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eTOC Blurb 26 

Doubleday et al. compiled a global dataset of cephalopod abundance and demonstrate that 27 

squid, octopus and cuttlefish populations have increased over the last six decades. This study 28 

suggests that these ecologically and commercially important invertebrates have increased on 29 

a global scale and may be benefiting from a changing marine environment. 30 

 31 

Main text 32 

Human activities have substantially changed the world’s oceans in recent decades, altering 33 

marine food webs, habitats and biogeochemical processes [1]. Cephalopods (squid, cuttlefish 34 

and octopuses) have a unique set of biological traits, including rapid growth, short lifespans 35 

and strong life-history plasticity, allowing them to adapt quickly to changing environmental 36 

conditions [2-4]. There has been growing speculation that cephalopod populations are 37 

proliferating in response to a changing environment, a perception fuelled by increasing trends 38 

in cephalopod fisheries catch [4, 5]. To investigate long-term trends in cephalopod 39 

abundance, we assembled global time-series of cephalopod catch rates (catch per unit of 40 

fishing or sampling effort). We show that cephalopod populations have increased over the 41 

last six decades, a result that was remarkably consistent across a highly diverse set of 42 

cephalopod taxa. Positive trends were also evident for both fisheries-dependent and fisheries-43 

independent time-series, suggesting that trends are not solely due to factors associated with 44 

developing fisheries. Our results suggest that large-scale, directional processes, common to a 45 

range of coastal and oceanic environments, are responsible. This study presents the first 46 

evidence that cephalopod populations have increased globally, indicating that these 47 

ecologically and commercially important invertebrates may have benefited from a changing 48 

ocean environment. 49 

 50 
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Our dataset spanned the last 61 years (1953 to 2013), with all major oceanic regions 51 

represented (69% northern hemisphere, 31% southern hemisphere), along with key taxa (52% 52 

squid, 31% octopuses, 17% cuttlefish and sepiolids) (Figure 1, Table S1). We restricted these 53 

time-series data to cephalopod catch rates, which are a more reliable proxy of abundance than 54 

raw catch [6]. Our analyses revealed that cephalopod abundance has increased over the last 55 

six decades, a result consistently replicated across three distinct life history groups: demersal, 56 

benthopelagic, and pelagic (Figure 1, all effective degrees of freedom [edf] = 1, all p values ≤ 57 

0.01). This is remarkable given the enormous life-history diversity exhibited across these 58 

groups, which were represented in this study by 35 species/genera and six families (Table 59 

S1). Demersal species, for instance, have low dispersal capacity (tens of km) and occupy 60 

shelf waters; benthopelagic species also occupy shelf waters, but have moderate dispersal 61 

capacity (hundreds of km) largely facilitated by a paralarval phase; and pelagic species 62 

inhabit open oceanic waters and have high dispersal capacity (thousands of km) facilitated by 63 

both a paralarval phase and a mobile adult phase. Furthermore, our collated time-series 64 

represented non-target, bycatch and target species, with target species being subject to 65 

varying levels of fishing pressure that ranged from large-scale developed fisheries to 66 

developing, artisanal and subsistence fisheries (Table S1). We also investigated trends by 67 

data type, because fisheries-dependent time-series (as opposed to fisheries-independent time-68 

series derived from survey data) can be influenced by factors such as increasing catch 69 

efficiency and the spatial expansion of fishing grounds. Significant positive trends for time-70 

series derived from both data sources were evident (all edf = 1, all p values < 0.05), which 71 

suggests that the observed trends in catch rate are not an artefact of such factors (Figure 1).  72 

 73 

Our results suggest that the proliferation of cephalopod populations has been driven by large-74 

scale processes that are common across a broad range of marine environments and facilitated 75 



4 
 

by biological characteristics common to all cephalopods. Numerous studies demonstrate that 76 

cephalopod populations are highly responsive to environmental change, with anthropogenic 77 

climate change, especially ocean warming, a plausible driver of the observed increase [4, 7]. 78 

Elevated temperatures, for instance, are thought to accelerate the life cycles of cephalopods, 79 

provided the optimal thermal range of the species is not exceeded and food is not limited. 80 

Further, it has been hypothesised that the global depletion of fish stocks, together with the 81 

potential release of cephalopods from predation and competition pressure, could be driving 82 

the growth in cephalopod populations [5]. It is relatively well documented that many fish 83 

species have declined in abundance due to overfishing [e.g. 8], and several regional studies 84 

have suggested that cephalopod populations have increased where local fish populations have 85 

declined (albeit casual mechanisms have not been identified)  [e.g. 5, 9, and S5, S11 in Table 86 

S1]. However, a range of other environmental factors, such as changing current systems and 87 

climatic cycles, increases in extreme weather events, eutrophication and habitat modification 88 

[1], could also potentially confer a competitive advantage to cephalopods over longer-lived, 89 

slower-growing marine taxa.  90 

 91 

The ecological and socio-economic ramifications associated with an increase in cephalopod 92 

biomass are likely to be complex. Cephalopods are voracious and adaptable predators and 93 

increased predation by cephalopods could impact many prey species, including commercially 94 

valuable fish and invertebrates. Conversely, increases in cephalopod populations could 95 

benefit marine predators which are reliant on them for food, as well as human communities 96 

reliant on them as a fisheries resource. However, cephalopod population dynamics are 97 

notoriously difficult to predict and human activities may have a deleterious effect on 98 

cephalopod populations in the future. For example, early evidence suggests that ocean 99 

acidification, due to increased CO2 emissions, may impact cephalopod survival [4]. Further, 100 



5 
 

as fish stocks have declined, cephalopods have become an ever more important component of 101 

global fisheries [10], with cephalopod fisheries catch peaking in recent years [4] and some 102 

cephalopod fisheries showing signs of overexploitation (e.g. see S7, S22 in Table S1). 103 

Therefore, as fisheries continue to refocus their efforts towards invertebrates [10], it will be 104 

critical to manage cephalopod stocks appropriately so they do not face the same fate as many 105 

of their longer-lived counterparts.  106 

 107 
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Figure Legend 149 

 150 

Figure 1. Trends in cephalopod abundance  151 

Trends in abundance from 1953 to 2013 for demersal (i), benthopelagic (ii) and pelagic (iii) 152 

cephalopods (all edf = 1, all p values ≤ 0.01), with number of time-series by life-history 153 

group (iv; total n = 67). Illustrations depict key taxa associated with each group. Demersal = 154 

species with no planktic paralarval stage, benthic eggs and benthic/demersal hatchlings and 155 

adults; benthopelagic = species with benthic eggs, planktic paralarvae and demersal adults; 156 

pelagic = planktic eggs and paralarvae and pelagic adults. Trends in abundance for time-157 

series derived from fisheries data (v) and survey data (vi) (all edf = 1, all p values < 0.05). 158 

For all abundance plots, dark blue lines represent fitted values derived from generalised 159 

additive mixed models (± 95% CI) and black lines represent mean standardized time-series 160 

(z-scores). See Supplemental Experimental Procedures and Table S1 for categorisation of 161 

each time-series. 162 
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Table S1 (related to Figure 1 and Supplemental Experimental Procedures). Metadata for each time-series of cephalopod abundance (n = 67). All series are in units of catch 
or proportional catch per unit effort (catch rate) or lobster ‘kills’ per unit effort (predation rate). LH (life history group) = demersal (D), benthopelagic (B), pelagic (P); Data 
type = fisheries-independent survey data (S); fisheries data (F). * = series with 1 or 2 missing years, # = predation-based time series.  
 

Family & species LH 
Country of 

origin 
Latitude Longitude Time period 

No. of 
Years 

Data 
type 

Source1  

Loliginidae         
Alloteuthis sp B Spain 36.990 -7.103 1997-2012 16 S [S1] 

Doryteuthis gahi B Falkland Is -51.700 -57.943 1989-2013 25 F FD  

Loligo bleekeri B Japan 39.929 134.176 1975-2006 32 F [S2] 

Loligo forbesii  B UK 57.158 -1.921 1980-2012 33 S MSS  

Loligo forbesii  B Spain 36.990 -7.103 1997-2012 16 S [S1] 

Loligo opalescens B USA 36.519 -121.884 1969-2006 38 F [S3] 

Loligo pealeii B USA 40.820 -70.952 1973-2001 29 S [S4] 

Loligo pealeii B USA 41.444 -71.420 1959-2005 47 S [S5] 

Loligo vulgaris B Morocco 23.887 -16.056 1990-2006*  17 S [S6] 

Loligo vulgaris B Portugal 39.764 -9.414 1953-2013*  61 F IPMA 

Loligo vulgaris B Spain 36.990 -7.103 1997-2012 16 S [S1] 

Loligo vulgaris B Spain 39.431 1.912 1966-2012 47 F [S7] updates IEO 

Loligo sp, Alloteuthis sp B UK 49.676 -9.065 1982-2004 23 S Cefas 

Loligo sp, Alloteuthis sp B UK 51.111 1.569 1989-2013 25 S Cefas 

Loligo sp, Alloteuthis sp B UK 53.723 -4.997 1988-2013 26 S Cefas 

Loligo sp, Alloteuthis sp B UK 55.783 0.965 1992-2013 22 S Cefas 

Loligo sp, Uroteuthis sp B Indonesia -8.596 119.256 1976-2003 28 F [S8] 

Sepioteuthis australis D Australia -34.843 138.209 1984-2013 30 F SARDI  

Sepioteuthis australis D Australia -42.182 148.168 1996-2013 18 F DPIPWE 

Uroteuthis sp B Australia -20.730 149.706 1990-2011 22 F [S9] 

Ommastrephidae         

Dosidicus gigas P Peru -12.110 -77.385 1991-2002 12 F [S10] 

Dosidicus gigas  P USA 45.988 -126.493 1991-2006 16 F [S11] 

Illex argentinus  P Falkland Is -51.700 -57.943 1989-2012 25 F FD 

Illex coindetii P Spain 36.990 -7.103 1997-2012 16 S [S1] 

Illex illecebrosus P USA 40.820 -70.952 1967-2005 39 S [S12] 



Nototodarus gouldi P Australia -38.873 141.693 1996-2013 18 F [S13] 

Nototodarus sloanii P NZ -48.070 166.424 1982-2008 27 F [S14] 

Ommastrephes bartramii P Japan 25.580 146.794 1974-2001 28 F [S15] 

Todarodes pacificus P Korea  39.929 134.176 1970-2005 36 F [S16] 

Todarodes pacificus  P Japan 35.028 141.894 1979-2012 34 F [S17] 

Todarodes pacificus  P Japan 39.929 134.176 1979-2012 34 F [S18] 

Todaropsis eblanae P Spain 36.990 -7.103 1997-2012 16 S [S1] 

Todarodes sp, Illex sp, Todaropsis sp P UK 49.676 -9.065 1982-2004 23 S Cefas 

Todarodes sp, Illex sp, Todaropsis sp P UK 55.783 0.965 1992-2013 22 S Cefas 

Thysanoteuthidae         

Thysanoteuthis rhombus P Japan 39.929 134.176 1989-2003 15 F [S19] 

Octopodidae         

Eledone cirrhosa B UK 55.783 0.965 1992-2013 22 S Cefas 

Eledone cirrhosa B UK 53.723 -4.997 1988-2013 26 S Cefas 

Eledone cirrhosa  B UK 49.676 -9.065 1982-2004 23 S Cefas 

Eledone cirrhosa B Spain 36.990 -7.103 1997-2012 16 S [S1] 

Eledone moschata D Spain 36.990 -7.103 1997-2012 16 S [S1] 

Enteroctopus dofleini B Canada 49.274 -123.194 1983-1997 15 F [S20] 

Enteroctopus megalocyathus B Chile -45.266 -72.820 2002-2013 12 F IFOP  

Macroctopus maorum B Australia -34.843 138.209 1994-2013 20 F SARDI  

Macroctopus maorum B Australia -42.182 148.168 1992-2013 22 F# DPIPWE 

Macroctopus maorum B Australia -42.257 144.991 1992-2013 22 F# DPIPWE 

Macroctopus maorum B Australia -43.017 147.921 1996-2013 18 F DPIPWE 

Octopus (cf.) tetricus B Australia -30.319 114.911 1981-2012 32 F# [S21] 

Octopus cynea B Madagascar -22.380 42.493 2004-2013 10 F Blue Ventures 

Octopus cynea B Mauritius -19.610 63.377 1994-2006*  13 F [S22] 

Octopus mimus B Chile -22.079 -70.288 2002-2013 12 F IFOP 

Octopus pallidus D Australia -34.843 138.209 1987-2013 27 F SARDI  

Octopus pallidus D Australia -40.513 145.297 1995-2013 19 F DPIPWE 

Octopus vulgaris B Morocco 20.969 -17.243 1990-2008 19 S [S6] 

Octopus vulgaris B Portugal 39.764 -9.414 1953-2013*  61 F IPMA 

Octopus vulgaris B Spain 36.990 -7.103 1997-2012 16 S [S1] 



Octopus vulgaris B Spain  39.431 1.912 1966-2012 47 F [S7] updates IEO 

Sepiidae         

Sepia apama D Australia -34.843 138.209 1984-2013 30 F SARDI  

Sepia elegans D Spain 36.990 -7.103 1997-2012 16 S [S1] 

Sepia officinalis D UK 51.111 1.569 1989-2013 25 S Cefas 

Sepia officinalis D Portugal 39.764 -9.414 1953-2013*  61 F IPMA 

Sepia officinalis D Spain 36.990 -7.103 1997-2012 16 S [S1] 

Sepia officinalis D Spain  39.431 1.912 1966-2012 47 F [S7] updates IEO 

Sepia sp. D UK 53.723 -4.997 1988-2013 26 S Cefas 

Sepia sp. D UK 55.783 0.965 1992-2013 22 S Cefas 

Sepia sp. D Morocco 20.969 -17.243 1982-2006 25 S [S6] 

Sepiolidae         

Unknown B UK 53.723 -4.997 1988-2013 26 S Cefas 

Unknown B UK 55.783 0.965 1992-2013 22 S Cefas 
 
1 Source acronyms: MSS = Marine Scotland Science (Scotland); Cefas = Centre for Environment, Fisheries & Aquaculture Science (England); IPMA = Instituto Português do 
Mar e Atmosfera (Portugal); IFOP = Instituto de Fomento Pesquero (Chile); SARDI = South Australian Research and Development Institute, Aquatic Sciences (South 
Australia); IEO = Instituto Español de Oceanografía (Mallorca); DPIPWE = Department of Primary Industries, Parks, Water and Environment (Tasmania); FD = Fisheries 
Department (Falkland Islands). Numbers in square brackets refer to published sources (see Supplemental References).  
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Supplemental Experimental Procedures 

We searched extensively for available published and unpublished long-term (≥ 10 years) annual time-series of cephalopod 

abundance (catch rate) (Table S1). Where necessary, graph scanning software (Plot Digitizer 2.6.6) was used to extract 

data from published graphs. We obtained 67 time-series of cephalopod catch rates (catch data standardised to fishing or 

survey-sampling effort) from both fisheries-dependent (54%) and fisheries-independent (46%) sources. Time-series ranged 

from 10 to 61 years in length (mean: 26 years), spanning the time period from 1953 to 2013 (Figure 1). Series that could 

not be identified to the family level were omitted, as well as series with > 2 missing years. A small number of time-series 

(n = 3) were based on octopus predation rates in rock lobster fisheries (i.e. number of lobster ‘kills’ per unit of fishing 

effort), as opposed to the standard catch rate. To account for different measures of catch and predation rate within the 

dataset, each catch-rate series was standardised to a mean of 0 and standard deviation of 1 (i.e. z-scores). Casewise 

deletion was applied to those time-series (n = 5) with one or two years of missing data. Time-series were categorised into 

three life-history groups (demersal, benthopelagic, and pelagic; see Figure 1 for definitions) and two data types (fisheries-

dependent data and fisheries-independent survey data) (see Table S1).  

 

We used generalised additive mixed models (GAMMs) to investigate temporal trends in cephalopod abundance, which we 

fitted within the R computing environment (version 3.2.0) using functions within the package mgcv [S23]. Generalised 

additive models provide a data-driven method of accounting for non-linear relationships between response and predictor 

variables by including smoothing functions of those predictors [S24, 25]. We controlled for serial dependence through 

time by assuming a within time-series autoregressive moving-average (ARMA) process with p=1 and q=1 (i.e. temporal 

lags of one year for both the autoregressive and moving-average terms), which was pre-selected over alternative temporal 

autocorrelation structures based on Akaike’s Information Criterion (AIC) [S26]. We used GAMMs to estimate trends in 

abundance for species with different life histories. To determine if trends were influenced by possible biases associated 

with fisheries-dependent data, we also investigated abundance trends by data type. We reported the effective degrees of 

freedom for each fitted smooth term (edf, where a linear fit is indicated by an edf of 1) and its approximate significance (p 

value). 
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