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Abstract
Complex network theory provides an elegant and powerful framework to statistically investi-

gate different types of systems such as society, brain or the structure of local and long-

range dynamical interrelationships in the climate system. Network links in climate networks

typically imply information, mass or energy exchange. However, the specific connection

between oceanic or atmospheric flows and the climate network’s structure is still unclear.

We propose a theoretical approach for verifying relations between the correlation matrix

and the climate network measures, generalizing previous studies and overcoming the

restriction to stationary flows. Our methods are developed for correlations of a scalar quan-

tity (temperature, for example) which satisfies an advection-diffusion dynamics in the pres-

ence of forcing and dissipation. Our approach reveals that correlation networks are not

sensitive to steady sources and sinks and the profound impact of the signal decay rate on

the network topology. We illustrate our results with calculations of degree and clustering for

a meandering flow resembling a geophysical ocean jet.

Introduction
The network approach has become an essential tool in the study of complex systems [1–3],
where networks are reconstructed from time series in order to uncover underlying dynamics
[4–8]. Climate networks, i.e. those in which geographical nodes are linked when there is similar
climatic dynamics on them (as measured by correlations, mutual information, etc.), have been
thoroughly investigated in the last years in [9–14]. In the same context of geophysical systems,
flow networks have also been introduced [15–18]. They are networks in which geographical
nodes are linked when there is fluid transport from one location to another. Since correlations
between different regions of a flow or geophysical system should be greatly influenced by the
mass transport among them, it is natural to search for the relationship between these two types
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of networks, which will also help to understand the meaning of some of the teleconnections
appearing in the climate network analysis. The works [19] and [20] are in this line, where net-
works were constructed from flow systems using a continuous analogue of the Pearson correla-
tion. However these approaches have their limitations, mainly the restriction on the velocity
fields to be constant in time. But the time-dependency plays an important role in real-world
flows, for instance, all ocean currents vary over a large range of time scales [21–23].

In this paper we investigate general relationships between climate networks (specifically,
networks built from correlations) and flow networks. In particular we develop a method for the
analysis of time-dependent flows and demonstrate its potential for a specific model describing
a meandering current. The quantity for which we compute spatial correlations is a scalar which
is transported by the flow following an advection-diffusion dynamics. We can think on it as the
‘temperature’ of water in an ocean flow, but the formalism would apply to any transported
quantity that could be considered ‘passive’ in some range of time scales. To avoid trivial
homogenization, the scalar is forced by sources and sinks, which have both a spatially-depen-
dent constant component and a time-varying stochastic part, and a decay process that prevents
indefinite build-up, finally dissipating the input from the sources. By discretizing the system
dynamics in space and time we obtain a linear recursive equation for the time-series of the sca-
lar. We estimate the spatial correlation matrix from the time-series by averaging over various
realizations of the noise. The correlation matrix can be thresholded, and interpreted as the
adjacency matrix of the correlation network, which can then be analyzed using network mea-
sures which provides understanding of the formal relationship between the Lagrangian trans-
port in the basic flows and the corresponding correlation network as used in climate networks.

The paper is organized as follows: First in the section Methods we introduce the tools for
the construction of networks from general time-dependent flows, and describe our example
meandering-jet model. The Results section describes the properties of our main formulae and
illustrate them with the model flow. In the last section we discuss the main findings of the
paper.

Methods
We introduce an algorithm for the construction of correlation networks from the spatial distri-
bution of a scalar (e.g. ‘temperature’) transported in a two-dimensional domain by an advec-
tion-diffusion equation (ADE) with additional forcing and decay terms:

@Tð~x; tÞ
@t

¼ kDTð~x; tÞ �~vð~x; tÞ � rTð~x; tÞ þ Fð~xÞ � bTð~x; tÞ þ
ffiffiffiffi
D

p
xð~x; tÞ; ð1Þ

where κ is the diffusion coefficient,~vð~x; tÞ is the time-dependent bidimensional velocity field
which we assume to be incompressible, Fð~xÞ is the forcing, which describes time-independent
sources and sinks, xð~x; tÞ is uncorrelated Gaussian white noise with zero mean and correlations
hxð~x; tÞxð~y; t0Þi ¼ dðt � t0Þdð~x �~yÞ. D is noise intensity and b is a damping parameter which
sets the time-scale at which perturbations are dissipated in the system. We add decay and forc-
ing to avoid convergence of the scalar distribution to a simple homogeneous equilibrium, and
these processes are actually present in real geophysical flows [24].

Discretised dynamics
The algorithm of network construction for a time-dependent velocity field requires first a dis-
cretisation of Eq (1). Let us consider first the simplified equation without forcing and decay:

@T
@t

¼ kDT �~vð~x; tÞ � rT: ð2Þ
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We discretize Eq (2) using an Euler scheme for a regular N × N-lattice with spatial resolu-
tion Δx and time-interval Δt. The horizontal and vertical components of velocity field for the
lattice point (i, j) at time step k = t/Δt are vxijðkÞ and vyijðkÞ. This gives:

Tijðkþ 1Þ ¼ TijðkÞ�
Dt
2Dx

ðvxijðkÞTiþ1jðkÞ � vxijðkÞTi�1jðkÞ þ vyijðkÞTijþ1ðkÞ � vyijðkÞTij�1ðkÞÞþ
kDt
Dx2

ðTijþ1ðkÞ þ Tij�1ðkÞ þ Tiþ1jðkÞ þ Ti�1jðkÞ � 4TijðkÞÞ;

ð3Þ

where the node’s indices are i, j 2 [1, N]. We use open boundary conditions. The discretisation
parameters Δx and Δt should fulfill the Courant-Friedrichs-Lewy condition [25] for the stabil-
ity of the discretisation scheme

kDt
Dx2

<< 1;
maxðvðx; tÞÞDt

Dx
<< 1:

Eq (3) can be written in a matrix form in terms of the N2 × N2 one-step transformation matrix
P(k) = P(vij(k)) for time step k and the N2-dimensional state-vector T(k) of components
ðTðKÞÞ~x ¼ TijðkÞ, with (i, j) the lattice coordinates of~x :

Tðkþ 1Þ ¼ PðkÞTðkÞ: ð4Þ

Iterating Eq (4) leads, for k� k0, to
Tðkþ 1Þ ¼ Mkk0Tðk0Þ; ð5Þ

where

Mkk0 ¼ PðkÞPðk� 1Þ . . .Pðk0 þ 1ÞPðk0Þ ð6Þ

is the analogous to the transport matrix defining the flow networks in [16]. Here it is computed
from a discretization of the ADE, whereas in other works [17, 18] it is computed by the Ulam
method that involves the Lagrangian trajectories of particles, but the meaning is the same: it is
the matrix that evolves in time the vector T(k).

Adding the decay term −bT to Eq (2):

@T
@t

¼ kDT �~vð~x; tÞ � rT � bT ð7Þ

does not pose technical difficulties, since the change of the variables TðkÞ ¼ e�bDtk ~T ðkÞ reduces
Eqs (7) to (2) for ~T ðkÞ. Therefore the one-step solution Eq (4) becomes:

Tðkþ 1Þ ¼ e�bDtPðkÞTðkÞ: ð8Þ

Being a transport matrix, the eigenvalue with largest modulus of matrix P(k) is 1. The new
one-step transformation e−bΔt P(k) will have eigenvalues which in modulus are smaller than 1,
ensuring that perturbations become damped.

Reintroducing the forcing terms Fð~xÞ þ ffiffiffiffi
D

p
xð~x; tÞ from Eq (1) into the discretized frame-

work Eq (3) can be done for example by integrating them with the Euler method. The one-step
solution becomes

Tðkþ 1Þ ¼ e�bDtPðkÞTðkÞ þ DtF þ s�ðkÞ: ð9Þ

F is the time independent spatial forcing vector, and �(k) is, at each time k, a vector of
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independent Gaussian random variables of zero mean and unit variance. These vectors are
uncorrelated at different times. From the stochastic Euler method [26], the intensity of the dis-

cretized noise is s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DDt=Dx2

p
. Iteration of Eq (9) for (k + 1) time steps gives the time evolu-

tion of the scalar distribution vector:

Tðkþ 1Þ ¼ Gk0 Tð0Þ þ Dt
Xk

l¼0

Gkkþ1�l F þ s
Xk

l¼0

Gkkþ1�l �ðk� lÞ : ð10Þ

We have introduced the propagation matrix, or propagator:

Gkk0 � e�bDtPðkÞe�bDtPðk� 1Þ . . . e�bDtPðk0Þ ¼ e�ðkþ1�k0ÞbDtMkk0 ; k � k0; ð11Þ

and for notational convenience, we have defined

Gkkþ1 � I ; ð12Þ

the N2 × N2 identity matrix.

Calculation of correlations
We are now able to compute the correlations associated to the time series generated by Eq (10).
We consider the direct product matrix T(k)T(k)† (the superindex †means transpose)
whose matrix elements are products of the transported field at different spatial points

ððkÞTðKÞyÞ~x~y ¼ TðkÞ~xTðkÞ~yy. We average it over realizations of the noise �, operation which is

denoted by h.i. We also include in the same operation averaging over the initial condition T(0),
for which we assume hT(0)i = 0. But we will see that in fact this assumption is irrelevant for
our results, since the final expressions at long times lose dependence on the initial condition.
Using h�ðkÞ�ðk0Þi ¼ Idkk0 , we find:

hTðkþ 1ÞTðkþ 1Þyi ¼ Gk0hTð0ÞTð0ÞyiGy
k0þ

Dtð Þ2
Xk

l¼0

Xk

l0¼0

Gkkþ1�lFF
yGy

kkþ1�l0 þ s2
Xk

l¼0

Gkkþ1�lG
y
kkþ1�l :

ð13Þ

The first term in the r.h.s. of Eq (13) gives the evolution of the initial correlations. Because of
the properties of the eigenvalues of Gk0, this term will decrease with k and become negligible
after a number k of steps such that the corresponding time kΔt satisfies bkΔt>>1. In the same
limit, by averaging Eq (10), we see that

hTðkþ 1Þi ¼ Dt
Xk

l¼0

Gkkþ1�lF ; bDtk >> 1 ; ð14Þ

so that the second term in the r.h.s. of Eq (13) is hT(k + 1)ihT(k + 1)†i. Combining these facts,
we obtain for the spatial covariance of the transported scalar, if bkΔt>>1:

CovðTðkÞÞ � h TðkÞ � hTðkÞið Þ TðkÞ � hTðkÞið Þyi

¼ s2
Xk�1

l¼0

Gk�1k�lG
y
k�1k�l :

ð15Þ

Expression Eq (15), with Eqs (11) and (12), gives the formal relationship between the corre-
lations used to construct climate networks, obtained from the matrix Cov(T(k)), and the trans-

port properties of the flow, which are contained in the flow-network matrixMkk
0 and enter

into Eq (15) via Eq (11).

Correlation Networks from Flows
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Network construction
From the covariance matrix we can calculate the Pearson correlation. In terms of the matrix
elements of the covariance matrix, ðCovðTðkÞÞÞ~x~y , the matrix elements of the Pearson correla-

tion matrix C(k) are:

CðkÞð Þ~x~y ¼
CovðTðkÞÞð Þ~x~yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CovðTðkÞÞð Þ~x~x CovðTðkÞÞð Þ~y~y
q : ð16Þ

As standard for climate networks, we construct correlation networks from the symmetric
and positive semi-definite matrices C(k). We threshold matrix C(k) to construct a binary adja-
cency matrix A(k):

AðkÞ~x~y ¼ 1 if jCðkÞ~x~y j ⩾ g

AðkÞ~x~y ¼ 0 if jCðkÞ~x~y j < g :
ð17Þ

Within reasonable limits the value of the threshold value γ below which the correlations are set
to zero does not significantly affect the result. The resulting thresholded matrix A(k) is the
adjacency matrix of the correlation or climate network which is analyzed using network mea-
sures. In the following we will tune the threshold γ to obtain a network with a prescribed link
density.

Amodel flow
To illustrate the use of the formulae derived above, we choose ameandering flowmodel [27,
28] to construct the flow-networks. It resembles the simplified velocity structure present in
ocean currents such as the Gulf Stream or the Kuro-Shio. Following [29] the streamfunction is
given by:

Cðx; y; tÞ ¼ 1� tanh
y � BðtÞ cos mðx � ctÞð Þ

1þm2BðtÞ2 sin 2 mðx � ctÞð Þ� �1
2

2
4

3
5; ð18Þ

wherem is a wave (meander) number which we set to 2π/Lx, Lx = 7.5 and B(t) is the wave
amplitude, given by B(t) = B0 + ν cos(ωt + θ). A snapshot of the streamfunction Eq (18) is plot-
ted in Fig 1. It describes a jet flowing towards the positive x direction, more intense in the cen-
tral core region, and meandering in the y direction. A meandering flow is well-studied flow
model [30, 31]. Moreover, regions of the velocity field, denoted by Eq (18), contain flows with
more simple structure. Altogether this makes a meandering flow a suitable model to test a
novel flow networks method. We fix parameters at B0 = 1.2, c = 0, ω = 0.4, θ = π/2, and compare
results for the static, ν = 0, or oscillating in amplitude, ν = 0.7, meander. In the first case particle
motion in the flow is integrable whereas in the second chaotic motions arise [28, 29]. FromC
(x, y, t) the velocity field~v ¼ ðvx; vyÞ is calculated as:

vxðx; y; tÞ ¼ � @Cðx; y; tÞ
@y

; vyðx; y; tÞ ¼ @Cðx; y; tÞ
@x

: ð19Þ

Results
In the case without advection (or advection with a constant and homogeneous velocity field
~vðx; y; tÞ ¼~v0) Eq (1) can be solved exactly and the Pearson correlation computed. The

Correlation Networks from Flows

PLOS ONE | DOI:10.1371/journal.pone.0153703 April 29, 2016 5 / 12



resulting network is a fully homogeneous graph in which every node is linked with all neighbor

nodes within a correlation length given by
ffiffiffiffiffiffiffiffi
k=b

p
. In the presence of non-homogeneous advec-

tion, the network becomes inhomogeneous with properties determined by Eq (15) which
encodes, via the propagator Gkk

0, a non-trivial interplay between advection, diffusion and
decay. Here are some implications of our main formula Eq (15):

• In the framework of the linear ADE dynamics we are using here, a time-independent spatial
forcing Fð~xÞ has no influence on the covariance matrix, as it is constructed from anomalies
with respect to the mean. In the same way, white noise intensity s or D disappears when nor-
malizing the covariance to obtain the Pearson correlation coefficient of Eq (16). Thus correla-
tion networks become independent from the forcing terms present in the linear ADE Eq (1)
(although these terms need to be present to sustain the fluctuations from which correlations
are computed). The choice of the white noise in Eq (1) was motivated by [32], where the effect
of the random weather excitation on the ocean dynamics is represented by the white noise.

• For flow networks constructed from the transport matrixMkk
0 (or Gkk

0), nodes are connected
if there is physical transport between them. For networks constructed from the correlation

(16), instead, the presence of the product of two propagators,Gk�1k�lG
y
k�1k�l , in each term

of the sum in Eq (15) implies that correlations between two nodes will be non-vanishing only
if they receive simultaneously (at time k) the effect of fluctuations originated at the same
source (at time k − l). This cannot happen only by advection, because Lagrangian trajectories
are predetermined by deterministic flow model. Diffusion is needed to spread stochastic

Fig 1. The streamfunction for the velocity field of the meandering flow. It describes a jet flowing from left
to right, more intense in the central meandering core. The streamfunction is plotted here for ν = 0, and it is the
same as for any other value of ν if t = 0 or a multiple of the flow period. Other parameters are given in the text.

doi:10.1371/journal.pone.0153703.g001
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perturbations and let them to affect different sites. Thus, links between nodes in correlation
networks constructed from transported quantities will not represent direct physical transport
between them, but the susceptibility for them to be reached by perturbations transported (by
advection and diffusion) from the same origin (and within a time b−1 from its birth, because
of the exponentially decaying temporal factor in Gkk

0).

• Even if for large integration time k Eq (15) involves a large number of terms in the sum, they
decrease fast in magnitude, and actually only the ones with l such that b(k − l)Δt< 1 make a
relevant contribution to the covariance or Pearson correlation at time k.

• Cov(T(k)) is a time-dependent matrix, as it depends on Gkk
0 and thus on P(k), which inherits

the time-dependence on the velocity field~vð~x; tÞ. Because of the temporal averaging implicit
in Eq (15), temporal scales of the velocity field faster than the time scale b−1 will be averaged
out from Cov(T(k)), but slower time-dependencies will remain and the resulting correlation
network will be a temporal network [4].

We illustrate these general results with numerical computations of correlations via Eqs (15)
and (16) for the ADE dynamics with the meandering model flow, and construction of the asso-
ciated networks. We consider the domain x 2 [0, 20], y 2 [−10, 10] with open boundary condi-
tions and discretize it in N × N = 120 × 120 nodes, so that Δx� 0.167. Time step is Δt = 0.2.
We nominally take the diffusion coefficient κ = 0.02, but the numerical diffusion [25] intro-
duced by the discretization Eq (3) is larger, κ0 � Δx2/Δt = 0.139. We consider two different
regimes for the damping: b = 1 and b = 0.05, corresponding to lifetimes of the perturbations
much shorter (b−1 = 1) than the time scales of the flow (as given by 2π/ω� 15.7), or longer
(b−1 = 20). For the flow all parameters are fixed as mentioned above, except the one giving the
temporal modulation of the meander amplitude: ν = 0, representing a steady flow or ν = 0.7,
giving a time-dependent flow.

The network adjacency matrix A(k) is constructed from Eqs (15), (16) and (17). We find
that using in the sum of Eq (15) a number of terms k = 314 for b = 1 and k = 942 for b = 0.05
(which satisfy the condition bkΔt>>1) is sufficient to pass the spin-up period in which the
initial correlations (the first term in the right-hand-side of Eq 13) are still important, and to
reach the asymptotic statistical regime. When ν = 0 the flow is static, with streamfunction plot-
ted in Fig 1, and then the network constructed from A(k) is also static. When ν 6¼ 0 the flow,
and then the correlations and the network, is periodic with period 2π/ω. For the values used for
k, the times kΔt correspond to exactly 4 or 12 periods after time t = 0 so that at these instants
the streamfunction is also the one plotted in Fig 1. To highlight the spatial structures in the net-
work we fix the threshold γ such that the node density is 0.075 for the cases with b = 0.05, and
0.003 for b = 1. Because of the different values we cannot directly compare the absolute values
of the network metrics computed at different b. But we will be only interested in the spatial pat-
terns. We have checked that, although details of the degree and clustering distributions vary,
changing the link density in a factor of two does not alter the location of the regions of high
and low values of degree and clustering with respect to the ones in Figs 2 and 3.

To analyze the network structure we calculate standard network measures [1, 33, 34]: node
degree centrality, which is the number of links adjacent to the node, and node clustering coeffi-
cient, which is the fraction of triangles actually present through that node with respect to the
possible ones, given their neighbors. The degree of the nodes in the network is plotted in Fig 2
for the four combination of parameters involving ν = 0, 0.7 and b = 1, 0.05. Fig 3 displays the
corresponding clustering values.

In the static case (ν = 0, panels A and B of Figs 2 and 3) the streamfunction, given in Eq (18)
is constant in time, and plotted in Fig 1. As expected from Eq (15) and the discussion above,
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regions of high degree are not precisely associated with strong currents. Nevertheless, when
damping rate is fast (b = 1, Fig 2A) the general spatial structure of the degree reflects the
meandering shape of the flow. The similarity is stronger between flow and clustering plots (Fig
3A): patches of strong clustering follow the meander structure, with high clustering usually
associated to zones of low degree, and viceversa.

The situation completely changes for b = 0.05 (Figs 2B and 3B). Here both degree and clus-
tering become nearly homogeneous, with only some weak structure elongated on the horizon-
tal x direction. The reason is that now many terms corresponding to different times contribute
to the sum in Eq (15), averaging the resulting correlations that loose spatial structure.

Fig 2. Node degree centrality for the correlation networks constructed for different flows and decay rates. The direction x is
horizontal and y is the vertical. Panels A and B display the case of the static flow, ν = 0. C and D are for the amplitude-changing case,
ν = 0.7. The network for the dynamic case is plotted at a time after t = 0 multiple of the flow period. Then, for all panels the streamfunction at
the time plotted is the one shown in Fig 1. Panels A and C are for the fast decay case b = 1, and B and D are for the slow decay, b = 0.05, of
the transported substance. Other parameters as stated in the text.

doi:10.1371/journal.pone.0153703.g002
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If we turn on now the temporal dependence of the flow, ν = 0.7, little changes are seen. For
the case b = 1 (Figs 2C and 3C) this is easy to interpret, since as discussed above only a few
terms in the sum in Eq (15), the ones with (k − l)bΔt< 1, contribute. For them the flow stays
essentially unchanged (the time scale for changes in the flow is 2π/ω� 15.7� b−1 = 1). Thus
the results should be nearly equivalent to the static case. In fact only small increases in degree
in the central parts and decreases of degree at the maxima are seen in Fig 2C with respect to the
static case Fig 2A. Despite the long-time transport properties are rather different in the static
and time-dependent case (in particular Lagrangian transport is chaotic at ν = 0.7 [29]) a large
damping b restricts the correlations to be influenced only by the short term dynamics, which is
similar to the static case.

Making the decay rate slower (b = 0.05, Figs 2D and 3D) in this dynamic case for ν = 0.7 has
also the consequence of homogenizing the spatial structure, in a manner similar to that of the
static case. The structure is here slightly more homogeneous than for ν = 0, because of the addi-
tional mixing associated to the chaotic dynamics.

Discussion and outlook
The results shown above close a gap in the theoretical understanding of the relationship between
networks constructed from correlation functions, as usually done for climate networks, and the
underlying dynamics of the fluid transport.

Fig 3. Node clustering coefficient for the correlation networks constructed for different flows and
decay rates. Panels are for the same parameters as in Fig 2.

doi:10.1371/journal.pone.0153703.g003
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A first observation is that, when the Pearson correlation is used to establish links between
nodes, correlation networks are not sensitive to steady sources and sinks of the transported
substances. Also the normalization in Eq (16) eliminates the dependence on fluctuation inten-
sity. As a consequence in geophysical contexts, one cannot look into climate networks for
information about these processes. Note that this implication is strictly valid only for the linear
ADE dynamics in Eq (1) and will not apply to dynamics involving nonlinear processes (plank-
ton dynamics, vorticity, . . .). Also, it may not hold when nonlinear measures of statistical
dependence, such as mutual information, information transfer [14, 35] or event synchroniza-
tion [11] replace the correlation function.

Another important point, evident from Eq (15), is that the relationship between the corre-
lation network, constructed from C(k) and the underlying flow transport network (character-
ized byMkk

0 or Gkk
0) is not direct, since the correlation expression involves a sum over

time, and each term involves the product of two propagators, meaning that correlated nodes
are not the ones connected by the flow, but the ones affected within a time b−1 by perturba-
tions coming from a common origin. It is straightforward to repeat the calculations for the
case in which a colored noise correlation is used for �(k). The result is that correlated nodes
are the ones affected by perturbations coming from locations within the same correlation
length and time of the noise. In consequence, patterns of degree or of other network mea-
sures are related to flow patterns in a rather indirect way, as Figs 2 and 3 confirm. Note that
this result relies strongly on considering the equal-time correlation. In cases in which a time-
lagged correlation is used [9, 19, 36], the resulting network would be more associated to fluid
transport occurring between nodes during the selected temporal lag. Also, our analysis in
this paper is restricted to the ADE dynamics implemented by Eq (1), which considers only
material transport. Our conclusions may not apply to climate networks constructed from
variables involving wave propagation (Kelvin, Rossby, . . .), such as sea surface height or geo-
potential [37].

From the numerical results presented here it is seen that one of the parameters having the
largest impact on the network topology, in fact more than the flow geometry or temporal vari-
ability, is the characteristic time scale of perturbation damping (here represented by the decay
rate b). This important parameter would then have to be taken into account when investigating
the structure of climate networks constructed from observed or analyzed data.

In summary we have elucidated, in the context of ADE dynamics, general relationships
between correlation and flow networks, overcoming some restrictions of previous approaches,
[19]. Moreover, flow networks are further applicable, for instance, to study changes in flow
behavior [38, 39]. All in all, the methods above can, in principle, be applied in other contexts,
in which temporal networks [4, 40, 41] are used in order to study transport process, so the pres-
ent framework can be useful to investigate different complex systems.
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