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Thermal instability in a time-dependent base
state due to sudden heating

By OLIVER S. KERR AND ZOË GUMM

Department of Mathematics, City, University of London,

Northampton Square, London EC1V 0HB, U.K.

(Received 31 May 2017)

When a large body of fluid is heated from below at a horizontal surface the heat diffuses
into the fluid, giving rise to a gravitationally unstable layer adjacent to the boundary. A
consideration of the instantaneous Rayleigh number using the thickness of this buoyant
layer as a length scale would lead one to expect that the heated fluid is initially stable,
and only becomes unstable after a finite time. This transition would also apply to other
situations, such as heating a large body of fluid from the side, where a buoyant upward
flow develops near the boundary. In such cases when the evolving thermal boundary layer
first becomes unstable the time-scale for the growth of the instabilities may be comparable
to the time-scale of the evolution of the background temperature profile, and so analytical
approximations such as the quasi-static approximation, where the time-evolution of the
background state is ignored, are not strictly appropriate.

We develop a numerical scheme where we find the optimal growth of linear pertur-
bations to the background flow over a given time interval. Part of this problem is to
determine an appropriate measure of the amplitude to the disturbances, as inappropri-
ate choices can lead to apparent growth of disturbances over finite time intervals even
when the fluid is stable. By considering the Rayleigh–Bénard problem, we show these
problems can be avoided by choosing a measure of the amplitude that uses both the
velocity and temperature perturbations, and which minimizes the maximum growth.

We apply our analysis to the problems of heating a semi-infinite body of fluid from
horizontal and vertical boundaries. We will show that for heating from a vertical boundary
there are large and small Prandtl number modes. For some Prandtl numbers both modes
may play a role in the growth of instabilities. In some cases there is transition during
the evolution of the most unstable instabilities in fluids such as water, where initially the
instabilities are large Prandtl number modes and then morph into small Prandtl number
modes part of the way through their evolution.

1. Introduction

When a layer of fluid between two horizontal boundaries is heated from below con-
vection instabilities can arise. This is the well known Rayleigh–Bénard problem. When
the temperature difference across the fluid passes a critical level instabilities can develop.
This critical value is expressed in terms of the Raleigh number

Ra =
gα∆TH3

νκ
, (1.1)

where g is the acceleration due to gravity, α the coefficient of thermal expansion, ∆T the
imposed temperature difference, H the distance between the boundaries, ν the kinematic
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viscosity and κ the thermal diffusivity. The well-known critical Rayleigh number for this
problem being Ra = 27π4/4 for stress-free boundaries and Ra = 1707.8 for no-slip
boundaries (see, for example, Drazin & Reid 1981).

When a semi-infinite body of fluid is heated from below by a sudden increase in tem-
perature at its horizontal boundary, the heat diffuses into the fluid, penetrating a distance
of order (κt)1/2 from the boundary where t is the time since the onset of heating. A sim-
plistic argument would suggest that as this buoyant layer has a depth H = O

(

(κt)1/2
)

the effective Rayleigh number grows as t3/2. This would mean that the thermal layer
would start off being stable, and become unstable at a later time.

The transition from stability to instability some time after the initial application of a
destabilizing effect has been observed experimentally in other situations. For example, in
the experiments of Chen, Briggs & Wirtz (1971), water with a vertical salinity gradient
was heated from a vertical boundary. In one example, shown in their figure 8(b), insta-
bilities are observed to start forming in the middle of the wall around 8 minutes after the
wall temperature was raised. In the related experiments of Narusawa & Suzukawa (1981),
where a constant heat flux was applied at a vertical wall bounding a salinity gradient,
the authors observed instabilities first appearing in some cases an hour or more after the
onset of heating. In both these cases the background state is intrinsically unsteady.

The linear stability analysis for the Rayleigh–Bénard problem is made simpler because
there exists a background state that is steady — the conduction solution. In these cases it
is common to be able to perform a normal mode analysis, where the form of the instability
can be separated into a time-dependent part and a spatial part, with the growth of the
disturbances being exponential in time. For a steady background state, an exponentially
growing linear instability will eventually reach a finite amplitude where it can be observed
and nonlinearity becomes important. In this case the concept of marginal stability — the
condition separating the situation where no modes grow exponentially from cases where
at least one mode grows — is important. There are many examples of investigations of
the stability of steady flows and background states in many branches of fluid mechanics
(again see, for example, Drazin & Reid 1981).

In the problems that interest us here we have an evolving system where the form
and growth rate of instabilities may change with time, and indeed stop growing. In
this case it is not just the presence of growth that is important, but by how much
the instability grows. If an instability has insufficient total growth, then the evolution
of any initial disturbance may pass unnoticed. The decision as to what growth of an
instability is required for a system to be considered unstable is not clear. There is always
some background disturbance to a fluid, either from random molecular fluctuations, from
ambient noise and vibration, or from deviations of the real background state from the
mathematical idealisation. This last case could be from imperfections in the walls, non-
uniform heating or just from residual motions from the filling of an experimental tank.
The form and magnitude of these potential initial disturbances are hard to estimate,
and so the required growth for instabilities to be observed, or nonlinearities to become
important, is also unclear. For this reason, in our study we will look at a range of possible
growths. Even for stability problems where the background state is steady it is sometimes
possible to get significant transient growths of instabilities in circumstances where all
linear disturbances will eventually decay, see for example, Trefethen, Trefethen, Reddy
& Driscoll (1993). In such circumstances, as with instabilities of an evolving background
state, the importance of the instabilities may depend on whether the amplitude of the
instabilities will reach some threshold level where, say, nonlinearity becomes important.

One way to approach an investigation of the stability of an evolving system numeri-
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E(t)/E(0)

t

Figure 1. The growth of the size of 100 sets of instabilities when a semi-infinite body of fluid
is heated from a vertical wall subject to random perturbations. Each realisation differs only in
the seed for the random number generator for the noise. Further details provided in §5.

cally is to subject a simulation of the background flow to random noise and to look at
the evolution of instabilities. This was used by, for example, Kim & Kim (1986) in an
investigation of the heating of a layer of fluid from below. They applied a constant heat
flux at the heated boundary, while here we will apply a fixed temperature rise. In figure 1
are shown the results of 100 such runs for one of the problems under consideration here:
the heating of a semi-infinite body of fluid from a vertical sidewall. The details of these
calculations will be left to the relevant section of this paper. These calculations show the
evolution of an energy-like measure of the amplitude of the disturbances renormalised
so that they all start at 1 when t = 0, the time of the onset of wall heating. The only
differences between all these runs is the value of the seed number used in the random
number generator. Even if we ignore the outlying curve at the bottom, These exhibit
a significant spread of amplitudes at t = 160. If one were to look for the time when
instabilities start to grow, or the time they take to reach a given threshold of E(t)/E(0),
there would also be a high level of uncertainty. The approach that we will take in this
paper aims to provide well-defined answers to these points.

In this paper we will primarily be concerned with two convection problems. Firstly,
the case of heating a large body of fluid from below at a horizontal boundary. Secondly,
we will look at the related problem where the heating is from a vertical wall. Before we
do this we will outline the method that we use. This involves following the evolution of
all possible linear instabilities from an initial time, t0, (which may or may not be the
time of the onset of heating) to some later time, t1. For some measure of the amplitude
of the disturbances, we will then find the optimum initial conditions that give rise to the
maximum growth over this time interval.

The above follows the same basic idea as used by Foster (1965, 1968) in his study of
heating fluid from a bottom boundary. He used the kinetic energy as a measure of the
amplitude of the disturbances, which were expressed in terms of a function expansion of
the temperature and velocity perturbation. He used t0 = 0 and only allowed a limited set
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of initial perturbations to the velocity, and no initial perturbations to the temperature.
We will see that this approach will tend to underestimate the growth.
The use of non-modal stability theory to look at the transient growth of instabilities

has been looked at by numerous authors (see Schmid 2007, for a review). In particular
relevance here is the analysis of time-evolving problems by deriving the set of adjoint
differential equations for the problem under consideration, and then developing an itera-
tive scheme where the initial value problem is solved forwards in time using the original
equations and using the final solution thus found to give the initial conditions for the
adjoint problem. This was then solved backwards in time to the initial point, which
in turn provides the initial conditions for solving the original differential equations for
the next iteration. This approach has been reviewed in Luchini & Bottaro (2014). This
approach was used to look time dependent Rayleigh–Bénard–Marangoni convection by
Doumenc, Boeck, Guerrier & Rossi (2010). It will be seen that this method is funda-
mentally equivalent to the approach taken here, however the formulation of the problem
and the numerical approach are quite different. No adjoint differential equations will be
derived or explicitly solved here.

In §2 we will set out the basic convection problems we will consider, and the numerical
approach taken to find the optimum disturbances. We will then apply this approach in
§3 to the classic Rayleigh–Bénard problem to verify the approach. It will be seen how
the growth predicted is dependent on the choice of the measure of the amplitude, and
that an inappropriate choice of this measure can lead to over-predictions of growth, even
predicting growth in stable systems. Considering a problem with a time-independent
background state enables some of the features, and potential drawbacks, of measures of
the amplitude to be examined without the confounding effects of an evolving background
state. When the measure is chosen appropriately the analysis will reveal the exponential
growth found by more conventional analysis, even for growth over quite restricted time
intervals.

In §4 we will apply the methods developed to the investigation of the problem of heating
a semi-infinite body of fluid from a horizontal lower boundary, and in §5 the problem
of heating a semi-infinite body of fluid from a vertical boundary. Again, a warm layer
develops near the boundary, but in this case the buoyant region generates an up-flow near
the wall. We will mainly focus on results for the case of Prandtl number σ = ν/κ = 7,
which is appropriate for water, but also has a relatively complex behaviour for the sidewall
problem where the instabilities observed straddle two different regimes. We will also look
at the trends for more general Prandtl numbers.

2. Problem formulation and solution method

We will look at three basic problems. Firstly we consider the heating of a horizontal
layer of fluid from below. This is the classic Rayleigh–Bénard problem as shown schemat-
ically in figure 2(a). The second case is where we look at the heating of a semi-infinite
body of fluid from a single horizontal boundary below the fluid. In this situation there
is a growing destabilizing temperature gradient of height of order (κt)1/2 where t is the
time since the onset of heating and κ the thermal diffusivity. This is shown schematically
in figure 2(b). The last case is where a semi-infinite body of fluid is heated from a vertical
side wall, shown schematically in figure 2(c). Again there is a growing buoyant layer of
fluid next to the boundary of width (κt)1/2, which, in this case, causes the fluid near
the wall to rise. We will look at the growth of linear perturbations to these background
states.

The linearized equations for the perturbations to the velocity, u, and the temperature,
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Figure 2. Schematic diagrams showing the temperature profiles for (a) Rayleigh–Bénard con-
vection between two parallel horizontal plates, (b) heating from a single lower boundary, and (c)
the temperature profile (upper line) and velocity profile (lower line) for heating from a single
vertical wall.

T , for all the cases are

∂u

∂t
+U(x, t) · ∇u+ u · ∇U(x, t) = − 1

ρ0
∇p+ gαT ẑ+ ν∇2u, (2.1a)

∇ · u = 0, (2.1b)

∂T

∂t
+U(x, t) · ∇T + u · ∇T (x, t) = κ∇2T, (2.1c)

here U(x, t) and T (x, t) are the background velocity and temperature profiles, g the
acceleration due to gravity, α the coefficient of thermal expansion, ν the kinematic vis-
cosity, ρ0 the density at temperature T0, and ẑ a unit vector pointing upwards. Here
we have made the Boussinesq approximation and assumed a linear equation of state.
For the horizontal layer we look at instabilities to the steady-state case where the lower
boundary at z = 0 is held at a temperature T0+∆T , while the upper boundary at z = H
is kept at T0. For the two cases of single boundaries we consider the case of a stationary
fluid which initially has a uniform temperature T0, and, at some initial time t = 0, the
boundary temperature is increased to T0 +∆T and held at this level.

The boundary conditions for the disturbances that we consider are that the velocity
and temperature perturbations are zero at the solid boundaries, and tend to zero away
far from the walls for the semi-infinite cases.

In this study we will restrict ourselves to looking at two-dimensional motions, and so
we can use the vorticity–streamfunction formulation. We take the curl of the momentum
equation (2.1a) and consider the y-component of the vorticity, ω. We will nondimension-
alize the equations using the rescalings

x′ = x/D, t′ = κt/D2, ω′ = D2ω/κ, T ′ = T/∆T. (2.2)

where D is an appropriate length-scale. For the case of two parallel boundaries the
distance between the walls, H, is an obvious and conventional choice of a length-scale for
nondimensionalizing the equations. For the case D = H we derive the nondimensional
equations for the vorticity and the streamfunction, ψ′:

1

σ

(

∂ω′

∂t′
− ∂ψ′

∂z′
∂2W ′

∂x′2
+W ′

∂ω′

∂z′

)

= −Ra
∂T ′

∂x′
+∇′2ω′, (2.3a)
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∇′2ψ′ = −ω′, (2.3b)

where the primes indicate nondimensional variables. The perturbation velocity compo-
nents are given by

u′ = −∂ψ
′

∂z′
, w′ =

∂ψ′

∂x′
. (2.4)

The vertical component of the background velocity, U
′

, is denoted by W
′

. This is only
non-zero for the vertical sidewall problem.

Here the Rayleigh number, Ra, is the nondimensional measure of the heating, defined
by (1.1). For the case of a semi-infinite fluid the length-scale H is not available. For an
evolving system that has the heating turned on at some initial time the distance the
heat diffuses into the fluid is of order (κt)1/2. This length-scale steadily increases. If we
were to imagine this being substituted into the Rayleigh number then we would see that
the Rayleigh number would start from zero, and increase without bound. Thus we may
expect that the fluid would start stable and become unstable at some point when the
Rayleigh number passes some critical value. If we choose the Rayleigh number being 1
as giving us an indication of when we may expect instabilities to form, then this gives us
the corresponding length-scale

L =

(

νκ

gα∆T

)1/3

. (2.5)

This is the scale used by Foster (1965, 1968). If we use D = L then the nondimensional
equations would be the same as (2.3), but without the Rayleigh number.
For the Rayleigh–Bénard problem the difference in using the length scale (2.5) as

opposed toH would be that the upper boundary conditions would be imposed at z = H/L
instead of the more conventional z = 1. The stability problem would then consist of
finding the critical value of H/L above which the fluid would be unstable instead of
finding the critical value of Ra. For the classical Rayleigh–Bénard problem these critical
values are related by H/L = Ra1/3.

The perturbation temperature equation for both cases with horizontal boundaries is
given by

∂T ′

∂t′
+
∂ψ′

∂x′
∂T

′

∂z′
= ∇′2T ′, (2.6)

and for vertical boundaries by

∂T ′

∂t′
− ∂ψ′

∂z′
∂T

′

∂x′
+W

′ ∂T ′

∂z′
= ∇′2T ′. (2.7)

Henceforth we will drop the primes.
For the cases of semi-infinite fluids the temperature and velocity profiles are intrinsi-

cally time dependent. We want to investigate the development of linear instabilities in
these cases. The method of analysis that we will use here is to assume that the insta-
bility is periodic along the boundary, with wavenumber α, and look at two-dimensional
disturbances. These will be calculated numerically in a layer parallel to the wall where
the far boundary is sufficiently far away from the heated wall that we can assume that it
plays no significant role in the background state, nor the instabilities that develop. This
assumption is tested. In our numerics we will calculate the evolution of this linear solu-
tion on an evenly spaced grid, usually with 256 interior points, using a Crank–Nicolson
scheme for the evolution of the vorticity and temperature on a staggered grid in time
with central differences for the spatial derivatives. With the choice of the location of the
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far wall the vorticity is located near the heated wall for the semi-infinite cases, dropping
from the peak value by, typically, five orders of magnitude towards the far wall of the
computational domain. Hence, in the far field, the streamfunction satisfies ∇2ψ ≈ 0. By
using the fact that the vorticity is minimal at this far wall we set the numerical condition
that it is zero, and allowing non-zero ψ that decays exponentially as e−αz or e−αx as
appropriate by setting the derivative of ψ to −αψ. In this way we can further reduce the
effect on the solution of using a finite domain.

In general we allow for initial conditions for the perturbations to be applied at some
time, t0, after the start of heating, although for many of our calculations we will set
t0 = 0. We then monitor the growth in the magnitude of the disturbances by using a
suitable measure, which can be thought of as being like a generalised “energy” of the
disturbances. For a fluid heated from a horizontal boundary in a semi-infinite fluid we
will use

E(t) =
1

2P

∫

∞

0

∫ P

0

|u|2 + λT 2 dx dz, (2.8)

where P = 2π/α is the horizontal periodicity of the disturbances. If we take the vorticity
to be the real part of ω(z, t)eiαx, with similar definitions for ψ and T , then we can write
(2.8) as

E(t) =
1

4

∫

∞

0

ψrωr + ψiωi + λ
(

T 2
r + T 2

i

)

dz = EK(t) + λET (t), (2.9)

where ψr and ψi are the real and imaginary parts of ψ(z, t), and similarly for ω and
T . The square root of this integral is a weighted norm of the disturbances where the
positive parameter λ is as yet unspecified. For instabilities between two horizontal plates
the upper limit in the integral is replaced by the location of the upper boundary. For a
semi-infinite fluid heated from a vertical wall the roles of x and z are swapped in (2.8)
and (2.9). Other measures could be used, for example the enstrophy could replace the
kinetic energy, EK(t). These alternatives are not considered here.

Our objective is to find the optimal perturbation at t0 to give the greatest growth
in this “energy” at some later time t1. In the studies of Foster (1965, 1968) the focus
was in the growth of the kinetic energy of disturbances that were initiated at t0 = 0
with no temperature perturbation. This is equivalent to setting λ = 0 and restricting
perturbations in the initial conditions to the vorticity only.

We express the numerical solution at the interior points as a vector

Ψ(t) = (Tr1, Tr2, . . . , TrN , Ti1, Ti2, . . . , TiN , ωr1, ωr2, . . . , ωrN , ωi1, ωi2, . . . , ωiN )
T
,

(2.10)
where N is the number of interior points. For heating from horizontal boundaries the
lateral symmetry allows us to simplify the problem by setting, say, the real part of T and
the imaginary parts of ω and ψ to zero. We can then express the numerical approximation
to the “energy” as

E(t) = Ψ(t)TA(λ)Ψ (t) (2.11)

for an invertable symmetric matrix A(λ), where T indicates the transpose. Note: the
symmetry of this matrix is due to the numerical scheme used here. Other numerical
schemes, for example ones using a non-uniform grid, may lead to an asymmetric A. This
has a small effect on the analysis which is mentioned below.

For given t0, t1 and λ we want to find the nature of the disturbance at t0 which will
maximize E(t1)/E(t0), or equivalently maximize E(t1) with E(t0) = 1. As we are only
looking at the linear evolution of the disturbances, the vector representation of the final
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solution at t = t1 is linearly dependent on the vector representation at t = t0, and so we
have

Ψ(t1) = MΨ(t0) (2.12)

for some transfer matrix M. We find M by performing repeated calculations of the nu-
merical scheme with the initial conditions, Ψ (t0), chosen so that one component is set
to 1, with all other components set to 0. Each vector, Ψ (t1), found by calculating the
evolution one of these initial conditions then gives the column of the transfer matrix,
M, corresponding to the non-zero initial component. Because of the translational sym-
metry of the problem, we only need to perform these calculations to find the columns
of M corresponding to, say, the components of Tr and ωr being set to 1. The columns
corresponding to the components Ti and ωi being perturbed can then be inferred di-
rectly from these. The numerical calculation of this transfer matrix lends itself to simple
parallelisation.

We can now express our optimisation problem as finding the vector Ψ which maximizes

(MΨ)TA(MΨ) with Ψ
T
AΨ = 1. (2.13)

Using a Lagrange multiplier, µ, this maximization problem requires finding the solution
to

M
T
AMΨ = M

T
AMA

−1(AΨ ) = µAΨ , (2.14)

an eigenvalue problem with eigenvector AΨ . If the numerical method used has an asym-
metric A then the resulting eigenvalue problem replaces A with its symmetric part:
1
2

(

A+ A
T
)

.

If we pre-multiply (2.14) by Ψ
T we find

Ψ
T
M

T
AMΨ = (MΨ)TA(MΨ) = µΨT

AΨ = µ. (2.15)

From this it is clear the maximum growth in “energy”, E(t1), is also the largest eigenvalue,
µ. As all the eigenvalues are positive, we can find an eigenvector Φ = AΨ with the largest
eigenvalue by the iteration scheme

Φn+1 =
M

T
AMA

−1
Φn

|MTAMA−1Φn|
. (2.16)

The initial values of the problem, Ψ , can then be determined by multiplying Φ by A
−1

and rescaling to ensure that E(t0) = 1. We will assume henceforth that E(t0) = 1 in all
cases, and so E(t1) is the measure of the growth in the disturbance between t = t0 and
t = t1.

It should be noted that in this iteration Φ1 is multiplied by

(MT
AMA

−1)n = M
T
AMA

−1 . . .M
(

A
−1

M
T
A
)

M
(

A
−1

M
T
A
)

M . . .MT
AMA

−1. (2.17)

The grouping
(

A
−1

M
T
A
)

is the adjoint mapping, M∗, of M in the inner product vector
space with inner product defined by

〈Ψ ,Φ〉 = Ψ
T
AΦ. (2.18)

That is to say the matrix M
∗ with the property

〈Ψ ,MΦ〉 = 〈M∗Ψ,Φ〉 (2.19)

for all Ψ and Φ. This means that this approach is essentially equivalent to the approach
of deriving the adjoint differential equations and using an iterative scheme to find the
optimum solutions by solving the full equations in the forward direction in time, followed
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by using the solution to these calculations as an initial condition for solving the adjoint
differential equations backwards in time. These in turn provide the initial conditions for
the forward calculations in the next iteration (see Luchini & Bottaro 2014). However,
here we do not explicitly derive or solve the underlying adjoint differential equations.
The parameter λ has not yet been specified. For a set of calculations over the time

interval from t0 to t1 the bulk of the computational effort is involved in calculating the
matrix M, which is independent of λ. The parameter only appears in A, and thus finding
the effect of varying λ on the optimum value of E(t1) can be done independently of
finding M, and is relatively quick.

We will discuss the selection of λ in the following section, where the method is applied to
the classical problem of heating a fluid from below in a horizontal layer. In the subsequent
sections we apply the same principles for its selection to the cases of heating a semi-infinite
fluid from a horizontal and from a vertical boundary.

3. Choosing the measure of the magnitude of the disturbances

In this section we look at the classic Rayleigh–Bénard problem of a linear temperature
gradient between two horizontal boundaries in order to get an insight into the selection
of the parameter λ in the measure of the size of the instabilities. Here we adopt the
conventional nondimensionalization, using the distance between the boundaries, H, for
the length-scale, and so the Rayleigh number is the measure of the applied temperature
difference.

For two horizontal boundaries the non-dimensional steady background state and bound-
ary conditions for the perturbations are

U(x, t) = 0, T (x, t) = T0/∆T + 1− z, (3.1)

with

u = 0, T = 0 on z = 0, 1. (3.2)

The approach of Foster (1965, 1968) was to allow only a vorticity perturbation at the
start t = 0, and then optimise the initial conditions to maximize the growth in kinetic
energy. This is achieved here by setting λ = 0 and requiring the initial perturbation to
the temperature to be zero. We can then find the optimal initial conditions for some
choice of t1, and then follow the evolution of the disturbances. Doumenc et al. (2010)
considered this case, and also the similar approach of maximising the growth in ET (t)
while restricting the initial perturbation to the velocity to be zero. A typical plot of the
evolution of the kinetic energy, EK(t) and the corresponding measure of the temperature
perturbation, ET (t), is shown in figure 3 for a supercritical Ra = 3000 for α = 3.117
and t1 = 0.2. Here there is an initial decrease in the kinetic energy, with a corresponding
rise in ET (t). They then both settle down to a linear growth in this figure, which on this
logarithmic plot corresponds to exponential growth of the disturbances. This final growth
rate corresponds to the fastest growing exponential mode of the basic steady state that
can be found by more traditional linear stability analysis. If one were only to estimate
the growth rate from the change of energy from the value at t0 = 0 to the final value at
some finite t1 then the growth rate found would always be less than this expected value.
If t1 were sufficiently large this may not be a problem. Similarly if one could identify
the initial transient part of this evolution and ignore it, then what remains would be the
exponential growth.

If we use the more general measure of the disturbance, E(t), given by (2.9) then we
have to select an appropriate value of λ. Here we will identify two approaches that give
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λ

Figure 3. EK(t)/EK(0) (upper line) and corresponding measure for the temperature,
ET (t)/EK(0), (×100) (lower line) for Ra = 3000, α = 3.117, t0 = 0, t1 = 0.2.

λET /EK

λ

Figure 4. Graphs of the ratio λET (0)/EK(0) (solid line) and λET (t1)/EK(t1) at t1 = 0.2
(dashed line) for Ra = 3000 and α = 3.117. Also shown is the dotted line indicating λ = 20994.

the exponential growth rate obtained from traditional linear analysis. The first method is
to look at the ratio of the kinetic energy, EK(t), and temperature contributions, λET (t),
to E(t). For exponential growth this ratio will remain constant. In figure 4 are plotted
the ratios of λET (t) to EK(t) at the start and end of a time interval as functions of λ for
optimised growth. In this example the two lines λET (t0)/EK(t0) and λET (t1)/EK(t1) are
very close to being straight lines on this log–log plot, with slopes −1 and 1 respectively.
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λ

E(t)

t
(a) (b)

Figure 5. Graphs showing (a) the estimated growth rate of the instabilities,
ln(E(t1))/(2(t1 − t0)) as a function of λ with t1 = 0.2., and (b) the evolution of E(t) for
λ = 100000 (dashed line), λ = 1000 (dotted) and λ = 20993 (solid line) for the case Ra = 3000,
α = 3.117, t0 = 0 and t1 = 0.1. Also shown in (a) is the dotted line indicating λ = 20994.

The two lines cross at λ = 20994 where the ratios are the same at the start and end of
the time interval.

The second approach for selecting λ is to look at the estimated growth rates of the
disturbances based on the growth of the disturbances using

ln (E(t1))

2(t1 − t0)
. (3.3)

Again using Ra = 3000 and α = 3.117 as a typical example, we get results shown in
figure 5(a) showing the estimated growth rate as a function of λ. This graph has a clearly
defined minimum which is located at λ = 20994, the same point as found by the crossing
lines in figure 4. If we look at the evolution of E(t) from t0 = 0 to t1 = 0.1 for the same
example but with different values of λ then we get results as shown in figure 5(b). For
λ = 20994 the growth is a straight line on this logarithmic plot, indicating exponential
growth which is at the growth rate expected from conventional linear stability analysis.
For all other values of λ there is an initial phase of faster growth before the growth of the
instability settles down to the same exponential rate. Unless λ is chosen appropriately
the growth rate is always overestimated if the average growth from t0 to t1 is used. Some
of the features we have seen here can be clarified by considering a simple model presented
in the Appendix.

We have seen that unless we choose the parameter λ appropriately we get an overesti-
mate of the growth rate of the fastest growing mode for the Rayleigh–Bénard problem. We
identified two possible selection procedures that yield the expected exponential growth
rate for a heated layer:

• equate the ratio of the contribution to E(t) from EK(t) and λET (t) at t0 and t1.
• minimize the optimal growth rate.

These approaches will give the expected exponential growth rate even if the total growth
of the instabilities is only a few percent, and the time interval [t0, t1] lies in the period
of the initial adjustments before the disturbance settles down to the exponential growth,
seen at the left end of figure 5(b).
Where the underlying disturbance of interest is an exponentially growing mode as in

this case it is clear that the two alternative approaches will give the same value of λ.
What may not be so obvious is that this is a more general result. The structure of the
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matrix A is

A =

(

λB 0
0 C

)

(3.4)

where B and C are symmetric matrices. For general Ψ(t) we have

ET (t) = Ψ
T

(

B 0
0 0

)

Ψ and EK(t) = Ψ
T

(

0 0
0 C

)

Ψ . (3.5)

We observe that
∂E(t)

∂λ
= ET (t) + 2ΨT

A
∂Ψ

∂λ
. (3.6)

Our optimised solutions satisfy (2.14). Differentiating with respect to λ gives

M
T

(

B 0
0 0

)

MΨ +M
T
AM

∂Ψ

∂λ
=
∂µ

∂λ
AΨ + µ

(

B 0
0 0

)

Ψ + µA
∂Ψ

∂λ
. (3.7)

If we pre-multiply this by Ψ
T and substitute in (3.6) evaluated at both Ψ(t0) and Ψ(t1) =

MΨ(t0) we find (after some manipulation)

∂E(t1)

∂λ
= ET (t1)− E(t1)ET (t0). (3.8)

We have used here that E(t0) = 1 and so is independent of λ. It is straightforward to
show that the statement λET (t0)/EK(t0) = λET (t1)/EK(t1) is equivalent to the right
side of (3.8) being zero. Hence the ratio test and the minimum growth-rate criteria are
equivalent for more general M representing the evolution of disturbances other than just
exponential growth. This analysis assumes that the growth E(t) has a smooth minimum
as λ varies. However, we will see later that in some cases the derivative at the minimum
can be undefined, and the above result may not hold (see figure 12(b)).
Using the above criteria for selecting λ it is found that it depends on Ra, σ and α. No

simple relationship has been found between these variables, except for the special case
of marginal stability at the critical wavenumber where

λ = σRa. (3.9)

This can be derived from the energy stability analysis of Joseph (1965, 1968) where he
showed that, for this choice of λ, E(t) would decay for Ra less than the critical value
required for linear instability, even if the disturbances were nonlinear.

Although we have identified two equivalent ways of selecting λ that give what may be
considered the “correct” answer for the Rayleigh–Bénard problem, this may not be the
appropriate choice in all circumstances. In real-world problems it may be that ambient
disturbances to the velocity and temperature that initiate the linear instabilities may
have a different ratio to those of the exponentially growing disturbances. For example,
a large amount of background vibration may boost the velocity disturbances, or poorly
designed heating elements in an experiment may give rise to a temperature field that
is not as close to the ideal linear gradient as one would like, effectively boosting the
temperature component. In these cases, imposing a restriction on the initial conditions
and their contributions to EK(t) and ET (t) would seem to be unphysical. However, the
selection methods here have the advantage of eliminating modes of instability that may
be considered to be artificial in that they rely on the transfer of energy between the initial
thermal disturbances and the kinetic energy to get an initial boost to E(t). Indeed, for
large or small values of λ there would be apparently unstable modes even in the absence
of a destabilizing background temperature gradient.
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In the above example the choices of λ would seem to provide a relatively robust way of
identifying instability. Both methods for making the choice of λ are numerically straight-
forward. This will also be the case in the next section. However, there were found to be
some cases for the problem of heating at a vertical sidewall where the presence of more
than one unstable mode makes the selection criterion less straightforward. We will return
to this later.

4. Heating semi-infinite fluid from a horizontal boundary

In this section we look at the stability of a semi-infinite fluid heated from below at
a horizontal boundary. We restrict ourselves to the case where the dimensional wall
temperature is assumed to instantaneously rise by ∆T at the initial time t = 0. The
nondimensional background state for a boundary at z = 0 is

U(x, t) = 0, T (x, t) = T0/∆T + erfc
( z

2t1/2

)

, (4.1)

where erfc(x) is the complementary error function. This is independent of the length-scale
in the nondimensionalization, although we used (2.5). The boundary conditions are

u = 0, T = 0 on z = 0, and u → 0, T → 0 as z → ∞. (4.2)

One approach to evolving background states that has been used is to apply a quasi-
static analysis. This assumes that the evolution of the background state can be ignored
and an instantaneous stability analysis carried out. We include the results of such an
analysis here for the purpose of comparison with later results which do not make this
assumption.

In the quasi-static or frozen-time analysis we assume the background temperature pro-
file is steady, i.e., the dimensional t in the temperature profile is taken to be a parameter,
say tq, and we use the length-scale H = (κtq)

1/2. This makes the nondimensional tq = 1.
The stability of this will then depend on the value of the Rayleigh number. A linear
stability analysis of this profile tells us that the thermal layer is unstable for a no-slip
boundary when

Ra =
gα∆TH3

νκ
=
gα∆T (κtq)

3/2

νκ
>

√
π. (4.3)

It should be noted that the critical value of Ra = π1/2 (Kerr 2016) is around a thousand
times smaller that the corresponding critical Rayleigh number for the Rayleigh–Bénard
problem for a layer with two boundaries separated by a distance H = (κtq)

1/2. The
stability boundary of the critical value of Ra as a function of the wavenumber, α, is
shown in figure 6(a). This does not depend on the Prandtl number, σ. Also shown in this
figure are the contours of the growth rate for unstable modes for σ = 7. These curves are
dependent on the Prandtl number. This instability is a long-wave instability, with the
growth rate proportional to α2 for small α for a given Ra.

If we use the alternative formulation where Ra = 1, then instead of looking for a critical
value of Ra we look for the critical value of the nondimensional time tq to instability.
This gives the alternative, but equivalent, stability diagram shown in figure 6(b). Now
the onset of instability is at tq = π1/3. It should be noted that in both cases the rise in
the growth rates as Ra or tq increases is relatively slow. Although under this analysis
instabilities may start growing for moderate values of, say, tq such as those shown in the
figure, under this quasi-static assumption the instabilities will not grow significantly in
amplitude on this time-scale. This means that the assumption that the evolution of the
background state can be ignored on the time-scale of growth of instabilities is violated. In
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tq

α
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(a) (b)

Figure 6. Stability boundary showing the critical value of (a) Ra with tq = 1 and (b) tq with
Ra = 1 under the quasi-static assumption with σ = 7. Also shown in both cases are growth rate
contours with intervals of 0.02.

z

x

Figure 7. Contour plots of the instabilities showing the vorticity (solid lines) and temperature
perturbation (dashed lines) for marginal stability for α = 0.15708.

other problems, if the transition from a stable regime to a fast-growing unstable regime is
reasonably quick then the quasi-static assumption could give a good indication of when
the onset of instabilities will occur.

Typical marginally-stable solutions found on the quasi-static stability boundary are
shown in figure 7. The structure of the instabilities is split into two parts: a boundary
layer of thickness of the order of the depth of temperature penetration that drives the
instabilities, and an external region of size of order of the wavelength of the instabilities
where the fluid adjusts in response to the convection in the boundary layer. This general
structure applies to all the instabilities in a semi-infinite fluid heated from below that will
be covered in this section, and not just those found using the quasi-static assumption.
In the study of the stability of the time-dependent thermal boundary layer, Foster

(1965, 1968) used a truncated orthonormal function expansion in z for the temperature
and vertical velocity. He fixed the initial condition which consisted of a vertical velocity
perturbation. His tests revealed that varying this initial condition had little effect on the
results. He then monitored the change in the kinetic energy. He used the natural length
scale L given by (2.5). We first mimic Foster by fixing t0 = 0 and only allowing initial
conditions that are perturbations of the initial velocity, and look to maximise growth of
kinetic energy. We can then find the earliest time t1 for instabilities to have grown so
that their kinetic energy EK(t1)/EK(0) has grown by some predetermined factor. The
dependency of t1 on the wavenumber, α, is shown in figure 8 for a range of energy ratios.
As with the Rayleigh–Bénard case, where there was only an initial perturbation to the
velocity there is an initial decrease in the kinetic energy. Also shown in this figure is the
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t

α

Figure 8. Graphs of the earliest times for the kinetic energy, EK(t), to have grown by a factor
of 102, 104, 106, . . . with t0 = 0 (solid lines) as functions of the wavenumber, α, for σ = 7 and
with initial perturbations restricted to the vorticity. Also shown is the time taken for the kinetic
energy to first get back to its original level (dashed line).

time taken for the energy of the instabilities to return to their original levels (dashed
line).

For larger times than shown in figure 8 all the contours converge towards the axis at
α = 0. However, by this stage the growth in amplitude of the instabilities will be very
large, and assumptions of linearity are likely to have broken down.

If we now optimize E(t1), while still retaining t0 = 0, then the picture is altered. We
now have to select an appropriate value of λ. We can use either of the two equivalent
methods for selecting this value in the previous section: ensuring the ratio of the contri-
butions of the kinetic energy and the temperature to E(t) are the same at the start and
at the finish, or minimizing the optimized growth as both are equivalent here. The results
are as shown in figure 9. One notable difference between these results and the Foster case
shown in figure 8 is that the dashed line, which indicates the time taken for E(t) to get
back to its initial value is significantly lower. This is more in line with the quasi-static
analysis which showed the existence of slowly growing solutions for quite small values of t.
The initial dip in the kinetic energy when there was no initial temperature perturbation
was noted in the Rayleigh–Bénard case, but it is exacerbated here by the absence of a
vertical background temperature gradient when t = 0. The need for this gradient to de-
velop further delays the creation of the temperature perturbation. However, for the cases
shown in figure 9 there is an initial temperature perturbation appropriate for a growing
instability. This slows down the reduction in the kinetic energy, and all that is required is
for the background temperature gradient to develop sufficiently for instabilities to grow.
As we saw from the quasi-static analysis the time when appropriate disturbances can
start growing can be in the low single figures, which is compatible with the results seen
in figure 9. For later times the growth in E(t) is more that 100 times larger than the
corresponding growth in the Foster case.

Up to now we have only considered the case t0 = 0. When we optimise with respect
to t0, to find the earliest time that any instability can grow by a given factor then we
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t

α

Figure 9. Plots of the earliest time for E(t) to have grown by a factor of 102, 104, 106, . . . with
t0 = 0 (solid lines) as functions of the wavenumber, α, for σ = 7 with λ optimized. Also shown
are the times taken for E(t) to get back to its original level (dashed line).

t

α

Figure 10. The optimal value of t1 (solid lines) as a function of α for E(t1)/E(t0) = 102,
104, 106 and 108, along with the corresponding value of t0 for E(t1) = 102 (dotted line). For
comparison, the corresponding optimal values of t1 with t0 = 0 are also shown (dashed lines).
These are for σ = 7 with λ optimized.

obtain the results shown in figure 10. The corresponding values of t0 are also shown as
the dotted curve for the case E(t1) = 100. The curves for t0 for the other values of E(t1)
lie almost exactly on the same curve, and are not shown. The dashed lines show the
corresponding results with t0 set to zero seen previously in figure 9. These two sets of
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Figure 11. Plots for t0 = 0 showing the dependency on the Prandtl number of (a) time for
instabilities to grow, t1, and (b) the wavenumber, α, for E(t1) = 100, 104, 106, 108 (from bottom
to top in (a), and top to bottom in (b) at the left end). Also shown are the small and large
Prandtl number asymptotics (dashed lines) for E(t1) = 104 and 108. In all cases the optimal
value of λ is used.

curves only diverge towards the right hand end. At the low point of each curve, where
the globally optimal instabilities are to be found, the curves are almost indistinguishable.
The left hand end of these graphs have low values of the wavenumbers, and the natural
dissipation rate for these modes, which have a significant proportion of the disturbances
outside the thermal boundary layers, is small. As such, an initial condition imposed at
t = 0 will change little before instability sets in.

All the above results presented so far have been for Prandtl number σ = 7, a value
appropriate for, say, water. Looking at a range of Prandtl numbers we find the minimum
time for the growth of instabilities, t1, varies as shown in figure 11(a) for the case t0 = 0.
These show that for large Prandtl numbers the time taken to the onset of instabilities
levels off, while for small Prandtl numbers the slopes of the curves tend towards −2/3
and so the time to instability grows with t1 ∝ σ−2/3. The wavenumbers, α, decrease as
σ1/3 for small Prandtl numbers. For large Prandtl numbers the picture is not as clear,
but there is an apparent levelling off of the curves.

For the low Prandtl number limit the viscous dissipation term becomes insignificant
in comparison to the inertia terms. If we neglect the ∇2ω term, and use the rescalings

t = σ−2/3t′, x = σ−1/3x′, ω = σ−2/3ω′, ψ = ψ′, T = T ′, (4.4)

then the governing equations reduce to

∂ω′

∂t′
=
∂T ′

∂x′
, (4.5a)

(

∂2

∂x′2
+

∂2

∂z′2

)

ψ′ = −ω′, (4.5b)

∂T ′

∂t′
− e−(z′)2/4t′

(πt′)1/2
w′ =

(

∂2

∂x′2
+

∂2

∂z′2

)

T ′. (4.5c)

These equations are now independent of the Prandtl number. This rescaling removes
the dependency on the viscosity, ν, that was present in the original length scaling (2.5).
These equations can be solved in a similar way to the previous set of equations, with
optimisation for λ as before. For example, with t0 = 0 and E(t1) = 104 the optimum
wavenumber is found to be α′ = 0.3353 and t′1 = 29.94, giving the corresponding asymp-
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totic predictions α = 0.3353σ1/3 and t1 = 29.94σ−2/3 shown in figure 11, along with the
corresponding low Prandtl number asymptotics for E(t1) = 108.

For the high Prandtl number limit the inertial term becomes insignificant, with the
fluid motion being a balance between the buoyancy forces and the viscous dissipation.
With the inertia term neglected, σ no longer appears in the governing equations, and
so the instabilities do not depend on the Prandtl number at leading order. The gov-
erning equations now have the vorticity being dependent directly on the instantaneous
temperature, and so we only optimise over all possible initial conditions for the temper-
ature. Otherwise the method is essentially the same as before. For example, with t0 = 0
and with E(t1) = 104, the optimum t1 and corresponding wave number are given by
t1 = 26.30 and α = 0.1543. These asymptotes are shown to the right of the graphs in
figure 11 along with the corresponding lines for E(t1) = 108. The asymptotics for t1 show
good agreement, however those for α are not as convincing.

If one also includes optimisation for t0 then these curves and asymptotics are little
changed. The low Prandtl number asymptotics indeed have t0 = 0. There is no viscous
dissipation, and the instantaneous Rayleigh number becomes infinite as soon as the
heating starts. However, the instabilities still take a finite time to grow. For the large
Prandtl number asymptotics we find t1 to be weakly dependent on t0, with a small
decrease in t1 of around 0.6% for E(t1) = 104 when t0 = 2.60.
In this section we have investigated the optimal time for instabilities to grow for a

semi-infinite fluid heated from below by a sudden increase in the temperature at the
boundary. Because the initial state allows perturbations to both the vorticity and the
temperature, the onset of instability is sooner than that found by Foster and the overall
growth is subsequently significantly larger. Allowing the instabilities to start at some
time after the onset of heating did not, unfortunately, have a significant impact with, at
best, only a marginal decrease in the time for a given growth of the instabilities.

5. Heating a semi-infinite fluid from a vertical boundary

In this section we look at the instabilities that can form at a heated vertical boundary.
For a semi-infinite fluid the heat diffuses into the fluid just as for the horizontal boundary,
but now the buoyant boundary layer induces an upwards flow parallel to the wall. The
nondimensional vertical flow and temperature profiles are given by (for σ 6= 1)

U(x, t) =W (x, t)ẑ =
σ

(1− σ)

((

t+
x2

2

)

erfc
( x

2t1/2

)

− xt1/2

π1/2
exp

(

−x
2

4t

)

,

−
(

t+
x2

2σ

)

erfc

(

x

2(σt)1/2

)

+
xt1/2

(σπ)1/2
exp

(

− x2

4σt

))

ẑ, (5.1a)

T (x, t) = T0/∆T + erfc
( x

2t1/2

)

. (5.1b)

The appropriate boundary conditions for the perturbations are

u = 0, T = 0 on x = 0, and u → 0, T → 0 as x→ ∞. (5.2)

Here we have used the natural scaling (2.5) in the nondimensionalization. For lateral
heating in a vertical slot of width H the Grashof number, given by

Gr =
gα∆TH3

ν2
, (5.3)

is often used instead of the Rayleigh number. This could also be used to define a length-
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Figure 12. Graphs of the growth E(t1) as functions of λ for the three most unstable modes for
σ = 7, t0 = 0, and t1 = 160. with (a) α = 0.030 and (b) α = 0.035. The corresponding ratios
λET (0)/EK(0) (solid lines) and λET (t1)/EK(t1) (dashed lines) for the most unstable mode are
shown in (c) and (d) respectively.

scale by using the length H that makes this unity. This would result in an alternative
length scale that differs from the length-scale (2.5) by a factor of σ1/3, with corresponding
changes to other scalings used in the nondimensionalization. However, we will retain our
previous definition of L to maintain compatibility between the problems considered here.
The governing equations for linear disturbances are solved in a similar numerical way to

those of the previous section but with two main differences. Because there is a background
flow along the wall, we no longer have stationary instabilities and have to calculate both
the real and imaginary parts of ω, ψ and T .

The two equivalent methods for selecting λ usually worked well. A typical example
of the growth of the instabilities as a function of λ is shown in the upper curve of
figure 12(a), and the corresponding ratios λET (0)/EK(0) and λET (t1)/EK(t1) are shown
in figure 12(c). As expected, the minimum of the former coincides with the crossing of
the two lines in the latter, both being at λ = 6676 in this example. The bottom two lines
in figure 12(a) show the growth of the eigenvectors of (2.14) with the next two largest
eigenvalues, calculated using the numerical package LAPACK. These extra eigenmodes
are not significant for this case. However, for some values of the parameters it is possible
to have a change in the most unstable mode as λ varies. This was not found to happen in
the bottom heating case of the previous sections. An example of this transition is shown
in figure 12(b) and (d) for a case with the wavenumber, α, slightly larger than the previous
example. The corresponding growth of the three modes with the largest eigenvalues is
shown in figure 12(b) as functions of λ. This time the lines all cross over each other.
Although the curve found for the maximum growth as a function of λ still has a well
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Figure 13. Growth in energy of instabilities, with σ = 7. Contours at E(t1) = 10, 100, 1000,
. . . with t0 = 0.

defined minimum, it is no longer as smooth, but has a discontinuity in its derivative at its
lowest point. The lines for λET (0)/EK(0) and λET (t1)/EK(t1) in figure 12(d) still cross
over near the minimum of the growth rate, but the apparent continuity of these curves,
although rapidly changing near the crossover, would appear to be due to numerical effects
in the eigenvalue solver which results in a degree of smoothing in what one would expect
to be curves with discontinuities.

When the same mode is the most unstable for all values of λ then the selection of the
appropriate value is straightforward. When we have the more complex picture then we
can still choose the value of λ corresponding to the minimum of the maximized growth in
energy. At such a point there is a degree of degeneracy in the problem, and the eigenvector
from (2.14) is no longer uniquely defined. It would be possible to look at each eigenmode
individually and find its minimum growth rate, or point where the initial and final energy
ratios are the same. However, this does not necessarily make much sense physically as
for any such choice of λ the most unstable mode will not be one that is identified by such
an approach.

The above argument would seem to indicate that the most appropriate method of
choosing λ is to select the value corresponding to the minimum growth. However, this is
not without some practical difficulties. As can be seen towards the right of figures 12(a)
and (b), some modes have very flat sections in their growth. The value of λ for minimum
growth for such modes can be relatively hard to identify numerically. Problematic cases
were only found for modes that did not grow significantly, or which had grown and then
subsequently reduced in magnitude, and are not relevant to the main results presented
here.

Contours of the optimized growth ratios E(t1) of instabilities as functions of the
wavenumber, α, for σ = 7 and t0 = 0 are shown in figure 13. There appears to be a
transition in the behaviour around t = 120. Below this value is a relatively short wave-
length instability that grows and then decays, having reached a maximum E(t) of at
most around 104. At subsequent times a marginally longer wavelength instability takes
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Figure 14. Growth in E(t) of instabilities for (a) σ = 0.1, (b) σ = 1, (c) σ = 3, (d) σ = 7, (e)
σ = 10 and (f) σ = 20 as functions of α. The contours are for E(t1) = 10, 100, 1000, . . . with
t0 = 0.

over which can display much more substantial and sustained growth. How this picture
varies as the Prandtl number changes is shown in figure 14, where the equivalent plots
are shown for a range of Prandtl numbers. Here we see that there is a transition between
the small and large Prandtl number behaviours, with σ = 7 in the midst of this transi-
tion. The region corresponding to t . 120 for σ = 7 is dominated by the large Prandtl
number mode. This region grow as the Prandtl number increases. The first indication of
the presence of the large Prandtl number mode can seen in the case σ = 1, and more
clearly seen when σ = 3. By the time the Prandtl number reaches 20, the large Prandtl
number mode dominates in these figures, but it is still taken over by the small Prandtl
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Figure 15. Plots showing the dependency on the Prandtl number of (a) time for instabilities
to grow, t1, and (b) the wavenumber, α, for E(t1) = 100, 104, 106, 108 (from bottom to top in
(a), and top to bottom in (b) at both ends) for t0 = 0.

number mode for larger times than is shown here. However, as E(t1) > 1013 it is not
clear that this linear analysis will be relevant in practical problems as nonlinear effects
are likely to be important by this stage.

It is the presence of the two modes that can be used to explain the wiggles in the
contours observed in figure 13 and in some of the examples in figure 14. If two differ-
ent modes are present they will typically move upwards at different rates. For given
amplitudes of the modes we would expect that in some alignments the value of E(t) is
enhanced and in some alignments it will be decreased. For some time intervals, [t0, t1],
it is possible for the modes to start off in an alignment that diminishes E(t), and end up
in an alignment that enhances it. This will result in some boost in the apparent growth.
For other time intervals the modes would start and finish with either E(t) enhanced at
both t0 and t1, or diminished. In these cases there would not be such an apparent boost
to the growth. Hence in the region where neither mode dominates one could expect there
to be the possibility of some variability in the growth of E(t) due to the variation in the
length of the time interval [t0, t1], in addition to that caused by the underlying growth
of the instabilities. This effect is shown by the wiggly contours.

The most unstable modes, where a given growth in E(t) is attained soonest for the
case t0 = 0, are given by the minimum of these curves. If we look at the effect of varying
the Prandtl number on the most unstable modes for growths of E(t) by factors of 102,
104, 106 and 108 then we obtain the results shown in figure 15. The general trends are
similar to those for heating from a lower boundary found in the previous section. The
most unstable modes have a transition due to the appearance of the large Prandtl number
mode. There is a transition indicated by the kinks in the curves for t1 for E(t1) = 104, 106

and 108 where the minimum associated with the large Prandtl number mode takes over
as the global minimum. This is shown by the corresponding jumps in the wavenumbers,
α. In both the limits of large and small Prandtl numbers the approaches that yielded the
asymptotics for the bottom heating cases did not yield results as readily. It seems that
the shear is important to these instabilities. The analysis of shear driven instabilities is
more complicated (see, for example, Drazin & Reid 1981) and is beyond the scope of this
paper.

The above results have t0 = 0. If we allow t0 to vary and find the corresponding
optimized values of t1 we often find there is a relatively complex relationship between the
two. An example is shown in figure 16(a) for the case E(t1) = 104, with α = 0.02106 and
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Figure 16. In (a) is shown the graph of the optimal value of the end time, t1, as a function of
the start time, t0, for growth E(t1) = 104, with α = 0.02106 and σ = 7. In (b) the evolution of
E(t) for the examples with t0 = 0 and the global minimum of (a) (solid lines). Also shown is
the growth corresponding to the minimum of the main curve (dashed line).

σ = 7. This choice of α corresponds to the overall optimal instability for E(t1) = 104, as
we shall see later. The overall minimum value of t1 is found at the bottom of the isolated
loop at the left of this plot. The maximum of this loop and the overall minimum of the
main line both have a role in the overall stability boundary. When we vary α we find
that the loop observed in figure 16(a) merges with the main line for smaller values of α,
while as α increases this loop shrinks and vanishes. Not shown here is that the main line
in (a) continues to rise and then doubles back on itself to form a larger loop that rejoins
the axis to the left at much higher values of t1, and so the optimised solution eventually
decays with E(t) < 104 for this value of α.

The evolution of E(t) for the mode with the overall minimum value of t1 and the
optimal mode with t0 = 0 are shown by the two solid lines of figure 16(b). These cross over
after a short time and then grow approximately in parallel, showing the optimal solution
which starts at a slightly later time avoids a brief period of decay and an initial period
of more sluggish growth experienced when t0 = 0. The dashed curve in (b) represents the
growth of the mode corresponding to the first minimum of the upper branch in (a). In
the evolution of this mode, E(t) exceeds 104 before undergoing a short period of decay,
dropping to below the threshold level and then rising again. It can be observed that this
dashed line reaches the level of 104 fractionally before the optimal value. This is because
the value of λ is optimised for each mode, and the two cases will have different values.
When λ is optimised for the overall minimum growth, other values of λ will result in
apparently faster growing modes.

The variation with α of the values of t1 at the maximums and minimums of the curves
in figure 16(a) are shown in figure 17(a). The corresponding values of t0 are shown in
figure 17(b). The dotted lines indicates α = 0.02106, the overall minimum of the curves
in figure 17(a). This is the value used for the results in figure 16. The main line in (a) cuts
the dotted line three times. These correspond to the two minimums and the maximum at
the left of figure 16(a). The S-shaped nature of the curve as it passes through the points
corresponds to the joining of the isolated loop with the main branch of solutions for lower
α, and the vanishing of the loop for larger values mentioned earlier. The boomerang
shaped curve corresponds to the other maximum and minimum in figure 17(a) and do
not play a significant part in overall stability of this problem. It occurs for larger values
of t0, which are shown in the upper curve of figure 17(b). For values of α beyond the
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Figure 17. The location of the maximums and minimums of the t0–t1 plots as functions of α
for E(t1) = 104, with σ = 7 are shown in (a). The corresponding values of t0 are shown in (b).
The vertical dotted line shows α = 0.02106, the value used in figure 16.

t1

α

Figure 18. The minimum time, t1, of the first instabilities to grow by factors of 10, 102, . . .,
108 as functions of α (solid lines) when the initial time, t0, is optimised for σ = 7. The dashed
show the corresponding curves when t0 = 0.

right end of the main curve in figure 17 no optimised instabilities have E(t) that reach
104.

The curves of t1 as functions of α for a selection of values of E(t1) and all optimised
with respect to t0 are shown in figure 18. Only shown are the curves corresponding to the
main curve of figure 17(a). The lowest parts of the solid curves show the first times, t1,
for the growth of E(t) by factors of 10, 100, . . ., 108 and corresponds to the full optimal
solutions for these problems. Also shown are the corresponding values of t1 when t0 = 0
(dashed lines) as previously seen in figure 13. From this we see that optimising for t0
does result in an earlier growth in the instabilities by the given factors, but not by a
large amount. All the features associated with the t0 = 0 instabilities such as the wiggly
lines are again present. The upper part of the E(t1) = 10 curve with 0.033 . α . 0.066
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Figure 19. The evolution of the vorticity perturbations (top) and temperature perturbations
(bottom) for the most mode with the earliest growth E(t1) = 104, for α = 0.02106 for σ = 7.
At the left are the initial conditions at t0 = 11.52 and the right the evolved instabilities at
t1 = 83.42 with the intermediate steps show at equal time intervals.

is the only section of these curves where the minimum in the maximum growth as λ is
varied is not a simple minimum, but corresponds to a change in the most unstable mode
similar to the case illustrated in figure 12(b).

The form of the instabilities is different for the small and large Prandtl number modes.
The evolution of the instabilities between t0 and t1 for the lowest value of t1 with E(t1) =
104 and σ = 7 is shown in figure 19. This case lies entirely within the large Prandtl number
regime. The temperature perturbation settles down to an arrowhead shape centred on
the centre of the background upwards flow.

If we look at the evolution of the instabilities for the case E(t1) = 108, as shown
in figure 20, we see that initially their form is similar to the previous case. Roughly
two thirds of the way through the growth of the instabilities their form changes. This
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Figure 20. The evolution of the vorticity perturbations (top) and temperature perturbations
(bottom) for the most mode with the earliest growth E(t1) = 104, for α = 0.01503 and σ = 7.
At the left are the initial conditions at t = t0 = 14.17 and the right the evolved instabilities at
t = t1 = 171.34 with the intermediate steps show at equal time intervals.

point corresponds to the transition from the region of instability associated with high
Prandtl number to that associated with low Prandtl number identified in figure 14.
The maximum vorticity perturbation is now closer to the wall in the region of greatest
shear. The temperature perturbation no longer has a maximum near the location of the
maximum upwards velocity, but has a wider shape, with maxima on either side of the
maximum up-flow.

The difference between the initial and later phases of the instability can also be seen
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Figure 21. Growth in E(t) of optimised instabilities with E(t0) = 1 for t between t0 and t1
for (a) E(t1) = 104 and (b) E(t1) = 108. Also shown are the contributions to these from EK(t)
(dashed line) and λET (t) (chained line). These have σ = 7.

in the plots of the contribution to E(t) from EK(t) and λET (t) shown in figure 21 for
the above two cases. For the case where E(t1) = 104 most of the contribution to E(t)
comes from the temperature component. The instabilities are centred on the region of
maximum upwards velocity in the background flow — the region of least shear. This is
also true in the first part of the case with E(t1) = 108. Here E(t) grows until it reaches
a local maximum at a level that is in line with maximums observed in the evolution of
the large Prandtl number modes. There is then a transition to a new mode where EK(t)
and λET (t) are much closer in size.

In the above examples, although the initial growth rate of E(t) is reasonably constant,
there are signs of small adjustments in EK(t) and λET (t) similar to those observed when
λ was not optimal for the Rayleigh–Bénard case. One possible explanation of this is that
the selection method for λ ensures that the ratios ET (t0)/EK(t0) and ET (t1)/EK(t1) are
identical. This ratio is determined at the end primarily by the fastest growing mode, and
so the initial conditions have to satisfy a constraint that may not match up to the ratio
in the initial mode of growth. The mismatch is greater in the E(t1) = 108 case where
the initial and final growth modes are clearly different. In addition the optimal initial
conditions found for both cases do not resemble the instabilities once they have evolved.
The initial conditions have a slope that is the opposite direction to that which you get
when the shear acts on the instabilities, and which is observed for the later stages of their
evolution. This could allow the instabilities to have an initial stage of boosted growth
before shear starts to have a limiting effect.

The results of simulations with random noise shown in figure 1 correspond to the
calculations shown in figure 21(b), using the same vales of α and λ. The simulations
were subject to random noise being added to the temperature perturbation throughout
the run, which started at t = −160 to allow the perturbations to settle down to an
approximate statistically-steady state before the heating of the wall starts. The general
growth of the randomly-driven simulations in the last half of the time interval shown are
clearly similar to the growth shown in figure 21(b) for nearly all cases. However details
of the onset of instability, and of the size of the growth are hidden by the random noise
in the first half of the interval.

The earliest times, t1, taken for instabilities to grow by a given factor when optimized
for the wavenumber, α, and the start time, t0, is shown figure 22(a) where the values
of t0 are also shown. The corresponding value of α is shown in figure 22(b). Each result
is made up of two parts. For lower values of E(t1) these correspond to the minimum of
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Figure 22. Graphs of (a) t1 (upper curves) and t0 (lower curves) and (b) α for the fully
optimized solutions as functions of E(t1) for σ = 7.

the large Prandtl number modes, while for larger values it is the minimum of the small
Prandtl number mode. In the transition region there are at least two minimums, with
the values corresponding to the continuations of the global minimums shown here. The
presence of the wiggles leads to other short-lived minimums which are not significant in
the overall dynamics. Clearly visible in this plot is the transition between the two modes
of instability, with the relatively slow growing large Prandtl number mode giving way to
the faster growing small Prandtl number modes for larger growths.
One feature of interest is that for both the large and small Prandtl number branches

the relationship between t1 and E(t1) is approximately linear on these graphs, indicating
no significant change in the growth rates once the instabilities are established. This is
despite the fact that the temperature profile and the background flow are evolving. Both
the instantaneous Rayleigh number and Reynolds number grow as t3/2.

There is also a significant variation in the wavenumber for the most unstable modes
as the growth increases for the initial large Prandtl number mode. However, there is
relatively little variation once the small Prandtl number mode takes over, thus the in-
stabilities that one may observe could have a relatively well defined wavelength.
In this section we have investigated the growth of instabilities in the evolving boundary-

layer flow generated by the heating of a fluid at a vertical wall. In looking for the earliest
growth of the size of the instabilities, as measured by E(t), we have shown that this
growth can be advanced by delaying the imposition of the initial conditions. However,
this enhancement is not huge for this problem.

6. Conclusions

The developments of instabilities of a fluid with an evolving background temperature
gradient are investigated using an approach that finds the optimal initial conditions to
ensure the maximum growth in terms of a measure of the amplitude of the instabilities.
This measure is adjusted in order to minimise this maximum growth, to ensure that the
growth observed is real and not an artefact caused by the transfer of energy from the
initial temperature perturbation to the velocity, or the reverse. This selection method is
the equivalent of ensuring the ratio of the contributions to the measure of the size of the
instabilities, E(t), from the velocity and the temperature are the same at the start and
end of the growth period. This approach ensures that the instabilities predicted here,
and their growth rates, are the same as those predicted using a more traditional stability
analysis for the Rayleigh–Bénard problem. Only allowing the initial perturbations to be to
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the velocity and monitoring the growth of the kinetic energy can lead to an underestimate
in the growth by an order of magnitude. Similarly using an inappropriate balance between
the measure of the contribution from the kinetic energy and from the temperature can
lead to exaggerated growth, or even apparent instability when none is really there.

The instabilities when a body of fluid is heated from below start to grow far sooner
than one might expect based on an estimate of the instantaneous Rayleigh number and
comparison with the Rayleigh–Bénard problem. The instabilities have a long wavelength
when compared to the thickness of the buoyant thermal layer. The general behaviour of
the instabilities changed continuously over a range of Prandtl numbers, and the large
and small Prandtl number asymptotics were identified. The decay rate for disturbances
of this size is relatively small, and so there is little, if any, significant decay before insta-
bility starts. Over the range of Prandtl numbers optimising the initial time for start of
instabilities had little or no effect.

When fluid is heated from a sidewall it was found that there were two instability modes
corresponding to large and small Prandtl numbers. For intermediate Prandtl numbers
such as that of water both modes played a role. For lower growths in the amplitude of
the instabilities in this intermediate range the optimal instabilities were large Prandtl
number modes. For larger growths the initial development of the optimal instabilities was
as a large Prandtl number mode, before undergoing an transition to the small Prandtl
number mode. The large Prandtl number modes were centred around the region of max-
imum velocity of the buoyant up-flow caused by the heating, while the small Prandtl
number modes had a more complex structure. For both modes the growth rate of the
instabilities seems relatively constant even though the background state and the form of
the instabilities were both evolving.

We have used the method for identifying the most unstable modes to look at the evolu-
tion of linear disturbances to semi-infinite bodies of fluid in the two cases of heating from
below at a horizontal boundary and heating from a vertical boundary. We have identi-
fied these instabilities by finding the initial conditions that maximized the growth of a
measure of the amplitude instabilities, E(t). For the bottom heating case the instabilities
were stationary — they did not move along the wall. For the sidewall case the instabilities
travelled upwards with the boundary layer flow. In other problems where the approach
used here could be applied the instabilities may possibly be oscillatory in their nature. For
example, one could look at the standing oscillatory double-diffusive convection observed
when a layer of fluid with a stable salinity gradient is heated from below (Baines & Gill
1969), where the instabilities predicted could take the form of standing oscillatory insta-
bilities or travelling waves of instability, or combination of the two. Although only one
undetermined parameter was involved here in the measure of the amplitude of the distur-
bances, for double-diffusive convection where there are contributions to the density from
both temperature and salinity a minimum of two parameters would be required, say, by
adding a µS2 term to the integral in (2.8), where S is the salinity perturbation. However,
the energy stability analysis of Kerr (1990) required three parameters, the equivalent of
adding µ(S−γT )2 to the integral. This may be required if the current method is applied
to double-diffusive problems. In the regimes where instabilities are oscillatory, unless the
instability is purely a travelling wave, then the contributions of the velocity, temperature
and, in this case, salinity to E(t) would have oscillatory components as the disturbance
grew. For a standing instability the kinetic energy could regularly vanish even though the
instability as a whole would be growing. It would be expected that with the appropriate
choice of the measure of the amplitude these oscillations would not prove problematic.
Although the approach taken here differs in its formulation and numerical method from

the adjoint equation method (Luchini & Bottaro 2014), it is fundamentally equivalent.
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However, the adjoint partial differential equations for this problem are neither derived,
nor explicitly solved. For most of the problems looked at using the adjoint equations
there has been no temperature component, and just looking at the kinetic energy of the
perturbations would be an appropriate measure of the amplitude of the disturbances,
and the results previously obtained should be the same as any found using the current
approach.

In the problems looked at here the adjoint mapping
(

A
−1

M
T
A
)

depends on the param-
eter λ, through the matrices A−1 and A. The bulk of the calculations are spent finding,
M, which is independent of the measure of the amplitude. So varying λ to optimise the
growth for given t0 and t1 is a relatively quick step.

The choice of expressing the solutions as a simple vector (2.10) and the numerical
approach used here for obtaining the matrices M was primarily chosen for simplicity. It
would also be possible to use other methods such as using functional expansions for the
temperature and vorticity. These will alter the details of the various matrices involved,
but not the overall method. The same approach for finding optimal solutions could be
applied to these more advanced numerical methods.

Although optimizing for the start time for the instabilities, t0, was almost entirely
unimportant for the heating of a semi-infinite body of fluid from below, it had a small
effect when the boundary was vertical. For other problems where there may be a signifi-
cant delay before the onset of instabilities, it could be important. As we have mentioned
in the introduction there are some convection problems where there was a significant
period between the onset of heating and the observation of instabilities.

We would like to acknowledge the financial support provided to Z. Gumm by The
School of Engineering and Mathematical Sciences, City University London.

Appendix

Here we present a simple model to help explain the variations of E(t) = EK(t)+λET (t)
for the most unstable modes as λ is varied as seen in figure 5(a). We will consider a 2
component analogue. Over a time interval from t0 to t1 and initial state (1, a) grows by
a factor of G to G(1, a), while a second mode (1, b) decays to zero. We also require that
ab < 0. If we consider the first component of these vectors to correspond to the velocity
and the second to the temperature then the initial “energy” of a general disturbance
A(1, a) +B(1, b) will be

E0 =
1

4

[

(A+B)2 + λ(Aa+Bb)2
]

. (A 1)

The final energy will be

E1 =
1

4

[

G2A2(1 + λa2)
]

, (A 2)

and so the growth in the energy is

E1/E0 =
G2A2(1 + λa2)

(A+B)2 + λ(Aa+Bb)2
=

G2(1 + λa2)

(R+ 1)2 + λ(Rb+ a)2
, (A 3)

where R = B/A. For a given λ we want to find R that maximizes this growth. This
occurs when

R = −1 + λba

1 + λb2
, (A 4)
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giving

E1/E0 =
G2(1 + λa2)(1 + λb2)

λ(b− a)2
. (A 5)

For large λ we see E1/E0 approximately proportional to λ, while for small λ it is ap-
proximately proportional to 1/λ. This is the behaviour seen in figure 5(a). The minimum
of (A 5) occurs when λ2a2b2 = 1. Since ab < 0 this gives λ = −1/(ab), and hence
E1/E0 = G2, the growth that would occur if we only had the mode (1, a) present at the
start. This is also the only initial condition that has the ratio of the first component to
the second component the same at the start and finish.

Some of the above features, such as the minimum in the optimized growth, have clear
parallels in the full problem. At the end of the time interval the instabilities are essentially
the most unstable exponentially growing modes, and as such the ratio of ET (t1) and
EK(t1) are fixed (and so λET (t1)/EK(t1) is proportional to λ). At the start of the time
interval, t0, for low values of λ the temperature perturbation can be large and have little
effect on E(t0), but once the motion starts the buoyancy forces it generates can drive
large velocities which are picked up by EK(t) and so boost E(t). Similarly, when λ is
large, then E(t) is relatively insensitive to perturbations in the velocity, and large initial
velocities can then generate large temperature variations in the temperature, which will
boost E(t).

There is one other limit in (A 5) that is of interest when we consider the heating at
a vertical sidewall, and that is the case where a is small, b is order one, and λ is large,
but with λa2 small enough to be neglected. In this case E1/E0 ≈ G2, and is to a first
approximation independent of λ, giving a flattened minimum. In the full problem this
would correspond to the case where the fastest growing mode was dominated by the
vorticity and not the temperature, as may be expected in a shear driven instability.
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