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Abstract
Coupled oscillator networks show complex interrelations between topological characteristics of the
network and the nonlinear stability of single nodes with respect to large but realistic perturbations.We
extend previous results on these relations by incorporating sampling-basedmeasures of the transient
behaviour of the system, its survivability, as well as its asymptotic behaviour, its basin stability. By
combining basin stability and survivability we uncover novel, previously unknown asymptotic states
with solitary, desynchronized oscillators which are rotatingwith a frequency different from their
natural one. They occur almost exclusively after perturbations at nodes with specific topological
properties.More generally we confirm and significantly refine the results on the distinguished role
tree-shaped appendices play for nonlinear stability.We find a topological classification scheme for
nodes located in such appendices, that exactly separates them according to their stability properties,
thus establishing a strong link between topology and dynamics. Hence, the results can be used for the
identification of vulnerable nodes in power grids or other coupled oscillator networks. From this
classificationwe can derive general design principles for resilient power grids.We find that striving for
homogeneous network topologies facilitates a better performance in terms of nonlinear dynamical
network stability.While the employed second-order Kuramoto-likemodel is parametrised to be
representative for power grids, we expect these insights to transfer to other critical infrastructure
systems or complex network dynamics appearing in various other fields.

1. Introduction

Manycritical infrastructure and supply systems (e.g., transportation, health careorpower supply) arebasedon
structureswhich canbedescribed in termsof complexnetworks [1–6]. Such real-world systemsoften evolved for the
primarygoal of fulfilling a specific functionwhile also subject to certain constraints (e.g.,financingor geography). An
issuewhich is increasingly attractingnotice fromscience topolicymaking is the resilienceof such critical infrastructure
against perturbations in the formof external shocks, internal failures or changing environmental conditions [7–10], i.e.
oftennon-small perturbations.Ultimately, it is highlydesirable to gain adeepunderstandingofhowoptimal
functionality on theonehandand resilienceon theotherhand canbe achieved simultaneously.A still openquestion in
this context is how the stability and resilienceof networked systems is interrelatedwith their topological properties.
While there are data-based approaches aiming at reconstructingnetwork topologyor complexdynamics (e.g., [11]),
this studypursues amodel-based approach aimingat rather qualitative insights into this interrelation.

There aremany concepts for assessing the stability of states withinmultistable dynamical systems. In
classical linear stability analysis (in terms of Lyapunov exponents) the focus is on the local properties of a
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system’s phase space.With the concept ofMaster Stability Functions this approach has been very successfully
transferred to networked dynamical systems [12, 13], in particular allowing the prediction of the
synchronizability of coupled oscillator networks. The concept of Lyapunov functions [14–16] and basin stability
in contrast present a nonlinear stabilitymeasurewhich also accounts for non-small perturbations and hence
emphasises a global perspective [17] on the dynamics. These concepts only account for the asymptotic behaviour
of perturbed trajectories, however, for real-world systems the transient behaviour can be just as relevant to
ensure their proper functioning. The survivability of a deterministic dynamical system is a suitable concept
which complements both linear and asymptotic approaches [18] by focussing on transients. A complementary
approach, studying the timing aspects of transient behaviour, can be found in [19, 20–23]. In the context of
control systems, questions of transient stability are explored inViability theory [24, 25] and under the name of
robust control.

In this studywe investigate the collective dynamics of power grids which can serve as prototypical examples
of critical infrastructure systems [26–29]. The employedmodel is the (second order)Kuramotomodel of
coupled oscillators [30], hence the insights are rather general and can be of relevance to other fields. In
particular, we use basin stability and survivability to assess the asymptotic and transient stability of power grids
against large nodal perturbations, respectively. As opposed to other approaches, these sampling-basedmeasures
allowus to study relatively high dimensional systems, and to localise perturbations on the underlying network.
These (nodal) stabilitymeasures are then related to purely topological characteristics of the respective nodes in
the network. In this waywe are able to identify a small number of topological classes of nodes which are
characterised by similar stability properties. Remarkably, we alsofind a novel, previously unknown asymptotic
state in the system that can only be accessed by perturbations at a particular topological class of nodes. The
findings complement and extend previous results on the relationship between topologicalmotifs and stability
within power grids [31–33], and demonstrate the power of sampling basedmethods for studying the properties
of dynamical systems on networks.

2.Methods

2.1.Oscillatormodel for nodal dynamics
Many biological, chemical and technical systems ofN coupled oscillators can effectively be described by the
Kuramotomodel [30, 34], which is given by the following temporal evolution law for an oscillator iʼs phase if :

P
K i N

1
sin 1 ... , 2.1i

i

i i j

N

ij i j
1

åf
a a

f f= - - " =
=

˙ ( ) ( )

where Pi ia denotes the oscillators natural frequency andKij reflects the coupling strength between nodes i and
j, satisfying K K 0ij ji= > if nodes i and j are connected and K 0ij = otherwise. Hence, theKij define the
topology of a (weighted)network of oscillators. ia denotes a damping coefficient of node i.

Inmany contexts the dynamics of coupled oscillators is describedmore accurately when inertia is accounted
for. This is obtained by the second-order Kuramotomodel which additionally describes the temporal evolution
of the node’s frequency iw :

, 2.2i if w=˙ ( )

P K sin . 2.3i i i i
j

N

ij i j
1

åw a w f f= - - -
=

 ( ) ( )

Thismodel was shown to effectively describe the dynamics of synchronousmachines within power grids
[35–39]where the if denote the phase angles and the iw the frequency deviations from the grid’s rated frequency.
In this context the Pi correspond to the net power input at node iwhich is positive (negative) for generator
(consumer) buses and the ia describe the strength of the electro-mechanical damping and droop control. The
coupling coefficientsKij correspond to the capacity of the transmission lines of the power grid.

For typical parameter values, the dynamical system given by (2.2) and (2.3) features a stable steady state
, , , , ,N N1 1* * * * * *f w f f w w= ¼ ¼( ) ( )with constant phase angles i j

* *f f- and vanishing frequency deviations

0i*w = at every node i, given by a solution the following systemof nonlinear equations:

P K i Nsin 1 ... . 2.4i
j

N

ij i j
1

* *å f f= - " =
=

( ) ( )

This state corresponds to the desirable synchronous operatingmode of the power grid.However, depending on
the parameter choices, theremight be also undesirable non-synchronous states which correspond to attracting
limit cycles within the phase space of the dynamical system.
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Menck et al showed that for a single-node, connected to an infinite power grid, the limit cycle solution can be
approximated as

t
P K

P

P
tcos , 2.5LCw

a
a

a
» + ⎜ ⎟⎛

⎝
⎞
⎠( ) ( )

provided that P 12a ∣ ∣ and P K2 2a ∣ ∣ [31].

2.2. Randomgrowthmodel for network topologies
In order to generate a representative ensemble of spatially embedded power grid topologies, we used a suitable
randomgrowthmodel [32]. It aims at generating synthetic network topologies that reproduce topological
properties of real-world power grids and other spatially embedded infrastructure networks. The two-phase
algorithm starts with aminimum spanning tree of sizeN0 towhich further nodes and (redundant) lines are
added iteratively. The network growth is subject to a heuristic redundancy-versus-cost optimisation, which
takes not only the line lengths but also additionally-created redundancy in the formof alternative routes into
account. The growthmodel parameters have been set to (N 10 = , p 1 5= , q 3 10= , r 1 3= , s 1 10= ),
where p, q and s are probabilities related to the creation and splitting of lines, and r specifies the redundancy-
versus-cost trade-off. For a detailed explanation of all parameters, we refer to [32]. For this choice of parameter
values the randomly generated networksmatch characteristics of real-world power grids, for instance the
sparsity with amean degree of about d 2.7»¯ . The ensemble consists ofM= 50 randomnetworks of size
N= 100, an exemplary topology is shown infigure 1.

2.3. Topological classification scheme for nodes in tree-shaped parts
We furthermake use of a topological classification scheme for nodes, which particularly distinguishes nodes
located in or adjacent to tree-shaped parts of the networks.We start by giving concrete definitions for trees and
tree-shaped parts and their roots:

Definition 2.1 (Tree).Agraph G V E,= ( ) is called a tree if it is connected and has no cycles.

Definition 2.2 (Tree-shaped part, root). Let G V E,= ( ) be an undirected graph that is connected but not a tree.
A tree-shaped part is an induced subgraphT V E,¢ = ¢ ¢( ) of G which is a tree and ismaximal with the property
that there is exactly one node r VÎ ¢ that has at least one neighbour in G T- ¢. r is called the root ofT ¢ and has
degree d r 3( ) .

The union of all nodes located in tree-shaped parts is subsequently denoted byT Ti i= ⋃ and called the
‘forest’ part ofG, where theTi are the different tree-shaped parts withinG. The remaining parts ofG are referred
to as the bulk, denoted by B G T= - . Afiner partition ofT is achieved by distinguishing the root nodesR from

Figure 1. Spatially embedded representation of one random synthetic power grid withN= 100 nodes of which half are net generators
and half net consumers. Nodes are coloured according to their topological class, see section 2.3 for definitions.
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the non-root nodesN. The non-root nodes can be further subdivided into the leaves L l N d l 1= Î ={ ∣ ( ) }
which have degree one, and the inner tree nodes I N L= - which are located between the root and the leaves.

Wewill see that for stability assessment, an even finer partition is useful for whose definitionwefirst need to
introduce the following properties of nodes in tree-shaped parts:

Definition 2.3 (depth, height).Given a tree-shaped partT V E,¢ = ¢ ¢( ) of a graph G V E,= ( ), the depth xd ( ) of
a node x TÎ ¢ is the length of the shortest path from x to the root ofT ¢. The root r TÎ ¢ has depth r 0d =( ) .

The height xh ( ) of a node x TÎ ¢ is the length of the longest outward path from x to a leaf ofT ¢. All leaves
l TÎ ¢ have height l 0h =( ) .

Note that the presented definitions of height and depth of nodesmight appear counter-intuitive when
applied to the picture of trees growing upward from the root. However, this terminology originates from the
data structure of a ‘tree’ in informatics, which is typically depicted as growing downwards, and became standard
in graph theory.

The smallest possible type of tree-shaped part consists of a root and some adjacent leaves. Such leaves are
subsequently termed sprouts and form the class S x N x x x L x0 1 1h d d= Î =  = = Î ={ ∣ ( ) ( ) } { ∣ ( ) }.
The leaves of larger tree-shaped parts are called proper leaves and form the class
P x N x x x L x0 1 1h d d= Î =  > = Î >{ ∣ ( ) ( ) } { ∣ ( ) }. Note
that G B R N B R I L B R I P S= + + = + + + = + + + + .

Finally, the group of sprouts can be separated into thosewhich are connected to high-degree roots, called
dense sprouts S x S d 5d = Î >{ ∣ ¯ }, and those connected to rather low-degree roots, the sparse sprouts
S x S d 6s = Î <{ ∣ ¯ }where d x̄ ( ) denotes the (average) degree of the neighbour (s) of x. For this last
distinction, we chose the threshold of 5 so that the stability properties of the two groups are separated best.

For an efficient algorithmwhich provides both the partition of the nodes into the topological groups and
their respective height and depth levels see appendix A.

The nodes in the exemplary network infigure 1 are coloured according to this classification and a
representative node of each group is labelled accordingly. Definitions and total shares of the node categories in
the ensemble of randomly generated network topologies are summarised in table 1.

2.4. Stabilitymeasures
The subsequently introducedmeasures assess the stability of a dynamical systemwith respect to large
perturbations. They reflect global characteristics of the system’s phase spacewhich distinguishes them from the
local perspective taken in conventional linear stability analysis inwhich only small (infinitesimal) perturbations
are regarded [12, 40]. Thesemeasures are particularly suited for assessing the stability of power grids, since in this
context large perturbations from the normal operating state are a common threat [41].

Thefirstmeasure tobe introduced, basin stability, is an indicator for the system’s likelihood to asymptotically
return to adesirable state following a large perturbation [17]. The second, survivability, in turn is sensitive towhether
the transientbehaviour after a larger perturbation remainswithin adesirable regionof the system’s phase space [18].

In complex networks, it is instructive to regard only localised perturbations originating at a single node
whichmakes the stabilitymeasures node-wise quantities. However, it should be noted that for the stability
assessment the response of thewhole systemwith all nodes is relevant and hence the violation of the stability
constraintsmight happen at other nodes than the perturbed one.

Table 1.Overview of names, symbols and definitions of the hierarchically ordered topological groups of nodes in tree-shaped parts of
networks. The last column shows the shares of nodes of each category in the ensemble of theM= 50 randomly generated network
topologies.More than half of the nodes belong to tree-shaped structures within the networks and about a quarter is given by leaf nodes. An
exemplary network topologywith the nodes coloured according to these groups is shown infigure 1. The simulation results shown in
figure 5 are also coloured according to this scheme.

Group Symbol Definition Share of all nodes

Bulk nodes B x G x TÎ Ï{ ∣ } 48.0%

Roots R x T b B x b E: ,Î $ Î Î{ ∣ { } } 19.6%

Non-roots N x T x RÎ Ï{ ∣ } 32.4%

Inner tree nodes I x N d x 1Î >{ ∣ ( ) } 7.2%

Leaves L x N d x 1Î ={ ∣ ( ) } 25.2%

Proper leaves P x L x 1dÎ >{ ∣ ( ) } 7.1%

Sprouts S x L x 1dÎ ={ ∣ ( ) } 18.1%

Sparse sprouts Ss x S d x 6Î <{ ∣ ¯ ( ) } 12.9%

Dense sprouts Sd x S d x 5Î >{ ∣ ¯ ( ) } 5.2%

4
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Bothmeasures necessitate the specification of a probability distribution fromwhich large (finite)
perturbations are drawn. For the case of power gridsmodelled by (2.2) and (2.3) these are given by values chosen
uniformly at random , , ,df dw p p w wÎ - ´ -D D( ) [ ] [ ]which are added at t 00 = to the state variables of a
single node jwhile all unperturbed nodes are initialised to the desirable steady state:

0 , 2.6i i ij*f f d df= +( ) ( )

0 , 2.7i ijw d dw=( ) ( )

where ijd denotes theKronecker delta. Recall that 0i*w = .

2.4.1. Basin stability
The concept of basin stability is applicable tomultistable dynamical systemswith state spaceX for which there
exist attracting states distinct from the set of desirable attracting states, where the latter is denoted by X X Ì in
the following. The basin of attraction  of X is given by all initial states fromwhich the system asymptotically
converges to the desirable attractor:

x X x t X0 . 2.8 = Î { ( ) ∣ ( ) } ( )

When the perturbations are drawn from a certain subset X X0 Í , it is instructive to define the basin of attraction
restricted to this region: X XB 0 Ç= (see figure 2). This is especially the case if the phase space is not
compact. In the case of perturbations drawn uniformly at random, the basin stabilityβ is then simply the ratio of
the volume of the (restricted) basin of attractionXB to the overall region of perturbationsX0 [17, 42]:

X

X

Vol

Vol
. 2.9

B

0
b =

( )
( )

( )

In otherwords, this quantity corresponds to the probability for the system to return to the desirable attractor
after a perturbation fromX0.

For the synchronousmachine power gridmodel described by (2.2) and (2.3) the desirable attractor X is
identical to the set of synchronous states , 0* *f w =( ), while there exist several non-synchronous attracting
states which are undesirable. Since basin stability is determined for each individual node j, the region of
perturbations is the subset

X X

i j

,

: 0 . 2.10
j j j

i i i

0    j w p j p w w w
j j w

= Î -  - D D
 " ¹ =  =*

{( ) ∣
( )} ( )

Hence the single-node basin stability corresponds to the ratio of areas in the phase space cross-section spanned
by the dimensions associated to the node j (see figure 2).

As the basin of attraction and its geometry are typically not known a priori and difficult to determine,
especially in high-dimensional systems [43],βneeds to be determined numerically via aMonte-Carlomethod.
For each node L= 200 independent perturbations have been chosen uniformly at random fromX0

j and the

Figure 2. Schematic of the single-nodemodel’s phase space. The union of the blue, green and yellow areas is the synchronous state’s
(X ) basin of attraction  while trajectories starting from the remaining parts of the phase space ( ;LC red andwhite) converge to the
(non-synchronous) limit cycle located around Pw a= (grey dashed). The union of the red, green and yellow areas forms the subset
X0 fromwhich the randomperturbations are drawn and (here) coincides with the desirable region X+ relevant for the survivability
measure. The green coloured region shows the (infinite-time) basin of survivalXS.While trajectories startingwithin the yellow region
converge to the synchronous operating state and are thus asymptotically stable their transient leaves the desirable region w w+∣ ∣ and
hence do not ‘survive’ the perturbation.
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corresponding trajectories simulated for t= 100 time units. The basin stabilityβ of node j can be estimated from
the number s of trajectories which asymptotically return to X.More details are given in appendix B.

2.4.2. Survivability
In contrast to basin stability the survivability concept [18] presumes a desirable region X XÍ+ whichmust not
be left by a trajectory for a time t following a large perturbation in order to call the system ‘survived’. The finite-
time basin of survival X S

t is given by the fraction of those initial states of the systemwhich give rise to evolutions
that stay within X+ until time t:

X x X x t X t t0 0 . 2.11t
S 0  = Î ¢ Î " ¢+{ ( ) ∣ ( ) } ( )

The infinite-timebasin of survival is obtainedby taking the limit X XlimS
t t

S= ¥ . The survivabilityσof a systemwith
respect touniformlydrawnrandomperturbations fromthe regionX0 is thenanalogouslygivenas the ratio (seefigure2)

X

X

Vol

Vol
. 2.12

S

0
s =

( )
( )

( )

Hence it can be regarded as the probability for the system to remainwithin a desirable region X+ after being hit
by a perturbation from X 0.

For the operationofpower grids it is necessary to keep the frequencydeviationsof all generators and consumers
belowa certain level [44].Hence for the synchronousmachinemodel the desirable regionof the state space is given as

X X i, , , , , : , 2.13N N i1 1 j j w w w w= ¼ ¼ Î "+ +{( ) ∣ ∣ ∣ } ( )

with 0w >+ being themaximally tolerable frequency deviation. Again for each node j the perturbations are
chosen at random from Xj

0 (see (2.10)) and the basin of survival is determined node-wise as X Xj
S

j
0Í (figure 2).

Note that it is not of relevance at which node the frequency constraint w w+∣ ∣ is violated for the perturbation
to count as not survived. Subsequently, the desirable region boundaries are chosen identical to themaximal
perturbation level of the frequency deviations, w wº D+ .

In order to estimate the single-node survivability js for each node, L= 200 trajectories with independent

perturbations to the synchronous operating state, drawn uniformly from Xj
0 (see 2.10), have been simulated.

The fraction of trajectories which did not leave the desirable region X+ has been used as a statistical estimator for

js (see appendix B for details).

2.5. Simulations
Single-node basin stabilities and survivabilities have been estimated for all nodes in an ensemble ofM= 50
randomly generated networks withN= 100 nodes each.Within each network half of the nodes act as net
generators (P 1= + ), while the remaining nodes are net consumers (P 1= - ) such that there is an overall
power balance, P 0i

N
i1å == . Even though the synthetic power grid topologies generated by the randomgrowth

model are spatially embedded, the coupling strengths of the transmissions lines have been chosen uniformly to
K= 6 for simplicity. The damping coefficients have been set uniformly to 0.1a = . The uniform choice of (i) the
distribution of generators and consumers, (ii) the coupling strength of the transmission lines and (iii) the
damping coefficients allows highlighting purely topological effects in the output data. Note, that for this choice
of parameters the preconditions for the approximation of the limit cycle position, equation (2.5), aremet.

3. Results

3.1. Interrelations between anode’s stability and its topological properties
Firstly, we investigated interrelations between the node-wise stabilitymeasures and topological properties of the
perturbed node.We highlight topological effects in the example of a node’s degree d and shortest-path
betweenness b [3]. They turned out to reveal themost prominent insights for transient and asymptotic stability,
respectively, and are basic established local/mesoscale network characteristics. Furthermore, this choice
facilitates a comparisonwith previous findings [31, 32].

3.1.1. Basin stability
We regard differentmaximal perturbation levels 2.5wD = to 12.5, and observe that as expected themean basin
stability of all N M 5000=· nodes decreases with growing perturbation levels wD .

Inorder todetectwhich topological node characteristics influence asymptotic stability, thebasin stability scores are
regarded independenceof thedegreedof thenodewhich is definedas thenumberofneighbouringnodes (figure3(a)).
While there is no significantdependency for lowerperturbations levels ( 5.0wD ) there is a slight increaseofβwithd
for larger perturbation levels, forwhich there are, however, relatively large standarddeviations in the stability estimates.
Hence, degree alone is aweakpredictor for basin stabilitywhich is in linewithpreviousfindings [31, 32].
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There is, however, a characteristic dependence of basin stability on the betweenness b of the node, which is
defined as the number of shortest paths between all pairs of nodes within the networkwhich are passing through
the regarded node (figure 3(b)).While there is no general trend for any perturbation level, distinctive down-
peaks of basin stability are observable at certain betweenness values (as illustrated byMenck et al [31]). These
particular values of b correspond to nodeswhich lie within tree-shaped parts of the network (see the green-
coloured nodes of the ‘inner tree node’ category shown infigure 1). A similar dependencywas found in [31] for a
maximal perturbation level of 100wD = . Hencewewere able to qualitatively reproduce these findings for
considerably smaller perturbation levels which appearmore realistic by comparison to real-world cases.

3.1.2. Survivability
Next, we studied the transient stability against large perturbations asmeasured by single-node survivability,
again for different values of themaximal perturbation strength wD (figure 4). The generally larger survivability
scores achievedwith increasing perturbations can be explained by the fact that the desirable region boundaries
w+ are increased simultaneously with wD (see section 2). Another convention, which is not followed in this
study, would be to hold the desirable region (w+) constantwhen increasing the perturbations ( wD ). In this case
the average survivability of all nodes would decrease since for w wD > + a certain fraction of trajectories would
start outside X+ and hence could not ‘survive’.

In contrast to basin stability, the single-node survivability features a significant negative correlationwith the
degree which is found for all levels of perturbations (figure 4(a)). Thismeans that the frequency deviations
within the network following a perturbation tend to be larger when nodeswith a high degree are hit, thereby
making the dynamics leave the desirable region. For example, for 12.5wD = the probability of the trajectory to
survive a perturbation is close to 1 if a nodewith degree d= 1 is hit, while it lies below 0.5 for nodes with degree

Figure 3.Dependence of single-node basin stabilitiesβ on the node’s degree d (left) and betweenness b (right) for different levels of
perturbations wD .While there is no significant dependence for the degree, the basin stability features distinctive down-peaks at
characteristic betweenness valueswhich correspond to nodes situatedwithin tree-shaped parts of the network. Bold lines show the
means for a suitable binning of the data, shades indicate one standard deviation. Note that overlapping shades’ colours can change.

Figure 4.Dependence of single-node survivabilities σ on the node’s degree d (left) and betweenness b (right) for different levels of
perturbations wD . Both figures show anegative correlation between a node’s transient stability asmeasured by survivability and its
topological properties within the network. This trend ismost significant for the degreemeasurewhichmakes it a suitable predictor of
survivability, independent of the perturbation strength. Bold lines show themeans for a suitable binning of the data, shades indicate
one standard deviation. Note that thefluctuations of themean liewithin the one-standard-deviation-band, except for some
characteristic values of b indicated infigure 3.
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d= 13. For smaller perturbation levels the same trend is observable. Hence the degreemay serve as a suitable
predictor for the node’s survivability.

For the betweennessmeasure the same but less striking trend is found (figure 4(b)). Survivability is generally
decreasingwith the node’s betweenness. Inner tree nodes which are characterised by specific values of b do not
stick out as dominantly as it is the case for basin stability. For lower perturbations ( 5.0wD )we observe small
up-peaks inσ at the specific b-valueswhile for 10.0wD = the same down-peaks aswith basin stability occur. As
we show later, for 10.0wD = the survivability of inner tree nodes is strongly correlatedwith their basin stability
which explains the occurring down-peaks. These observations reveal that nodes adjacent to tree-like structures
are also crucial for predicting survivability, however, in amore subtle way compared to basin stability. Overall,
betweenness alone is only a weak predictor for survivability, showing different features at different perturbation
levels.

As for basin stability comparing survivability to other nodal networkmeasures did not lead tomore insights.
Instead, a direct comparison of basin stability and survivability of the nodes was found to reveal non-trivial
aspects of the system’s dynamics and helped in identifying the node classification scheme introduced in 2.3.

3.2. Joint distributions of basin stability and survivability
While this section focuses on the general distribution patterns of basin stability and survivability, the stability
characteristics of the different node classes are described in the next section (3.3). In order to revealmore insights
about the interdependencies of asymptotic and transient dynamics aswell as the relation to the network
topology, we plotted the joint distribution of single-node survivabilityσ and single-node basin stabilityβ for
different perturbation levels wD (figure 5). Each panel shows a total of N M 5000´ = individual estimates.

Let us focus on the twomarginal distributions first. For a rather lowmaximal perturbation level ( 5.0wD = )
the distribution of basin stability is extremely skewedwith 73.0% of nodes featuring 0.95b . The
survivabilities in turn show awidely spread bimodal distribution. This fact shows that survivability is generally
muchmore influenced by topology than basin stability at lower perturbation levels.

At larger perturbation levels ( 7.5wD ) the distributions of both basin stability and survivability are
unimodal and skewed. For 7.5wD = still 62.4% of nodes feature a high asymptotic stability of 0.9b . The
distribution of transient stability is still wide but shifted towards larger values.While some groups of nodes show
a strong correlation betweenβ andσ, the overall Pearson correlation coefficient is close to zero ( 0.07r = ).

This picture is reversedwhen looking at the highest perturbation level of 12.5wD = . Here 62.9% of nodes
have survivabilities of 0.9s and the distribution of basin stability is rather widespread. It is known that at
considerably larger perturbation levels ( 100wD = ) also basin stabilities show awidespreadmultimodal
distribution [31, 45]. Hence basin stabilitymight be amore usefulmeasure for the system’s stability if very large
perturbations are expected.

The intermediate case with 10.0wD = is particularly interesting.Here the distributions ofβ andσ are very
similarly shaped and numerous nodes show a strong correlation. However, there are alsomany nodes forwhich
there is no such correlation, with the overall Pearson correlation coming out at 0.41r = .

3.3. Basin stability and survivability for different classes of nodes
Thefindings presented so far are in linewith the reasoning ofHellmann et alwho state that basin stability and
survivability are generally not correlated and hence the asymptotic behaviour does not allow conclusions about
the transient one [18].We nowwant to achieve amore precise statement by putting a stronger focus on the
patterns observed in the joint distribution of the stabilitymeasures infigure 5.

In order to decipher how these patterns relate to topological characteristics, it turned out to be helpful to
focus on nodes located inside or adjacent to tree-shaped parts of the network and to distinguish several types of
nodes by how far inside the tree they are located (see section 2.3 and table 1). This is also suggested by thefindings
presented in section 3.1.

Each of the previously defined classes features typical characteristics regarding asymptotic and transient
stability at different perturbation levels (figure 5).We beginwith discussing 5.0wD = . In this case, for all nodes
the survivability is lower than the basin stability. This indicates that there are no undesirable attractors within the
survival region X+. Hence basin stability sets an upper limit to survivability. All trajectories which stay within the
desirable region X+ have to converge to the synchronous operating state of the grid, X [18]. This is expected as a
desynchronization is expected to lead to oscillators rotatingwith their natural frequency, which here is

P 10.0LCw a= = (see (2.5)).
At rather lowperturbation levels ( 5.0wD = ) thenodes forming theuppermodeof the survivability distribution

are the leaves.Dense sprouts show lower survivabilities than sparse sprouts, indicating that also a lowneighbour
degree is beneficial for survivability. The lowermodeof thedistribution is formedbybulk, root and inner tree nodes.
As expected fromthedegree dependence (seefigure 4) inner nodes showhigher survivabilities than rootnodeswhich
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aremost critical.Hence, the transient dynamics following aperturbationof a rootnode tend to exhibit large
frequencydeviations, leading to a transgressionof the boundaries of the desirable region.

For 7.5wD we observe surprising new behaviour.While perturbations atmost nodes still behave as if
therewas no undesirable attractor in the survival region, perturbations originating at a dense sprout almost all
have s b> . Thismeans a novel asymptotic state or a very long transient, is reached, inwhich the system is not
synchronised, but as the systemdoes not leave the survival region X+, no node is swinging at its natural
frequency LCw either. Exemplary trajectories for perturbations at a dense sprout are shown infigureC2 in
appendix C and reveal that we indeed observe a novel asymptotic state, with a solitary desynchronized oscillator
not swinging at its natural frequency. To our knowledge, this state has not previously been observed in these
systems, for example in the bifurcation studies of [46, 47]. Indeedwe expect that this state would be very hard to
observe, if the initial conditions are drawn fully randomly, and not localised at individual nodes.

For sparse sprouts, proper leaves and inner tree nodesβ andσ are strongly positively correlated. Thismeans
that for these nodes trajectories which leave the desired region tend to converge to non-synchronous states. In
otherwords, the basin of attraction of the synchronised state is entirely contained in X+. Root nodes show a
pattern contrary to dense sprouts with awide range of survivabilities and rather high basin stabilities.

The patterns yielded at 10.0wD = are very similar to those at 7.5wD = . As the frequency of the limit cycle
fluctuates around 10.0w = , drawing the boundary exactly theremeans that still all nodes that fully
desynchronise, and go to their natural frequency, will hit the survivability threshold.Now a few nodes besides
the dense sprouts feature s b> . A further anomaly that can be observed here is that themean survivabilities of
the leaves are smaller for 10.0wD = than for 7.5wD = , opposed to the general observation of increasing
survivabilities for larger values of wD .

Figure 5. Scatter plots and distributions of single-node basin stabilities and survivabilities of all N M 5000´ = nodes for different
perturbations levels wD . The data points and bins are coloured according to the topological classification scheme introduced in
section 2.3 and illustrated infigure 1. ρ denotes the Pearson product-moment correlation coefficient.
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Finally, at 12.5wD = , the natural frequency of the oscillators is fully within the survival region, and a
desynchronized node is characterised as having survived. Consequently, themajority of nodes has larger
survivabilities than basin stabilities. There are numerous non-synchronous states whose trajectories lie
completely within the desirable region X+. The limit cycle trajectory is hence also prominent in themulti-node
networkmodel.While the leaves of the tree-like parts show a similar pattern in theσ–β-space, the inner tree
nodes are clearly separated at slightly lower survivabilities and fairly lower basin stabilities. Nodes from the bulk
feature the largest basin stabilities.

Independentof theperturbation level wD , dense sprouts tend to feature lower basin stabilities than sparse
sprouts.Menck et al studied thedependenceof basin stability on the (average)degree of theneighbour(s) for all leaves
(‘dead ends’)but didnotfinda significant correlation [31]. It is ourfiner partitionof leaves into proper leaves and
sprouts, theneccesity ofwhichwas recognisedby studying the joint plots, that allowsmoredetailed insights.

Complementary tofigure 5, the partition achieved using the defined topological classes of nodes is
highlighted in three-dimensional representations of the joint distributions of basin stability and survivability at
different perturbation levels (figureC1 in appendix C).

4.Discussion

4.1. Relevance for designing stable power grids
The insights gained from this study are particularly relevant for both the stability assessment and the design of
stable power grids. The employed nonlinear stabilitymeasures, basin stability and survivability, provide useful
information on the asymptotic and transient stability of a grid against large perturbations, thereby surpassing the
insights gained from local, linear stability assessments. The probabilisticmeasures have the benefits of being
intuitive to understand and efficient to estimate for the overall system, irrespective of the complexity of the
dynamics. They thus allow, for the first time, a systemic understanding of dynamical effects in the overall system.

Of particular relevance to the systemic stability of the power system are the novel asymptotic states we
discovered, which primarily arise fromperturbations at dense sprouts. The perturbed nodes are desynchronized
and oscillate at a frequencymuch smaller than their natural. They are thus a pure network effect that can not be
understood by studying individualmachines. If such desynchronized states exist within sufficiently narrow
frequency bounds, theywould be a severe systemic risk to the power grid. Theymight be related to observed
phenomena like Inter AreaOscillations, inwhich a deviation fromperfect synchrony is observed.While an
extensive analysis of these states is not part of this work, the topological characterisation of dynamic systems
already suggests amean to prevent thempreemptively in the design of the power grid, by avoiding dense sprouts.

Beyond this novel dynamical phenomenon, our study revealed various interrelations between the pure
topological properties of a node and its stability. Tree-like structures, which contain about half of the nodes in
the network ensemble, were found to be characterised by stability properties which significantly distinguish
them from the remaining bulk of nodes.Wewere able to identify a small set of topological groupswhose nodes
feature similar patterns of asymptotic and transient stability at various perturbation levels. The knowledge about
these patterns can in turn be utilised to predict a node’s relevance for thewhole grid’s stability knowing only its
topological embeddingwithin the network. Given a concrete real-world power grid topology, our classification
scheme hence has the potential to facilitate the identification of particularly vulnerable nodes.While outside the
scope of this workwe expect that it will be possible to extend this identification tomore nodes bymeans of
statistic regressions taking networkmeasures as input [45].

Menck et al found that theweak basin stability of inner nodes can be cured by reconnecting leaf nodes (there
termed ‘dead ends’) to the grid [31]. This agrees well with our observation above to avoid sprouts and that
‘detour’nodes are favoured by our stabilitymeasures [45]. Another strategy suggested by ourfindingswould be
to avoid high-degree nodes as these feature theworst survivabilities, independent of the perturbation level. By
combining the above-mentioned rules, reconnection of leaves and avoidance of hubswith high centralities, a
possible design principle for stable power grids would be to strive for rather homogeneous network topologies,
characterised by narrowdegree distributions. Using linear stability techniques such homogeneous topologies
have also be found to be generally easier to synchronise [48], while tree-shaped structures apparently show
rather bad synchronizability [49]. Interestingly, while tree-shaped structures feature both poor linear
(synchronizability) and nonlinear (basin stability, survivability) stability properties, in small-world topologies
synchronizability and basin stability were found to behave contrarily [17].

It should be pointed out that for our analysis we employed conceptualmodels of the transmission grid. A
direct transfer of the findings to lower grid levelsmight not be valid. Another simplifying assumptionwhich does
not hold for real-world grids is the uniformdistribution of both the power injections and loads.Whether rather
heterogeneous power distributionswould affect thefindings has not been investigated, butmight be particularly
interesting for future research in the context of decentral renewable energy production.We are also aware that
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themaximal perturbation levels assumed for our simulations are rather high. Instead of assuming uniformly
distributed perturbations it would bemore realistic to assume a unimodal distribution inwhich small
perturbations in both the phase and frequency deviations aremore frequent and large perturbations are rare
events. Realistic distributions of perturbations could, for instance, be derived from the research on intermittency
in powerfluctuations fromwind or solar power systems [50, 51]. This work should thus be seen as an
exploration of phase space properties like the structure of a state’s basin of attraction, rather than a concrete
study of realistic power gridmodels.

4.2. Relevance for complex dynamical networks in general
Beyond the direct implications for the resilience of power grids, ourfindings show the power of sampling-based
dynamicalmethods, like survivability and basin stability. These are evaluated by sampling the system’s dynamical
reaction to non-small perturbations, here in phase space, butmore generally also in parameter space. Combined
with networkmeasures and topological classifications, they provide general insights for complex dynamical
networks.We expect that the crucial role of tree-shaped parts for the dynamics found here, is not specific to
power grids butmight rather be a general phenomenon in oscillator networks, infrastructure networks or even
biological networks, e.g., in neural or genomic dynamics. The suggested topological classification scheme and
the terminology for nodes in trees are independent of the nodal dynamics and are thus easily applicable to
networks of different types.

As the employed synchronousmachinemodel (or ‘Swing equation’) is equivalent to theKuramotomodel
with inertia [30], the findings are particularly relevant for the general study of oscillator networks. The combined
analysis of transient and asymptotic behaviour via basin stability and survivability allows indirect insights into
the geometry of the system’s phase space. The identification of nodes for which s b> allowed us to infer the
existence and position of new types of limit cycles. Particularly, for the group of dense sprouts we found that
non-synchronous states exist besides those given by the approximated solution to the single-node system (2.5).

In afirst order approximation the coupling strengthK in (2.5) is proportional to a node’s degree d, while P
andα are independent of topological characteristics. Hence the approximation (2.5) suggests that the
amplitudes A PKLC a= of a limit cycle are proportional to the degree of the respective non-synchronously
rotating nodes. This is a contributingmechanism to the low survivability of high degree nodes for very large
perturbations.We suspect that it will be possible to gain further understanding of the relationship between
topology and dynamics throughmore sophisticated approximations. Understanding the dependencies of the
asymptotic spectrumof networked dynamical systems on the ambient topology inmore detail will however
require significant furtherwork, both numerical and analytical.

5. Conclusions

Our results formanother step towards abetter understandingof the interrelations between topology and stability in
complexdynamical networks. Tree-shaped topologieswhich are particularly prominent in infrastructurenetworks,
have been found to feature stability propertieswhich considerably deviate from those of the remainingbulkofnodes.
A topological classification scheme fornodes adjacent to those tree-shapedparts has been suggestedwhich enables a
predictionof anode’s transient and asymptotic stability against large perturbations. This classificationof nodes can
hence aidboth the stability assessment and thedesignof stable infrastructure systems.

The sampling based stabilitymeasures we employedwere shown to enable surprising novel insights into the
asymptotic dynamics of networked dynamical systems, revealing both, previously unknown asymptotic states
and surprisingly precise relationships between the topology and these novel states.

Due to the parametrization of themodel equations, the results are particularly relevant in the context of
power grid research. If both high asymptotic stability (reflected by single-node basin stability) and transient
stability (reflected by survivability) of power grids are desired, avoiding both sparsely connected tree-shaped
structures and high-degree hub nodes appears to be a promising design principle.

Independent of the particular application the presented study shows how the nonlinear stability concepts of
basin stability and survivability can be combined to gain a better understanding of a—not necessarily networked
—dynamical system.
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AppendixA. Algorithm for the identification and classification of nodes in tree-shaped
parts of networks

Let G V E,= ( ) be an undirected graph that is connected and not itself a tree (i.e., contains at least one cycle).
Our goal is to identify all nodes x VÎ that are in a tree-shaped part ofG and classify themusing height and
depth. As defined in themain text, a tree-shaped part ofG is an induced subgraphT V E G, V¢ = ¢ ¢ = ¢( ) ∣ ofG (i.e.,
a subset of nodesV V¢ Í togetherwith the set E¢ of all edges inE between nodes inV ¢) that ismaximal with the
property that there is exactly one node r VÎ ¢ that has at least one neighbour in G T- ¢. r is then called the root
ofT ¢, and one can see easily that itmust have degree at least three. For any graph G V E,¢ = ¢ ¢( ) and node
x VÎ ¢, we denote by d xG¢ ( ) the degree of x in G¢. A nodewith d x 1G =¢ ( ) is called a leaf of G¢.

A simple algorithm to identify all tree-shaped parts ofG, their roots, and the parents, children, heigths,
depths, and branches of all theirmembers is the following.

In thefirst part, we iteratively define

• a decreasing sequence of node setsV V V ,0 1 2É É 

• the respective induced subgraphs G Gi Vi
= ∣ ,

• a sequence of disjoint height level setsHi,

• parents xp ( ),

• sets of childrenC (x),

• branchesB(x),

• and height labellings xh ( ),

by successively removing leaves from the remaining graph as follows. PutV V0 ≔ and initially C x Æ( ) ≔ for all
x VÎ . GivenVi and G Gi Vi

≔ ∣ , let H x V d x: 1i i Gi
Î =≔ { ( ) }be the set of leaves ofGi. For each x HiÎ , let the

parent of x, xp ( ), be the unique neighbour of x inGi; add x to its set of children, C xp( ( )). Note that
x V Hi ip Î -( ) . The branch of x is B x x B yy C xÈ Î( ) ≔ { } ⋃ ( )( ) , and the height is x ih =( ) . As long as

Hi ¹ Æ, putV V Hi i i1 -+ ≔ and repeat.
Tofinish thefirst part after these iterations, let N Hi i≔ ⋃ be the set of all thus identified non-root nodes, let

R x x N N:p Î -≔ { ( ) } , and call each r RÎ a root. Put B r r B yy C rÈ Î( ) ≔ { } ⋃ ( )( ) and
r x x N x r1 max : ,h h p+ Î =( ) ≔ { ( ) ( ) } for all r RÎ . The tree-shaped partsT ¢ ofG are now exactly the

subgraphsT G B r¢ = ∣ ( ) induced by the branches of any roots r RÎ .
In the second part, we define a depth xd ( ) for each x N RÈÎ , counted outwards starting from the roots, in

addition to the height, which is counted inwards starting from the leaves. This is again done iteratively by
defining a sequence of disjoint depth level setsDi. Put D W R0 0≔ ≔ , and put x 0h ( ) ≔ for each xäD0. Having
defined Di 1- andWi 1- , define D C x Wi x D i 1i 1

-Î --≔ ⋃ ( ) andW D Di i i1 È-≔ , and put x id ( ) ≔ for each
x DiÎ , iterating this until Di = Æ. Note that xd ( ) is the distance from x to the root of its tree-shaped part.

Finally, we put S x N x x x L x0 1 1h d dÎ =  = = Î =≔ { ∣ ( ) ( ) } { ∣ ( ) } (sprouts),
S x S d 5d Î >≔ { ∣ ¯ } (dense sprouts), S x S d 6s Î <≔ { ∣ ¯ } (sparse sprouts),
P x N x x x L x0 1 1h d dÎ =  > = Î >≔ { ∣ ( ) ( ) } { ∣ ( ) } (proper leaves).

Appendix B. Estimation of basin stability and survivability from simulations

Both employed stabilitymeasures, basin stabilityβ (2.9) and survivabilityσ (2.12), have been estimated using
Monte-Carlo sampling. For each of the M N 5000´ = nodes L= 200 trajectories with perturbed initial
conditions (2.6) and (2.7) have been simulated.

If s of these trajectories return (sufficiently close) to X after the simulation time of t= 100, their fraction is
used as an estimator ofβ:

s

L
. B.1b =ˆ ( )

Since the perturbed trajectories either converge or not, the sampling of initial conditions can be regarded as a
Bernoulli experiment. Thus the standard error of the probability estimator is given by
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e
L

1
. B.2

b b
=

-
b

ˆ ( ˆ ) ( )ˆ

If either all or none of the perturbed trajectories converge the estimated standard error becomes zerowhich is
troublesome for further statistical calculations. Hencewe used the Agresti–Croullmethod for a better estimation
ofβ and its standard error eb [52]. For the desired confidence this corresponds to adding one trial which is ‘half
success’ and ‘half failure’. Defining s s 1

2
= +˜ and L L 1= +˜ , the corrected estimator b̃ is given by

s

L
B.3b =˜ ˜

˜ ( )

and the corresponding standard error amounts to

e
L

1
. B.4

b b
=

-
b

˜ ( ˜ )
˜ ( )˜

Analogously,σ and its standard error eσ have been estimated using the fraction of trajectories which did not leave
the desirable region X+ given by (2.13)within the simulation time.

AppendixC. Supplementary figures

FigureC1.Three-dimensional scatter plots of single-node basin stabilitiesβ (for 10.0wD = ) and survivabilities σ (for 5.0wD =
and 10.0wD = ) from two different view angles. The data points are coloured according to the topological classification scheme
introduced in section 2.3 and illustrated infigure 1. The three-dimensional representation of the data shows the clear separation of the
topological classes of nodes with respect to their asymptotic and transient stability properties.
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