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We experimentally demonstrate that a processing delay, a finite response time, in the coupling can

revoke the stability of the stable steady states, thereby facilitating the revival of oscillations in the

same parameter space where the coupled oscillators suffered the quenching of oscillation. This

phenomenon of reviving of oscillations is demonstrated using two different prototype electronic

circuits. Further, the analytical critical curves corroborate that the spread of the parameter space

with stable steady state is diminished continuously by increasing the processing delay. Finally, the

death state is completely wiped off above a threshold value by switching the stability of the stable

steady state to retrieve sustained oscillations in the same parameter space. The underlying

dynamical mechanism responsible for the decrease in the spread of the stable steady states and the

eventual reviving of oscillation as a function of the processing delay is explained using analytical

results. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4947081]

Oscillation quenching is such a fascinating emerging

behavior, whereby the interaction between oscillatory

units ceases the oscillations to exist. Phenomenologically,

amplitude death (AD) and oscillation death (OD) have

been clearly distinguished as two distinct types of oscilla-

tion quenching. The mechanisms which have the tend-

ency to induce oscillation quenching are prevalent in

many natural systems. However, in various realistic cir-

cumstances, several phenomena very often involve oscil-

lations, and hence, the quenching of oscillations in many

natural systems is undesirable, which needs to be circum-

vented for their sustained evolution. In addition, despite

the ubiquity of the conditions conducive to the onset of

AD/OD, several natural systems retain their sustained

oscillations. For instance, internet can fail for some finite

time after a severe attack and then, after a period of

time, recover. A human brain is capable of recovering

spontaneously after an epileptic attack. A traffic network

returns to its normal state after a period of gridlock. A fi-

nancial network may, after a period of time, recover after

having a large fraction of its constituents fail. Thus, it is

also inevitable to unravel the underlying dynamical

mechanisms that are responsible for the sustained oscilla-

tions of many natural systems and manmade networks.

Here, we will demonstrate experimentally using two dif-

ferent prototype nonlinear electronic circuits that their

natural dynamics can be revived, after their dynamical

activity ceases to exist irreversibly, by the introduction of

a processing delay in the coupling. Further, our analyti-

cal results clearly reveal the dynamical mechanisms of

the curtailing effect of the processing delay on the spread

of AD/OD regions, which finally result in the reviving of

oscillations in the AD/OD regions above a threshold value

of the processing delay.

Coupled nonlinear oscillators have been extensively

employed in understanding various complex collective

phenomena in diverse natural systems.1–5 Quenching of

oscillations6,7 is such an emergent behavior in coupled oscil-

lators, where the oscillators drive each other to stable equi-

librium/equilibria under coupling. This phenomenon was

evidenced first as an unexpected silencing of two side-by-

side organ pipes8 and was later observed in chemical reac-

tions,9 neural oscillators,10 lasers,11 electronic circuits,12,13

etc. Phenomenologically, two distinct classes of oscillation

quenching have been classified—amplitude death (AD) and

oscillation death (OD)—depending on whether the coupled

oscillators populate the homogeneous steady state (HSS) ora)Electronic mail: skumarusnld@gmail.com
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the different branches of the inhomogeneous steady state

(IHSS), respectively. Recent investigations are centered at

the identification of AD-OD transitions.14–18 Despite a few

applications of AD/OD,19–21 their onset deteriorates the

degree of performance of several real world systems, where

sustained oscillations should be retained for their evolution,

and can result in cascading failures leading to a complete

collapse, for instance, extinction of species in ecological net-

work, gridlock in traffic network, market crashes in financial

network, and a large-scale power blackout. Hence, the emer-

gence of AD/OD in such systems should be evaded in their

own parameter space despite prevalence of the conditions

conducive to their onset.

Efforts have been made to revive oscillations of the

coupled networks after their dynamic activities cease to exist

irreversibly.22–25,27 Recently, a processing delay, a finite time

required to process the information received at the interface, in

the coupling is shown to effectively annihilate the onset of AD/

OD.25 This is in sharp contrast with the effect of propagation

delay, a finite time required for the signal propagation from

one node to the other due to their spatial separation, which has

the tendency to induce AD26 in coupled identical oscillators.

Thus, the processing delay can compete with the quenching

effects of the propagation delay in switching the stability of the

stable steady states above a critical value. Indeed, it was clearly

shown that, in Ref. 25, the processing delay is capable of

retrieving the oscillations from the AD state induced by the

propagation delay.26 It is interesting to note that the effect of

processing delay is counter-intuitive to the quenching effects of

the propagation delay. Signals/information in almost all tech-

nological networks such as computer server, communication

networks, traffic networks, automated logistic networks, and

routers are processed essentially by appropriate oscillatory cir-

cuits. In particular, in neuroscience, the electronic-neural cell

hybrids have been used to investigate the collective behavior

of neural oscillators, such as central pattern generators.28 As

the emergence of AD/OD in such circuit systems is not always

desirable for their proper functioning, experimental realization

of the reviving of oscillations in the AD/OD parameter space

using electronic circuit systems is of vital importance because

of their immense potential applications.

In this paper, we will experimentally demonstrate that

the processing delay in the coupling can annihilate the onset

of AD/OD by switching the stability of the stable HSS (AD)

and IHSS (OD) using analog electronic circuits of van der

Pol (VDP) oscillators exhibiting limit-cycle oscillations and

Sprott systems representing chaotic oscillators. Recently,

diverse bifurcation scenarios pertaining to the transition

from AD to OD in these systems are unveiled under repul-

sive links.16 We consider the same parameter space of the

AD-OD transitions in the two coupled VDP and Sprott oscil-

lators, respectively, to experimentally demonstrate that the

processing delay can effectively evoke oscillations from

both AD and OD regions. First, we consider two diffusively

coupled VDP oscillators16

_xi ¼ yi � eiðxjðt� dÞ þ xiðt� dÞÞ; (1a)

_yi ¼ bð1� x2
i Þyi � xi þ eðyjðt� dÞ � yiðt� dÞÞ; (1b)

where i; j ¼ 1; 2; i 6¼ j, b is the system parameter, e ¼ e1 is

the coupling strength, e2 ¼ 0 represents the unidirectional re-

pulsive link, and d is the processing delay, which is the time

taken by the node y1 to process the information y2 reached

y1 prior by d and vice versa in the diffusive coupling. We

have fixed N¼ 2 in our present investigation. The analog

electronic circuit of the coupled VDP oscillators (1) and

the corresponding dynamical equations are provided in

Ref. 30. For e ¼ 0, the origin is the unstable fixed point

of each VDP oscillator exhibiting limit-cycle oscillations.

The coupled VDP oscillators, Eq. (1), have two fixed points

x�1 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

be

q
; y�1 ¼ e

ffiffiffiffiffiffiffi
1� 1

be

p
1�e2 ; x

�
2 ¼ ey�1; y

�
2 ¼ 0 besides the

origin. The origin is the HSS, where both oscillators populate

resulting in AD for appropriate coupling, while the other two

fixed points contribute to the IHSS, where the two oscillators

populate the different branches of the IHSS resulting in OD

for suitable e.
Snapshots of the evolution of the coupled VDP oscilla-

tors, as observed experimentally in the oscilloscope, are

depicted in Fig. 1 for b¼ 0.5. The stable HSS is seen in

Fig. 1(a) for e ¼ 1:0 until the processing delay d¼ 0. Now,

as soon as a finite processing delay d ¼ 0:5 > dc is switched

on, indicated by the arrow, the oscillations of both the VDP

oscillators in (1) are retrieved for the same parameters (see

Fig. 1(a)) after initial transients. For b¼ 0.5, the transition

FIG. 1. Real time traces of the coupled VDP oscillators (1) depicting the

reviving of oscillation from the stable (a) HSS for b ¼ 0:5; e ¼ 1:0, and

d ¼ 0:5, and (b) IHSS for b ¼ 0:5; e ¼ 2:5, and d ¼ 0:4. In both figures, as

soon as a finite processing delay d > dc is switched on, indicted by the

arrow, the oscillations are retrieved from both the AD and OD states.
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from AD to OD occurs at the critical coupling strength ec

¼ 2:0 via a pitchfork bifurcation (see Fig. 2). The existence

of the stable IHSS is clearly visualized in Fig. 1(b) for

e ¼ 2:5 until d¼ 0, and the oscillations are revived immedi-

ately as soon as an appropriate processing delay d ¼ 0:4 is

introduced.

The dynamics of the coupled VDP oscillators observed

experimentally in a range of the system parameter b 2 ð0; 1Þ
and the coupling strength e 2 ð0; 3Þ depicting the spread of

the stable HSS (checked region) and the stable IHSS (filled

region) is shown in Fig. 2(a) for different values of the proc-

essing delay d. The entire checked and the filled area corre-

sponds to AD and OD, respectively, for d¼ 0, while the

empty space corresponds to oscillatory regimes. It is clearly

evident from Fig. 2(a) that the spread of AD/OD rapidly

decreases upon increasing the processing delay and eventu-

ally erased completely above dc resulting in the revival of

oscillations in the AD/OD parameter space by switching the

stability of the stable HSS/IHSS. The OD region is wiped off

above dc ¼ 0:34, while the stable HSS completely losses it

stability above dc ¼ 0:46. Thus, the presence of even a small

processing delay is capable of overcoming the quenching

effects in retaining the sustained oscillations of the coupled

systems.

By performing a linear stability analysis around the

fixed points, for d¼ 0, the stability condition for the HSS to

be stable is obtained as b < e < 1
b, while that for the IHSS to

be stable is 1
b < e < bc.29 In the presence of d, the character-

istic equation of the coupled VDP oscillators, Eq. (1), corre-

sponding to the fixed point at the origin can be written as

ð1� bkþ 2ee�kdkþ k2Þð1þ ee�kdkþ k2� bðee�kdþ kÞÞ ¼ 0.

The stability of the HSS/IHSS is changed if the eigenvalue

k¼ aþ ib of the characteristic equation crosses the imagi-

nary axis k¼ ib. Thus, the oscillations are revived from

AD/OD via a Hopf bifurcation as a surpasses zero from

a< 0. The critical stability curves dcðeÞ of the HSS can be

deduced as

d1 ¼ �cos�1 b

2e

� �
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

4e2

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

4e2

rs0
@

1
A
;

d2 ¼ cos�1 bð Þ 1� ebð Þ
e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2b2

p ; (2)

where b ¼ ðð2 þ b2 þ e2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb2 þ e2Þ2 � 4ðb2 � e2Þ

q
Þ

ð2ð1 þ 2b2ÞeÞ�1
. The stability of the two other fixed points

(IHSS) can be obtained by simplifying e�kd in the character-

istic equation using a series expansion e�kd ¼
P1

n¼0

ð�kdÞn=n! for d < 1.

The analytical critical curves determining the stable HSS

(region between two solid lines) and the stable IHSS (filled

region) are depicted in Fig. 2(b) as functions of e and b for dif-

ferent values of d. The two solid lines at the left and the right

boundary of the AD region for d¼ 0 correspond to e ¼ b and

e ¼ 1
b, respectively. The uppermost boundary (thick dashed

line) encompassing the stable IHSS is obtained for b¼ bc.
29

The regions enclosed by the critical curves d1 (solid lines) and

d2 (dashed lines) are the AD regions for different values of

d ¼ 0; 0:6; 0:7, and 0.8. It is evident that the spread of the AD

region decreases for increasing d until AD is completely

wiped off due to change in the stability of the stable HSS,

thereby regaining the oscillations. The stable IHSS for

d ¼ 0; 0:3; 0:4, and 0.5, obtained using the Routh-Hurwitz cri-

teria, is shown in Fig. 2(b) (shaded regions), elucidating that

the OD region shrinks with the increase in d, which is also ca-

pable of switching the stability of the stable IHSS above dc to

retain sustained stable oscillations of the coupled systems.

The analytical critical curves in Fig. 2(b) corroborate the ex-

perimental observation of the effect of the processing delay in

decreasing the spread of AD/OD regions and in switching the

stability of the stable HSS/IHSS in the AD/OD parameter

space above dc, thereby reviving the oscillations of the

coupled VDP oscillators to retain their rhythmic behavior. In

addition, the real time bifurcation diagram of the coupled

VDP oscillators corroborates the revival of oscillations for

d > dc from the AD state (see Fig. 2(c), where x1;2 vs d 2
ð0; 0:6Þ is depicted) for b¼ 0.5, e ¼ 1:0, and from the OD

state for b¼ 0.5, e ¼ 2:5, as shown in Fig. 2(d) for

d 2 ð0; 0:3Þ. The real time bifurcation diagram refers to the

real time trace of Poincar�e points in the oscilloscope using

electronic circuits, as the control parameter is varied.

To gain further insights on the curtailing effect of

the processing delay on the spread of the AD/OD regions

below dc, we consider a rather general two coupled dynami-

cal systems _x1;2 ¼ f1;2ðx1;2Þ þ eðx2;1ðt� dÞ � x1;2ðt� dÞÞ
each of dimension d, whose linearized equation about the

steady state is represented as _g1;2 ¼ l1;2g1;2 þ eðg2;1ðt� dÞ
�g1;2ðt� dÞÞ, where g1;2 denotes the dynamics of the pertur-

bation and l1;2 is the Jacobain matrix. Its eigenvalue equa-

tion can be obtained as jmð1Þðd�dÞm
ð2Þ
ðd�dÞ � e2e�2kdIj ¼ 0, where

m
ðkÞ
ðd�dÞ ¼ ðlk � ðkþ ee�kdÞIÞ. The condition for the stability

of the steady state for d¼ 0 can be deduced as emin ¼ l1ðD�l1Þ
D

when d¼ 1, where D ¼ ðl1 þ l2Þ and hence the steady state

is stable for e > emin. The processing delay promotes the

FIG. 2. Spread of the stable HSS and IHSS of the coupled VDP oscillators

(1) for different values of d as a function of the coupling strength e and the

system parameter b elucidating the effect of the processing delay d. (a)

Experimental results and (b) analytical stability curves. Real time bifurca-

tion diagrams elucidating the revival of oscillations for d > dc from (c) HSS

for b¼ 0.5 and e ¼ 1:0 for d 2 ð0; 0:6Þ and (d) IHSS for b¼ 0.5 and e ¼ 2:5
for d 2 ð0; 0:3Þ.
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onset of a right boundary emax¼ 1
r2
ðr16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1�4Dð6�dDÞr2

p
Þ,

where r2 ¼4dð48þ24dDþ6d2D2þd3D3Þ; r1¼ð72þ72dD

þ3d3DðD�2lÞ2 þ d4D2lð�DþlÞ þ12d2ðD2�3Dlþ3l2ÞÞ
provided d<1, beyond which the steady state is unstable.

The stable region enclosed between the critical curves emin

and emax diminishes on increasing d as emax is a decreasing

function of d and finally disappears when emax¼ emin at dc,

thereby reviving the oscillations. Depending on the nature of

the dependency of emax=emin on the d, either one or both of

them approach each other and merge at dc to wipe out the

AD/OD regions.

Now, we demonstrate that the processing delay can

indeed evoke oscillations in AD/OD parameter space of the

coupled chaotic systems. For this purpose, we have consid-

ered two coupled Sprott systems with a repulsive link repre-

sented as16

_xi ¼ �ayi þ eiðxjðt� dÞ � xiðt� dÞÞ; (3a)

_yi ¼ xi þ zi � jiðyiðt� dÞ þ yjðt� dÞÞ; (3b)

_zi ¼ xi þ y2
i � zi; (3c)

where i; j ¼ 1; 2; i 6¼ j, a is the system parameter, e ¼ e2

¼ j1 is the coupling strength, e1 ¼ j2 ¼ 0 contributes to the

repulsive link, and d is the processing delay. We have fixed

N¼ 2. The analog electronic circuit corresponding to system

(3) and their evolution equations can be found in Ref. 30.

The origin is the only unstable fixed point of the uncoupled

system exhibiting chaotic oscillations for a wide range of a.

In addition to the trivial fixed point at the origin, Eq. (3) has

a nontrivial fixed point x�1 ¼ z�1; y
�
1 ¼ 0; z�1 ¼

ey�
2

2
; x�2 ¼ �z�2;

y�2 ¼
ð2a�e2Þ

e ; z�2 ¼
y�2

2

2
. The origin is the HSS of the coupled

system, while the other fixed point attributes to the IHSS.

Time evolution of the Sprott circuit systems is shown in

Fig. 3 for a¼ 0.225 and for different values of e and d. The

stable HSS is depicted in Fig. 3(a) for e ¼ 0:25 until d¼ 0.

The oscillations are revived instantaneously for the same

coupling upon introducing the processing delay d ¼ 0:59 at

the instant indicated by the arrow. For the coupling strength

e ¼ 0:75, the Sprott circuit systems exhibit the stable IHSS

in the absence of the processing delay as shown in Fig. 3(b),

which also elucidates that the oscillations are retrieved im-

mediately for d ¼ 0:59 even for the strength of the coupling

conducive to onset of OD when d¼ 0. As the transition to

death and reviving of oscillations from death are through a

reverse Hopf and a Hopf bifurcations, respectively, the cha-

otic oscillations become limit-cycle oscillation through a

reverse period-doubling just before death, and so the

retrieved oscillations will also be periodic near dc.

The two parameter phase diagram of the Sprott circuit

systems as a function of e 2 ð0; 1Þ and a 2 ð0:1; 0:4Þ is

shown in Fig. 4(a) for a global perspective of the effect of

the processing delay. The extent of the spread of the stable

HSS (checked area) and that of the stable IHSS (shaded

area) for different values of d ¼ 0; 0:33; 0:5; 0:59, and 0.73

clearly reveals that the AD/OD regions shrink upon increas-

ing the processing delay. Finally, above a critical value of

d; dc ¼ 0:78, both stable HSS and stable IHSS lose their sta-

bility via a Hopf bifurcation reviving the natural rhythms of

the coupled Sprott systems in the AD/OD parameter space.

The analytical stability curves of Eq. (3) demarcating

the stable HSS and the stable IHSS are shown in Fig. 4(b) as

a function of e 2 ð0; 1:2Þ and a 2 ð0:2; 0:4Þ. The critical

FIG. 3. Real time traces of the coupled Sprott oscillators (3) illustrating the

revival of oscillation from the (a) AD state for a ¼ 0:225 and e ¼ 0:25 as

soon as the processing delay d ¼ 0:59 is introduced in the coupling, and (b)

OD state for a ¼ 0:225 and e ¼ 0:75 upon introducing the processing delay

d ¼ 0:59 in the coupling.

FIG. 4. Spread of the stable HSS and IHSS of the coupled Sprott oscillators

(3) for different values of d as a function of the coupling strength e and the

system parameter a elucidating the effect of the processing delay d. (a)

Experimental results and (b) analytical stability curves. Real time bifurca-

tion diagrams elucidating the revival of oscillations for d > dc from (c) HSS

for a¼ 0.225, e ¼ 0:25 and (d) IHSS for a¼ 0.225, e ¼ 0:75 as a function of

the processing delay d 2 ð0; 0:6Þ.

043112-4 Senthilkumar et al. Chaos 26, 043112 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  139.133.148.27 On: Tue, 08 Nov

2016 15:33:57



curves encompassing the AD region of the coupled

Sprott oscillators (3) before introducing the processing

delay are deduced, by performing a linear stability analysis

around the origin, as a¼ ð2� 3e2� 5e3� 4e4�ð1þ eÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 24eþ 32e2� 44e3� 15e4þ 8e5þ 16e6
p

Þ=ð8ðe� 1ÞÞ (left

boundary of AD) and a¼ e2

2
(right boundary of AD separat-

ing AD and OD). Similarly, the stability of the IHSS is

ensured for a> e2

2
. Now, to elucidate the effect of the proc-

essing delay, the critical curves in the presence of d are

determined after expanding e�kd term in the characteristic

equation of the coupled Sprott oscillators.30 The critical sta-

bility curves for both AD and OD are depicted in Fig. 4(b)

for different values of the processing delay d¼ 0;0:6;0:7,

and 0.8. It is evident that the spread of AD/OD islands

decreases for increasing d and completely eroded above a

critical value dc ¼ 0:86 by switching the stability of the sta-

ble HSS and IHSS to revive the oscillations in the AD/OD

regions confirming the experimental results in Fig. 4(a).

Further, the real time bifurcation diagram of the coupled

Sprott oscillators corroborates the revival of oscillations

for d> dc from the AD state (see Fig. 4(c)) for a¼0.225,

e¼ 0:25 and from the OD state (see Fig. 4(d)) for a¼0.225,

e¼ 0:75 as a function of the processing delay d2 ð0;0:6Þ.
In summary, we have experimentally demonstrated the

effect of processing delay using analog electronic circuits of

two coupled VDP and Sprott oscillators exhibiting limit

cycle and chaotic oscillations, respectively. It has been

shown that the processing delay is capable of shrinking the

AD/OD regions and can eventually completely wipe off the

AD/OD regions by switching the stability of the stable HSS/

IHSS above a critical value. The phenomenon of reviving of

oscillation is demonstrated in both the coupled VDP and

Sprott circuit systems in the parameter space where AD to

OD transition occurs as a function of the coupling strength.

We have also obtained the analytical critical curves encom-

passing the stable HSS/IHSS as a function of the processing

delay. Our analytical results also corroborate the effect of

the processing delay in annihilating the onset of stable HSS/

IHSS above a critical value of d. The robustness of the phe-

nomenon of reviving of oscillations by the processing delay

is also verified for N¼ 100 oscillators in both the coupled

VDP and Sprott oscillators using simulations. Thus, the pres-

ence of even a small processing delay in the coupling results

in retaining the natural rhythms of real world systems. The

processing delay is particularly predominant in networks

with large hubs and may be responsible for their dynamic

robustness despite the presence of the couplings that can

facilitate the onset of quenching of oscillations. We firmly

believe that our results will open up the possibility of design-

ing more robust technological networks, human-machine

interfaces, etc., by the introduction of the processing delay in

their circuit architecture.
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