and
rotation Ri by minimizing a weighted cost function

E(Ci ,C
′
i ) =

∑

( j,k)∈Ei
w jk‖(p′

j−p′
k)−siRi (p j−pk)‖2, (3)

where w jk are edge weighting coefficients. We chose the
cotangent weights for w jk as they make our deformation
energy mesh-independent [17].

In order to measure the similarity of a deformation of the
whole mesh, we sum up over the deviations from similarity
per cell which yields us following ASAP energy functional:
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Fig. 2 CASAP deformation on the same object with different resolu-
tions results in very similar qualitative behaviors

Ea(p′) =
∑

i

E(Ci , C′
i )

=
∑

i

∑

( j,k)∈Ei
w jk‖(p′

j − p′
k)−siRi (p j − pk)‖2. (4)

However, according to [7], the analyzable ASAP energy
we obtained so far is not consistent yet. In fact, the resulting
ASAP energy differs from the continuous one by a bending
term. Inspired by [14], we incorporate the smooth regular-
ization into (4) leading us to a consistent ASAP energy:

Ed(p′) = Ea(p′) + Eb(p′)

=
∑

i

⎛

⎝
∑

( j,k)∈Ei
w jk‖(p′

j − p′
k)−siRi (p j − pk)‖2

+αA
∑

El∈N (Ei )
wil‖Ri − Rl‖2F

⎞

⎠, (5)

whereN (Ei ) are the neighboring cells of Ei ; α is a weighting
coefficient; A is the area of the whole mesh surface, which
is used to make the energy scale invariant; wil are scalar
weights; and ‖ · ‖F denotes the Frobenius norm. Although
using 1 forwil usually gets compelling results, we still chose
cotangent weights forwil for constructing consistent energy.
The second term Eb we add is the bending energy [14],
which penalizes the similarity difference between a cell and
its neighboring cells. In this way, we have made up the miss-
ing bending energy in ASAP energy to form a consistent one
(Fig. 2).

3.2 Correspondence constraints

In order to attract points on the template toward the target,
we need to find their correspondent vertices on the target
surface. Many works [9,30,32] regard the closest points as
goal positions; however, correspondences chosen by these
approaches are not quite appropriate as they only consider
distances between the closest points of template and target

surface. Inspired by [21,22], we concern feature descrip-
tors and smooth factor additionally. Starting from the closest
points on the target, we then flood over their neighbors to find
out the smallest matching energy points until converge. We
define matching energy Em between points of the template
and the target as

Em(pi ,q j ) = ‖d f (pi ,q j ) − d f (pi ,q j )‖2, (6)

where pi is vertex i on template surface and q j is vertex j
on target surface; the feature descriptors distance is defined
as d f (pi ,q j ) = f (pi ) − f (q j ), where f (v) is the feature
vector for vertex v, we concatenate all feature descriptors into
a single feature vector; themean value distance d f (pi ,q j ) =

1
|N ( j)|+1

∑
k∈N ( j)∪ j d f (pi ,qk), where N ( j) is the 1-ring

neighbors of vertex j on the target surface.
There is a great number of feature descriptors that char-

acterize the geometric properties of the point or of its neigh-
borhood, often in a multi-scale way, for example various
notions of curvature (Gaussian, mean) [17], diffusion-based
descriptors, such as the heat or wave kernel signatures [3,27],
or more classical descriptors such as spin images or shape
contexts [4,13]. In our experiment we concatenate vertex
position, vertex normal, multi-scale mean curvatures [20],
wave kernel signatures [3] and scale-invariant heat kernel
signatures [6] to form a feature vector.

In order to prevent unnecessary matchings, we filter out
the pairs if the distance between them exceeds D or if the
angle between their normals exceeds a threshold Θ . Thus,
the algorithm of finding correspondence qidx(i) on the target
surface for each point on the template can be summarized as
Algorithm 2, where idx(i) is the index of the target point that
is matched with template vertex i .

Algorithm 1 Find correspondence for template vertex pi
1: Find the closest point q j on the target
2: if the distance between pi and q j exceeds D or the angle between

their normals exceeds Θ then
3: return NULL
4: end if
5: k = j
6: do
7: j = k
8: Find k ∈ N ( j) ∪ j which minimizes Em
9: while k �= j
10: idx(i) = k
11: return qidx(i)

After given the correspondence of template vertices, the
template surface can be attracted toward the target according
to the matching pairs. However, in order to avoid extreme
distortion in tangential space, rather than attracting the tem-
plate points to their correspondences directly, we attract them
to the projections of their correspondences on their normals
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Fig. 3 q j is the closest vertex on the target to pi ; qidx(i) is the cor-
respondent vertex found by minimizing the matching energy; n is the
normal vector of pi ; Proj (qidx(i)) is the projection of qidx(i) onto nor-
mal vector n

denoted by Proj (qidx(i)) (Fig. 3). Now the correspondent
constraint energy in (1) can be expressed as

Ec(p′) = ‖Ccp′ − Proj (Dcq)‖2F , (7)

where p′,q are the vertex positions on surface S ′, T ,
respectively, and Cc,Dc are the sparse matrices that define
the filtered matching correspondences between S ′ and T .
Assuming the mth correspondence is pi on S ′ and qidx(i) on
T , then

Cc(m, n) =
{
1, if n= i

0, if n �= i
,Dc(m, n) =

{
1, if n= idx(i)

0, if n �= idx(i)
.

3.3 Feature point constraints

For thefitting of the template’s pose and size to the target, sev-
eral feature correspondences are required to be established.
Feature point constrains are designed to drag feature points
on the template toward corresponding target ones. This con-
straint energy can be represented as

E f (p′) = ‖C f p′ − D f q‖2F , (8)

where C f ,D f are the sparse matrices that define the feature
point pairs between S ′ and T .

3.4 Optimization

In this subsection, we introduce the optimization algorithm
to minimize the total energy in (1). There are two loops
in the optimization: the outer loop searches for the corre-
spondent vertices to construct Ec, the inner loop optimizes
the deformed vertex positions by minimizing E(p′). Once
the inner loop is converged, weights are adjusted and a new
outer iteration starts again. Note that in the inner loop except

the vertex positions pi are unknown, si and Ri in (5) are
also unknown for each vertex. We employ the alternating
optimization scheme following [14,23,30] to solve them,
respectively. Each inner iteration consists of a local step fol-
lowed by a global step. In local step, we optimize si and Ri

with p′
i fixed. By contrast, p′

i are optimized with si and Ri

fixed in global step.
Local step In this step, p′

i are fixed, and then, we solve
Ri , si in sequence to construct consistent ASAP energy (5).
For convenience, let us denote the edge e jk := p j − pk and
e′
jk := p′

j −p′
k . Then, we can change the formula (5) for cell

i as

∑

( j,k)∈Ei
w jk‖e′

jk−siRie jk‖2+αA
∑

El∈N (Ei )
wil‖Ri −Rl‖2F (9)

First we solve for optimal rotationRi . Extending the equa-
tion (9) and dropping the terms that do not contain Ri , we
are remained with

argmin
Ri

T r

⎛

⎝−Ri

⎛

⎝2
∑

( j,k)∈Ei
sie jke′

jk
T+2αA

∑

El∈N (Ei )
wilRT

l

⎞

⎠

⎞

⎠

= argmax
Ri

T r(RiSi ), (10)

where Si is defined as

Si = 2
∑

( j,k)∈Ei
sie jke′

jk
T + 2αA

∑

El∈N (Ei )
wilRT

l .

Following [23], we derive the optimal rotation Ri from the
singular value decomposition of Si = Ui�iVT

i :

Ri = ViUT
i . (11)

If det(Ri ) < 0, then the sign of the column ofUi correspond-
ing to the smallest singular value will be changed.

Then, we compute scale factor si . Since the second term
in (9) is independent of si , we only extend the first term and
divide extended terms by si

argmin
si ,Ri

T r

⎛

⎝
∑

( j,k)∈Ei
w jk

(
1

si
‖e′jk‖2−2Ri e jke

′
jk
T+si‖e jk‖2

)⎞

⎠ .

(12)

Taking derivative (12) w.r.t. si and letting the derivative to be
zero yields

si =

⎛

⎜⎜⎜⎝

∑

( j,k)∈Ei
w jk‖e′

jk‖2

∑

( j,k)∈Ei
w jk‖e jk‖2

⎞

⎟⎟⎟⎠

1
2

(13)
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Global step In this step, vertex positions p′
i are optimized

from si ,Ri obtained by the local step. We first introduce the
optimization of consistent ASAP energy (5) as it is a part
of total energy and the only part dependent on si ,Ri . After
minimizing this energy, the optimization of total energy will
be obvious.

Taking partial derivative of (5) w.r.t. the position p′
i (note

that the second term has nothing to do with p′
i ), we arrive at

∂E(p′)
∂p′

i
=2

∑

j∈N (i)

(wi j (3(p
′
i −p′

j)−(siRi +s jR j +smRm)(pi −p j))

+w j i (3(p
′
i −p′

j)−(siRi +s jR j +snRn)(pi −p j))),

(14)

where N (i) is one-ring neighbors of vertex p′
i ; sm, sn and

Rm,Rn are the scalar factors and rotation matrices of the
vertices pm,pn which are the opposite vertices of the edge
ei j . Setting partial derivative (14) to zero gives the following
sparse linear system of equations:

∑

j∈N (i)

(wi j +w j i )(p′
i −p′

j)=
1

3

∑

j∈N (i)

(wi j (siRi +s jR j +smRm)

+w j i (siRi +s jR j +snRn))(pi −p j). (15)

Notice that the linear combination on the left-hand side is
the discrete Laplace–Beltrami operator applied to p′. Now
the system of equations can be reduced as Lp′ = d, where
L represents the discrete Laplace–Beltrami operator, which
only depends on the initial mesh; thus, it can be pre-factored
for efficiency; d is given by the right-hand side of (15).

Now let us take back to the total energy (1); taking deriva-
tive of it w.r.t. p′ gives us a linear system:

ATAp′ = ATb, (16)

where

A =
⎛

⎝
wdL
wcCc

w fC f

⎞

⎠ ,b =
⎛

⎝
wdd

wc Proj (Dcq)

w fD f q

⎞

⎠ .

Up to now, the routine of consistent ASAP surface regis-
tration can be summarized as Algorithm 2.

4 Coarse-to-fine fitting strategy

In this section, we discuss the details of fitting the template.
To improve the efficiency and robustness of registration, we
take a coarse-to-fine fitting strategy. Instead of fitting over-
all template surface from the beginning, a coarse mesh is
extracted from the original template mesh and then fitted to

Algorithm 2 Consistent ASAP Surface registration
1: Specify the feature points.
2: while not converged do
3: Adjust weights in (16) and construct Ec
4: while not converged do
5: Compute Ri by solving equations (11).
6: Compute si by solving equations (13).
7: Compute p′ and update surface S ′ by solving equation (16).
8: end while
9: end while

several feature points to roughly adjust the overall size of
the template. In this way, approximated goal positions are
obtained which is a better initial guess of fine fitting leading
to fast converge and it also reduces the fold over occurrence.
Afterward, a dense mesh is rebuilt from the deformed coarse
mesh, and fine fitting step is performed to produce the final
result.

4.1 Fitting steps

There are four fitting steps: initialization, coarse fitting, mid-
scale fitting and fine fitting:

Initialization In this step, a coarse mesh is extracted from
the template first. We employ the farthest point sampling
approach [18] to sample certain number of vertices to repre-
sent the shape of objects approximately (Fig. 4a). Note that
all of the sampled vertices are the subset of the original vertex
set. Then, the geodesic remeshing technique [28] is used to
generate the coarse mesh from the sampled points (Fig. 4b).

Coarse fitting We utilize the similarity constraints and
feature point constraints to fit the coarse mesh to several
feature points on the target so that the size and post of the
template are roughly adjusted to the target (Fig. 4e).

Mid-scale fitting After fitting the template roughly to
the target using feature points, the coarse mesh is deformed
gradually toward the target. Apart from the two constraints
adopted in the first step, correspondence constraints are also
applied to achieve template attraction (Fig. 4f).

Fine fitting In this stage, a densemesh is first reconstructed
from the deformed coarse mesh by embedded deforma-
tion [26] (Fig. 4g). The extracted coarse mesh is considered
as deformation graph laid under the dense mesh. From for-
mulas (13) and (11), we associate an affine transformation
with each vertex in the coarse graph. The deformed posi-
tions of vertices in the dense mesh can be calculated from
the transformations of the deformation graph. We use the
same approach as [32] to rebuild the dense mesh. Again, all
the constraints are performed to fit the dense mesh to the
target (Fig. 4h).
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Consistent as-similar-as-possible non-isometric surface registration 897

Fig. 4 Surface registration algorithm overview: a Sampled points
(marked as yellowdots) via farthest point sampling technique;b remesh-
ing from the sampled points as embedded coarse mesh; c input of target

surface; d the feature points specified by users (red dots for target and
cyan dots for template); e coarse fitting; f mid-scale fitting; g recon-
structed through embedded deformation; h fine fitting

4.2 Weights and parameters

In the initialization step, we regard the feature point con-
straints as boundary condition to induce deformation. In next
two steps, we set D = 0.02rbox and Θ = 90◦, where rbox is
the bounding box diagonal. As for the weights in the linear
system (16), we use wd = 1000, wc = 5, w f = 105 in the
coarse fitting stage and divide wd by 1.1 after every iteration
until it is less than 1. In the fine fitting, we take the same
procedure with w f = 1.

5 Experiments and results

We tested our algorithm on various surfaces. For surface
deformation, the data (cylinder and bar) in [5] are adopted.
We show twist and translation deformation on these meshes
in Fig. 5. For surface registration, we use the human head
mesh, 3D face scanning, the human body and animal models
which are fromSCAPE, TOSCAdata sets. All the algorithms
are implemented in MATLAB, and all the statistics are mea-
sured on an Intel Xeon E5 3.4 GHz 64-bit workstation with
16GB of RAM.

Generic models We apply CASAP registration technique
to register from one human head with holes to a face scan-
ning from another human (Fig. 1); from a human body to a
gorilla (Fig. 1, 4); and from a pig to a horse (Fig. 6). Each

Fig. 5 Different deformation approaches comparison. Rows show dif-
ferent transformations, while columns represent different deformation
methods. The gray points are fixed, and the yellow ones indicate control
points

pair has large difference on size or details. CASAP not only
is able to handle size difference as shown in whole-body reg-
istration example in Fig. 4, but also can capture geometrical
details such as the human expression (Fig. 1) and preserve
the connectivity of the template well, thus reducing the risk
of producing fold over (Figs. 1, 6).

Comparisons We first compare our consistent as-similar-
as-possible (CASAP) deformation approach with other three
deformation methods (ARAP [23], SR-ARAP [14] and
ASAP [30]) in Fig. 5. The result of ARAP is not satisfying
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898 T. Jiang et al.

Fig. 6 Different surface registrationmethods comparison. The left two columns are inputs, while the rest are outputs by different surface registration
methods. The yellow and red dots indicate the feature points on the template and the target, respectively. The corresponding points are with same
colors

because its energy is not consistent. SR-ARAP overcomes
the weakness of ARAP, offering a consistent discretization.
However, it cannot handle local scalability. ASAP allows
piecewise scale, but its energy is not consistent, which
may lead to undesirable results such as fold over and self-
intersection. CASAP combines the benefits of ASAP with
the advantages of the SR-ARAP approach such that it can
not only handle local scale but also guarantees the defor-
mation smoothness. It produces consistent discretization for
surfaces, which enables it to generate competitive results
as SR-ARAP does when processing isometric deformation
(seen from the twisted bars). Figure 2 shows the advantages
of our consistent energy.

We then compare our registration technique to other
state-of-the-art algorithms: as-conformal-as-possible sur-
face registration (ACAP) [32], similarity-invariant shape
registration (ASAP) [30], the embedded deformation tech-
nique (ED) [26], the shape matching-based registration
technique that minimizes the as-similar-as-possible energy
(SM-ASAP) [21], the Laplacian surface editing technique
(LSE) [24] and the registration technique that utilizes the
point-based deformation smoothness regularization (PDS)
[2] in Fig. 6. ACAP employs nonlinear conformal stiff-
ness and regularization terms in registration process, which
produces the closest results to CASAP. However, since the
regularization energy it adopts is not consistent, fold overs
still occur around the left wrist of gorilla and the neck of
horse. ASAP and SM-ASAP do not require specifying fea-
ture points, but they are only able to handle surfaces with
close initial alignment and similar poses. ED is an isometric
counterpart of ACAP. As it cannot adjust local scale, EDmay
produce poor initial shape estimation, which makes parts of
surface converge to inaccurate places as shown at the right
leg of gorilla. LSE cannot handle large deformation as it use a
linear approximation of similar transformation. PDS is based
on smoothness regularization, but it is too weak against shear
distortions. Only CASAP exhibits no fold over and almost
no distortion in the examples, which produce quite pleasant
visual results.

From the perspective of quantitative evaluation, follow-
ing the same criterion as in [32], we measure 1) distance
error, which is the average distance from the vertices of the
deformed template to the corresponding points of the tar-
get relative to the bounding box diagonal, 2) angle error,
which is the average angle deviation from the template,
3) bending error, which is the average deviation in dihe-
dral angles from the template, 4) intersection error, which
is the number of self-intersecting faces. These statistics
can be found in Table 2. All the errors of CASAP are
the smallest among all the techniques except the bend-
ing error in horse example, which is because of the LSE’s
disability of handling large rotations. The number of self-
intersecting faces is zero, which reveals the ability of CASAP
to reduce the change in fold over and shear distortion
appearance.

The number of iteration steps and timings are shown in
Table 3. The time required for a single inner iteration of
CASAP is minimum. Although it requires more iteration
steps than ACAP to converge, the total registration time it
spends is less than ACAP.

Number of feature points required Previous methods
[25,31] require specifying 20–70 feature points, whereas our
technique requires less than 20 points: 7 for the face registra-
tion (Fig. 1), 9 for the whole-body registration(Figs. 1, 4), 15
for registration from pig to horse (Fig. 6)). That is because
CASAP provides a good initial shape approximation, and the
consistent energy preserves the template structure and angles
well.

Limitation Although our consistent ASAP deforma-
tion technique and the coarse-to-fine strategy can efficiently
reduce the chance of fold over, it cannot solve this issue, espe-
cially for model with large curvature. An easy solution is to
add more feature points around the fold overs and adjust the
position of them to achieve better result. Other methods such
as fold over removing technique [31] or bounded distortion
mapping [16] can also be utilized to solve this issue.
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Another limitation is that we cannot achieve automatic
registration. Therefore, the quality of the feature points spec-
ified by users will directly influence the registration result.

6 Conclusion

We have presented a novel surface registration approach
(CASAP) that constrains deformations locally as similar as
possible.With the proposed consistent regularization energy,
CASAP not only results in consistent discretization for sur-
face but also reduces the occurrence of fold over and shear
distortion. Experiments have shown that CASAP produced
more accurate fitting results and preserved angles better than
previous methods.

In the future, we will attempt to avoid the occurrence
of fold over completely during transformation to make the
registration procedure more robust. In addition, if the fea-
ture points are detected accurately between the template and
the target on different size, automatic registration will be
achieved without any user intervention. These would also be
a quite appealing research direction.
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