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Abstract: We present a first formal analysis of specific and complete local integration. Complete
local integration was previously proposed as a criterion for detecting entities or wholes in distributed
dynamical systems. Such entities in turn were conceived to form the basis of a theory of emergence
of agents within dynamical systems. Here, we give a more thorough account of the underlying
formal measures. The main contribution is the disintegration theorem which reveals a special role of
completely locally integrated patterns (what we call ι-entities) within the trajectories they occur in.
Apart from proving this theorem we introduce the disintegration hierarchy and its refinement-free
version as a way to structure the patterns in a trajectory. Furthermore, we construct the least upper
bound and provide a candidate for the greatest lower bound of specific local integration. Finally,
we calculate the ι-entities in small example systems as a first sanity check and find that ι-entities
largely fulfil simple expectations.

Keywords: identity over time; Bayesian networks; multi-information; entity; persistence; integration;
emergence; naturalising agency

1. Introduction

This paper investigates a formal measure and a corresponding criterion we developed in order to
capture the notion of wholes or entities within Bayesian networks in general and multivariate Markov
chains in particular. The main focus of this paper is to establish some formal properties of this criterion.

The main intuition behind wholes or entities is that combinations of some events/phenomena
in space(-time) can be considered as more of a single or coherent “thing” than combinations of other
events in space(-time). For example, the two halves of a soap bubble (The authors thank Eric Smith for
pointing out the example of a soap bubble.) together seem to form more of a single thing than one half
of a floating soap bubble together with a piece of rock on the ground. Similarly, the soap bubble at
time t1 and the “same” soap bubble at t2 seem more like temporal parts of the same thing than the soap
bubble at t1 and the piece of rock at t2. We are trying to formally define and quantify what it is that
makes some spatially and temporally extended combinations of parts entities but not others.

We envisage spatiotemporal entities as a way to establish not only the problem of spatial identity
but also that of temporal identity (also called identity over time [1]). In other words, in addition to
determining which events in “space” (e.g., which values of different degrees of freedom) belong to the
same structure spatiotemporal entities should allow the identification of the structure at a time t2 that
is the future (or past if t2 < t1) of a structure at time t1. Given a notion of identity over time, it becomes
possible to capture which things persist and in what way they persist. Without a notion of identity over
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time, it seems persistence is not defined. The problem is how to decide whether something persisted
from t1 to t2 if we cannot tell what at t2 would count as the future of the original thing.

In everyday experience problems concerning identity over time are not of great concern.
Humans routinely and unconsciously connect perceived events to spatially and temporally extended
entities. Nonetheless, the problem has been known since ancient times, in particular with respect
to artefacts that exchange their parts over time. A famous example is the Ship of Theseus which
has all of its planks exchanged over time. This leads to the question whether it is still the same
ship. From the point of view of physics and chemistry living organisms also exchange their parts
(e.g., the constituting atoms or molecules) over time. In the long term we hope our theory can help
to understand identity over time for these cases. For the moment, we are particularly interested
in identity over time in formal settings like cellular automata, multivariate Markov chains, and
more generally dynamical Bayesian networks. In these cases a formal notion of spatiotemporal
entities (i.e., one defining spatial and temporal identity) would allow us to investigate persistence
of entities/individuals formally. The persistence (and disappearance) of individuals are in turn
fundamental to Darwinian evolution [2,3]. This suggests that spatiotemporal entities may be important
for the understanding of the emergence of Darwinian evolution in dynamical systems.

Another area in which a formal solution to the problem of identity over time, and thereby entities
(In the following, if not stated otherwise, we always mean spatiotemporal entities when we refer to
entities.), might become important is a theory of intelligent agents that are space-time embedded
as described by Orseau and Ring [4]. Agents are examples of entities fulfilling further properties
e.g., exhibition of actions, and goal-directedness (cf. e.g., [5]). Using the formalism of reinforcement
learning Legg and Hutter [6] proposes a definition of intelligence. Orseau and Ring [4] argue that this
definition is insufficient. They dismiss the usual assumption that the environment of the reinforcement
agent cannot overwrite the agent’s memory (which in this case is seen as the memory/tape of a
Turing machine). They conclude that in the most realistic case there only ever is one memory that the
agent’s (and the environment’s) data is embedded in. They note that the difference between agent
and environment then disappears. Furthermore, that the policy of the agent cannot be freely chosen
anymore, only the initial condition. In order to measure intelligence according to Legg and Hutter [6]
we must be able to define reward functions. This seems difficult without the capability to distinguish
the agent according to some criterion. Towards the end of their publication Orseau and Ring [4]
propose to define a “heart” pattern and use the duration of its existence as a reward. This seems a too
specific approach to us since it basically defines identity over time (of the heart pattern) as invariance.
In more general settings a pattern that maintains a more general criterion of identity over time would
be desirable. Ideally, this criterion would also not need a specifically designed heart pattern. Another
advantage would be that reward functions different from lifetime could be used if the agent were
identifiable. An entity criterion in the sense of this paper would be a step in this direction.

1.1. Illustration

In order to introduce the contributions of this paper we illustrate the setting of our work further.
This illustration should only be taken as a motivation for what follows and not be confused with a

result. The reason we don’t use a concrete example is simply that we lack the necessary computational
means (which are considerable as we will discuss in Section 5).

Let us assume we are given the entire time-evolution (what we will call a trajectory) of some known
multivariate dynamical system or stochastic process. For example, a trajectory of a one-dimensional
elementary cellular automaton showing a glider collision like Figure 1a (This is produced by the rule
62 elementary cellular automaton with time increasing from left to right. However, this does not matter
here. For more about this system see e.g., Boccara et al. [7]).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1. Illustration of concepts from this paper on the time-evolution (trajectory) of a one-dimensional
elementary cellular automaton. Time-steps increase from left to right. None of the shown structures
are derived from principles. They are manually constructed for illustrative purposes. In (a) we show
the complete (finite) trajectory. Naively, two gliders can be seen to collide and give rise to a third glider;
In (b–d) we show (spatiotemporal) patterns fixing the variables (allegedly) pertaining to a first, second,
and a third glider; In (e) we show a pattern fixing the variables of what could be a glider that absorbs
the first glider from before and maintains its identity; In (f) we show a partition into the time-slices of
the pattern of the first glider; In (g) we show a partition of the trajectory with three parts coinciding
with the gliders and one part encompassing the rest; In (h) we show again a partition with three parts
coinciding with the gliders but now all other variables are considered as individual parts.

We take the point of view here argued for in previous work [8] that entities are phenomena that
occur within trajectories and that they can be represented by (spatiotemporal) patterns. Patterns in
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this sense fix a part of the variables in a trajectory to definite values and leave the rest undetermined.
In Figure 1b–d we show such patterns that occur in Figure 1a with the undetermined variables coloured
grey and the determined ones taking on those of the trajectory. Visually speaking, a pattern is a snippet
from a trajectory that it occurs in.

From Figure 1a we would probably expect that what we are seeing are two gliders colliding and
forming a third. However, it may also be that one of the gliders absorbs the other, maintains some
form of identity, and only changes its appearance (e.g., it “grows”). This highlights the problem of
identity over time. While the spatial identity of such patterns has been treated multiple times in the
literature their identity of over time is rarely dealt with.

Our approach evaluates the “integration” of spatiotemporally extended patterns at once. According
to our proposed entity-criterion a pattern is an ι-entity if, due to the dynamics of the system, every
part of this pattern (which is again a pattern) makes all other parts more probable. Identity over time
is then included since future parts have to make past parts more probable and vice versa. In principle
this would allow us to detect if one of the gliders absorbs another one without loosing its identity.
For example, this could result in an entity as in Figure 1e.

In order to detect entities the straightforward approach is to evaluate the entity-criterion for every
spatiotemporal pattern in a given trajectory. Evaluating our entity-criterion of positive complete local
integration (CLI) for a given pattern corresponds to splitting the pattern into parts in every possible way
and calculating whether all the resulting parts make each other more probable. This means evaluating
the specific local integration (SLI) with respect to all partitions of the set of variables occupied by
the pattern.

1.2. Contributions

This paper contains four contributions.
We first give a more formal definition of patterns. Since each pattern uniquely specifies a set of

trajectories (those trajectories that the pattern occurs in) one might be tempted to reduce the analysis
to that of sets of trajectories. We show that this is not possible since not all sets of trajectories have a
pattern that specifies them.

Second, we try to get a general intuition for the patterns whose parts make all other parts more
probable. For this we show how to construct patterns that, for given probability of the whole pattern,
achieve the least upper bound of specific local integration (SLI). These turn out to be patterns for which
each part only occurs if and only if the whole pattern occurs. We also construct a pattern that, again for
given probability of the whole pattern, has negative SLI. These pattern (which may achieve the greatest
lower bound of SLI) occur if either the whole pattern occurs or the pattern occurs up to exactly one
part of it, which does not occur.

Third, we prove the disintegration theorem. This is the main contribution. We saw that patterns
are snippets of trajectories. We can also look at the whole trajectory as a single pattern. Like all patterns
the trajectory can be split up into parts, i.e., partitioned, resulting in a set of patterns. Among the
partitions we find examples such as those in Figure 1g,h. These are very particular partitions picking
out the gliders among all possible parts. This suggests that finding such special partitions provides a
(possibly different) notion of entities.

One intuition we might have is that entities are the most “independent” parts of a trajectory.
In other words we could look for the partition whose parts make the other parts less probable.
The disintegration theorem then shows that this approach again leads to the ι-entities. This shows that
ι-entities do not only have an intuitive motivation but also play a particular role in the structure of
probabilities of entire trajectories.

It is not directly the parts of the partitions that minimise SLI for a trajectory which are ι-entities.
To get ι-entities we first classify all partitions of the trajectory according to their SLI value. Then within
each such class we choose the partitions for which no refining partition (A refining partition is one that
further partitions any of the parts of the original partition.) achieves an even lower level of SLI.
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So according to the disintegration theorem a ι-entity is not only a pattern that is integrated with
respect to every possible partition of the pattern but also a pattern that occurs in partitions that
minimise (in a certain sense) the integration of trajectories.

A side effect of the disintegration theorem is that we naturally get a kind of hierarchy of ι-entities
called the disintegration hierarchy. For each trajectory and its different levels of SLI we find different
decompositions of the trajectory into ι-entities.

Fourth, we calculate the ι-entities and disintegration hierarchy for two simple example systems.
Our example systems show that in general the partitions at a particular disintegration level are not
unique. This means that there are overlapping ι-entities at those levels. Furthermore, the same ι-entity
can occur on multiple levels of the disintegration.

We do not thoroughly discuss the disintegration hierarchies in this paper and postpone this to
future publications. Here we only note that many entities in the real world occur within hierarchies as
well. For example, animals are entities that are composed of cells which are themselves entities.

1.3. Related Work

We now give a quick overview of related work. More in depth discussions will be provided after
we formally introduce our definitions.

To our knowledge the measure of CLI has been proposed for the first time by us in [8]. However,
this publication contained none of the formal or numerical results in the present paper. From a
formal perspective the measures of SLI and CLI are a combination of existing concepts. SLI localises
multi-information [9,10] in the way proposed by Lizier [11] for other information theoretic measures.
In order to get the CLI we apply the weakest-link approach proposed by Tononi and Sporns [12],
Balduzzi and Tononi [13] to SLI.

Conceptually, our work is most closely related to Beer [14]. The notion of spatiotemporal patterns
used there to capture blocks, blinkers, and gliders is equivalent to the patterns we define more formally
here. This work also contains an informal entity-criterion that directly deals with identity over time
(not only space). It differs significantly from our proposal as it depends on the re-occurrence of certain
transitions at later times in a pattern whereas our criterion only depends on the probabilities of parts
of the patterns without the need for any re-occurrences.

The organisations of chemical organisation theory [15] may also be interpreted as entity-criteria.
In Fontana and Buss [15] these are defined in the following way:

The observer will conclude that the system is an organisation to the extent that there is a
compressed description of its objects and of their relations.

The direct intuition is different from ours and it is not clear to us in how far our entity-criterion is
equivalent to this. This will be further investigated in the future.

It is worth noting that viewing entities/objects/individuals as patterns occurring within a
trajectory is in contrast to an approach that models them as sets of random variables/stochastic
processes (e.g., a set of cells in a CA in contrast to a set of specific values of a set of cells). An example of
the latter approach are the information theoretic individuals of Krakauer et al. [16]. These individuals
are identified using an information theoretic notion of autonomy due to Bertschinger et al. [17].
The latter notion of autonomy is also somewhat related to the idea of integration here. Autonomy
contains a term that measures the degree to which a random variable representing an individual at
timestep t determines the random variable representing it at t + 1. Similarly, CLI requires that every
part of an entity pattern makes every other part more probable, in the extreme case this means that
every part determines that every other part of the pattern also occurs. However, formally autonomy
evaluates random variables and not patterns directly.

At the most basic level the intuition behind entities is that some spatiotemporal patterns are
more special than others. Defining (and usually finding) more important spatiotemporal patterns
or structures (also called coherent structures) has a long history in the theory of cellular automata
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and distributed dynamical systems. As Shalizi et al. [18] have argued most of the earlier definitions
and methods [19–22] require previous knowledge about the patterns being looked for. They are
therefore not suitable for a general definition of entities. More recent definitions based on information
theory [18,23,24] do not have this limitation anymore. The difference to our entity-criterion is that they
do not treat identity over time. They are well suited to identify gliders at each time-step for example,
but if two gliders collide and give rise to a third glider as in Figure 1a these methods (by design) say
nothing about the identity of the third glider. i.e., they cannot make a difference between a glider
absorbing another one and two gliders producing a new one. While we have not been able to show
that our approach actually makes such distinctions for gliders, it could do so in principle.

We note here that the approach of identifying individuals by Friston [25] using Markov blankets
has the same shortcoming as the spatiotemporal filters. For each individual time-step it returns a
partition of all degrees of freedom into internal, sensory, active, and external degrees. However, it does
not provide a way to resolve ambiguities in the case of multiple such partitions colliding.

Among research related to integrated information theory (IIT) there are approaches (a first one
by Balduzzi [26] and a more recently by Hoel et al. [27]) that can be used to determine specific
spatiotemporal patterns in a trajectory. They can therefore be interpreted to define a notion of
entities even if that is not their main goal. These approaches are aimed at establishing the optimal
spatiotemporal coarse-graining to describe the dynamics of a system. For a given trajectory we can
then identify the patterns that instantiate a macro-state/coarse-grain that is optimal according to
their criterion.

In contrast to our approach the spatiotemporal grains are determined by their interactions with
other grains. In our case the entities are determined first and foremost by their internal relations.

The consequence seems to be that a pattern can be an entity in one trajectory and not an entity in
another even if it occurs in both. In our conception a pattern is an entity in all trajectories it occurs in.

2. Notation and Background

In this section we briefly introduce our notation for sets of random variables (Since every set of
jointly distributed random variables can be seen as a Bayesian network and vice versa we use these
terms interchangeably.) and their partition lattices.

In general, we use the convention that upper-case letters X, Y, Z are random variables, lower-case
letters x, y, z are specific values/outcomes of random variables, and calligraphic letters X ,Y ,Z are
state spaces that random variables take values in. Furthermore:

Definition 1. Let {Xi}i∈V be a set of random variables with totally ordered finite index set V and state spaces
{Xi}i∈V respectively. Then for A, B ⊆ V define:

1. XA := (Xi)i∈A as the joint random variable composed of the random variables indexed by A, where A is
ordered according to the total order of V,

2. XA := ∏i∈A Xi as the state space of XA,
3. xA := (xi)i∈A ∈ XA as a value of XA,
4. pA : XA → [0, 1] as the probability distribution (or more precisely probability mass function) of XA which

is the joint probability distribution over the random variables indexed by A. If A = {i} i.e., a singleton set,
we drop the parentheses and just write pA = pi,

5. pA,B : XA ×XB → [0, 1] as the probability distribution over XA ×XB. Note that in general for arbitrary
A, B ⊆ V, xA ∈ XA, and yB ∈ XB this can be rewritten as a distribution over the intersection of A and B
and the respective complements. The variables in the intersection have to coincide:

pA,B(xA, yB) : = pA\B,A∩B,B\A,A∩B(xA\B, xA∩B, yB\A, yA∩B) (1)

= δxA∩B(yA∩B) pA\B,A∩B,B\A(xA\B, xA∩B, yB\A). (2)



Entropy 2017, 19, 230 7 of 46

Here δ is the Kronecker delta (see Appendix A). If A ∩ B = ∅ and C = A ∪ B we also write pC(xA, yB)

to keep expressions shorter.
6. pB|A : XA ×XB → [0, 1] with (xA, xB) 7→ pB|A(xB|xA) as the conditional probability distribution over

XB given XA:

pB|A(yB|xA) :=
pA,B(xA, yB)

pA(xA)
. (3)

We also just write pB(xB|xA) if it is clear from context what variables we are conditioning on.

If we are given pV we can obtain every pA through marginalisation. In the notation of Definition 1
this is formally written:

pA(xA) = ∑
x̄V\A∈XV\A

pA,V\A(xA, x̄V\A) (4)

= ∑
x̄V\A∈XV\A

pV(xA, x̄V\A). (5)

Next we define the partition lattice of a set of random variables. Partition lattices occur as a
structure of the set of possible ways to split an object/pattern into parts. Subsets of the partition lattices
play an important role in the disintegration theorem.

Definition 2 (Partition lattice of a set of random variables). Let {Xi}i∈V be a set of random variables.

1. Then its partition lattice L(V) is the set of partitions of V partially ordered by refinement (see also
Appendix B).

2. For two partitions π, ρ ∈ L(V) we write π C ρ if π refines ρ and π C: ρ if π covers ρ. The latter means
that π 6= ρ, π C ρ, and there is no ξ ∈ L(V) with π 6= ξ 6= ρ such that π C ξ C ρ.

3. We write 0 for the zero element of a partially ordered set (including lattices) and 1 for the unit element.
4. Given a partition π ∈ L(V) and a subset A ⊆ V we define the restricted partition π|A of π to A via:

π|A := {b ∩ A : b ∈ π}. (6)

For some examples of partition lattices see Appendix B and for more background see e.g.,
Grätzer [28]. For our purpose it is important to note that the partitions of sets of random variables or
Bayesian networks we are investigating are partitions of the index set V of these and not partitions of
their state spaces XV .

3. Patterns, Entities, Specific, and Complete Local Integration

This section contains the formal part of this contribution.
First we introduce patterns. Patterns are the main structures of interest in this publication.

Entities are seen as special kinds of patterns. The measures of specific local integration and complete
local integration, which we use in our criterion for ι-entities, quantify notions of “oneness” of patterns.
We give a brief motivation and show that while each pattern defines a set of “trajectories” of a set of
random variables not every such set is defined by a pattern. This justifies studying patterns for their
own sake.

Then we motivate briefly the use of specific and complete local integration (SLI and CLI) for
an entity criterion on patterns. We then turn to more formal aspects of SLI and CLI. We first prove
an upper bound for SLI and construct a candidate for a lower bound. We then go on to define the
disintegration hierarchy and its refinement-free version. These structures are used to prove the main
result, the disintegration theorem. This relates the SLI of whole trajectories of a Bayesian network to the
CLI of parts of these trajectories and vice versa.
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3.1. Patterns

This section introduces the notion of patterns. These form the basic candidate structures for entities.
The structures we are trying to capture by entities should be analogous to spatially and temporally

extended objects we encounter in everyday life (e.g., soap bubbles, living organisms). These objects
seem to occur in the single history of the universe that also contains us. The purpose of patterns is
then to capture arbitrary structures that occur within single trajectories or histories of a multivariate
discrete dynamical system (see Figure 2 for an example of a Bayesian network of such a system, any
cellular automaton is also such a system).

X1,0 X1,1 X1,2 X1,3

X2,0 X2,1 X2,2 X2,3

X3,0 X3,1 X3,2 X3,3

X4,0 X4,1 X4,2 X4,3

X5,0 X5,1 X5,2 X5,3

degrees
offreedom

(D
O

Fs)→

time→

Figure 2. First time steps of a Bayesian network representing a multivariate dynamical system
(or multivariate Markov chain) {Xi}i∈V . Here we used V = J × T with J indicating spatial degrees of
freedom and T the temporal extension. Then each node is indexed by a tuple (j, t) as shown. The shown
edges are just an example, edges are allowed to point from any node to another one within the same or
in the subsequent column.

We emphasise the single trajectory since many structures of interest (e.g., gliders) occur in some
trajectories in some “places”, in other trajectories in other “places” (compare e.g., Figures 1a and 3a),
and in some trajectories not at all. We explicitly want to be able to capture such trajectory dependent
structures and therefore choose patterns. Examples of formal structures for which it makes no sense to
say that they occur within a trajectory are for example the random variables in a Bayesian network
and, as we will see, general sets of trajectories of the Bayesian network.

Unlike entities, which we conceive of as special patterns that fulfil further criteria, patterns are
formed by any combination of events at arbitrary times and positions. As an example, we might think
of cellular automaton again. The time evolutions over multiple steps of the cells attributed to a glider
see [14] for a principled way to attribute cells to theseas in Figure 1b,e should be patterns but also
arbitrary choices of events in a trajectory as in Figure 3b.

In the more general context of (finite) Bayesian networks there may be no interpretation of time
or space. Nonetheless, we can define that a trajectory in this case fixes every random variable to a
particular value. We then define patterns formally in the following way.
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(a) (b)

Figure 3. In (a) we show a trajectory of the same cellular automaton as in Figure 1 with a randomly
chosen initial condition. The set of gliders and their paths occurring in this trajectory is clearly different
from those in Figure 1a. In (b) we show an example of a random pattern that occurs in the trajectory of
(a) and is probably not an entity in any sense.

Definition 3 (Patterns and trajectories). Let {Xi}i∈V be set of random variables with index set V and state
spaces {Xi}i∈V respectively.

1. A pattern at A ⊆ V is an assignment

XA = xA (7)

where xA ∈ XA. If there is no danger of confusion we also just write xA for the pattern XA = xA at A.
2. The elements xV of the joint state space XV are isomorphic to the patterns XV = xV at V which fix the

complete set {Xi}i∈V of random variables. Since they will be used repeatedly we refer to them as the
trajectories of {Xi}i∈V .

3. A pattern xA is said to occur in trajectory x̄V ∈ XV if x̄A = xA.
4. Each pattern xA uniquely defines (or captures) a set of trajectories T (xA) via

T (xA) = {x̄V ∈ XV : x̄A = xA}, (8)

i.e., the set of trajectories that xA occurs in.
5. It is convenient to allow the empty pattern x∅ for which we define T (x∅) = XV .

Remarks:

• Note that for every xA ∈ XA we can form a pattern XA = xA so the set of all patterns is
⋃

A⊆V XA.
• Our notion of patterns is similar to “patterns” as defined in [29] and to “cylinders” as defined in [30].

More precisely, these other definitions concern (probabilistic) cellular automata where all random
variables have identical state spaces Xi = Xj for all i, j ∈ V. They also restrict the extent of the
patterns or cylinders to a single time-step. Under these conditions our patterns are isomorphic
to these other definitions. However, we drop both the identical state space assumption and the
restriction to single time-steps.

Our definition is inspired by the usage of the term “spatiotemporal pattern” in [14,31,32]. There is
no formal definition of this notion given in these publications but we believe that our definition is
a straightforward formalisation. Note that these publications only treat the Game of Life cellular
automaton. The assumption of identical state space is therefore implicitly made. At the same time
the restriction to single time-steps is explicitly dropped.

Since every pattern defines a subset of XV , one could think that every subset of XV is also a
pattern. In that case studying patterns in a set of random variables {Xi}i∈V would be the same as
studying subsets of its set of trajectories XV . However, the set of subsets of XV defined by patterns
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and the set of all subsets 2XV (i.e., the power set) of XV of a set of random variables {Xi}i∈V are not
identical. Formally: ⋃

B⊆V
{T (xB) ⊆ XV : xB ∈ XB} ⊆ 2XV . (9)

While patterns define subsets ofXV , not every subset ofXV is captured by a pattern. The difference
of the two sets is characterised in Theorem 1 below. We first present a simple example of a subset
D ∈ 2XV that cannot be captured by a pattern.

Let V = {1, 2} and {Xi}i∈V = {X1, X2} the set of random variables. Let X1 = X2 = {0, 1}.
Then XV = {(0, 0), (0, 1), (1, 0), (1, 1)}. Now let A = V = {1, 2}, choose pattern xA = (0, 0) and
pattern x̄A = (1, 1). Then let

D := {xA ∪ x̄A} = {(0, 0), (1, 1)}. (10)

In this case we can easily list the set of all patterns
⋃

C⊆V XC:

C ⊆ V xC T (xC)

∅ x∅ XV

{1}
(0) {(0, 0), (0, 1)}
(1) {(1, 0), (1, 1)}

{2}
(0) {(0, 0), (1, 0)}
(1) {(0, 1), (1, 1)}

{1,2}

(0, 0) {(0, 0)}
(0, 1) {(0, 1)}
(1, 0) {(1, 0)}
(1, 1) {(1, 1)}

(11)

and verify that D is not among them. Before we formally characterise the difference, we define some
extra terminology.

Definition 4. Let {Xi}i∈V be set of random variables with index set V and state spaces {Xi}i∈V respectively.
For a subset D ⊆ XV the set DA of all patterns at A that occur in one of the trajectories in D is defined as

DA := {xA ∈ XA : ∃x̄V ∈ D, x̄A = xA}. (12)

So in the previous example D{1} = {0, 1}, D{2} = {0, 1}, D{1,2} = {(0, 0), (1, 1)}. In then get the
following theorem which establishes the difference between the subsets of XV captured by patterns
and general subsets.

Theorem 1. Given a set of random variables {Xi}i∈V , a subset D ⊆ XV cannot be represented by a pattern
of {Xi}i∈V if and only if there exists A ⊆ V with DA ⊂ XA (proper subset) and |DA| > 1, i.e., if neither all
patterns at A are possible nor a unique pattern at A is specified by D.

Proof. See Appendix D.

We saw that in the previous example the subset D cannot be captured by a pattern. For A = {1}
we have D{1} = {0, 1} = X{1} and for A = {2} we have D{2} = {0, 1} = X{2} so these do not fulfil
the conditions of Theorem 1. However, for A = {1, 2} we have D{1,2} = {(0, 0), (1, 1)} ⊂ X{1,2}
and |D{1,2}| > 1 so the conditions of Theorem 1 are fulfilled and as expected D cannot be captured
by a pattern.



Entropy 2017, 19, 230 11 of 46

The proof of the following corollary shows how to construct a subset that cannot be represented
by a pattern for all sets of random variables {Xi}i∈V with |XV | > 2.

Corollary 1. Given a set of random variables {Xi}i∈V , if |XV | > 2 then⋃
B∈V
{T (xB) ⊆ XV : xB ∈ XB} ⊂ 2XV (13)

(proper subset).

Proof. Choose D = {xV , yV} ∈ 2XV with yV ∈ {x̄V ∈ XV : ∀i ∈ V, x̄i 6= xi}. Then for all A ⊆ V we
have |DA| = 2 and DA ⊂ XA. So D cannot be represented by a pattern according to Theorem 1 and so
D /∈ ⋃B∈V{T (xB) ⊆ XV : xB ∈ XB}.

This means that in every set of random variables that not only consists of a single binary random
variable there are subsets of XV that cannot be captured by a pattern. We can interpret this result in the
following way. Patterns were constructed to be structures that occur within trajectories. It then turned
out that each pattern also defines a subset of all trajectories of a system. So for sets of trajectories
captured by patterns it could make sense to say they “occur” within one trajectory. However, there are
sets of trajectories that are not captured by patterns. For these sets of trajectories it would then not
be well-defined to say that they occur within a trajectory. This is the reason we choose to investigate
patterns specifically and not sets of trajectories.

3.2. Motivation of Complete Local Integration as an Entity Criterion

We proposed to use patterns as the candidate structures for entities since patterns comprise
arbitrary structures that occur within single trajectories of multivariate systems. Here we heuristically
motivate our choice of using positive complete local integration as a criterion to select entities among
patterns. In general such a criterion would give us, for any Bayesian network {Xi}i∈V a subset
E({Xi}i∈V) ⊆

⋃
A⊆V XA of the patterns.

So what is an entity? We can rephrase the problem of finding an entity criterion by saying an
entity is composed of parts that share the same identity. So if we can define when parts share the same
identity we also define entities by finding all parts that share identity with some given part. For the
moment, let us decompose (as is often done [33]) the problem of identity into two parts:

1. spatial identity and
2. temporal identity.

Our solution will make no distinction between these two aspects in the end. We note here that
conceiving of entities (or objects) as composite of spatial and temporal parts as we do in this paper
is referred to as four-dimensionalism or perdurantism in philosophical discussions (see e.g., [34]).
The opposing view holds that entities are spatial only and endure over time. This view is called
endurantism. Here we will not go into the details of this discussion.

The main intuition behind complete local integration is that every part of an entity should make
every other part more probable.

This seems to hold for example for the spatial identity of living organisms. Parts of living
organisms rarely exist without the rest of the living organisms also existing. For example, it is rare
that an arm exists without a corresponding rest of a human body existing compared to an arm and the
rest of a human body existing. The body (without arm) seems to make the existence of the arm more
probable and vice versa. Similar relations between parts seem to hold for all living organisms but also
for some non-living structures. The best example of a non-living structure we know of for which this
is obvious are soap bubbles. Half soap bubbles (or thirds, quarters,...) only ever exist for split seconds
whereas entire soap bubbles can persist for up to minutes. Any part of a soap bubble seems to make
the existence of the rest more probable. Similarly, parts of hurricanes or tornadoes are rare. So what
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about spatial parts of structures that are not so entity-like? Does the existence of an arm make things
more probable that are not parts of the corresponding body? For example, does the arm make the
existence of some piece of rock more probable? Maybe to a small degree as without the existence of
any rocks in the universe humans are probably impossible. However, this effect is much smaller than
the increase of probability of the existence of the rest of the body due to the arm.

These arguments concerned the spatial identity problem. However, for temporal identity similar
arguments hold. The existence of a living organism at one point in time makes it more probable that
there is a living organism (in the vicinity) at a subsequent (and preceding) point in time. If we look at
structures that are not entity-like with respect to the temporal dimension we find a different situation.
An arm at some instance of time does not make the existence of a rock at a subsequent instance much
more probable. It does make the existence of a human body at a subsequent instance much more
probable. So the human body at the second instance seems to be more like a future part of the arm
than the rock. Switching now to patterns in sets of random variables we can easily formalise such
intuitions. We required that for an entity every part of the structure, which is now a pattern xO, makes
every other part more probable. A part of a pattern is a pattern xb with b ⊂ O. If we require that every
part of a pattern makes every other part more probable then we can write that xO is an entity if:

min
b⊂O

pO\b(xO\b|xb)

pO\b(xO\b)
> 1. (14)

This is equivalent to

min
b⊂O

pO(xO)

pO\b(xO\b)pb(xb)
> 1. (15)

If we write L2(O) for the set of all bipartitions of O we can rewrite this further as

min
π∈L2(O)

pO(xO)

∏b∈π pb(xb)
> 1. (16)

We can interpret this form as requiring that for every possible partition π ∈ L2(O) into two parts
xb1 , xb2 the probability of the whole pattern xO = (xb1 , xb2) is bigger than its probability would be if
the two parts were independent. To see this, note that if the two parts xb1 , xb2 were independent we
would have

pO(xO) =: pb1,b2(xb1 , xb2) = pb1(xb1)pb2(xb2). (17)

Which would give us
pO(xO)

∏b∈π pb(xb)
= 1 (18)

for this partition.
From this point of view the choice of bipartitions only seems arbitrary. For example, the existence

a partition ξ into three parts such that

pO(xO) = ∏
c∈ξ

pc(xc) (19)

seems to suggest that the pattern xO is not an entity but instead composite of three parts. We can
therefore generalise Equation (16) to include all partitions L(O) (see Definition 2) of O except the unit
partition 1O. Then we would say that xO is an entity if

min
π∈L(O)\1O

pO(xO)

∏b∈π pb(xb)
> 1. (20)

This measure already results in the same entities as the measure we propose.
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However, in order to connect with information theory, log-likelihoods, and related literature we
formally introduce the logarithm into this equation. We then arrive at the following entity-criterion

min
π∈L(O)\1O

log
pO(xO)

∏b∈π pb(xb)
> 0. (21)

where the left hand side is the complete local integration (CLI), the function minimised is the specific
local integration (SLI), and the inequality provides the criterion for ι-entities. For reference, we define
these notions formally. We begin with SLI which quantifies for a given partition π of a pattern in how
far the probability of the whole pattern is bigger than its probability would be if the blocks of the
partition would be independent.

Definition 5 (Specific local integration (SLI)). Given a Bayesian network {X}i∈V and a pattern xO the
specific local integration miπ(xO) of xO with respect to a partition π of O ⊆ V is defined as

miπ(xO) := log
pO(xO)

∏b∈π pb(xb)
. (22)

In this paper we use the convention that log 0
0 := 0.

Definition 6 ((Complete) local integration). Given a Bayesian network {Xi}i∈V and a pattern xO of
this network the complete local integration ι(xO) of xO is the minimum SLI over the non-unit partitions
π ∈ L(O) \ 1O:

ι(xO) := min
π∈L(O)\1O

miπ(xO). (23)

We call a pattern xO completely locally integrated if ι(xO) > 0.

Remarks:

• The reason for excluding the unit partition 1O of L(O) (where 1O = {O} see Definition 2) is that
with respect to it every pattern has mi1O(xO) = 0.

• Looking for a partition that minimises a measure of integration is known as the weakest link
approach [35] to dealing with multiple partitions. We note here that this is not the only approach
that is being discussed. Another approach is to look at weighted averages of all integrations. For a
further discussion of this point in the case of the expected value of SLI see Ay [35] and references
therein. For our interpretation taking the average seems less well suited since requiring a positive
average will allow SLI to be negative with respect to some partitions.

Definition 7 (ι-entity). Given a multivariate Markov chain {Xi}i∈V a pattern xO is a ι-entity if

ι(xO) > 0. (24)

The entire set of ι-entities Eι({Xi}i∈V) is then defined as follows.

Definition 8 (ci-entity-set). Given a multivariate Markov chain {Xi}i∈V the ι-entity-set is the entity-set

Eι({Xi}i∈V) := {xO ∈
⋃

A⊆V
XA : ι(xO) > 0}. (25)

Next, we look at some interpretations that the introduction of the logarithm allows.

• A first consequence of introducing the logarithm is that we can now formulate the condition of
Equation (24) analogously to an old phrase attributed to Aristotle that “the whole is more than
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the sum of its parts”. In our case this would need to be changed to “the log-probability of the
(spatiotemporal) whole is greater than the sum of the log-probabilities of its (spatiotemporal)
parts”. This can easily be seen by rewriting Equation (22) as:

miπ(xO) = log pO(xO)− ∑
b∈π

log pb(xb). (26)

• Another side effect of using the logarithm is that we can interpret Equation (24) in terms of
the surprise value (also called information content) − log pO(xO) [36] of the pattern xO and the
surprise value of its parts with respect to any partition π. Rewriting Equation (22) using properties
of the logarithm we get:

miπ(xO) = ∑
b∈π

(− log pb(xb))− (− log pO(xO)).

Interpreting Equation (24) from this perspective we can then say that a pattern is an entity if the
sum of the surprise values of its parts is larger than the surprise value of the whole.

• In coding theory, the Kraft-McMillan theorem [37] tells us that the optimal length (in a uniquely
decodable binary code) of a codeword for an event x is l(x) = − log p(x) if p(x) is the true
probability of x. If the encoding is not based on the true probability of x but instead on a
different probability q(x) then the difference between the optimal codeword length and the chosen
codeword length is

− log q(x)− (− log p(x)) = log
p(x)
q(x)

. (27)

Then we can interpret the specific local integration as a difference in codeword lengths. Say we
want to encode what occurs at the nodes/random variables indexed by O, i.e., we encode the
random variable XV . We can encode every event (now a pattern) xO based on pO(xO). Let’s call
this the joint code. Given a partition π ∈ L(O) we can also encode every event xO based on its
product probability ∏b∈πO

pb(xb). Let’s call this the product code with respect to π. For a particular
event xO the difference of the codeword lengths between the joint code and the product code with
respect to π is then just the specific local integration with respect to π.

Complete local integration then requires that the joint code codeword is shorter than all possible
product code codewords. This means there is no partition with respect to which the product code
for the pattern xO has a shorter codeword than the joint code. So ι-entities are patterns that are
shorter to encode with the joint code than a product code. Patterns that have a shorter codeword
in a product code associated to a partition π have negative SLI with respect to this π and are
therefore not ι-entities.

• We can relate our measure of identity to other measures in information theory. For this we
note that the expectation value of specific local integration with respect to a partition π is the
multi-information MIπ(XO) [9,10] with respect to π, i.e.,

MIπ(XO) : = ∑
xO∈XO

pO(xO) log
pO(xO)

∏b∈π pb(xb)
(28)

= ∑
xO∈XO

pO(xO)miπ(xO). (29)

The multi-information plays a role in measures of complexity and information integration [35].
The generalisation from bipartitions to arbitrary partitions is applied to expectation values similar
to the multi-information above in Tononi [38]. The relations of our localised measure (in the
sense of [11]) to multi-information and information integration measures also motivates the name
specific local integration. Relations to these measures will be studied further in the future. Here we
note that these are not suited for measuring identity of patterns since they are properties of the
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random variables XO and not of patterns xO. We also show in Corollary 2 that if xO is an ι-entity
that XO (the joint random variable) has a positive MIπ(XO) for all partitions π and is therefore a
set of “integrated” random variables.

3.3. Properties of Specific Local Integration

This section investigates the specific local integration (SLI) (see Definition 5). After giving its
expression for deterministic systems it proves upper bounds constructively and constructs an example
of negative SLI.

3.3.1. Deterministic Case

Theorem 2 (Deterministic specific local integration). Given a deterministic Bayesian network
(Definition A10), a uniform initial distribution over XV0 (V0 is the set of nodes without parents), and a
pattern xO with O ⊆ V the SLI of xO with respect to partition π can be expressed more specifically: Let N(xO)

refer to the number of trajectories in which xO occurs. Then

miπ(xO) = (|π| − 1) log |XV0 |+ log N(xO)− ∑
b∈π

log N(xb). (30)

Proof. See Appendix C.2.

The first term in Equation (30) is always positive if the partition and the set of random variables are
not trivial (i.e., have cardinality larger than one) and is a constant for partitions of a given cardinality.
The second term is also always non-negative for patterns xO that actually occur in the system and rises
with the number of trajectories that lead to it. The third term is always non-positive and becomes more
and more negative the higher the number of trajectories that lead to the parts of the pattern occurring.

This shows that to maximise SLI for fixed partition cardinality we need to find patterns that have
a high number of trajectories leading to them and a low number of occurrences for all their parts. Since
the number of occurrences of the parts cannot be lower than the number of occurrences of the whole,
we should get a maximum SLI for patterns whose parts occur only if the whole occurs. This turns out
to be true also for the non-deterministic systems as we prove in Theorem 4.

Conversely, if we can increase the number of occurrences of the parts of the pattern without
increasing the occurrences of the whole pattern occurring we minimise the SLI. This leads to the
intuition that as often as possible as many parts as possible (i.e., all but one) should co-occur
without the whole pattern occurring. This consistently leads to negative SLI as we will show for
the non-deterministic case in Theorem 5.

3.3.2. Upper Bounds

In this section we present the upper bounds of SLI. These are of general interest, but the
constructive proof also provides an intuition for what kind of patterns have large SLI.

We first show constructively that if we can choose the Bayesian network and the pattern then SLI
can be arbitrary large. This construction sets the probabilities of all blocks equal to the probability of
the pattern and implies that each of the parts of the pattern occurs only if the entire pattern occurs.
The simplest example is one binary random variable determining another to always be in the same
state, then the two patterns with both variables equal have this property. In the subsequent theorem
we show that this property in general gives the upper bound of SLI if the cardinality of the partition is
fixed. A simple extension of this example is used in the proof of the least upper bound. First we prove
that there are Bayesian networks that achieve a particular SLI value. This will be used in the proofs
that follow. For this we first define the anti-patterns which are patterns that differ to a given pattern at
every random variable that is specified.
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Definition 9 (Anti-pattern). Given a pattern xO define its set of anti-patterns ¬(xO) that have values different
from those of xO on all variables in O:

¬(xO) := {x̄O ∈ XO : ∀i ∈ O, x̄i 6= xi}. (31)

Remark:

• It is important to note that for an element of ¬(xO) to occur it is not sufficient that xO does not
occur. Only if every random variable Xi with i ∈ O differs from the value xi specified by xO does
an element of ¬(xO) necessarily occur. This is why we call ¬(xO) the anti-pattern of xO.

Theorem 3 (Construction of a pattern with maximum SLI). Given a probability q ∈ (0, 1) and a positive
natural number n there is a Bayesian network {Xi}i∈V with |V| ≥ n and a pattern xO such that

miπ(xO) = −(n− 1) log q. (32)

Proof. We construct a Bayesian network which realises two conditions on the probability pO.
From these two conditions (which can also be realised by other Bayesian networks) we can then
derive the theorem.

Choose a Bayesian network {Xi}i∈V with binary random variables Xi = {0, 1} for all i ∈ V.
Choose all nodes in O dependent only on node j ∈ O, the dependence of the nodes in V \O is arbitrary:

• for all i ∈ O ⊂ V let pa(i)∩ (V \O) = ∅, i.e., nodes in O have no parents in the complement of O,
• for a specific j ∈ O and all other i ∈ O \ {j} let pa(i) = {j}, i.e., all nodes in O apart from j have

j ∈ O as a parent,
• for all i ∈ O \ {j} let pi(x̄i|bx̄j) = δx̄j(x̄i), i.e., the state of all nodes in O is always the same as the

state of node j,
• also choose pj(xj) = q and ∑x̄j 6=xj

pj(xj) = 1− q.

Then it is straightforward to see that:

1. pO(xO) = q,
2. ∑x̄O∈¬(xO) pO(x̄O) = 1− q.

Note that there are many Bayesian networks that realise the latter two conditions for some xO.
These latter two conditions are the only requirements for the following calculation.

Next note that the two conditions imply that pO(x̄O) = 0 if neither x̄O = xO nor x̄O ∈ ¬(xO).
Then for every partition π of O with |π| = n and n > 1 we have

miπ(xO) = log
pO(xO)

∏b∈π pb(xb)
(33)

= log
pO(xO)

∏b∈π ∑x̄O\b
pO(xb, x̄O\b)

(34)

= log
pO(xO)

∏b∈π

(
pO(xO) + ∑x̄O\b 6=xO\b

pO(xb, x̄O\b)
) (35)

= log
pO(xO)

∏b∈π pO(xO)
(36)

= log
pO(xO)

pO(xO)n (37)

= −(n− 1) log q. (38)
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Theorem 4 (Upper bound of SLI). For any Bayesian network {X}i∈V and pattern xO with fixed pO(xO) = q

1. The tight upper bound of the SLI with respect to any partition π with |π| = n fixed is

max
{{Xi}i∈V :∃xO ,pO(xO)=q}

max
{π:|π|=n}

miπ(xO) ≤ −(n− 1) log q. (39)

2. The upper bound is achieved if and only if for all b ∈ π we have

pb(xb) = pO(xO) = q. (40)

3. The upper bound is achieved if and only if for all b ∈ π we have that xb occurs if and only if xO occurs.

Proof. ad 1 By Definition 5 we have

miπ(xO) = log
pO(xO)

∏b∈π pb(xb)
. (41)

Now note that for any xO and b ⊆ O

pb(xb) = ∑
x̄O\b

pO(xb, x̄O\b) (42)

= pO(xO) + ∑
x̄O\b 6=xO\b

pO(xb, x̄O\b) (43)

≥ pO(xO). (44)

Plugging this into Equation (41) for every pb(xb) we get

miπ(xO) = log
pO(xO)

∏b∈π pb(xb)
(45)

≤ log
pO(xO)

pO(xO)|π|
(46)

= −(|π| − 1) log pO(xO). (47)

This shows that −(|π| − 1) log pO(xO) is indeed an upper bound. To show that it is tight we
have to show that for a given pO(xO) and |π| there are Bayesian networks with patterns xO such
that this upper bound is achieved. The construction of such a Bayesian network and a pattern xO
was presented in Theorem 3.

ad 2 If for all b ∈ π we have pb(xb) = pO(xO) then clearly miπ(xO) = −(|π| − 1) log pO(xO) and the
least upper bound is achieved. If on the other hand miπ(xO) = −(|π| − 1) log pO(xO) then

log
pO(xO)

∏b∈π pb(xb)
= −(|π| − 1) log pO(xO) (48)

⇔ log
pO(xO)

∏b∈π pb(xb)
= log

pO(xO)

pO(xO)|π|
(49)

⇔ ∏
b∈π

pb(xb) = pO(xO)
|π|, (50)

and because pb(xb) ≥ pO(xO) (Equation (44)) any deviation of any of the pb(xb) from pO(xO)

leads to ∏b∈π pb(xb) > pO(xO)
|π| such that for all b ∈ π we must have pb(xb) = pO(xO).
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ad 3 By definition for any b ∈ π we have b ⊆ O such that xb always occurs if xO occurs. Now assume
xb occurs and xO does not occur. In that case there is a positive probability for a pattern (xb, x̄O\b)

with x̄O\b 6= xO\b i.e., pO(xb, x̄O\b) > 0. Recalling Equation (43) we then see that

pb(xb) = pO(xO) + ∑
x̄O\b 6=xO\b

pO(xb, x̄O\b) (51)

> pO(xO). (52)

which contradicts the fact that pb(xb) = pO(xO) so xb cannot occur without xO occurring as well.

Remarks:

• Note that this is the least upper bound for Bayesian networks in general. For a specific Bayesian
network there might be no pattern that achieves this bound.

• The least upper bound of SLI increases with the improbability of the pattern and the number of
parts that it is split into. If pO(xO)→ 0 then we can have miπ(xO)→ ∞.

• Using this least upper bound it is easy to see the least upper bound for the SLI of a pattern xO
across all partitions |π|. We just have to note that |π| ≤ |O|.

• Since it is the minimum value of SLI with respect to arbitrary partitions the least upper bound of
SLI is also an upper bound for CLI. It may not be the least upper bound however.

3.3.3. Negative SLI

This section shows that SLI of a pattern xO with respect to partition π can be negative independently
of the probability of xO (as long as it is not 1) and the cardinality of the partition (as long as that
is not 1). The construction which achieves this also serves as an example of patterns with low SLI.
We conjecture that this construction might provide the greatest lower bound but have not been able
to prove this yet. An intuitive description of the construction is that patterns which either occur as a
whole or missing exactly one part always have negative SLI.

Theorem 5. For any given probability q < 1 and cardinality |π| = n > 1 of a partition π there exists a
Bayesian network {Xi}i∈V with a pattern xO such that q = pO(xO) and

miπ(xO) = log
q(

1− 1−q
n

)n < 0. (53)

Proof. We construct the probability distribution pO : XO → [0, 1] and ignore the behaviour of the
Bayesian network {Xi}i∈V outside of O ⊆ V. In any case {Xi}i∈O is also by itself a Bayesian network.
We define (see remarks below for some intuitions behind these definitions and Definition 9 for ¬(xA)):

1. for all i ∈ O let |Xi| = n
2. for every block b ∈ π let |b| = |O|

|π| ,
3. for x̄O ∈ XO let:

pO(x̄O) :=


q if x̄O = xO,

1−q−d
∑b∈π |¬(xb)|

if ∃c ∈ π s.t. x̄O\c = xO\c ∧ x̄c 6= xc,
d

|¬(xO)| if x̄O ∈ ¬(xO),

0 else.

(54)

Here d parameterises the probability of any pattern in ¬(xO) occurring. We will carry it through
the calculation but then end up setting it to zero.
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Next we calculate the SLI. First note that, according to 1. and 2., we have |Xb| = |Xc| for all
b, c ∈ π and therefore also |¬(xb)| = |¬(xc)| for all b, c ∈ π. So let m := |¬(xb)|. Then note that,
according to 3, for all b ∈ π

∑
x̄O\b 6=xO\b

pO(xb, x̄O\b) = ∑
c∈π\b

∑
x̄c 6=xc

pO(xb, xO\(b∪c), x̄c) (55)

= ∑
c∈π\b

∑
x̄c 6=xc

1− q− d
∑b∈π |¬(xb)|

(56)

= ∑
c∈π\b

∑
x̄c 6=xc

1− q− d
m|π| (57)

= ∑
c∈π\b

1− q− d
m|π| |¬(xc)| (58)

=
|π| − 1
|π| (1− q− d) (59)

Plug this into the SLI definition:

miπ(xO) = log
pO(xO)

∏b∈π pb(xb)
(60)

= log
q

∏b∈π q + ∑x̄O\b 6=xO\b
pO(xb, x̄O\b)

(61)

= log
q

∏b∈π q + |π|−1
|π| (1− q− d)

(62)

= log
q(

q + |π|−1
|π| (1− q− d)

)|π| (63)

If we now set d = 0 we get:

miπ(xO) = log
q(

1− 1−q
|π|

)|π| . (64)

Then we can use Bernoulli’s inequality (The authors thank von Eitzen [39] for pointing this
out. An example reference for Bernoulli’s inequality is Bullen [40]). to prove that this is negative for
0 < q < 1 and |π| ≥ 2. Bernoulli’s inequality is

(1 + x)n ≥ 1 + nx (65)

for x ≥ −1 and n a natural number. Replacing x by −(1− q)/|π| we see that(
1− 1− q

|π|

)|π|
> q (66)

such that the argument of the logarithm is smaller than one which gives us negative SLI.

Remarks:

• The achieved value in Equation (53) is also our best candidate for a greatest lower bound of SLI
for given pO(xO) and |π|. However, we have not been able to prove this yet.

• The construction equidistributes the probability 1− q (left to be distributed after the probability q
of the whole pattern occurring is chosen) to the patterns x̄O that are almost the same as the pattern
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xO. These are almost the same in a precise sense: They differ in exactly one of the blocks of π, i.e.,
they differ by as little as can possibly be resolved/revealed by the partition π.

• In order to achieve the negative SLI of Equation (64) the requirement is only that Equation (59) is
satisfied. Our construction shows one way how this can be achieved.

• For a pattern and partition such that |O|/|π| is not a natural number, the same bound might still
be achieved however a little extra effort has to go into the construction 3. of the proof such that
Equation (59) still holds. This is not necessary for our purpose here as we only want to show the
existence of patterns achieving the negative value.

• Since it is the minimum value of SLI with respect to arbitrary partitions the candidate for the
greatest lower bound of SLI is also a candidate for the greatest lower bound of CLI.

3.4. Disintegration

In this section we define the disintegration hierarchy and its refinement-free version. We then
prove the disintegration theorem which is the main formal result of this paper. It exposes a connection
between partitions minimising the SLI of a trajectory and the CLI of the blocks of such partitions.
More precisely for a given trajectory the blocks of the finest partitions among those leading to a
particular value of SLI consist only of completely locally integrated blocks. Conversely, each completely
locally integrated pattern is a block in such a finest partition leading to a particular value of SLI.
The theorem therefore reveals that ι-entities can not only be motivated heuristically as we tried to do
in Section 3.2 but in fact play a special role within the trajectories they occur in. Furthermore, this
theorem allows additional interpretations of the ι-entities which will be discussed in Section 3.5.

The main tool we use for the proof, the disintegration hierarchy and especially its refinement
free version are also interesting structure in their own right since they define a hierarchy among the
partitions of trajectories that we did not anticipate. In the case of the refinement free version the
disintegration theorem tells us that this hierarchy among partitions of trajectories turns out to be a
hierarchy of splits of the trajectory into ci-entities.

Definition 10 (Disintegration hierarchy). Given a Bayesian network {Xi}i∈V and a trajectory xV ∈ XV ,
the disintegration hierarchy of xV is the set D(xV) = {D1,D2,D3, ...} of sets of partitions of xV with:

1.
D1(xV) := arg min

π∈L(V)

miπ(xV) (67)

2. and for i > 1:
Di(xV) := arg min

π∈L(V)\D≺i(xV)

miπ(xV). (68)

where D≺i(xV) :=
⋃

j<i Dj(xV). We call Di(xV) the i-th disintegration level.

Remark:

• Note that arg min returns all partitions that achieve the minimum SLI if there is more than one.
• Since the Bayesian networks we use are finite, the partition lattice L(V) is finite, the set of attained

SLI values is finite, and the number |D| of disintegration levels is finite.
• In most cases the Bayesian network contains some symmetries among their mechanisms which

cause multiple partitions to attain the same SLI value.
• For each trajectory xV the disintegration hierarchy D then partitions the elements of L(V) into

subsets Di(xV) of equal SLI. The levels of the hierarchy have increasing SLI.

Definition 11. Let L(V) be the lattice of partitions of set V and let E be a subset of L(V). Then for every
element π ∈ L(V) we can define the set

ECπ := {ξ ∈ E : ξ C π}. (69)
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That is ECπ is the set of partitions in E that are refinements of π.

Definition 12 (Refinement-free disintegration hierarchy). Given a Bayesian network {Xi}i∈V , a trajectory
xV ∈ XV , and its disintegration hierarchy D(xV) the refinement-free disintegration hierarchy of xV is the set
DJ(xV) = {DJ

1 ,DJ
2 ,DJ

3 , ...} of sets of partitions of xV with:

1.
DJ

1 (xV) := {π ∈ D1(xV) : D1(xV)Cπ = ∅}, (70)

2. and for i > 1:
DJ

i (xV) := {π ∈ Di(xV) : D≺i(xV)Cπ = ∅} (71)

Remark:

• Each level DJ
i (xV) in the refinement-free disintegration hierarchy DJ(xV) consists only of those

partitions that neither have refinements at their own nor at any of the preceding levels. So each
partition that occurs in the refinement-free disintegration hierarchy at the i-th level is a finest
partition that achieves such a low level of SLI or such a high level of disintegration.

• As we will see below, the blocks of the partitions in the refinement-free disintegration hierarchy
are the main reason for defining the refinement-free disintegration hierarchy.

Theorem 6 (Disintegration theorem). Let {Xi}i∈V be a Bayesian network, xV ∈ XV one of its trajectories,
and DJ(xV) the associated refinement-free disintegration hierarchy.

1. Then for every DJ
i (xV) ∈ DJ(xV) we find for every b ∈ π with π ∈ DJ

i (xV) that there are only the
following possibilities:

(a) b is a singleton, i.e., b = {i} for some i ∈ V, or
(b) xb is completely locally integrated, i.e., ι(xb) > 0.

2. Conversely, for any completely locally integrated pattern xA, there is a partition πA ∈ L(V) and a level
DJ

iA(xV) ∈ DJ(xV) such that A ∈ πA and πA ∈ DJ
iA(xV).

Proof. ad 1 We prove the theorem by contradiction. For this assume that there is block b in a partition
π ∈ DJ

i (xV) which is neither a singleton nor completely integrated. Let π ∈ DJ
i (xV) and

b ∈ π. Assume b is not a singleton i.e., there exist i 6= j ∈ V such that i ∈ b and j ∈ b. Also
assume that b is not completely integrated i.e., there exists a partition ξ of b with ξ 6= 1b such
that miξ(xb) ≤ 0. Note that a singleton cannot be completely locally integrated as it does not
allow for a non-unit partition. So together the two assumptions imply pb(xb) ≤ ∏d∈ξ pd(xd)

with |ξ| > 1. However, then

miπ(xV) = log
pV(xV)

pb(xb)∏c∈π\b pc(xc)
(72)

≥ log
pV(xV)

∏d∈ξ pd(xd)∏c∈π\b pc(xc)
(73)

We treat the cases of “>” and “=” separately. First, let

miπ(xV) = log
pV(xV)

∏d∈ξ pd(xd)∏c∈π\b pc(xc)
. (74)

Then we can define ρ := (π \ b) ∪ ξ such that

1. miρ(xV) = miπ(xV) which implies that ρ ∈ Di(xV) because π ∈ Di(xV), and
2. ρ C π which contradicts π ∈ DJ

i (xV).
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Second, let

miπ(xV) > log
pV(xV)

∏d∈ξ pd(xd)∏c∈π\b pc(xc)
. (75)

Then we can define ρ := (π \ b) ∪ ξ such that

miρ(xV) < miπ(xV), (76)

which contradicts π ∈ DJ
i (xV).

ad 2 By assumption xA is completely locally integrated. Then let πA := {A} ∪ {{j}}j∈V\A. Since πA

is a partition of V it is an element of some disintegration level DiA . Then partition πA is also
an element of the refinement-free disintegration level DJ

iA(xV) as we will see in the following.
This is because any refinements must (by construction of πA break up A into further blocks
which means that the local specific integration of all such partitions is higher. Then they must be
at lower disintegration level Dk(xV) with k ≥ iA. Therefore, πA has no refinement at its own
or a higher disintegration level. More formally, let ξ ∈ L(V), ξ 6= πA and ξ C πA since πA

only contains singletons apart from A the partition ξ must split the block A into multiple blocks
c ∈ ξ|A. Since ι(xA) > 0 we know that

miξ|A(xA) = log
pA(xA)

∏c∈ξ|A pc(xc)
> 0 (77)

so that ∏c∈ξ|A pc(xc) < pA(xA) and

miξ(xV) = log
pV(xV)

∏c∈ξ|A pc(xc)∏i∈V\A pi(xi)
(78)

> log
pV(xV)

pA(xA)∏i∈V\A pi(xi)
(79)

= miπA(xV). (80)

Therefore ξ is on a disintegration level Dk(xV) with k > iA, but this is true for any refinement of
πA so D≺iA(xV)CπA = ∅ and πA ∈ DJ

iA(xV).

We mentioned in Section 3.2 that the expectation value of SLI miπ(xA) is the (specific)
multi-information MIπ(XA). A positive SLI value of xA implies a positive expectation value MIπ(XA).
Therefore every ι-entity xA implies positive specific multi-informations MIπ(XA) with respect to any
partition π. We put this into the following corollary.

Corollary 2. Under the conditions of Theorem 6 and for every DJ
i (xV) ∈ DJ(xV) we find for every b ∈ π

with π ∈ DJ
i (xV) that there are only the following possibilities:

1. b is a singleton, i.e., b = {i} for some i ∈ V, or
2. Xb is completely (not only locally) integrated, i.e., I(Xb) > 0.

here
I(XA) := min

π∈L(A)\0
MIπ(XA). (81)
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Proof. Since MIπ(XA) is a Kullback–Leibler divergence we know from Gibbs’ inequality that
MIπ(XA) ≥ 0 and MIπ(XA) = 0 if and only if for all xA ∈ XA we have pA(xA) = ∏b∈π pb(xb).
To see that MIπ(XA) is a Kullback–Leibler divergence note:

MIπ(XA) : = ∑
xA∈XA

pA(xA)miπ(xA) (82)

= ∑
xA∈XA

pA(xA) log
pA(xA)

∏b pb(xb)
(83)

= KL[pA||∏
b∈π

pb]. (84)

Now let a specific xA ∈ XA be a ι-entity. Then for all π ∈ L(A) \ 0 we have

log
pA(xA)

∏b pb(xb)
> 0, (85)

which implies that
pA(xA) 6= ∏

b
pb(xb) (86)

and therefore
KL[pA||∏

b∈π

pb] > 0 (87)

which implies I(XA) > 0.

3.5. Disintegration Interpretation

In Section 3.2 we motivated our choice of positive complete local integration as a criterion for
entities. This motivation is purely heuristic and starts from the intuition that an entity is a structure
for which every part makes every other part more probable. While this heuristic argument seems
sufficiently intuitive to be of a certain value we would much rather have a formal reason why an
entity criterion is a “good” entity criterion. In other words we would ideally have a formal problem
that is best solved by the entities satisfying the criterion. An example of a measure that has such an
associated interpretation is the mutual information whose maximum over the input distributions
is the channel capacity. Without a formal problem associated to ι-entities there remains a risk that
they (and maybe the whole concept of entities and identity over time) are artefacts of an ill-conceived
conceptual approach.

Currently, we are not aware of an analogous formal problem that is solved by ι-entities. However,
the different viewpoint provided by the disintegration theorem may be a first step towards finding
such a problem. We will now discuss some alternative interpretations of SLI and see how CLI can be
seen from a different perspective due to the disintegration theorem. These interpretations also exhibit
why we chose to include the logarithm into the definition of SLI.

Using the disintegration theorem (Theorem 6) allows us to take another point of view on ι-entities.
The theorem states that for each trajectory xV ∈ XV of a multivariate Markov chain the refinement-free
disintegration hierarchy only contains partitions whose blocks are completely integrated patterns i.e.,
they only contain ι-entities. At the same time the blocks of all those partitions together are all ι-entities
that occur in that trajectory.

A partition in the refinement-free disintegration hierarchy is always a minimal/finest partition
reaching such a low specific local integration.

Each ι-entity is then a block xc with c ∈ π of a partition π ∈ DJ(xV) for some trajectory xV ∈ XV
of the multivariate Markov chain.

Let us recruit the interpretation from coding theory above. If we want to find the optimal
encoding for the entire multivariate Markov chain {Xi}i∈V this means finding the optimal encoding
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for the random variable XV whose values are the trajectories xV ∈ XV . The optimal code has the
codeword lengths − log pV(xV) for each trajectory xV . The partitions in the lowest level DJ

1 (xV) in
the refinement-free disintegration hierarchy for xV have minimal specific local integration i.e.,

miπ(xV) = log
pV(xV)

∏c∈π pc(xc)
(88)

is minimal among all partitions. At the same time these partitions are the finest partitions that achieve
this low specific local integration. This implies on the one hand that the codeword lengths of the
product codes associated to these partitions are the shortest possible for xV among all partitions.
On the other hand these partitions split up the trajectory in as many parts as possible while generating
these shortest codewords. In this combined sense the partitions in DJ

1 (xV) generate the “best” product
codes for the particular trajectory xV .

Note that the expected codeword length of the product code:

∑
xV∈XV

pV(xV)(− log ∏
c∈π

pc(xc)) (89)

which is the more important measure for encoding in general, might not be short at all, i.e., it might
not be an efficient code for arbitrary trajectories. The product codes based on partitions in DJ

1 (xV)

are specifically adapted to assign a short codeword to xV , i.e., to a single trajectory or story of
this system. As product codes they are constructed/forced to describe xV as a composition of
stochastically independent parts. More precisely they are constructed in the way that would be
optimal for stochastically independent parts.

Nonetheless, the product codes exist (they can be generated using Huffman coding or arithmetic
coding [37] based on the product probability) and are uniquely decodable. The parts/blocks of them are
the ι-entities. We mentioned before that we would like to find a problem that is solved by ι-entities. This
is then equivalent to finding a problem that is solved by the according product codes. Can we construct
such a problem? This question is still open. A possible direction for finding such a problem may be the
following line of reasoning. Say for some reason the trajectory xV is more important than any other
and that we want to “tell its story” as a story of as many as possible (stochastically) independent parts
(that are maybe not really stochastically independent) i.e., say we wanted to encode the trajectory as if
it were a combination of as many as possible stochastically independent parts/events. And because xV
is more important than all other trajectories we wanted the codeword for xV to be the shortest possible.
Then we would use the product codes of partitions in the refinement-free disintegration hierarchy
because those combine exactly these two conditions. The pseudo-stochastically-independent parts
would then be the blocks of these partitions which according to the disintegration theorem are exactly
the ι-entities occurring in xV .

Speculating about where the two conditions may arise in an actual problem, we mention that
the trajectory/history that we (real living humans) live in is more important to us than all other
possible trajectories of our universe (if there are any). What happens/happened in this trajectory
needs to be communicated more often than what happens/happened in counterfactual trajectories.
Furthermore, a good reason to think of a system as composite of as many parts as possible is that this
reduces the number of parameters that need to be learned which in turn improves the learning speed
(see e.g., [41]). So the entities that mankind has partitioned its history into might be related to the
ι-entities of the universe’s history. These would compose the shortest product codes for what actually
happened. The disintegration level might be chosen to optimise rates of model learning.

Recall that this kind of product code is not the optimal code in general (which would be the one
with shortest expected codeword length). It is possibly more of a naive code that does not require
deep understanding of the dynamical system but instead can be learned fast and works. The language
of physics for example might be more optimal in the sense of shortest expected codeword lengths
reflecting a desire to communicate efficiently about all counterfactual possibilities as well.



Entropy 2017, 19, 230 25 of 46

3.6. Related Approaches

We now discuss in some more detail than in Section 1.3 the approaches of Beer [14] and Balduzzi [26].
In Beer [14] the construction of the entities proceeds roughly as follows. First the maps

from the Moore neighbourhood to the next state of a cell are classified into five classes of local
processes. Then these are used to reveal the dynamical structure in the transitions from one time-slice
(or temporal part) of a pattern to the next. The used example patterns are the famous block, blinker,
and glider and they are considered including their temporal extension. Using both the processes and
the spatial patterns/values/components (the black and white values of cells are called components)
networks characterising the organisation of the spatiotemporally extended patterns are constructed.
These can then be investigated for their organisational closure. Organisational closure occurs if the same
process-component relations reoccur at a later time. Boundaries of the spatiotemporal patterns are
identified by determining the cells around the pattern that have to be fixed to get re-occurrence of
the organisation.

Beer [14] mentions that the current version of this method of identifying entities has its limitations.
If the closure is perturbed or delayed and then recovered the entity still looses its identity according to
this definition. Two possible alternatives are also suggested. The first is to define the potential for closure
as enough for the ascription of identity. This is questioned as well since a sequence of perturbations
can take the entity further and further away from its “defining” organisation and make it hard to still
speak of a defining organisation at all. The second alternative is to define that the persistence of any
organisational closure indicates identity. It is suggested that this would allow blinkers to transform
to gliders.

We note that using the entity criterion we propose does not need similar choices to be made
since it is not based on the re-occurrence of any organisation. Later time-slices of ι-entities need
no organisational (or any other) similarity to earlier ones. Another, possibly only small, advantage
is that our criterion is formalised and reasonably simply to state. Whether this is possible for the
organisational closure based entities remains to be seen.

This is related to the philosophical discussion about identity across possible worlds [33].
Some further parallels can be drawn between the present work and Balduzzi [26] especially if we

take into account the disintegration theorem. Given a trajectory (entire time-evolution) of the system
in both cases a partition is sought which fulfills a particular trajectory-wide optimality criterion. Also
in both cases, each block of the trajectory-wide partition fulfills a condition with respect to its own
partitions. For our conditions the disintegration theorem exposes the direct connection between the
trajectory-wide and the block-specific conditions. Such a connection is not known for other approaches.
The main reason for this might be the simpler formal expression of CLI and SLI compared to the
IIT approaches.

In how far our approach and the IIT approaches lead to coinciding or contradicting results is
beyond the scope of this paper and constitutes future work. One avenue to pursue here are differences
with respect to entities occurring in multiple trajectories as well as the possibility of overlapping
entities within single trajectories.

4. Examples

In this section we investigate the structure of integrated and completely locally integrated
spatiotemporal patterns as it is revealed by the disintegration hierarchy. First we take a quick look at
the trivial case of a set of independent random variables. Then we look at two very simple multivariate
Markov chains. We use the disintegration theorem (Theorem 6) to extract the completely locally
integrated spatiotemporal patterns.
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4.1. Set of Independent Random Variables

Let us first look at a set {Xi}i∈V of independently and identically distributed random variables.
For each trajectory xV ∈ XV we can then calculate SLI with respect to a partition π ∈ L(V). For every
A ⊆ V and every xA ∈ XA we have pA(xA) = ∏i∈A pi(xi). Then we find for every π ∈ L(V):

miπ(xV) = 0. (90)

This shows that the disintegration hierarchy for each xV ∈ XV contains only a single disintegration
level D(xV) = {D1} with D1 = L(V). The finest partition of L(V) is its zero element 0 which then
constitutes the only element of the refinement-free disintegration level DJ

1 = {0}. Recall that the zero
element of a partition lattice only consists of singleton sets as blocks. The set of completely locally
integrated patterns i.e., the set of ι-entities in a given trajectory xV is then the set {xi : i ∈ V}.

Next we will look at more structured systems.

4.2. Two Constant and Independent Binary Random Variables: MC=

4.2.1. Definition

Define the time- and space-homogeneous multivariate Markov chain MC= with Bayesian network
{Xj,t}j∈{1,2},t∈{0,1,2} and

pa(j, t) =

{
∅ if t = 0,

{(j, t− 1)} else,
(91)

pj,t(xj,t|xj,t−1) = δxj,t−1(xj,t) =

{
1 if xj,t = xj,t−1,

0 else,
(92)

pj,0(xj,0) = 1/4. (93)

The Bayesian network can be seen in Figure 4.

X1,1 X1,2 X1,3

X2,1 X2,2 X2,3

Figure 4. Bayesian network of MC=. There is no interaction between the two processes.

4.2.2. Trajectories

In order to get the disintegration hierarchy D(xV) we have to choose a trajectory xV and calculate
the SLI of each partition π ∈ L(V). There are only four different trajectories possible in MC= and
they are:

xV = (x1,0, x2,0, x1,1, x2,1, x1,2, x2,2) =


(0, 0, 0, 0, 0, 0) if x1,0 = 0, x2,0 = 0;

(0, 1, 0, 1, 0, 1) if x1,0 = 0, x2,0 = 1;

(1, 0, 1, 0, 1, 0) if x1,0 = 1, x2,0 = 0;

(1, 1, 1, 1, 1, 1) if x1,0 = 1, x2,0 = 1.

(94)

Each of these trajectories has probability pV(xV) = 1/4 and all other trajectories have pV(xV) = 0.
We call the four trajectories the possible trajectories. We visualise the possible trajectories as a grid with
each cell corresponding to one variable. The spatial indices are constant across rows and time-slices Vt
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correspond to the columns. A white cell indicates a 0 and a black cell indicates a 1. This results in the
grids of Figure 5.

(a) (0, 0, 0, 0, 0, 0) (b) (0, 1, 0, 1, 0, 1) (c) (1, 0, 1, 0, 1, 0) (d) (1, 1, 1, 1, 1, 1)

Figure 5. Visualisation of the four possible trajectories of MC=. In each trajectory the time index
increases from left to right. There are two rows corresponding to the two random variables at each
time step and three columns corresponding to the three time-steps we are considering here.

4.2.3. Partitions of Trajectories

The disintegration hierarchy is composed out of all partitions in the lattice of partitions L(V).
Recall that we are partitioning the entire spatially and temporally extended index set V of the
Bayesian network and not only the time-slices. Blocks in the partitions of L(V) are then, in general,
spatiotemporally and not only spatially extended patterns.

The number of partitions |L(V)| of a set of |V| = 6 elements is B6 = 203 (Bn is the Bell number
of n). These partitions π can be classified according to their cardinality |π| (number of blocks in the
partition). The number of partitions of a set of cardinality |V| into |π| blocks is the Stirling number
S(|V|, |π|). For |V| = 6 we find the Stirling numbers:

|π| 1 2 3 4 5 6

S(|V|, |π|) 1 31 90 65 15 1
(95)

It is important to note that the partition lattice L(V) is the same for all trajectories as it is composed
out of partitions of V. On the other hand the values of SLI miπ(xV) with respect to the partitions in
L(V) generally depend on the trajectory xV .

4.2.4. SLI Values of the Partitions

We can calculate the SLI miπ(xV) of every trajectory xV with respect to each partition π ∈ L(V)

according to Definition 5:

miπ(xV) := log
pV(xV)

∏b∈π pb(xb)
. (96)

In the case of MC= the SLI values with respect to each partition do not depend on the trajectories.
For an overview we plotted the values of SLI with respect to each partition π ∈ L(V) for any trajectory
of MC= in Figure 6.

We can see in Figure 6 that the cardinality does not determine the value of SLI. At the same time
there seems to be a trend to higher values of SLI with increasing cardinality of the partition. We can
also observe that only five different values of SLI are attained by partitions on this trajectory. We will
collect these classes of partitions with equal SLI values in the disintegration hierarchy next.



Entropy 2017, 19, 230 28 of 46

0 50 100 150 200
0

1

2

3

4

Figure 6. Specific local integrations miπ(xV) of any of the four trajectories xV seen in Figure 5 with
respect to all π ∈ L(V). The partitions are ordered according to an enumeration with increasing
cardinality |π| ((see Pemmaraju and Skiena [42], Chapter 4.3.3) for the method). We indicate with
vertical lines at what partitions the cardinality |π| increases by one.

4.2.5. Disintegration Hierarchy

In order to get insight into the internal structure of the partitions of a trajectory xV we obtain
the disintegration hierarchy D(xV) (see Definition 10) and look at the Hasse diagrams of each of
the disintegration levels Di(xV) partially ordered by refinement. If we sort the partitions of any
trajectory of MC= according to increasing SLI value we obtain Figure 7. There we see groups of
partitions attaining the SLI values {0, 1, 2, 3, 4} (precisely) these groups are the disintegration levels
{D1(xV),D2(xV),D3(xV),D4(xV),D5(xV)}. The exact numbers of partitions in each of the levels are:

i 1 2 3 4 5

miπ 0 1 2 3 4
|Di| 2 18 71 78 34

(97)

Next we look at the Hasse diagram of each of those disintegration levels. Since the disintegration
levels are subsets of the partition lattice L(V), they are in general not lattices by themselves. The Hasse
diagrams (see Appendix B for the definition) visualise the set of partitions in each disintegration level
partially ordered by refinement C . The Hasse diagrams are shown in Figure 8. We see immediately
that within each disintegration level apart from the first and the last the Hasse diagrams contain
multiple connected components.

Furthermore, within a disintegration level the connected components often have the same Hasse
diagrams. For example, in D2 ( Figure 8b) we find six connected components with three partitions
each. The identical refinement structure of the connected components is related to the symmetries
of the probability distribution over the trajectories. As it requires further notational overhead and is
straightforward we do not describe these symmetry properties formally. In order to see the symmetries,
however, we visualise the partitions themselves in the Hasse diagrams in Figure 9. We also visualise
examples of the different connected components in each disintegration level in Figure 10.
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Figure 7. Same as Figure 6 but with the partitions sorted according to increasing SLI.

(a) D1

(b) D2

(c) D3

Figure 8. Cont.
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(d) D4

(e) D5

Figure 8. Hasse diagrams of the five disintegration levels of the trajectories of MC=. Every vertex
corresponds to a partition and edges indicate that the lower partition refines the higher one.

Figure 9. Hasse diagram of D2 of MC= trajectories. Here we visualise the partitions at each vertex.
The blocks of a partition are the cells of equal colour. Note that we can obtain all six disconnected
components from one by symmetry operations that are respected by the joint probability distribution
pV . For example, we can shift each row individually to the left or right since every value is constant in
each row. We can also switch top and bottom row since they have the same probability distributions
even if 1 and 0 are exchanged.

Figure 10. For each disintegration level of the trajectories of MC= we here show example connected
components of Hasse diagrams with the partitions at each vertex visualised. The disintegration level
increases clockwise from the top left. The blocks of a partition are the cells of equal colour.

Recall that due to the disintegration theorem (Theorem 6) we are interested especially in partitions
that do not have refinements at their own or any preceding (i.e., lower indexed) disintegration level.
These partitions consist of blocks that are completely integrated. i.e., all possible partitions of each of the
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blocks results in a positive SLI value or is a single node of the Bayesian network. The refinement-free
disintegration hierarchy DJ(xV) contains only these partitions and is shown in a Hasse diagram
in Figure 11.

Figure 11. Hasse diagrams of the refinement-free disintegration hierarchy DJ of MC= trajectories.
Here we visualise the partitions at each vertex. The blocks of a partition are the cells of equal colour.
It turns out that partitions that are on the same horizontal level in this diagram correspond exactly to a
level in the refinement-free disintegration hierarchy DJ. The i-th horizontal level starting from the top
corresponds to DJ

i . Take for example the second horizontal level from the top. The partitions on this
level are just the minimal elements of the poset D2 which was visualised in Figure 9. To connect this to
Figure 8 note that for each disintegration level Di shown there as a Hasse diagram, the partitions on
the i-th horizontal level (counting from the top) in the present figure are the minimal elements of that
disintegration level.

4.2.6. Completely Integrated Patterns

Having looked at the disintegration hierarchy we now make use of it by extracting the completely
(When it is clear from context that we are talking about complete local integration we drop “local”
for the sake of readability.) integrated patterns (ι-entities) of the four trajectories of MC=. Recall that
due to the disintegration theorem (Theorem 6) we know that all blocks in partitions that occur in the
refinement-free disintegration hierarchy are either singletons or correspond to ι-entities. If we look at
the refinement-free disintegration hierarchy in Figure 11 we see that many blocks occur in multiple
partitions and across disintegration levels. We also see that there are multiple blocks that are singletons.
If we ignore singletons, which are trivially integrated as they cannot be partitioned, we end up with
eight different blocks. Since the disintegration hierarchy is the same for all four possible trajectories
these blocks are also the same for each of them (note that this is the case for MC= but not in general as
we will see in Section 4.3). However, the patterns that result are different due to the different values
within the blocks. We show the eight ι-entities and their complete local integration (Definition 6) on
the first trajectory in Figure 12 and on the second trajectory in Figure 13.
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Figure 12. All distinct completely integrated composite patterns (singletons are not shown) on the first
possible trajectory of MC=. The value of complete local integration is indicated above each pattern.
We display patterns by colouring the cells corresponding to random variables that are not fixed to any
value by the pattern in grey. Cells corresponding to random variables that are fixed by the pattern are
coloured according to the value i.e., white for 0 and black for 1.

Figure 13. All distinct completely integrated composite patterns on the second possible trajectory of
MC=. The value of complete local integration is indicated above each pattern.

Since the disintegration hierarchies are the same for the four possible trajectories of MC= we get
the same refinement-free partitions and therefore the same blocks containing the ι-entities. This is
apparent when comparing Figures 12 and 13 and noting that each pattern occurring on the first
trajectory has a corresponding pattern on the second trajectory that differs (if at all) only in the values
of the cells it fixes and not in what values it fixes. More visually speaking, for each pattern in Figure 12
there is a corresponding pattern in Figure 13 leaving the same cells grey.

If we are not interested in a particular trajectory, we can also look at all different ι-entities on any
trajectory. For MC= these are shown in Figure 14.



Entropy 2017, 19, 230 33 of 46

Figure 14. All distinct completely integrated composite patterns on all four possible trajectories of
MC=. The value of complete local integration is indicated above each pattern.

We see that all ι-entities xO have the same value of complete local integration ι(xO) = 1. This can
be explained using the deterministic expression for the SLI of Equation (30) and noting that for MC= if
any of the values xj,t is fixed by a pattern then (xj,s)s∈T = xj,T are determined since they must be the
same value. This means that the number of trajectories N(xj,S) in which any pattern xj,S with S ⊆ T
occurs is either N(xj,S) = 0, if the pattern is impossible, or N(xj,S) = 2 since there are two trajectories
compatible with it. Note that all blocks xb in any of the ι-entities and all ι-entities xO themselves are of
the form xj,S with S ⊆ T. Let N(xj,S) =: N and plug this into Equation (30) for an arbitrary partition π:

miπ(xO) = (|π| − 1) log |XV0 | − log ∏b∈π N(xb)

N(xO)
(98)

= (|π| − 1) log |XV0 | − log
N|π|

N
(99)

= (|π| − 1) log
|XV0 |

N
. (100)

To get the complete local integration value we have to minimise this with respect to π where
|π| ≥ 2. So for |XV0 | = 4 and N = 2 we get ι(xO) = 1.

Another observation is that the ι-entities are all limited to one of the two rows. This shows on
a simple example that, as we would expect, ι-entities cannot extend from one independent process
to another.
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4.3. Two Random Variables with Small Interactions

In this section we look at a system almost identical to that of Section 4.2 but with a kind of noise
introduced. This allows all trajectories to occur and is designed to test whether the spatiotemporal
patterns maintain integration in the face of noise.

4.3.1. Definition

We define the time- and space-homogeneous multivariate Markov chain MCε via the Markov
matrix P with entries

Pf (x1,t+1,x2,t+1), f (x1,t ,x2,t)
= pJ,t+1(x1,t+1, x2,t+1|x1,t, x2,t) (101)

where we define the function f : {0, 1}2 → [1 : 4] via

f (0, 0) = 1, f (0, 1) = 2, f (1, 0) = 3, f (1, 1) = 4. (102)

With this convention P is

P =


1− 3ε ε ε ε

ε 1− 3ε ε ε

ε ε 1− 3ε ε

ε ε ε 1− 3ε

 (103)

This means that the state of both random variables remains the same with probability 1− 3ε and
transitions into each of the other possible combinations with probability ε. The noise then does not act
independently on both random variables but disturbs the joint state. This makes ι-entities possible that
extend across the two processes. In the following we set ε = 1/100. The initial distribution is again the
uniform distribution

pj,0(xj,0) = 1/4. (104)

Writing this multivariate Markov chain as a Bayesian network is possible but the conversion is
tedious. The Bayesian network one obtains can be seen in Figure 15.

X1,1 X1,2 X1,3

X2,1 X2,2 X2,3

Figure 15. Bayesian network of MCε.

4.3.2. Trajectories

In this system all trajectories are possible trajectories. This means there are 26 = 64 possible
trajectories, since every one of the six random variables can be in any of its two states. There are
three classes of trajectories with equal probability of occurring. The first class with the highest
probability of occurring are the four possible trajectories of MC=. Then there are 24 trajectories
that make a single ε-transition (i.e., a transition where the next pair is not the same as the current
one (x1,t+1, x2,t+1) 6= (x1,t, x2,t), these transitions occur with probability ε), and 36 trajectories with
two ε-transitions. We pick only one trajectory from each class. The representative trajectories
are shown in Figure 16 and will be denoted x1

V , x2
V , and x3

V respectively. The probabilities are
pV(x1

V) = 0.235225, pV(x2
V) = 0.0024250, pV(x3

V) = 0.000025.
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(a) x1
V = (0, 1, 0, 1, 0, 1) (b) x2

V = (0, 1, 0, 1, 0, 0) (c) x3
V = (0, 1, 0, 0, 0, 1)

Figure 16. Visualisation of three trajectories of MCε. In each trajectory the time index increases from
left to right. There are two rows corresponding to the two random variables at each time step and
three columns corresponding to the three time-steps we are considering here. We can see that the first
trajectory (in (a)) makes no ε-transitions, the second (in (b)) makes one from t = 2 to t = 3, and the
third (in (c)) makes two.

4.3.3. SLI Values of the Partitions

Again we calculate the SLI miπ(xV) of every trajectory xV with respect to each partition π ∈ L(V).
In contrast to MC= the SLI values with respect to each partition of MCε do depend on the trajectories.
We plot the values of SLI with respect to each partition π ∈ L(V) for the three representative trajectories
in Figure 17.

0 50 100 150 200

-10

-5

0

Figure 17. Specific local integrations miπ(xV) of one of the four trajectories of MC= (measured w.r.t.
the probability distribution of MC=), here denoted xMC=

V (this is the same data as in Figure 6), and the
three representative trajectories xk

V , x ∈ {1, 2, 3} of MCε (measured w.r.t. the probability distribution of
MCε) seen in Figure 16 with respect to all π ∈ L(V). The partitions are ordered as in Figure 6 with
increasing cardinality |π|. Vertical lines indicate partitions where the cardinality |π| increases by one.
Note that the values of xMC=

V are almost completely hidden from view by those of x1
V .

It turns out that the SLI values of x1
V are almost the same as those of MC= in Figure 6 with

small deviations due to the noise. This should be expected as x1
V is also a possible trajectory of MC=.

Also note that trajectories x2
V , x3

V exhibit negative SLI with respect to some partitions. In particular, x3
V

has non-positive SLI values with respect to any partition. This is due to the low probability of this
trajectory compared to its parts. The blocks of any partition have so much higher probability than the
entire trajectory that the product of their probabilities is still greater or equal to the trajectory probability.
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4.3.4. Completely Integrated Patterns

In this section we look at the ι-entities for each of the three representative trajectories xk
V , k ∈ {1, 2, 3}.

They are visualised together with their complete local integration values in Figures 18–20. In contrast
to the situation of MC= we now have ι-entities with varying values of complete local integration.

On the first trajectory x1
V we find all the eight patterns that are completely locally integrated in

MC= (see Figure 13). These are also more than an order of magnitude more integrated than the rest of
the ι-entities. This is also true for the other two trajectories.

Figure 18. All distinct completely integrated composite patterns on the first trajectory x1
V of

MCε. The value of complete local integration is indicated above each pattern. See Figure 12 for
colouring conventions.

Figure 19. All distinct completely integrated composite patterns on the second trajectory x2
V of MCε.

The value of complete local integration is indicated above each pattern.
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Figure 20. All distinct completely integrated composite patterns on the third trajectory x3
V of MCε.

The value of complete local integration is indicated above each pattern.

5. Discussion

In Section 3.1 we have argued for the use of patterns as candidates for entities. Patterns can
be composed of arbitrary spatially and temporally extended parts of trajectories. We have seen in
Theorem 1 that they are distinct from arbitrary subsets of trajectories. The important insight here is
that patterns are structures that occur within trajectories but this cannot be said of sets of trajectories.

One of the main target applications of patterns is in time-unrolled Bayesian networks of cellular
automata like those in Figure 1. Patterns in such Bayesian networks become spatiotemporal patterns
like those used to describe the glider, block, and blinker in the Game of Life cellular automaton by
Beer [14]. We would also like to investigate whether the latter spatiotemporal patterns are ι-entities.
However, at the present state of the computational models and, without approximations, this was out
of reach computationally. We will discuss this further below.

In Section 3.3 we defined SLI and in Section 3.3 gave its expression for deterministic Bayesian
networks (including cellular automata) as well. We also established the least upper bound of SLI
with respect to a partition π of cardinality n for a pattern xA with probability q. This upper bound is
achieved if each of the blocks xb in the partition π occur if and only if the whole pattern xO occurs.
This is compatible with our interpretation of entities since in this case clearly the occurrence of any
part of the pattern leads necessarily to the occurrence of the entire pattern (and not only vice versa).

We also presented a candidate for a greatest lower bound of SLI with respect to a partition of
cardinality n for a pattern with probability q. Whether this is the greatest lower bound or not it
shows a case for which SLI is always negative. This happens if either the whole pattern xA occurs
(with probability q) or one of the “almost equal” patterns occurs, each with identical probability.
A pattern yA is almost equal to xA with respect to π in this sense if it only differs at one of the blocks
b ∈ π i.e., if yA = (xA\b, zb) where zb 6= xb. This construction makes as many parts as possible (i.e., all
but one) occur as many times as possible without the whole pattern occurring. This creates large
marginalised probabilities pb(xb) for each part/block which means that their product probability also
becomes large.

Beyond these quantitative interpretations an interpretation of the greatest lower bound candidate
seems difficult. A more intuitive candidate for the opposite of an integrated pattern seem to be patterns
with independent parts. i.e., zero SLI but quantitatively these are not on the opposite end of the SLI
spectrum. A more satisfying interpretation of the presented candidate is still to be found.

We also proved the disintegration theorem which relates states that the refinement-free partitions
of a trajectory among those partitions achieving a particular SLI value consist of ι-entities only, where
an ι-entity is a pattern with positive CLI. This theorem allows us to interpret the ι-entities in new ways
and may lead to a more formal or quantitative justification of ι-entities. It is already a first step in this
direction since it establishes a special role of the ι-entities within trajectories of Bayesian networks.
A further justification would tell us what in turn the refinement-free partitions can be used for. We have
discussed a possible direction for further investigation in detail in Section 3.5. This tried to connect the
ι-entities with a coding problem.
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In Section 4 we investigated SLI and CLI in three simple example sets of random variables.
We found that if the random variables are all independently distributed the according entities are just
all the possible xj ∈ Xj of each of the random variables Xj ∈ {Xi}i∈V . This is what we would expect
from an entity criterion. There are no entities with any further extent than a single random variable
and each value corresponds to a different entity.

For the simple Markov chain MC= composed out of two independent and constant processes
we presented the entire disintegration hierarchy and the Hasse diagrams of each disintegration level
ordered by refinement. The Hasse diagrams reflected the highly symmetric dynamics of the Markov
chain via multiple identical components. For the refinement-free disintegration hierarchy we then get
multiple partitions at the same disintegration level as well. Different partitions of the trajectory imply
overlapping blocks which in the case of the refinement-free partition are ι-entities. So in general the
ι-entities at a particular disintegration level are not necessarily unique and can overlap. We also saw in
Figure 11 that the same ι-entities can occur on multiple disintegration levels.

The ι-entities of MC= included the expected three timestep constant patterns within each of
the two independent processes. It also included the two timestep parts of these constant patterns.
This may be less expected. It shows that parts of ι-entities can be ι-entities themselves. We note that
these “sub-entities (those that are parts of larger entities) are always on a different disintegration level
than their” super-entities (the larger entities). We can speculate that the existence of such sub- and
super-entities on different disintegration levels may find an interpretation through multicellular
organisms or similar structures. However, the overly simplistic examples here only serve as
basic models for the potential phenomena, but are still far too simplistic to warrant any concrete
interpretation in this direction.

We also looked at a version of MC= perturbed by noise, denoted MCε. We found that the
entities of MC= remain the most strongly integrated entities in MCε. At the same time new entities
occur. So we observe that in MCε the entities vary from one trajectory to another (Figures 18–20).
We also observe spatially extended entities i.e., entities that extend across both (formerly independent)
processes. We also observe entities that switch from one process to the other (from top row to bottom
row or vice versa). The capacity of entities to exhibit this behaviour may be necessary to capture the
movement or metabolism of entities in more realistic scenarios. In Biehl et al. [8] we argued that these
properties are important and showed that they hold for a crude approximation of CLI (namely for SLI
with respect to π = 0) but not for the full CLI measure.

We established that the ι-entities:

• correspond to fixed single random variables for a set of independent random variables,
• can vary from one trajectory to another,
• and can change the degrees of freedom that they occupy over time,
• can be ambiguous at a fixed level of disintegration due to symmetries of the system,
• can overlap at the same level of disintegration due to this ambiguity,
• can overlap across multiple levels of disintegration i.e., parts of ι-entities can be ι-entities again.

In general the examples we investigated concretely are too small to sufficiently support the
concept of positive CLI as an entity criterion. Due to the extreme computational burden, this may remain
the case for a while. For a straightforward calculation of the minimum SLI of a trajectory of a Bayesian
network {Xi}i∈V with |V| = k nodes we have to calculate the SLI with respect to Bk partitions. According
to (Bruijn [43], p. 108) the Bell numbers Bn grow super-exponentially. Furthermore, to evaluate the
SLI we need the joint probability distribution of the Bayesian network {Xi}i∈V . Naively, this means
we need the probability (a real number between 0 and 1) of each trajectory. If we only have binary
random variables, the number of trajectories is 2|V| which make the straightforward computation of
disintegration hierarchies unrealistic even for quite small systems. If we take a seven by seven grid
of the game of life cellular automaton and want to look at three time-steps we have |V| = 147. If we
use 32 bit floating numbers this gives us around 1030 petabytes of storage needed for this probability
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distribution. We are sceptical that the exact evaluation of reasonably large systems can be achieved
even with non-naive methods. This suggests that formal proofs may be the more promising way to
investigate SLI and CLI further.
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Abbreviations

The following abbreviations are used in this manuscript:

SLI Specific local integration
CLI Complete local integration

Appendix A. Kronecker Delta

The Kronecker–delta is used in this paper to represent deterministic conditional distributions.

Definition A1 (Delta). Let X be a random variable with state space X then for x ∈ X and a subset
C ⊂ X define

δx(C) :=

{
1 if x ∈ C,

0 else.
(A1)

We will abuse this notation if C is a singleton set C = {x̄} by writing

δx(x̄) : =

{
1 if x ∈ {x̄},
0 else.

(A2)

=

{
1 if x = x̄,

0 else.
(A3)

The second line is a more common definition of the Kronecker–delta.

Remark:

• Let X, Y be two random variables with state spaces X ,Y and f : X → Y a function such that

p(y|x) = δ f (x)(y), (A4)

then

p(y) = ∑
x

pY(y|x)pX(x) (A5)

= ∑
x

δ f (x)(y)pX(x) (A6)

= ∑
x

δx( f−1(y))pX(x) (A7)

= ∑
x∈ f−1(y)

pX(x) (A8)

= pX( f−1(y)). (A9)
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Appendix B. Refinement and Partition Lattice Examples

This appendix recalls the definitions of set partitions, refinement and coarsening of set partitions,
and Hasse diagrams. It also shows the Hasse diagram of an example partition lattices. The definitions
are due to Grätzer [28].

Definition A2. A (set) partition π of a set X is a set of non-empty subsets (called blocks) of X satisfying

1. for all x1, x2 ∈ π, if x1 6= x2, then x1 ∩ x2 = ∅,
2.

⋃
x∈π = X .

We write L(X ) for the set of all partitions of X .

Remark:

• In words, a partition of a set is a set of disjoint non-empty subsets whose union is the whole set.

Definition A3. If two elements x1, x2 ∈ X belong to the same block of a partition π of X write x1 ≡π x2.
Also write x1/π for the block {x2 ∈ X : x2 ≡π x1}.

Definition A4 (Refinement and coarsening). We define the binary relation E between partitions
π, ρ ∈ L(X ) as:

π E ρ if x1 ≡π x2 implies x1 ≡ρ x2. (A10)

In this case π is called a refinement of ρ and ρ is called a coarsening of π.

Remarks:

• More intuitively, π is a refinement of ρ if all blocks of π can be obtained by further partitioning
the blocks of ρ. Conversely, ρ is a coarsening of π if all blocks in ρ are unions of blocks in π.

• Examples are contained in the Hasse diagrams (defined below) shown in Figure A1.

Definition A5 (Hasse diagram). A Hasse diagram is a visualisation of a poset (including lattices). Given a
poset A ordered by C the Hasse diagram represents the elements of A by dots. The dots representing the elements
are arranged in such a way that if a, b ∈ A, a 6= b, and a C b then the dot representing a is drawn below the dot
representing b. An edge is drawn between two elements a, b ∈ A if a C: b, i.e., if b covers a. If edges cross in the
diagram this does not mean that there is an element of A where they cross and edges never pass through a dot
representing an element.

Remarks:

• No edge is drawn between two elements a, b ∈ A if a C b but not a C: b.
• Only drawing edges for the covering relation does not imply a loss of information about the poset

since the covering relation determines the partial order completely.
• For an example Hasse diagrams see Figure A1.



Entropy 2017, 19, 230 41 of 46

Figure A1. Hasse diagrams of the partition lattice of the four element set.

Appendix C. Bayesian Networks

Intuitively a Bayesian network is a graph representation of the inter-dependencies of a set of
random variables. Recall that any joint probability distribution over a set {Xi}i∈I with I = {1, ..., n} of
random variables can always be written as a product of conditional probabilities:

pI(x1, ..., xn) =
n−1

∏
i=1

pi(xi|xi+1, ..., xn)p(xn). (A11)

This also holds for any reordering of the indices i 7→ f (i) with f : {1, ...n} → {1, ...n} bijective.
In many cases however this factorisation can be simplified. Often some of the conditional

probabilities p(xi|xi+1, ..., xn) do not depend on all variables {xi+1, ..., xn} listed in the product of
Equation (A11). For example, X1 might only depend on X2 so we would have p(x1|x2, ..., xn) =

p(x1|x2). Note that the latter conditional probability is determined by fixing |X2|(|X1| − 1) probabilities
whereas the former needs ∏n

i=1 |Xi+1|(|X1| − 1) probabilities to be fixed. This means the number of
parameters (the probabilities) of the joint distribution p(x1, ..., xn) is often much smaller than suggested
by Equation (A11). One way to encode this simplification and make sure that we are dealing only with
joint probabilities that reflect the dependencies we allow are Bayesian networks. These can be defined
as follows. First we define graphs that are factorisation compatible with joint probability distributions
over a set of random variables and then define the Bayesian networks as pairs of joint probability
distributions and a factorisation compatible graph.

Definition A6. A directed acyclic graph G = (V, E) with nodes V and edges E is factorisation compatible
with the joint probabilities the probabilities of a probability distribution pV : XV → [0, 1] iff the latter can be
factorised in the way suggested by G which means:

pV(xV) = ∏
i∈V

p(xi|xpa(i)). (A12)

where pa(i) denotes the parents of node i according to G.

Remark:

• In general there are multiple directed acyclic graphs that are factorisation compatible with the
same probability distribution. For example, if we choose any total order for the nodes in V and
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define a graph by pa(i) = {j ∈ V : j < i} then Equation (A12) becomes Equation (A11) which
always holds.

Definition A7 (Bayesian network). A Bayesian network is a (here assumed finite) set of random variables
{Xi}i∈V and a directed acyclic graph G = (V, E) with nodes indexed by V such that the joint probability
distribution pV : XV → [0, 1] of {Xi}i∈V is factorisation compatible with G. We also refer to the graph set of
random variables {Xi}i∈V as a Bayesian network implying the graph G.

Remarks:

• On top of constituting the vertices of the graph G the set V is also assumed to be totally ordered in
an (arbitrarily) fixed way. Whenever we use a subset A ⊂ V to index a sequence of variables in
the Bayesian network (e.g., in pA(xA)) we order A according to this total order as well.

• Since {Xi}i∈V is finite and G is acyclic there is a set V0 of nodes without parents.

Definition A8 (Mechanism). Given a Bayesian network {Xi}i∈V with index set V for each node with parents
i.e., for each node i ∈ V \ V0 (with V0 the set of nodes without parents) the mechanism of node i or also
called the mechanism of random variable Xi is the conditional probability (also called a transition kernel)
pi : Xpa(i) × Xi → [0, 1] mapping (xpa(i), xi) 7→ pi(xi|xpa(i)). For each xpa(i) the mechanism defines a
probability distribution pi(.|xpa(i)) : Xi → [0, 1] satisfying (like any other probability distribution)

∑
xi∈Xi

pi(xi|xpa(i)) = 1. (A13)

Remarks:

• We could define the set of all mechanisms to formally also include the mechanisms of the nodes
without parents V0. However, in practice it makes sense to separate the nodes without parents
as those that we choose an initial probability distribution over (similar to a boundary condition)
which is then turned into a probability distribution pV over the entire Bayesian network {Xi}i∈V
via Equation (A12). Note that in Equation (A12) the nodes in V0 are not explicit as they are just
factors pi(xi|xpa(i)) with pa(i) = ∅.

• To construct a Bayesian network, take graph G = (V, E) and equip each node i ∈ (V \V0) with
a mechanism pi : Xpa(i) ×Xi → [0, 1] and for each node i ∈ V0 choose a probability distribution
pi : Xi → [0, 1]. The joint probability distribution is then calculated by the according version of
Equation (A12):

pV(xV) = ∏
i∈V\V0

pi(xi|xpa(i)) ∏
j∈V0

pj(xj). (A14)

Appendix C.1. Deterministic Bayesian Networks

Definition A9 (Deterministic mechanism). A mechanism pi : Xpa(i) ×Xi → [0, 1] is deterministic if there
is a function fi : Xpa(i) → Xi such that

pi(xi|xpa(i)) = δ fi(xpa(i))
(xi) =

{
1 if xi = fi(xpa(i)),

0 else.
(A15)

Definition A10 (Deterministic Bayesian network). A Bayesian network {Xi}i∈V is deterministic if all its
mechanisms are deterministic.

Theorem A1. Given a deterministic Bayesian network {Xi}i∈V there exists a function fV\V0
: XV0 → XV\V0

which given a value xV0 of the random variables without parents XV0 returns the value xV\V0
fixing the values

of all remaining random variables in the network.



Entropy 2017, 19, 230 43 of 46

Proof. According to Equation (A12), the definition of conditional probabilities, and using the
deterministic mechanisms we have:

pV\V0
(xV\V0

|xV0) = ∏
i∈V\V0

pi(xi|xpa(i)) (A16)

= ∏
i∈V\V0

δ fi(xpa(i))
(xi). (A17)

For every xV0 the product on the right hand side is a probability distribution and therefore is
always greater or equal to zero and maximally one. Also for every xV0 the sum of the probabilities
over all xV\V0

∈ XV\V0
is equal to one. As a product of zeros and/or ones the right hand side on the

second line can only either be zero or one. This means for every xV0 there must be a unique xV\V0
such

that the right hand side is equal to one. Define this as the value of the function fV\V0
(xV0).

Theorem A2 (Pattern probability in a deterministic Bayesian network). Given a deterministic Bayesian
network (Definition A10) and uniform initial distribution pV0 : XV0 → [0, 1] the probability of the occurrence of
a pattern xA is:

pA(xA) =
N(xA)

|XV0 |
(A18)

where N(xA) is the number of trajectories x̄V in which xA occurs.

Proof. Recall that in a deterministic Bayesian network we have a function fV\V0
: XV0 → XV\V0

(see Theorem A1) which maps a given value of xV0 to the value of the rest of the network xV\V0
.

We calculate pA(xA) for an arbitrary subset A ⊂ V. To make this more readable let A ∩ V0 = A0,
A \V0 = Ar, B := V \ A, B ∩V0 = B0, and B \V0 = Br. Then

pA(xA) = ∑̄
xB

pV(xA, x̄B) (A19)

= ∑
x̄B0 ,x̄Br

pV(xAr , x̄Br |xA0 , x̄B0)pV0(xA0 , x̄B0) (A20)

= ∑
x̄B0 ,x̄Br

δ fV\V0
(xA0 ,x̄B0 )

(xAr , x̄Br )pV0(xA0 , x̄B0) (A21)

= ∑̄
xBr

∑
{x̄B0 :(xA0 ,x̄B0 )∈ f−1

V\V0
(xAr ,x̄Br )}

pV0(xA0 , x̄B0) (A22)

=
1
|XV0 |

∑̄
xBr

|{x̄B0 ∈ XB0 : (xA0 , x̄B0) ∈ f−1
V\V0

(xAr , x̄Br )}| (A23)

=
1
|XV0 |

N(xA) (A24)

In the second to last line we used the uniformity of the initial distribution pV0 . The second sum
in the second to last line counts all initial conditions that are compatible with xA0 and lead to the
occurrence of xAr together with some x̄Br . The first one then sums over all such x̄Br to get all initial
conditions that are compatible with xA0 and lead to the occurrence of xAr . Together these are all initial
conditions compatible with xA. In a deterministic system the number of initial conditions that lead to
the occurrence of a pattern xA is equal to the number of trajectories N(xA) since every different initial
condition will produce a single, unique trajectory.

Remark:

• Due to the finiteness of the network, deterministic mechanisms, and chosen uniform initial
distribution the minimum possible non-zero probability for a pattern xA is 1/|XV0 |. This happens
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for any pattern that only occurs in a single trajectory. Furthermore, the probability of any pattern
is a multiple of 1/|XV0 |.

Appendix C.2. Proof of Theorem 2

Proof. Follows by replacing the probabilities pO(xO) and pb(xb) in Equation (22) with their
deterministic expressions from (Theorem A2), i.e., pA(xA) = N(XA)/|XV0 |. Then:

miπ(xO) : = log
pO(xO)

∏b∈π pb(xb)
(A25)

= log

N(xO)
|XV0 |

∏b∈π
N(xb)
|XV0 |

(A26)

= log

N(xO)
|XV0 |

|XV0 |−|π|∏b∈π N(xb)
(A27)

= log
|XV0 ||π|−1N(xO)

∏b∈π N(xb)
(A28)

= (|π| − 1) log |XV0 | − log ∏b∈π N(xb)

N(xO)
. (A29)

Appendix D. Proof of Theorem 1

Proof. Given a set of random variables {Xi}i∈V , a subset D ⊆ XV cannot be represented by a pattern
of {Xi}i∈V if and only if there exists A ⊆ V with DA ⊂ XA (proper subset) and |DA| > 1, i.e., if neither
all patterns at A are possible nor a unique pattern at A is specified by D.

We first show that if there exists A ⊆ V with DA ⊂ XA and |DA| > 1 then there is no pattern
x̃B ∈

⋃
C⊆V XC with D = T (x̃B). Then we show that if no such A exists then there is such a pattern x̃B.

Since DA > 1 we have xA, x̄A ∈ DA ⊂ XA with xA 6= x̄A. Next note that we can write any
pattern x̃B as

x̃B = (x̃B\A, x̃B∩A). (A30)

If B ∩ A 6= ∅ we can see since x̃B∩A must take a single value it cannot contain D since there are
trajectories in D taking value xB∩A on B ∩ A and trajectories in D taking values x̄B∩A. More formally,
we must have either x̃B∩A = xA or x̃B∩A 6= xA. First, let x̃B∩A = xA but then T (x̄A) * T (x̃B) so
D * T (x̃B). Next choose x̃B∩A 6= xA but then T (xA) * T (x̃B) so also D * T (x̃B). So we must have
B ∩ A = ∅.

Now we show that if B ∩ A = ∅ there are trajectories in x̃B that are not in D. We construct
one explicitly by fixing its value on A to the value in XA that is not in DA and its value on B to x̃B.
More formally: choose yA ∈ XA \ DA, then yA 6= xA and yA 6= x̄A. This is always possible since
DA ⊂ XA (proper subset). Then consider a trajectory x̂V = (x̃B, yA, x̌D) with arbitrary x̌D ∈ XD where
D = V \ (B ∪ A). Then x̂V ∈ T (x̃B) but x̂V /∈ D.

Conversely, we show how to construct x̃B if no such A exists. the idea is just to fix all random
variables where |DA| = 1 and leave them unspecified where DA = XA. More formally: if there exists
no A ⊆ V with DA ⊂ XA and |DA| > 1, then for each C ⊆ V either DC = XC or |DC| = 1. Then let
B =

⋃{C ⊆ V : |DC| = 1} then |DB| = 1 so that we can define x̃B as the unique element in DB. Then
if yV ∈ D we have yB = x̃B so D ⊆ T (x̃B). If zV ∈ T (x̃B) we have zB = x̃B ∈ DB and for A ⊆ V with
A∩ B = ∅ by construction of B we have DA = XA such that DV\B = XV\B which means zV\B ∈ DV\B
and therefore zV ∈ D and T (x̃B) ⊆ D. So this gives T (x̃B) = D.
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