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Abstract 

 

This paper focuses on the interrelationship between educational mismatch and earnings taking 

two new approaches.  First, we examine decompositions of the mismatch wage gap, finding 

that characteristics explain less than half of the mismatch penalty.  Second, we use quantile 

regression to examine the mismatch penalty across the earnings distribution, showing that the 

penalty shrinks as the position in the earnings distribution increases.  Different reasons for 

mismatch show heterogeneity in the penalty at the mean and at different points in the 

distribution with larger penalties for being mismatched due to working conditions, location, 

family, and no available job.   
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INTRODUCTION 

College students invest in their education with the assumption that the knowledge and skills 

they acquire in their degree will be useful and demanded in the labor market.  Indeed, in an 

efficient labor market, the human capital that workers possess would match the human capital 

that firms require.  Yet research finds that there is a mismatch between the human capital 

workers acquire through education and the human capital required for the job.  Estimates vary, 

but generally about 15 to 30% of workers are educationally mismatched in developed 

economies (e.g. Bender and Roche, 2013; Chevalier, 2003; Wolbers, 2003).   

 

While there is some debate over the causes of mismatch and whether it is a labor supply or 

labor demand phenomenon (or both), there is consistent and robust empirical evidence that 

mismatch is correlated with adverse labor market outcomes.  These include lower job 

satisfaction (e.g. Baker et al. 2010; Bender and Heywood, 2006), more turnover (e.g. Bender 

and Heywood, 2009; Wolbers, 2003), and lower pay (e.g. Bender and Heywood, 2009; 

Chevalier 2003). 

 

This paper investigates the latter issue by focusing on the interrelationship between educational 

mismatch and earnings.  Using data on full-time workers with college degrees in the U.S., we 

estimate a 7% wage penalty for workers whose degrees are somewhat related to their job, and 

a 22% wage penalty for workers who degrees are not at all related to their job on average, 

ceteris paribus.  For the latter group, wage penalties vary greatly depending on the reason for 

the worker’s mismatch.   For example, workers who are mismatched due to location, family 

responsibilities, and limited job availability incur large penalties exceeding 30%.  However, if 

a worker is mismatched due to pay or a career change, the penalty is smaller. 
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These findings, discussed in more detail below, are fairly representative of the earnings 

penalties found in the literature.  In this paper, we add to the current literature using two new 

approaches in investigating the mismatch-earnings relationship.  First, we decompose the 

earnings differential to estimate the proportion of the penalty that is attributable to observed 

characteristics versus unobserved characteristics.  Using an Oaxaca-style decomposition, we 

estimate that observed characteristics, such as gender, age, occupation, and industry, explain 

less than half of the differential.  In addition, observed characteristics explain a greater portion 

of the differential for males relative to females.   

 

Second, we examine the mismatch penalty across the earnings distribution.  Using a mean 

squared error (MSE) decomposition which attempts to capture a more detailed measure of 

differences in earnings between the matched and mismatched by comparing the first two 

moments of the two distributions, our results suggest that earnings differences between the 

matched and mismatched are driven more by differences in the distributions than by differences 

in average earnings.  We also find that it is the difference in distributions that explains a larger 

percentage of the differential for men compared to women.  Next, we employ quantile 

regression to estimate the differential across the earnings distribution.  Among workers with 

jobs that are not at all related to their education, the penalty decreases as the position in the 

earnings distribution increases.  These penalties differ by gender and by reason for mismatch. 

 

This paper is organized as follows. First, a brief review of the literature provides a background 

for the research on quantile regression and educational mismatch.  The data are then defined 

and examined for descriptive statistics and results are presented on the earnings differential 

decomposition and the earnings differential across the earnings distribution.  Finally, the results 

of the paper are summarized and recommendations for future work are made. 
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I.  LITERATURE REVIEW 

Educational mismatch 

Previous research on educational mismatch focuses on the effects of being employed in a job 

that is not well matched with a worker’s education. There is consistent and robust empirical 

evidence in the economics literature that educational mismatch is correlated with adverse labor 

market outcomes.  These include lower job satisfaction (e.g. Baker et al. 2010; Bender and 

Heywood, 2006), more turnover (e.g. Bender and Heywood, 2009; Wolbers 2003), and lower 

pay (e.g. Bender and Heywood, 2009; Chevalier, 2003).  Given that our paper investigates the 

latter outcome, we focus our literature review on the educational mismatch earnings penalty 

and its measurement.   

 

The literature defines educational mismatch as vertical mismatch (over- or under-education) or 

horizontal mismatch (the match between worker skills or education and the job being done).  

In general, wage penalties are estimated with both types of mismatch, although the magnitudes 

of the penalties differ depending on the type.  For example, a meta-analysis by Groot and 

Maasen van den Brink (2000) shows that the over-educated experience a 14% earnings penalty.  

Another study using UK data (Chevalier, 2003) estimates a 5-11% penalty for mismatched 

workers who have similar unobserved skills as matched workers, and a 22-26% penalty for 

mismatched workers with lower skill endowments as matched workers.  Studies that investigate 

the horizontal mismatch penalty (see Borghans and de Grip, 2000; Bender and Heywood, 2009; 

Bender and Roche, 2013) find a similar result – working in a job unrelated to one’s field of 

education is associated with significantly diminished earnings, and these penalties increase 

with the severity of mismatch. 
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However, these studies above examine the penalty using standard linear regression methods 0 

essentially estimating the penalty at the conditional mean.  More recently, economists have 

started to examine mismatch penalties conditional on the position in the earnings distribution.  

Thus, a brief review of quantile regression and its application to educational mismatch follows. 

 

Quantile regression 

Previous research that estimates wage equations finds that wages vary significantly across the 

distribution and therefore estimation of wage determinants using OLS can provide biased 

results.  Seminal papers focus on measuring the returns to education.  Buchinsky (1994 and 

1998) implements quantile regression to estimate the returns to skills, i.e., the return to 

education and the return to experience, across the wage distribution.  Buchinsky finds that 

relative to median regression, OLS underestimates the returns to skills, and the returns to skills 

increase across the wage distribution.  That is, workers at the bottom of the wage distribution 

experience smaller returns to education and experience, and workers at the top of the wage 

distribution experience higher returns to education and experience.   

 

In a novel paper using twins data, Arias et al. (2000) estimate the returns to education using 

instrumental variables quantile regression.  The authors regard the wage distribution as a 

reflection of the range of unobservable ability, so that people at the bottom of the wage 

distribution are believed to have less ability and people at the top of the wage distribution are 

believed to have more ability.  Accordingly, they argue that education and unobserved ability 

have a complementary relationship, and given the additional indirect effect of education on 

human capital, education helps high-ability individuals more. 
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Subsequent research expands on the usefulness and application of quantile regression.  Yu et 

al. (2003) is a highly-cited paper that summarizes the motivation and many applications of 

quantile regression.  Recently, quantile regression has been applied to research on educational 

mismatch.  The results from these papers, which mainly measure the effect of mismatch on 

wages in developed economies, are mixed.   

 

Evidence from Spain (Budria and Moro-Egido, 2008) and Northern Ireland (McGuinness and 

Bennett, 2007) show a mismatch penalty that narrows as the position in the earnings 

distribution increases.  However, in an opposing paper, Hernández and Serrano (2012) find that 

the mismatch penalty in Spain is larger for high-wage workers in the upper part of the 

distribution, implying that it is not unobservable characteristics, but rather educational 

mismatch itself driving the wage inequality.1   

 

In summary, further analysis is warranted to better understand the interrelationship between 

educational mismatch and earnings, particularly in a distributional context.  While the current 

literature agrees that mismatch is correlated with lower pay, it is conflicted on how the earnings 

penalty differs at different positions in the earnings distribution.  Furthermore, we know little 

of what explains the mismatch penalty, and whether it is attributable to a difference in 

distributions or a difference in means between matched and mismatched workers. 

 

II.  DATA 

This paper uses the 2003 US National Survey of College Graduates (NSCG) dataset from the 

US National Science Foundation (NSF).  The data are a nationally representative sample of 

approximately 66,000 university educated workers who either work in science, technology, 
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engineering, or math (STEM) fields, or have earned at least a bachelor’s degree in a STEM 

field.   

 

The NSCG asks respondents a key subjective question giving a measure of horizontal 

mismatch, “Thinking about the relationship between your work and your education, to what 

extent is your work related to your highest degree? Closely related, somewhat related, or not 

at all related.”  We identify these workers as closely matched, moderately mismatched, and 

severely mismatched, respectively.  If workers are severely mismatched, the NSCG asks them 

follow-up questions about the most important reason for working in a field that is not at all 

related to their highest degree.  Reasons include pay and promotion opportunities, working 

conditions, job location, change in career or professional interests, family-related reasons, job 

not available, and other.2  Table 1 presents rates of mismatch, rates for the reasons of severely 

mismatched workers, and mean and median earnings by mismatch type.  It is interesting to note 

that there is an association between increasing mismatch and lower mean and median earnings 

for the overall sample as well as in both the female and male samples. 

(Table 1 here) 

In addition to the educational mismatch variables, the dataset provides a standard set of 

socioeconomic variables.  The following analysis restricts the data to full-time workers who 

report positive earnings in order to examine workers in career-type jobs only.   

 

III. RESULTS 

Mismatch penalty using Ordinary Least Squares (OLS) 

First, we examine the mismatch penalty using the traditional approach, ordinary least squares 

(OLS).  Log hourly earnings are regressed on indicators for moderate mismatch, severe 

mismatch, and a standard set of covariates, including gender, age, age squared, race, marital 
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status, US citizenship, experience, experience squared, tenure, tenure squared, highest degree, 

occupation, industry, disability status, employment sector, firm size, and region.   

 

Similar to previous research, we find fairly substantial earnings penalties using OLS as seen in 

Table 2.  Relative to matched workers, ceteris paribus, moderate mismatch is associated with 

a 6.8% penalty and severe mismatch is associated with a 22.4% penalty.  These penalties differ 

only slightly by gender.  For severely mismatched workers, the mean earnings penalty varies 

depending on the most important reason for their mismatch, as shown in the separate regression 

results in the bottom panel of Table 2.  Mismatched workers with the largest penalties of nearly 

30% or more are mismatched because of working conditions, job location, family 

responsibilities, and a job not being available in their educational field.  However, when 

workers are mismatched due to pay or promotion or a career change, they incur much smaller 

earnings penalties, not much different than those who are moderately mismatched. 

(Table 2 here) 

Decomposing the mismatch penalty  

Given that the mismatch penalty is large and statistically significant, we then examine the 

proportion of the differential that is explained versus unexplained.  That is, we attempt to 

answer the question: can the mismatch penalty be explained by observed characteristics such 

as education and occupation field or is it the unobserved characteristics, captured in the 

estimated coefficients, which drive the gap?  Thus, we use an Oaxaca-style decomposition to 

decompose the wage differential two ways: between the matched and the moderately 

mismatched versus the severely mismatched and between the matched versus the moderately 

and severely mismatched.   
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Table 3 summarizes the Oaxaca-style decomposition results.  Comparing matched and 

moderately mismatched workers to severely mismatched workers in the top panel, we find that 

observed characteristics explain 30% of the mismatch penalty.  These measurable 

characteristics explain more of the penalty (34%) for men, and less of the penalty (25%) for 

women.  Comparing matched workers to moderately and severely mismatched workers, the 

observed characteristics explain only 24% of the penalty, and the gender differences follow the 

same pattern as the previous decomposition.  In general, educational qualifications and 

experience seem to drive the explained portion of the mismatch penalty.  The remaining 

differential, accounting for about two-thirds to three-quarters of the mismatch penalty, is driven 

by unobserved characteristics.  It is the varying returns to observed characteristics, such as the 

returns to education and experience that explains the majority of the penalty.  These varying 

returns can be interpreted as involuntary reasons for mismatch (for example, discrimination or 

a lack of adequate graduate level jobs in the labor market) or the internal barriers that workers 

put on themselves such as voluntary choices or lack of ambition.  

(Table 3 here) 

Indeed, some evidence of this can be found in Table 4, where we calculate decompositions 

between the matched and those mismatched because of pay or because of no job being available 

where the former reason for mismatch is arguably more ‘voluntary’ than the latter.  The results 

there suggest that, not only is the differential smaller for those who are severely mismatched 

due to pay (as expected), but that the ‘explained’ part of the decomposition is relatively higher 

for this group of workers.  For those whose mismatch is attributed to no job being available, 

worker characteristics do not explain much of the differential (no more than 20%).   

(Table 4 here) 
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The earnings distribution and the mismatch penalty 

Most empirical research has focused on OLS measures of the penalty, essentially looking at 

mean effects.  We extend the research to examine the penalty across the earnings distribution.  

The first step is to decompose the difference in earnings between the matched and mismatched 

into a difference in means and a difference in distributions.  Following Bender (2003) and 

Belman and Heywood (2004), we employ a mean squared error (MSE) decomposition (see 

Appendix 1 for a brief sketch of the methodology).  Similar to the Oaxaca decompositions, this 

method decomposes earnings differentials for two groups: between the matched and 

moderately mismatched workers to severely mismatched workers, and matched workers to 

moderately and severely mismatched workers.  Table 5 contains the results of these two 

decompositions.  Generally, the results suggest a relatively large difference in distributions that 

is between 49 and 58% of total MSE.  Small variations are evident when the sample is divided 

by gender.  In both comparisons, the total MSE differential is larger for men relative to women.  

Furthermore, it is the difference in distributions that explains a larger percentage of the 

differential for men compared to women.  For example, when matched and moderately 

mismatched workers are compared to severely mismatched workers, the difference in 

distributions explains 55% of the differential, relative to 47% for women.  When matched 

workers are compared to moderately and severely mismatched workers, the difference in 

distributions explains 62% of the differential for men and 57% of the differential for women.  

Thus, the results of this decomposition clearly point to a need to examine earnings differentials 

along the earnings distribution. 

(Table 5 here) 
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Mismatch penalty using quantile regression 

Given that the MSE decompositions indicate that the difference in earnings distribution play a 

sizeable role in explaining the mismatch penalty, the next step is to estimate the effect of 

mismatch across the earnings distribution using quantile regression (Buchinsky, 1994, 1998). 

 

Figure 1 illustrates the mismatch penalty across the earnings distribution for all workers.  

Moderate mismatch imposes a small penalty that is relatively flat, although the gap narrows 

slightly from 9 to 5% across the earnings distribution.  The mismatch for severely mismatched 

workers is quite different.  Regardless of position in the earnings distribution, severely 

mismatched worker’s earnings do not catch up to the earnings of workers who are only 

moderately mismatched.  Severely mismatched workers incur penalties around 30% in the 

bottom decile, 20% at the median and 13% in the upper decile.  Therefore, we conclude that 

while educational mismatch does come with an earnings penalty and this penalty shrinks as 

workers earn more (as found in Budria and Moro-Egido, 2008 and McGuinness and Bennett, 

2007), it does not dissipate completely, even for the top earners in the sample. 

(Figure 1 here) 

Next, given that we estimate small gender differences in the MSE results, we split the sample 

by gender in the quantile regressions to compare the mismatch penalties across the male and 

female earnings distributions.   In general, the patterns are consistent across genders - see 

Figures 2 and 3.  Two exceptions are noted.  First, among moderately mismatched workers in 

the upper three quartiles, females incur a penalty that is about one percentage point larger 

compared to males.  Second, among severely mismatched workers in the upper decile, females 

continue to reduce their penalty on the same trajectory, whereas the penalty among males 

increases from 12 to 19%. 

(Figures 2 and 3 here) 
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Finally, we draw upon the NSCG’s question that asks severely mismatched workers what is 

the most important reason they work in a field that is not at all related to their educational field.  

Quantile regression is applied to six reasons for mismatch: pay and promotion opportunities, 

working conditions, job location, change in career or professional interests, family-related 

reasons, and job not available.  Figure 4 shows the mismatch penalties across the earnings 

distribution for each reason.  The penalties follow the same general shape, which increase 

across the distribution with a small U-shape (widening of the penalty) in the second decile.  

However, the sizes of the penalties indicate considerable differences in penalties according to 

different reasons for mismatch.  Unsurprisingly, when workers are mismatched due to pay and 

promotion opportunities, they experience the smallest penalties that range from about 2 to 18%.  

Some workers in top decile come close to experiencing no penalty at all compared to matched 

workers.  Changes in career are also associated with smaller penalties that range from about 7 

to 22%.   

(Figure 4 here) 

Workers who are mismatched due to a change in career, family-related reasons, location, and 

job availability incur the largest penalties.  Some interesting findings by reason follow.  When 

workers are mismatched due to family-related reasons, they incur penalties from about 28 to 

34% in the bottom half of the earnings distribution, however the penalty narrows significantly 

in the upper half of the distribution.  These workers experience an estimated 22% penalty in 

the 90th percentile on a 10% penalty in the 99th percentile.  When workers are mismatched due 

to location and job availability, their penalties widen in the top decile, increasing from 24 to 

32% and 26 to 37%, respectively. 

 

Again, we split the sample by gender, this time investigating gender differences by the reason 

for mismatch across the earnings distribution.  The results do indicate some differentials by 
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gender, but the differences are not often statistically significant (results available from the 

authors).   

 

IV.  CONCLUSION 

While there has been a good deal of research on the earnings penalty for educational mismatch, 

this has primarily examined differences at the mean level of earnings.  This paper is one of the 

few that have extended the analysis to examining the penalties across the earnings distribution 

and the first to decompose the earnings differentials for mismatch penalties into ‘explained’ 

and ‘unexplained’ components, to examine whether incomparability in earnings is mostly due 

to differences on average or in the distribution and to identify whether the reason for mismatch 

impacts the penalty across the distribution. 

 

Using data from a large, nationally representative dataset of highly educated workers in the 

US, we find that worker characteristics explain a relatively small proportion of the earnings 

differentials, particularly for involuntary types of mismatch.  In addition, incomparability in 

earnings between the matched and mismatched is primarily a function of differences in the 

distributions, indicating the need to focus more on the impact of mismatch throughout the 

distribution.  Quantile regressions suggest particularly large mismatch penalties among the low 

paid and for workers who are mismatched due to no job being available, to family or to 

locational reasons. 

 

As there has been little research done on the distributional aspects of mismatch, the results from 

this paper suggest a number of interesting avenues for future research.  For example, the sample 

of highly educated workers in STEM fields is quite selected and so it would be interesting to 

see if the results would be replicated in a more broadly representative sample of workers.   
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Individual heterogeneity could also play a part in the results and the use of panel estimation 

would be an interesting extension.  Finally, this research has only focused on the labor supply 

side of the market.  Bringing in the labor demand side by including firm characteristics would 

add an interesting dimension to the research.  
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Table 1. Rates of mismatch, rates of the reasons of severely mismatched workers, and mean 

and median earnings by mismatch type 

    

Rates of mismatch Full Female Male 

Closely Matched 62.1% 64.1% 60.9% 

Moderately Mismatched 23.8 21.3 25.3 

Severely Mismatched 14.1 14.7 13.7 

    

Rates of the reasons for severe mismatch 

Pay 31.2% 27.7% 34.7% 

Conditions 9.2 10.0 8.6 

Location 6.1 6.0 6.3 

Career 20.7 20.1 21.0 

Family 8.4 13.1 5.6 

No job 15.7 15.5 15.8 

Other 7.7 7.2 8.0 

    

Mean Annual Pay 

Closely Matched $35,319 $29,621 $38,772 

Moderately Mismatched 31,915 26,811 34,384 

Severely Mismatched 26,441 23,593 28,197 

    

Median Annual Pay 

Closely Matched $30,594 $26,042 $33,654 

Moderately Mismatched 28,846 24,038 30,831 

Severely Mismatched 22,436 19,872 24,038 

 

Data source: Data are for 66,172 full-time workers from the 2003 NSCG.  
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Table 2. Selected results from Ordinary Least Squares regression 

 

Variable Full  Female Male 

Moderately mismatched 
-0.068*** 

(0.004) 

-0.076*** 

(0.007) 

-0.064*** 

(0.006) 

Severely mismatched 
-0.224*** 

(0.006) 

-0.209*** 

(0.009) 

-0.225*** 

(0.007) 

    

Reasons for severe mismatch 
   

Pay and promotion opportunities 
-0.083*** 

(0.004) 

-0.064*** 

(0.015) 

-0.094*** 

(0.011) 

Working conditions 
-0.271*** 

(0.016) 

-0.246*** 

(0.023) 

-0.273*** 

(0.021) 

Location 
-0.339*** 

(0.019) 

-0.321*** 

(0.029) 

-0.340*** 

(0.024) 

Career change 
-0.177*** 

(0.011) 

-0.142*** 

(0.017) 

-0.191*** 

(0.014) 

Family-related 
-0.332*** 

(0.016) 

-0.333*** 

(0.020) 

-0.282*** 

(0.025) 

No job available 
-0.388*** 

(0.012) 

-0.340*** 

(0.019) 

-0.407*** 

(0.015) 

Other reason 
-0.317*** 

(0.017) 

-0.291*** 

(0.027) 

-0.323*** 

(0.021) 
 

Data source: Data are for 66,172 full-time workers from the 2003 NSCG. 

Notes:  Results are from a log hourly earnings regression. Regressions control for gender, age, age squared, race, 

marital status, US citizenship, experience, experience squared, tenure, tenure squared, highest degree, 

occupation, industry, disability status, employment sector, firm size, and region.  *, **, and *** indicate 

statistical significance at the 10%, 5%, and 1% level, respectively. 

  



19 

 

Table 3. Oaxaca-style decomposition results 

  
Full Female Male 

Matched and moderately mismatched vs severely mismatched 

Total differential 
0.288*** 

(0.006) 

0.241*** 

(0.010) 

0.309*** 

(0.008) 
    

Explained 
0.087*** 

(0.004) 

0.060*** 

(0.006) 

0.105*** 

(0.005) 

% of Differential 30% 25% 34% 

    

Unexplained 
0.201*** 

(0.006) 

0.181*** 

(0.010) 

0.204*** 

(0.008) 

% of Differential 70% 75% 66% 
    

Matched vs moderately and severely mismatched 

Total differential 
0.171*** 

(0.004) 

0.159*** 

(0.004) 

0.189*** 

(0.005) 
    

Explained 
0.041*** 

(0.003) 

0.027*** 

(0.005) 

0.061*** 

(0.004) 

% of Differential 24% 17% 32% 

    

Unexplained 
0.130*** 

(0.004) 

0.132*** 

(0.007) 

0.128*** 

(0.006) 

% of Differential 76% 83% 68% 

 

Data source: Data are for 66,172  full-time workers from the 2003 NSCG. 

Notes:  Results are from an Oaxaca decomposition that uses a log hourly earnings regression. Regressions 

control for gender, age, age squared, race, marital status, US citizenship, experience, experience squared, tenure, 

tenure squared, highest degree, occupation, industry, disability status, employment sector, firm size, and region. 

Standard errors are in parentheses.  The closely matched group is the reference wage structure.  *, **, and *** 

indicate statistical significance at the 10%, 5%, and 1% level, respectively. 
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Table 4. Oaxaca-style decomposition results for reasons of pay and job not available 

 
 Full Female Male 

 Pay No Job Pay No Job Pay No Job 

Total differential 0.131*** 

(0.010) 

0.483*** 

(0.015) 

0.074*** 

(0.017) 

0.396*** 

(0.024) 

0.177*** 

(0.013) 

0.536*** 

(0.019) 

       

Explained 0.043*** 

(0.006) 

0.072*** 

(0.008) 

0.013 

(0.009) 

0.039*** 

(0.012) 

0.074*** 

(0.007) 

0.100*** 

(0.010) 

% of Differential 33% 15% 18% 10% 42% 19% 

       

Unexplained 0.089*** 

(0.010) 

0.411*** 

(0.014) 

0.061*** 

(0.018) 

0.0357*** 

(0.023) 

0.103*** 

(0.013) 

0.436*** 

(0.018) 

% of Differential 68% 85% 82% 90% 58% 81% 

 

Data source: Data are for 66,172 full-time workers from the 2003 NSCG. 

Notes:  Results are from an Oaxaca decomposition that uses a log hourly earnings regression. Regressions 

control for gender, age, age squared, race, marital status, US citizenship, experience, experience squared, tenure, 

tenure squared, highest degree, occupation, industry, disability status, employment sector, firm size, and region. 

Standard errors are in parentheses.  The closely matched group is the reference wage structure. *, **, and *** 

indicate statistical significance at the 10%, 5%, and 1% level, respectively. 
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Table 5. Mean Square Error decomposition results 

  
Full Female Male 

Matched and moderately matched vs severely mismatched 

Total differential 0.089 0.074 0.103 

    

Difference in means 0.045 0.039 0.046 

% of Differential 51% 53% 45% 

    

Difference in distribution 0.044 0.035 0.057 

% of Differential 49% 47% 55%     

Matched vs moderately and severely mismatched  

Total differential 0.050 0.047 0.050 

    

Difference in means 0.021 0.02 0.019 

% of Differential 42% 43% 38% 

    

Difference in distribution 0.029 0.027 0.031 

% of Differential 58% 57% 62% 

 

Data source: Data are for 66,172  full-time workers from the 2003 NSCG. 

Notes:  Results are from a Mean Square Error decomposition that uses a log hourly earnings regression. 

Regressions control for gender, age, age squared, race, marital status, US citizenship, experience, experience 

squared, tenure, tenure squared, highest degree, occupation, industry, disability status, employment sector, firm 

size, and region. 
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Figure 1. Mismatch penalty at each percentile of the earnings distribution for all workers 
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Figure 2. Mismatch penalty at each percentile in the earnings distribution for males 
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Figure 3. Mismatch penalty at each percentile in the earnings distribution for females 
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Figure 4. Mismatch penalty by reason at each percentile in the earnings distribution for all 

workers 
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Appendix 1. Sketch of Mean Squared Error (MSE) Decomposition Methodology. 

 

While full details of the MSE methodology can be found in Bender (2003) and Belman and 

Heywood (2004) who applied the methodology to examining differences in public-private 

earnings differences, below we briefly describe the methodology as applied to the earnings 

differentials between matched and mismatched workers. 

 

Define the earnings differential for each worker, 𝑖, between matched (𝑚) and mismatched 

(𝑚𝑚):  

(A.1) 𝜃𝑖 = 𝑙𝑛𝑊̂𝑖
𝑚 − 𝑙𝑛𝑊̂𝑖

𝑚𝑚 = 𝑋𝑖𝛽̂
𝑚 − 𝑋𝑖𝛽̂

𝑚𝑚 

The definition of the MSE in terms of equation (A.1) for 𝑛 workers is: 

(A.2) MSE(𝜃) = (
1

𝑛
) ∗ ∑ (𝜃𝑖 − 𝜃𝑖

𝑐)𝑖  

Comparability implies that earnings are the same regardless of the match or that 𝜃𝑖
𝑐 = 0.  If 

wages are comparable (that is, 𝜃𝑖
𝑐 = 0), it can be shown that the MSE can be represented as: 

(A.3) MSE(𝜃) = (
1

𝑛
) ∗ ∑ (𝜃𝑖 − 𝜃̅)2𝑖 + 𝜃̅2 = 𝑣𝑎𝑟(𝜃) + 𝜃̅2, 

where 𝜃̅ is the mean predicted wage over the sample.  Equation (A.3) decomposes 

incomparability into two separate dimensions – differences in the distribution of the predicted 

differential and the squared average of the predicted differential.  If all workers have the same 

value of 𝜃, then there is no difference in the distribution of predicted wages by mismatch status.  

This would mean that the comparability of wages across mismatch status is only due to 

differences in average wages across groups.  The second term is zero if there are no differences 

in average wages across groups and any incomparability is highlighted by differences in 

distributions.  Of course, it is likely that there are differences in both the distributions and 

average wages, and by decomposing using the MSE method, we can determine the relative 

importance of the two determinants of the MSE. 
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Endnotes 

1 Other papers focus on the role of educational mismatch on wage inequality.  For example, 

Budrıa (2011) finds that educational mismatch does not drive the positive effect of education 

on wage inequality in Portugal and Europe, and Ordine and Rose (2015) argue that 

educational mismatch does explain some wage inequality among college graduates in Italy. 

2 Due to the ambiguity around the “other” reason for severe mismatch, our remaining analysis 

does not present results on this particular reason.  We focus on the first six reasons as they 

allow us to draw more meaningful conclusions from them.  However, the “other” reason 

category is included in all regressions using the reasons for mismatch and are available upon 

request. 
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