
Accepted Manuscript

Distinguishing tectonically- and gravity-driven synsedimentary deformation structures
along the Apulian platform margin (Gargano promontory, southern Italy)

Irina Korneva, Emanuele Tondi, Danica Jablonska, Claudio Di Celma, Ian Alsop,
Fabrizio Agosta

PII: S0264-8172(15)30157-4

DOI: 10.1016/j.marpetgeo.2015.12.009

Reference: JMPG 2417

To appear in: Marine and Petroleum Geology

Received Date: 24 June 2015

Revised Date: 30 November 2015

Accepted Date: 15 December 2015

Please cite this article as: Korneva, I., Tondi, E., Jablonska, D., Di Celma, C., Alsop, I., Agosta, F.,
Distinguishing tectonically- and gravity-driven synsedimentary deformation structures along the Apulian
platform margin (Gargano promontory, southern Italy), Marine and Petroleum Geology (2016), doi:
10.1016/j.marpetgeo.2015.12.009.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.marpetgeo.2015.12.009


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

1 

 

DISTINGUISHING TECTONICALLY- AND GRAVITY-DRIVEN SYNSEDIMENTARY 
DEFORMATION STRUCTURES ALONG THE APULIAN PLATFORM MARGIN 

(GARGANO PROMONTORY, SOUTHERN ITALY) 

1IIrina Korneva, 1Emanuele Tondi, 1Danica Jablonska, 1Claudio Di Celma,  2Ian Alsop, 3Fabrizio 

Agosta. 

1 Geology Division, School of Science and Technology, University of Camerino, Italy 

Via Gentile III da Varano, Camerino (MC) 62032, Italy. 

Email: irina.korneva@unicam.it (corresponding author) 
2Department of Geology and Petroleum Geology, School of Geosciences, University of Aberdeen, U.K.  

King's College, Aberdeen AB24 3FX, United Kingdom. 

Email: ian.alsop@abdn.ac.uk 
3 Department of Sciences, University of Basilicata, Italy. 

Via Nazario Sauro, 85, Potenza 85100, Italy. 

Email: fabrizio.agosta@unibas.it 

 

Abstract 

The assessment of deformation types within the slope of a carbonate platform can be 

complicated by the possible interaction of rooted (tectonically-induced) and superficial (gravity-

driven) structures. An ideal case study to document and distinguish tectonically- and gravity-

driven structures is provided by the Cretaceous slope-to-basin carbonates exposed in the 

Gargano Promontory, southern Italy. These carbonates formed adjacent to the Apulian platform 

margin, which was oriented approximately NE-SW to NW-SE along the southern and northern 

edges of the promontory, respectively. Slump-related folds are characterised by axial planes 

typically oriented either sub-parallel or at small angles to the strike of the inferred paleoslope. In 

fact, the strike of folds is roughly NE-SW in the southern portion of the study area, whereas it is 

NW-SE in the northern part. Correspondingly, gravity-driven normal and reverse faults strike 

sub-parallel and at acute angles to the adjacent Apulian paleoslope. Cretaceous tectonic faults in 

the slope-to-basin carbonates form two principal sets striking NW-SE and WNW-ESE. The 

former set is made up of normal faults and the latter one includes mainly oblique-slip normal 
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faults. Neither normal nor oblique-slip normal faults show any relationship with the geometry of 

the paleoslope. The results obtained from this study may help the interpretation of subsurface 

data in those geological contexts in which the interplay of gravitational and tectonic processes is 

responsible for deformation. 

 

Key Words: Apulian platform; Maiolica Formation; synsedimentary faults; slumps; mass-

transport deposits. 

 

1. Introduction 

Sediments deposited along the slope-to-basin margin of carbonate platforms represent 

important hydrocarbons reservoirs worldwide (e.g. Casabianca et al., 2002). These rocks are 

commonly affected by multiple stages and types of deformation (Antonellini et al. 2008; 

Hairabian et al., 2015, and references therein; Pickering, 1987; Santantonio et al., 2012) 

governed by both, gravitational and tectonic processes. This results in carbonate reservoirs being 

affected by a wide range of different permeability structures and petrophysical properties of 

associated fault rocks (Agosta et al., 2009; Agosta et al., 2010; Balsamo & Storti, 2010; 

Guerriero et al., 2013).  

The oldest deformation structures are often contemporaneous with the platform growth 

(Bourrouilh et al., 1998; Kosa & Hunt, 2005; Rusciadelli et al., 2003) and could be formed due 

to either gravity-driven re-sedimentation processes (Drzewiecki & Simo, 2002; Hairabian et al., 

2015; Jablonská et al., in press; Strachan & Alsop, 2006) or tectonically-triggered 

synsedimentary deformation (Rosales, 2001; Wiedl et al., 2012).  

The presence of rooted (tectonically-induced) and superficial (gravity-driven) structures 

in a carbonate reservoir may strongly affect migration and storage of geofluids. Tectonic faults 

can form efficient pathways for upward fluid flow from depth (Faulkner & Rutter, 2001; 
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Rotevatn & Bastesen, 2014), whereas gravity-driven structures are generally confined within the 

reservoir without any connection to deep fluids (Alsop & Marco, 2011; Roberts et al., 2002 and 

references therein). This results in rooted and superficial structures having different roles in the 

diagenetic evolution of sediments (e.g., hydrothermal and/or epigenetic dolomitisation 

phenomenon) and in the flow of prospective hydrocarbons from source to reservoir rocks. 

Distinguishing structures triggered by gravity, tectonics or any combination thereof, 

along passive continental margins may not be straightforward. In fact, gravitational forces acting 

on slopes can produce a large component of differential stress within a tectonically-controlled 

stress field. Soft-sediment deformation driven by rooted tectonic processes was previously 

documented at many plate boundaries (Bievre & Quesne, 2004; Bourrouilh et al., 1998; Pochat 

& Van Den Driessche, 2007).  

A distinction between different types of deformation structures was proposed by Waldron 

& Gagnon (2011). According to these authors, ‘superficial’ deformation occurs above a basal 

detachment linked to the surface in both the up-slope and down-slope directions. Conversely, 

‘rooted’ deformation is connected to a shear zone propagating at depth. The authors 

distinguished four different types of deformation based upon the physical state of rock (i.e., 

lithified or unlithified) and type of deformation (i.e., superficial or rooted). Superficial 

deformation of unlithified sediments produces structures such as slumps, whereas rooted 

deformation of similar sediments consists of folds and growth faults connected to a shear zone 

propagating at depth. Superficial deformation of lithified rocks allows down-slope rock sliding, 

while rooted deformation of the same material produces brittle and ductile structures of classic 

rock deformation environments. 

As noted above, soft sediment deformation within carbonate-dominated continental 

margins can therefore be related either to gravitational processes or tectonic activity. The former 

depends on parameters such as sedimentation rate, compositional and textural features of 
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sediments and depositional architecture (Hance, 2003; Le Goff et al., 2015; Okada et al., 2014). 

All these parameters can help overcome the angle of internal friction of carbonate sediments to 

create instability on the slope and generate down-slope mass transport with related deformation. 

Tectonics affecting the slope may also be the triggering mechanism for slumping due to the 

earthquake-induced reduction in the shear strength of sediment, slope steepening due to faulting, 

and tsunami-induced deformation (Alsop & Marco, 2012a, Mastrogiacomo et al., 2012; Spalluto 

et al., 2007; Alsop & Marco, 2012b). 

The Gargano Promontory, southern Italy, represents an ideal place to document and 

distinguish tectonically- and gravity-driven deformation structures within slope-to-basin 

carbonates. There, Cretaceous tectonic structures and their interaction with the sedimentation 

processes along the margin of the Apulian platform have been widely documented (Borgomano, 

2000; Graziano, 2000, 2001, 2013; Hairabian et al., 2015 and references therein; Santantonio et 

al., 2012). However, there remains a lack of a detailed description of exposed deformation 

structures, as well as distinction of their triggering mechanisms.  

The present work focuses on deformation structures within the Late Jurassic to Early 

Cretaceous basinal Maiolica Formation exposed immediately to the east of the Apulian platform 

margin in the eastern part of the Gargano Promontory (Fig. 1, 2). Field structural data, collected 

from synsedimentary tectonic faults and slump-related structures, are discussed in terms of 

paleogeography of the Apulian margin, Cretaceous tectonic activity of the study area and 

significance for subsurface fluid flow. The detailed description of rooted and superficial 

structures, provided in this study, can be a helpful guide for their recognition from subsurface 

data in similar carbonate reservoirs.  

 

2. Geological framework 
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The Gargano Promontory is part of the Apulian Mesozoic carbonate shelf that formed 

along a passive margin of the Tethys Ocean (Fig. 1; Bosellini et al., 1999; Graziano, 2000; Turco 

et al., 2012). It also represents the foreland of both the Apennine and Dinaride thrust-and-fold 

belts (Billi & Salvini, 2003; Doglioni, 1994). Along the Italian eastern shoreline, the Apulian 

Mesozoic shelf also crops out at Majella Mountain in central Italy, where the transition from 

platform to slope/ramp facies is well exposed (Accarie et al., 1986; Casabianca et al., 2002; 

Eberli et al., 2004; Morsilli et al., 2002). Coarse deposits and mass-transport deposits (MTDs) 

largely constitute the Apulian paleoslope, being re-deposited during the Upper Albian - 

Cenomanian due to tectonic instabilities at the shelf margin (Le Goff et al., 2015). Based on field 

evidence (Bosellini et al., 1999) and seismic data (Santantonio et al., 2012) the paleoslope of the 

Apulian platform is characterised by the following orientations (Fig. 1): NE-SW in the north 

(Abruzzo region and Adriatic offshore), NW-SE in the central portion (Adriatic offshore and 

most of the Gargano Promontory), and NE-SW in the south (southern portion of the Gargano 

Promontory and the Murge Plateau). 

The whole Gargano succession is approximately 4000 m-thick, and comprises Upper 

Jurassic to Eocene limestones and dolomites (Bosellini et al. 1993b; Martinis & Pavan 1967; 

Masse & Luperto Sinni 1989). Both the western and central portions of the Gargano Promontory 

expose Apulian platform carbonates, whereas slope to basinal carbonates crop out only along its 

eastern side (Figs. 1, 2; Bosellini et al., 1993b, 1999; Martinis & Pavan 1967). Several authors 

have documented a strong interaction between tectonic and sedimentary processes along the 

margin of the Apulian carbonate platform (Borgomano, 2000; Graziano, 2000, 2001, 2013; 

Hairabian et al., 2015 and references therein; Santantonio et al., 2012). In fact, some of these 

authors have also proposed that formation of megabreccia bodies was triggered by Cretaceous 

tectonics (Borgomano, 2000; Graziano, 2000, 2001; Masse & Borgomano, 1987). In particular, 

Hairabian et al. (2015) documented two main types of calciclastic lithologies characterised by 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

6 

 

differencies in the nature and source of material: (1) breccias related to the erosion of lithified 

limestones, and (2) loose bioclastic sands and gravels directly exported from the neritic 

“carbonate factory”. These breccia types are located along two different portions of the Apulian 

margin characterised by two different slopes: a gentle one and a steep, fault-controlled slope. 

From a structural point of view, the Gargano Promontory is composed of a WNW-ESE 

trending anticline crosscut by several E-W, NE-SW and NW-SE trending steep to sub-vertical 

normal and strike-slip faults. The Mattinata Fault System (MAFS) is the most prominent 

structural element of the Gargano Promontory onshore (Fig. 2 A). As shown by seismic profiles, 

MAFS extends offshore for a few tens of kilometres and merges into the Gondola Line (De 

Dominicis & Mazzoldi, 1989). MAFS has been characterised by right-lateral kinematics since 

Middle to Late Pleistocene times, which was superimposed onto earlier left-lateral kinematics 

(Fiore, 2013; Tondi et al., 2005). 

This study focuses on the well-known Late Jurassic to Early Cretaceous basinal Maiolica 

Formation, which consists of whitish thin-bedded micritic limestone with cherts, affected by a 

large number of syn-depositional slumps featuring intraformational folds and faults, and 

truncation surfaces (Bosellini et al., 1999; Jablonska et al., in press; Morsilli & Moretti 2011). 

 

3. Field analysis 

The present study aims to distinguish and characterise rooted (tectonic) and superficial 

(gravitational) synsedimentary deformation structures along the Apulian margin. The studied 

outcrops of the Maiolica Formation consist of natural cliffs and road cuts located along the 

eastern coast of the Gargano Promontory, specifically between the towns of Mattinata and Vieste 

(Fig. 2, 3). The present-day bedding attitude, statistically measured through the whole study area, 

is sub-parallel to the Apulian palaeoslope (Santantonio et al., 2012). Therefore, from Mattinata 

to Pugnochiuso, the established paleoslope orientation is NE-SW, and from Pugnochiuso to 
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Vieste it is NW-SE (Figs 1, 3). Field observations focus on slumps and faults within the slope-to-

basin succession. Data on spatial and dimensional characteristics of folds (fold hinge plunge, 

vergence, inter-limb angle, amplitude and wavelength) were acquired from within slump sheets. 

Faults were studied by considering their orientation, kinematics and internal structure. Dips of 

faults were measured with reference to the horizontal surface. Particular attention was paid to 

documenting possible relationships between MTDs and fault-related structures. Slump 

décollements and overlying sediment caps have been identified, and faults located within slump 

bodies have been described in detail. Bedding of undeformed layers below MTDs was also 

measured in order to provide a reference frame.  

Field data gathered from the southern (from Mattinata to Pugnochiuso) and northern 

(Pugnochiuso to Vieste) portions of the study area are reported separately below. 

3.1.  Southern portion of the study area (from Mattinata to Pugnochiuso) 

Within the slope-to-basin succession exposed in the southern portion of the study area, 

slump-related folds verging both downslope (to the SE and E) and upslope (to the NW and 

WNW) were documented. Folds verging down-slope are the most abundant, and comprise 

inclined-to-overturned tight folds with interlimb angles ranging between 30 and 60o (Fig. 4 A). 

They are characterised by bedding being thicker in the fold hinges relative to the fold limbs, and 

define similar folds (sensu Ramsay, 1967). Commonly, fold hinges plunge at low angles to either 

the NE or SW. The fold wavelengths range from tens of centimetres to few metres and amplitude 

is up to several metres. Folds verging up-slope consist of inclined, open to tight up to isoclinal 

folds. They are characterised by thickening of chert in the hinge with respect to the fold limbs 

and are classified as similar folds (sensu Ramsay, 1967). The fold wavelengths range from a 

metre to a few metres and amplitude is up to several metres (Fig. 4 B, E, F). The upper boundary 

of deformed slumped units is generally flat and is overlain by undeformed beds. 
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Four main sets of faults are present in the southern portion of the study area (Fig. 5). Set 

1 includes low-angle NE-SW striking reverse faults that are located within slump sheets (Fig. 4 

B) and are characterised by fault cores represented by a single surfaces and no visible damage 

zones (see definition of fault core and damage zone in Caine et al., 1996).  Set 2 is comprised of 

NE-SW striking normal faults located within deformed beds and is characterised by dip angles 

varying within individual faults (Fig. 6). These faults generally have a few centimetres to tens of 

centimetres offset. In the hanging wall, beds are characterised by dip angles gradually decreasing 

upward which is an indicator of synsedimentary fault activity. The damage zones of these faults 

cannot be observed in the field and the fault core is represented by a single surface. Set 3 is made 

up of NW-SE striking normal faults forming conjugate systems dipping at 65-80o either towards 

the NE or SW (Fig. 7). In Fig. 7, the growth syncline above the upper tip of the NE-dipping 

normal fault is consistent with 45 cm of throw and a ~ 20 cm increase in bed thickness in the 

hanging wall of the fault. The fault cores of the two structures are made up of discontinuous slip 

surfaces bounding a 1-to-10 cm-thick fault gouge (Fig. 7 B), and up to 20 cm-thick uncemented 

breccia in extensional jogs of the fault. The damage zones of these faults consist of joints and 

sheared joints striking E-W and NW-SE and dipping to the S and SW respectively. Set 4 consists 

of high-angle WNW-ESE striking oblique-slip normal faults (Fig. 8) crosscutting undeformed 

beds. These faults are characterised by fault cores constituted by discontinuous slip surfaces 

bounding chert lenses (Fig. 8 B). The damage zones are mostly located at fault tips and linkage 

zones and are made up of fractured limestone rocks. The main slip surface is usually 

discontinuous with its distinct segments abutting against chert beds. 

 

3.2. Northern portion of the study area (from Pugnochiuso to Vieste) 

Along the northern portion of the study area, where the most intensely deformed units 

occur, slump-related folds are characterised by axial planes orientated either sub-parallel or at 
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small angles to the inferred strike of the paleoslope (Santantonio et al., 2012). Folds verge either 

up- or down-slope, and are characterised by hinges plunging predominantly at low angles to the 

NW or SE (Figs. 9, 10). Folds verging down-slope are open to tight (up to isoclinal), inclined to 

recumbent structures with wavelengths of several metres and amplitudes of tens of metres. The 

folds limbs are characterised by smaller scale open folds (inter-limb angle 120o) with 

wavelengths of 1 m and amplitudes up-to 40 cm (Fig. 9 B, C). A significant increase in thickness 

of beds is observed at the fold hinges relative to the limbs. The upper contact with undeformed 

beds is flat and it is commonly represented by a chert layer. Folds verging up-slope are 

characterised by hinges plunging at low angles either to the NW, W or SE, E (Fig. 10). These 

folds are inclined and recumbent, up to several metres in amplitude and wavelength, with inter-

limb angles ranging from ∼8 to 600. Some folds display beds of equal thickness in the hinge and 

the limbs and are parallel folds (sensu Ramsay, 1967)   

Three main sets of faults have been recognised (Fig. 5). Set 1 is made up of low-angle 

NW-SE striking reverse faults dipping to the ENE and NE at 30-40°. These faults are located 

within individual slump sheets and are characterised by fault cores represented by single surfaces 

and no damage zones (Fig. 10 B). Set 2 consists of NW-SE striking normal faults dipping either 

towards the SW or NE, which show variable dip angles along individual slip planes. These faults 

are characterised by vertical offset up to several tens of centimetres. According to their 

relationships with slumps, set 2 faults have been arranged in two subsets: subset 2a faults located 

within individual slump sheets and subset 2b faults crosscutting undeformed beds. Based on field 

observations, faults of set 2a are characterised by the absence of recognisable damage zones and 

fault cores represented by a single surface. The faults shown in Figure 10 dip at 45o towards the 

NE and SW and form a conjugate system. They are characterised by listric geometries. These 

faults belong to set 2a and are mostly located within deformed beds of folded and brecciated 

limestone (Fig 11). The individual faults are made up of multiple slip surfaces with variable dip 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

10 

 

angles. Limestone beds are often rotated across these faults. Set 2b faults are located within 

undeformed beds (outside of any MTDs). These faults dip towards the NE and SW and cut either 

flat-lying or tilted limestone beds, typically showing about 60o cut-off angles with present-day 

tilted bedding (Fig. 12 A). The upper fault tip is often characterised by a growth syncline with an 

increase in bed thickness in the hanging wall (Fig. 12 A). The fault cores are made up of 

discontinuous slip surfaces bounding chert incorporated in the fault and abutting against chert 

layers within the succession (Fig. 12 B). The measured fault throw is up to 50 cm. Set 3 

comprises WNW-ESE striking oblique-slip normal faults which crosscut undeformed beds and 

dip at 50-65o to either the SW or NE (Fig. 13). Fault planes typically comprise discontinuous 

segments and damage zones are commonly localized within linkage zones. Fault cores are 

represented by discontinuous slip surfaces. Some of these faults are characterised by rotation and 

downward steepening of bed-parallel stylolites in the hanging wall (Fig. 13 B). The measured 

fault throw is up to 40 cm. 

 

4. Discussion 

The geometry of the paleoslope and faults orientation, kinematics and spatial relationship 

with MTDs permits us to discriminate tectonically-driven faults from gravity-related faults 

exposed along the Apulian margin. 

Within the southern portion of the study area, both set 1 and set 2 faults strike sub-

parallel to the NE-SW oriented paleoslope (Figs. 4, 6). These faults are interpreted as gravity-

driven structures because they are localised within slump deposits and are characterised by listric 

geometries. In fact, according to previous authors, who worked in the other areas, gravity-driven 

faults are rooted downwards into décollements located within MTDs (e.g. Roberts et al., 2002 

and references therein). The occurrence of gravity-driven faults oriented parallel to the strike of 
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palaeoslopes was previously documented in different locations, based on field observations and 

seismic reflection data (Posamentier & Martinsen, 2011; Strachan & Alsop, 2006; Xinong Xie et 

al., 2008). Deformation structures characterised by reverse and normal kinematics were 

recognised within slumps by numerous authors (Martinsen & Bakken, 1990; Smith, 2000; 

Strachan, 2002). Critically, set 3 normal faults and set 4 oblique-slip normal faults are orthogonal 

to the strike direction of the Apulian paleoslope. These fault sets are interpreted as tectonically-

driven Cretaceous structures because they have been documented through the whole study area 

and are located far from MTDs. Consistently, Aptian-Albian faulting has been reported from the 

Gargano area by Graziano (2001), while further south in the Murge area, along the NE edge of 

the Apulian carbonate platform, Cretaceous extensional tectonics has been proposed by 

Borgomano (2000), Festa (2005), Spalluto et al. (2007) and Korneva et al. (2014). Moreover, 

Cretaceous tectonic deformation affecting the Apulian margin exposed in the Majella area, to the 

north of the study area, has been documented by Casabianca et al. (2002), Morsilli et al. (2002), 

Rusciadelli (2005). Santantonio et al (2012) and Abla (2012) who have also recognised NW-SE 

oriented Jurassic and Cretaceous normal faults based on offshore and onshore seismic data. 

In the northern portion of the study area both set 1 and set 2 faults, strike NW-SE, sub-

parallel to the Apulian paleoslope. The stress field affecting the Gargano during Cretaceous time 

was likely characterised by the maximum horizontal compressive stress axis being oriented NW-

SE (Korneva et al., 2014; Santantonio et al., 2012). As set 1 reverse faults formed due to NE-SW 

compression and could not occur under this stress state, they are interpreted as gravity-driven 

faults. Since both, the paleoslope orientation and the strike of slump-related fold axial planes are 

NW-SE oriented, the formation of gravity-driven reverse and normal faults with sub-parallel 

orientations is justified (Martinsen & Bakken, 1990; Smith, 2000; Strachan, 2002). In fact, set 2a 

normal faults are located within deformed units formed by slumps and other MTDs and are 

oriented sub-parallel to the paleoslope; thus they are interpreted as gravity-driven faults. 
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Nevertheless, set 2b faults showing the same orientation (strike direction NW-SE) crosscut 

undeformed units and do not exhibit any relationship with MTDs; as such, they are interpreted as 

tectonic features. To conclude, in the northern portion of the Gargano Promontory, faults clearly 

related to slumps (gravity-driven) and faults without any correlation to slumps (tectonically-

driven), display the same orientations. Set 3 is made up of NW-SE oriented oblique slip normal 

faults which correspond to set 4 faults in the southern portion of the Gargano Promontory which 

are already interpreted as tectonic features. 

Set 1 and set 2 faults in the southern portion of the study area, and set 1 and set 2a faults 

in the northern part that have been interpreted as gravity-driven structures, share several 

structural characteristics. These include variable dip angles within individual faults, their listric 

geometry being associated with flattening of fault planes into décollements within the slump 

sheet, together with the absence of damage zones and fault cores represented by discontinuous 

slip surfaces. Conversely, set 3 and set 4 faults in the southern part of the study area, and set 2b 

and set 3 faults in the northern portion of the Gargano, that have been interpreted as tectonic 

structures, are generally characterised by poorly developed damage zones and discontinuous slip 

surfaces bounding chert which was dragged along the fault planes. Faults crosscutting carbonate 

successions interbedded with chert layers, and characterised by the presence of chert in the fault 

core have been previously documented across Western Europe and interpreted as early 

diagenetic structures (Clayton, 1986; Hibsch et al., 2003). Chert observed in the studied faults in 

the Gargano is deformed in a brittle manner, which means that it was already partially lithified 

during the fault activity related to Cretaceous tectonics. However, the observation that chert was 

incorporated and thinned along the fault plane, suggests that chert was partially mobile during 

the faulting. 
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To sum up, tectonic faults documented along the Apulian paleoslope exposed in the 

eastern Gargano are NW-SE oriented dip-slip normal and WNW-ESE oblique-slip normal faults. 

Gravity-driven folds and faults display variable orientations along the exposed Apulian 

paleoslope and typically strike sub-parallel to it (Fig. 14). The interaction of gravitational 

phenomena along the paleoslope, and Cretaceous tectonics acting in the study area, resulted in 

different structural architectures of the Apulian margin (Fig. 15).  

The results presented in this work clearly show that the paleogeography and, in particular, 

the geometry of the paleoslope strongly controls the orientation of gravitational structures and 

represents a key factor for their recognition. Furthermore, gravity-related structures often are 

’apparently‘ kinematically incompatible, as in the case of normal and reverse faults with the 

same orientation. Gravity-driven faults are systematically associated with slumps and MTDs 

with an elevated degree of heterogeneity in terms of both mechanical and petrophysical 

properties of the rock masses. On the contrary, tectonic structures are not affected by the 

paleogeography and show a persistent orientation and kinematics. In the southern portion of the 

Apulian margin exposed in the Gargano, gravity-driven and tectonic faults are orthogonal to 

each other, whereas in the northern part they are subparallel (Fig. 14). This means that in former 

case gravity-driven faults may form additional pathways for geofluids and play an important role 

in fault-related diagenesis of the rock due to their higher connectivity with tectonic faults. As 

shown by previous authors, syndepositional faults formed within the platform and its margin can 

be responsible for a significant diagenetic alteration and determine resultant hydraulic properties 

of a carbonate reservoir (Dewit et al., 2012; Hollis & Juerges., 2011; Hunt et al., 2002; Kosa & 

Hunt., 2006; Simon, 2014). 

The outcomes of this study increase our knowledge regarding the different deformation 

processes that may affect slope-to-basin sedimentary rocks associated with the margins of 
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carbonate platforms. Improving our ability to distinguish structures triggered by gravity and 

tectonics is essential for the prediction of reservoir quality in similar systems in the subsurface. 

 

5. Conclusions 

The eastern Gargano slope-to-basin succession of the Apulian platform is affected by 

synsedimentary deformation generated by both tectonic and gravitational phenomena. NW-SE 

oriented dip-slip faults and WNW-ESE oriented oblique-slip normal faults have been interpreted 

as Cretaceous tectonic features. These structures are exposed throughout the whole study area 

and do not show any relationship with MTDs. Tectonic faults are generally characterised by 

chert dragged along the fault planes, and slightly fractured limestone in the tip damage zones. 

The orientations of slump-related folds and gravity-driven faults change in sympathy with the 

geometry of the Apulian paleoslope. Most of gravity-driven faults are normal or reverse, and are 

oriented sub-parallel to the strike of the paleoslope. These faults are characterised by variation in 

angles of dip of the fault planes within individual faults, and by the absence of visible 

deformation in fault cores and damage zones.  

In synthesis, along the NE-SW-oriented Apulian margin, gravity-driven and tectonic 

faults are orthogonal to each other, whereas along the NW-SE oriented part of the margin they 

are sub-parallel. The resulting different structural architecture of the southern and northern part 

of the Apulian margin in the Gargano Promontory is the key factor for distinguishing structures 

triggered by gravity and tectonics. The orientation and distribution of these structures along the 

platform margin could control the pathways for migration of geofluids which, in turn, may affect 

the petrophysical properties of the rock due to fault-related diagenesis. 
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Figure captions: 

 

Fig. 1. Regional map showing the orientation of the paleoslope of the Apulian carbonate 

platform based on field and seismic data (modified after Santantonio et al., 2012 and Bosellini 

et al., 1999). 

Fig. 2. A. Geo-structural scheme of the Gargano Promontory, the Mattinata Fault System is 

represented in red; Study area is marked by the black oval; B. Chronostratigraphic chart of the 

Gargano Promontory (after Bosellini et al., 1999). 

Fig. 3. A. Structural map of the study area (modified after Bosellini and Morsilli, 2001; Spalluto 

and Pieri, 2008), in which stereoplots show the bedding attitude (lower hemisphere, equal 

area projection) measured at several stations. B. Stratigraphic column of the study carbonate 

succession. 

Fig. 4. Slump-related folds verging mostly to the SE, down-slope (A) and NW, up-slope (B, D) 

along the NE-SW oriented Apulian margin (station #1 in Fig. 3). Lower hemisphere, equal-



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

22 

 

area stereographic projections of fold hinges verging either down, oblique to slope (red dots) 

or up slope (blue dots) (C). Black great circles represent bedding attitudes. Several reverse 

faults sub-parallel to bedding crosscut the few m-thick slump deposits (B). Yellow and purple 

lines indicate the lower (décollement) and upper (cap) boundaries of the slump deposit (A, B, 

D), respectively. 

Fig. 5. Main fault sets documented within slope-to-basin succession adjacent to the NE-SW (A) 

and NW-SE (B) oriented Apulian paleoslope. A: black great circles show bedding attitudes, 

violet great circles represent attitudes of the set 1faults, green great circles – set 2 faults, blue 

great circles – set 3 faults, orange great circles – set 4 faults; B: black great circles show 

bedding attitudes, violet great circles represent attitudes of the set 1 faults, blue great circles – 

set 2 faults, orange great circles – set 3 faults (lower hemisphere, equal-area projections). 

Fig. 6. ENE-WSW normal faults recorded within MTDs exposed at station #7 (Fig. 3). Red lines 

highlight the fault traces. Lower hemisphere, equal-area stereographic projection displaying 

both bedding (black great circles) and fault attitude (red great circles). 

Fig. 7. NW-SE oriented conjugate system of high-angle normal faults characterised by 

thickening of the beds within the hangingwall (from station 1, see Fig. 3) (A). B. Detailed 

photograph showing the fault core composed of un-cemented gouge. C. Stereographic 

projection showing bedding attitude with a black great circle and a fault with a red great circle 

(lower hemisphere, equal-area projection). 

Fig. 8. A. WNW-ESE oriented transtensional fault with a maximum throw of 50 cm which 

gradually decreases upward (station 3 on the Fig. 3). B. Detailed photograph of the fault core 

composed of chert lenses. C. Stereographic projection showing bedding attitude with a black 

great circle and a fault with a red great circle (lower hemisphere, equal-area projection). 

Fig. 9. Slump-related folds verging to N, NE (down-and oblique to slope) within several meter 

thick-slumps (A) along NW-SE oriented Apulian margin (station 6 on the Fig. 3). Limbs of 

larger inclined and recumbent folds are deformed with small inclined open folds (B, C). E. 

Stereographic projection showing bedding attitude with a black arc and folds hinges with red 

dots (lower hemisphere, equal-area projection). 

Fig. 10. Gravity-driven deformation structures documented along NW-SE oriented part of the 

margin of the Apulian carbonate platform. 

Fig. 11. WNW-ESE oriented conjugate normal faults crosscutting deformed units and the 

overlying cap. A. Outcrop photograph (station 5 on the Fig. 3). B. Line-drawing of WNW-

ESE oriented normal faults crosscutting deformed unit and overlying cap. C. Lower 
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hemisphere, equal-area stereographic projection displaying bedding attitude (black great 

circle), faults (red great circles) and slump-related folds hinges (violet dots). 

Fig. 12. A. NW-SE oriented normal fault including a fault core made up of chert dragged along 

the slip plane. The upper fault tip is characterised by a growth syncline, in which the bed 

thickness is greater in the fault hanging wall. B. Detailed picture of the fault core composed of 

chert dragged along the fault plane. Fault segments abut against the chert beds. C. Lower 

hemisphere, equal area stereographic projection showing NW-SE normal fault (red great 

circle) and bedding attitudes (black great circles).  

Fig. 13. WNW-ESE oriented normal fault with rotation of bed-parallel stylolites in its hanging 

wall (A). B. Close-up view of bedding-parallel stylolites gradually becoming more gentle 

upwards. C. Lower hemisphere, equal-area stereographic projection showing bedding (black 

great circle) and fault attitudes (red great circle). 

Fig. 14. Stereographic projections displaying Cretaceous deformation structures within the slope-

to-basin succession adjacent to NE-SW oriented paleoslope (A) and NW-SE oriented slope 

(B) (lower hemisphere, equal-area projection). Bedding attitude is shown with black great 

arcs, gravity-driven faults with green great arcs, tectonic faults with red great arcs and hinges 

of slump-related folds with violet dots.  

Fig. 15. Rooted and superficial Cretaceous deformation structures within NE-SW and NW-SE 

oriented paleoslopes of the Apulian carbonate platform. 
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Synsedimentary faults along the Apulian margin are gravitational and tectonic. 

Gravity-driven and tectonic faults are orthogonal to each other along NE-SW margin. 

Gravity-driven and tectonic faults are sub-parallel along NW-SE margin. 

Different structural architecture of the margins helps to recognise origin of faults.  

The orientation and distribution of faults influence the migration of geofluids. 


