
Open Research Online
The Open University’s repository of research publications
and other research outputs

Mining Java Class Naming Conventions
Conference or Workshop Item
How to cite:

Butler, Simon; Wermelinger, Michel; Yu, Yijun and Sharp, Helen (2011). Mining Java Class Naming Conventions. In:
27th IEEE International Conference on Software Maintenance, 25-30 Sep 2011, Williamsburg, VA, USA, pp. 93–102.

For guidance on citations see FAQs.

c© 2011 IEEE (Paper); 2011 The Open University (Data)

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1109/ICSM.2011.6080776

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82962519?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1109/ICSM.2011.6080776
http://oro.open.ac.uk/policies.html

Mining Java Class Naming Conventions
Simon Butler, Michel Wermelinger, Yijun Yu and Helen Sharp
Centre for Research in Computing, Department of Computing

The Open University, Milton Keynes, United Kingdom

Abstract—Class names represent the concepts implemented in
object-oriented source code and are key elements in program
comprehension and, thus, software maintenance. Programming
conventions often state that class names should be noun-phrases,
but there is little further guidance for developers on the com-
position of class names. Other researchers have observed that
the majority of Java class identifier names are composed of one
or more nouns preceded, optionally, by one or more adjectives.
However, no detailed analysis of class identifier name structure
has been undertaken that could be leveraged to support program
comprehension activities.

We investigate the lexical and syntactic composition of Java
class identifier names in two ways. Firstly, as others have done
for C function and Java method names, we identify conventional
patterns found in the use of parts of speech. Secondly, we identify
the origin of words used in class names within the name of any
super class and implemented interfaces to identify patterns of
class name construction related to inheritance.

Through the analysis of 120,000 unique class names found in
60 open source projects we identify both common and project
specific class naming conventions. We apply this knowledge in
a case study of the mind-mapping tool Freemind to investigate
whether class names that follow unconventional naming schemes
are candidates for refactoring – either a name refactoring that
conforms to established naming conventions within the code base,
or refactoring of the class that results in conventionally named
classes.

Keywords-Java class naming; identifier names;

I. INTRODUCTION

Class identifier names represent the core entities and con-
cepts encoded in object-oriented source code, and are vital
to program comprehension [1], [2]. Programming conventions
advise that developers choose ‘meaningful’ identifier names
and that class identifier names should be nouns [3], [4]
or descriptive nouns [4]. More advanced practitioner texts
advocate a considered approach to identifier naming [5], and a
variety of conventions of language use have arisen as a result
of praxis [6].

Analysis of C function identifier names led to support
for automated name refactoring [7]. Similar analysis of Java
method identifier names found a link between identifier names
and method implementation [8], which was successfully lever-
aged to identify candidates for name refactoring and to suggest
possible refactorings [9].

Despite the importance of class identifier names for program
comprehension, an essential activity in software development
and maintenance, there is no detailed understanding of their
structure. In this paper we present a survey of the class identi-
fier names found in 16.5 MSLOC of open source Java projects.

We analyse the identifier names to recover patterns of parts-of-
speech (PoS) used in their construction and identify common
grammatical structures. We also catalogue the repetition of the
component words of super class and interface names in class
identifier names. Such reuse is evident in the Java library, for
example, where the java.util classes HashSet and TreeSet

retain the name of the Set interface implemented by their
common super class AbstractSet. However, little is known
of the extent to which these types of pattern are replicated in
production source code and under what circumstances.

Common, recognisable identifier naming conventions help
support human program comprehension and provide a foothold
for machine-based program comprehension techniques that
extract knowledge from source code [10]. The class identifier
naming patterns used in the wider Java community and within
a given project are the mechanisms that developers are familiar
with and use to communicate ideas in source code. This
knowledge can be incorporated in IDE-based tools to help
software developers create class identifier names that are more
readily understood, and to provide quality assurance tools for
software project managers that are an improvement on the
functionality of current tools.

In a case study of Freemind, a Java mind-mapping tool, we
investigate whether the class naming conventions identified
can be applied to identify classes that are candidates for
refactoring. Firstly where either the name might be refactored
to conform to a more common naming convention, and,
secondly, where the class might be refactored to form two or
more conventionally named classes. We show that unusually
structured class names can indicate the need to refactor a class
identifier name and may also indicate the need for a class to
be refactored.

The structure of the remainder of this paper is as follows:
in Section II we explore related research and describe our
methodology in Section III. In Section IV we give an account
of our results and discuss our findings in Section V, before
drawing our conclusions in Section VI.

II. RELATED WORK

The key areas of research related to this paper concern the
investigation and understanding of the structure of identifier
names and the practical application of that knowledge.

Knowledge of the structure of identifier names has practical
applications in source code comprehension and software de-
velopment and maintenance. Analysis of C function names
by Caprile and Tonella has been applied to automate the
refactoring of names [7]. Høst and Østvold undertook detailed

analysis of Java method names [8] and found relationships
between method names and method implementation in terms
of the micro-patterns [11] found in the compiled bytecode.
This knowledge was then applied to develop the automated
detection of method naming errors and recommendation of
candidate refactorings [9].

Singer and Kirkam [12] identified a link between Java class
names and the micro-patterns found in the implementation
using the approximation that Java class names are of the
form JJ ∗NN+, where JJ represents an adjective and NN a
noun1. However, the link was based on the assumption that the
rightmost noun is an indicator of the class’s implementation,
and no detailed analysis of the class identifier names was
undertaken.

The structure of Java class identifier names was investigated
as part of a study of the cognitive aspects of identifier names
as a form of communication [6]. The investigation found
developers used a variety of morphological and grammatical
artifices when constructing identifier names, many of which
are not proposed by programming conventions. However, the
investigation was conducted using source code from multiple
programming languages, not Java alone, and was not a com-
prehensive survey of naming practice.

Deißenböck and Pizka [13] proposed a scheme of concise
and consistent naming where a single identifier name rep-
resents a single concept throughout the program, and that
identifier names are composed so as to represent discrete
concepts unambiguously. In a follow up experiment, Lawrie
et al. [14] surveyed the identifier names found in 48 MSLOC
of C, C++, Fortran and Java source code to determine the
extent of violations of concise and consistent naming. The
syntactic methodology employed by Lawrie et al. identifies
potential violations of concise and consistent naming which
include some conventional patterns of naming found in Java
inheritance trees.

Identifier naming conventions were used by Abebe et
al. [15] to identify smells in source code. The smells are
predicated on deviations from suggested identifier naming
conventions that arise from programming conventions, and, to
a lesser extent, deviation from established conventions arising
from identifier naming praxis. A single rule concerns the
grammatical structure of class identifier names, and states that
class identifier names should contain at least one noun and
not contain any verbs. However, this work is based on naming
conventions that are guidelines of good practice, rather than a
knowledge of naming conventions found in practice.

Previous research has investigated identifier naming in
Java and detailed investigations have been constrained to
method identifier names. Despite the discovery of practical
applications for a comprehensive, detailed understanding of
the structure of identifier names, there has been no detailed
investigation of Java class identifier names.

1Throughout this paper we use the Penn Treebank PoS tag set ftp://ftp.cis.
upenn.edu/pub/treebank/doc/tagguide.ps.gz

III. METHODOLOGY

From a database of 623,000 identifier names extracted from
16.5 MSLOC2 of Java source code found in 60 open source
Java projects3, we extracted and tokenised 120,000 unique
class identifier names using our source code mining tool [16],
[17]. The tool was configured to detect and ignore both test
code and generated source code, using heuristics. We applied
two separate analytical techniques to each identifier name:
part-of-speech tagging to help identify any common gram-
matical patterns, and an investigation of the origins of class
identifier name components, if any, found within the names of
the immediate super class and implemented interfaces.

We also undertook a case study of Freemind4, a Java mind-
mapping application, to establish whether unconventionally
structured class identifier names indicate that either there is
a problem with the class name – so that it can be refactored
to a more conventionally structured name – or that there is a
problem with the class itself. And, in the latter case, whether
any possible refactorings could be identified that might result
in two or more conventionally named classes.

A. Analysing Grammatical Composition

Previous investigations of C function names and Java
method names [18], [8], [19] used part of speech (PoS) tagging
to identify grammatical patterns in names. Some teams have
created their own PoS tagger tuned to identifier names [8],
while others have used an off-the-shelf PoS tagger [19]. We
followed the latter route by using the Stanford Log-linear PoS
tagger5.

Our initial experiments were undertaken with the default
tagger provided with the Stanford PoS tagger. Using the tagger,
which is trained on a corpus of articles taken from The Wall
Street Journal, we observed, through manual inspection, error
rates of 15−30% for whole identifier names, depending on the
project analysed. The chief sources of error appeared to be the
difference between the structure of Java class names and the
conventional English sentences that form the tagger’s training
corpus, and the presence of abbreviations and a technical
vocabulary. The consequence of this was that the tagger was
trying to tag unknown words in an unrecognised context. As a
result we saw common English words tagged as foreign words.
We also observed issues related to the resolution of ambiguous
PoS. For example the class name ContentHandler consisting
of two nouns was consistently tagged as an adjective followed
by a noun, and the word ‘set’ was often tagged as a verb when
used as a noun.

We experimented by creating more sentence-like structures
from class names by including the Java keywords from
the class declaration and appending the name of the su-
per class and implemented interface. For example, for the
class CustomPropertiesTagHandler, found in GanttProject,

2Sloccount http://www.dwheeler.com/sloccount/
3Full information available at http://www.facetus.org.uk/corpus.html
4v0.9.0RC9 http://freemind.sourceforge.net/
5http://nlp.stanford.edu/software/tagger.shtml

which has no explicit super class and implements two inter-
faces, we would construct the phrase class custom properties
tag handler implements tag handler and parsing listener. We
saw no significant improvement in accuracy.

We decided to train our own PoS tagger using the Stanford
PoS tagger. We extracted a training corpus of 9,000 class
names at random from 13 of the 60 projects analysed, in-
cluding the Java library. Each name was tagged manually and
any class names that could not be unambiguously tagged were
discarded. A tagger was trained on the corpus. A separate test
corpus of 2,000 class identifier names was created by manually
tagging class names extracted randomly from a further 8 of
the projects analysed. An accuracy of 95% was achieved when
tagging individual words and abbreviations against the test
corpus. However, unrecognised words and abbreviations were
only tagged with 83% accuracy, resulting in an accuracy rate
for whole identifier names of 87% being reported by the tagger
in test mode.

Whilst not perfect, the accuracy is an improvement on the
default tagger. Høst and Østvold [8] state the accuracy of
their PoS tagger is better than 97% as the result of manual
inspection, but are unclear whether this figure is for individual
words or for whole method identifier names. Falleri et al. [19]
claim a PoS tagging accuracy of 96% for TreeTagger’s default
tagger for identifier names, but, again, are unclear whether this
relates to individual tags, or whole identifier names.

B. Inheritance analysis

The common grammatical structures found in class iden-
tifier names do not identify how developers encode infor-
mation in class names. Class names in some inheritance
hierarchies in the Java library repeat part of the super
class name. For example the class HTMLEditorKit, found
in the javax.swing.text.html package, is a subclass of
StyledEditorKit. Similarly the collections classes in the
java.util package often follow a pattern of naming where a
base interface name is retained through intermediate classes to
the various implementations. Taking the List classes as an ex-
ample, the List interface extends the Collection interface,
and is implemented in a class by AbstractList. The common
list classes – e.g. ArrayList and LinkedList – then extend
AbstractList. In other words, a basic implementation of
a core interface is often named Abstract〈interface name〉,
and specialised implementations extend the abstract class and
replace Abstract with an adjectival phrase describing the
implementation.

We analyse the incorporation of component words in a
class identifier name from the immediate super class and any
implemented interfaces. Class names were partitioned into six
groups according to whether the class explicitly extends a
super class – Java classes that do not explicitly declare a
super class extend the root class Object – and the number of
interfaces implemented. The notation we use consists of the
letters E for extends and I for implements with each letter
being followed by a subscript indicating the number of super
classes extended or interfaces implemented: the values of the

subscript being 0, 1 and n where the last means two or more
and can only be a subscript to I . For example a class that
extends a super class and implements no interfaces is classified
as E1I0.

In this study we investigate lexical inheritance, that is
we investigate whether component words from the super
class or implemented interface names are found in the class
identifier name. Accordingly we draw no distinction between
identically named super classes from different packages and
ignore any package name that might have been specified by
the developers in the extends and implements clauses of class
declarations. Similarly we ignore generic type names where
they are specified.

C. Case study

Freemind is a mind-mapping application written in Java
with an 11 year development history. The application consists
of a GUI that allows the user to edit, format and annotate
a treelike-graph structure of text nodes. The mind maps are
stored in an XML format, and can be exported to a range of
external formats including HTML and OpenOffice Writer, and
as images, flash animations and Java applets.

Using the results of the grammatical and the inheritance
analyses, we identified those classes with identifier names
that do not conform to the commonly occurring grammatical
patterns found in Freemind class names. The subset of classes
was then inspected to determine whether the class might be
named according to one of the more commonly occurring
grammatical patterns, or, if the class appeared to be appro-
priately named, whether the unusual name might be indicative
of a potential refactoring of the class into two or more classes
with more conventional names.

IV. RESULTS

To present our results, we combine the individual Treebank
adjective, noun and verb PoS tags so that JJ , NN and VB
include all forms of adjective, noun, and verb respectively. By
collapsing the Penn Treebank categories we create a simplified
tagset similar to that used by Høst and Østvold [9].

A. Grammatical Structure

Table I shows the absolute and relative frequencies for the
most common grammatical patterns found in 120,000 class
identifier names extracted from 60 open source Java projects.
The four grammatical forms given in the table comprise
90% of the identifier names analysed. The remaining 10% of
class identifier names are formed using a variety of patterns,
some with only a single instance. Of note is that Singer
and Kirkham’s approximation of Java class identifier names,
JJ ∗NN+ [12], can be realised by merging the two most
common categories and includes 85% of the class identifier
names analysed.

B. The influence of inheritance

Table II shows the distribution of classes according to type
of inheritance in classes found in all 60 projects. In total

TABLE I
COMMON PART OF SPEECH PATTERNS AND FREQUENCIES FOR ALL

PROJECTS

Pattern Absolute Frequency Relative Frequency

NN+ 88489 0.73
JJ+NN+ 14833 0.12
NN+JJ+NN+ 3579 0.03
VB NN+ 2918 0.02

80% of classes are related to another class by inheritance.
Some 58% of classes extend a super class, with the majority,
45% in the E1I0 category, not implementing an interface.
Overall, 35% of classes implement one or more interfaces,
and, reflecting the situation with class-based inheritance, the
majority of classes implementing an interface do not also
extend a class. Indeed only 13% of classes, overall, take
advantage of both dimensions of inheritance available in Java.

TABLE II
DISTRIBUTION OF INHERITANCE CATEGORIES FOR ALL PROJECTS

Category Absolute Frequency Relative Frequency

E0I0 25056 0.21
E0I1 22000 0.18
E0In 4280 0.04
E1I0 54232 0.45
E1I1 11668 0.10
E1In 3350 0.03

Figure 1 shows the variation in the proportions of classes
in the inheritance categories for the 60 projects investigated.
There is considerable variation between projects indicating
different teams’ preference for particular types of inheritance.
For example, Egantt and Javacc have no classes that implement
more than one interface, while, at the other end of the
scale, 48% of JFreeChart classes do. By far the most marked
variation is in the proportion of classes that extend a single
super class (E1I0) ranging from 70% of classes for ArgoUML
to 15% for Tapestry, where 77% of classes are found in the
E0I0 and E0I1 categories.

The distribution of the 4 dominant grammatical patterns
in the 6 inheritance categories is shown in Table III. Of
note are the similar frequencies of the grammatical forms for
the 5 categories where inheritance is involved, and that the
E0I0 category has a noticeably greater proportion of identifier
names composed exclusively of nouns.

TABLE III
RELATIVE FREQUENCY OF MOST COMMON GRAMMAR PATTERNS BY

INHERITANCE CATEGORY

NN+ JJ+NN+ NN+JJ+NN+ VB+NN+

E0I0 0.85 0.08 0.01 0.01
E0I1 0.73 0.15 0.02 0.02
E0In 0.75 0.15 0.03 0.01
E1I0 0.68 0.12 0.04 0.03
E1I1 0.70 0.15 0.04 0.02
E1In 0.75 0.14 0.04 0.02

E0I0 E0I1 E0In E1I0 E1I1 E1In

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

P
ro

p
o
rt

io
n
 o

f
in

h
e
ri
ta

n
c
e
 c

a
te

g
o
ri
e
s
 p

e
r

p
ro

je
c
t

Fig. 1. Distribution of inheritance categories in 60 Java projects

Table IV shows the frequency with which elements of super
class and interface names are repeated in class identifier names
for the different inheritance categories (the E0I0 category is
omitted from the table). The columns headed all contain the
frequency for each category with which the super class or
interface name is repeated in its entirety and uninterrupted.
The columns headed fragment give the frequency with which
one or more fragments of the super class or interface name are
repeated. The both column shows the frequency with which
elements from both sources are repeated in the class identifier
name. For each inheritance category approximately 80% of
class identifier names incorporate elements from either the
super class or implemented interface identifier names. The
repetition of fragments of super class identifier names is more
common than the repetition of the entire super class name.
Repetition of interface identifier names and fragments occurs
with a similar frequency, apart from the E1In category where
fragments of interface names are repeated more often than the
entire interface name. Where both dimensions of inheritance
are used – the E1I1 and E1In categories – the super class
name is the more common source of class identifier name
components. Indeed some 40% of identifier names in the E1I1
category and 43% in the E1In category repeat component
words from only the super class name, compared to 18%
and 22%, respectively, that repeat component words from
interface identifier names alone. We also found that 8% of
class identifier names in the E0In category and 1% in the E1In
category incorporate elements from two or more implemented
interface identifier names.

The most common grammatical forms of class identifier
names with component words inherited from a super class or
interface are given in Table V for each category. In this table
we introduce a notation for tagging super class and interface
names, as well as their fragments. The tags are SC to represent
a super class and SCF for a fragment of the super class name.
Similarly we use II and IIF for interface names and fragments
of interface names respectively.

TABLE IV
RELATIVE FREQUENCY DISTRIBUTION OF NAME INHERITANCE WITHIN

INHERITANCE CATEGORIES FOR ALL PROJECTS

Super Class Name Interface Name
Category All Fragment All Fragment Both

E0I1 - - 0.39 0.37 -
E0In - - 0.38 0.40 -
E1I0 0.23 0.58 - - -
E1I1 0.14 0.53 0.24 0.21 0.27
E1In 0.11 0.50 0.15 0.25 0.18

TABLE V
COMMON GRAMMATICAL FORMS OF CLASS NAME COMPONENT

INHERITANCE

Category Grammatical Form Relative Frequency

E0I1 NN+II 0.19
NN+IIF+ 0.17
II NN+ 0.09
IIF+NN+ 0.05

E0In NN+II+ 0.17
NN+IIF+ 0.15
II+NN+ 0.09
IIF+ 0.07
IIF+NN+ 0.06

E1I0 NN+SCF+ 0.30
NN+SC 0.13
SCF+NN+SCF+ 0.05
SCF+NN+ 0.05
JJ+NN+SCF+ 0.03
JJ+SC 0.03

E1I1 NN+SCF+ 0.15
II SCF+ 0.11
NN+SC 0.06
SCF+IIF+ 0.04
IIF+ 0.04
SCF+II 0.03
NN+IIF+ 0.03

E1In NN+SCF+ 0.20
NN+SC 0.05
IIF+ 0.05
NN+IIF+ 0.04
IIF+NN+ 0.04
SCF+NN+ 0.03

For each category, the most common patterns incor-
porate the inherited name elements as a suffix. This
is the pattern found in our earlier example from the
java.swing.text.html package where HTMLEditorKit is a
subclass of StyledEditorKit. In other words the part of the
super class name that defines what the class is is retained
and a word or words are added as a prefix to create the
specialised version of the super class. Similarly where part
of an interface name is retained as a suffix, the interface
name defines the type of thing the class is. For example,
the class GlobPatternMapper found in Ant implements the
FileNameMapper interface.

The patterns where a fragment of the super class or
interface name is used as a prefix for the class name are
less common. An example is the InstructionHandle

class in MultiJava, which extends the super class

AbstractInstructionAccessor. In this case the focus of
the class’s activity, an instruction, is the discriminating term
that is perpetuated through inheritance.

The SCF+NN+SCF+ pattern found in the E1I0 and
E1I1 categories, arises in class identifier names like
BuddyPluginPasswordException found in Vuze which has
the super class BuddyPluginException, where one or more
nouns are inserted into the superclass name to indicate the
specialisation.

Where both dimensions of inheritance are used, the E1I1
and E1In categories, the most common name inheritance
components are NN+SCF+, II SCF+ and NN+SC . The
E1I1 category contains identifier names composed exclusively
of words repeated from both the super class and implemented
interface identifier names. An example of the II SCF+ pattern
is the JabRef class FieldTextArea which is a sub class of
JTextArea and implements the FieldEditor interface.

The repetition of entire interface names as suffixes, the
NN+II pattern, is absent from the E1In category despite
being the most common pattern in both the E0I1 and
E0In categories. An example of the class name pattern is
the LinkedHashMap class in the java.util package which
has the super class HashMap. Many of the instances of
the IINN+ pattern are examples of class identifier names
ending in Impl, an abbreviation for implementation, such
as GroovyFeatureImpl found in NetBeans. Also relatively
common are class identifier names composed exclusively of
fragments of an interface name, i.e. the pattern IIF+. This
can result from the use by some developers of the letter
I as a prefix to indicate an interface identifier name, e.g.
IDialogSettings found in Eclipse, where the implementing
class is named DialogSettings. Other examples of the
IIF+ pattern include the class JNDIResource, found in
JBoss, that implements the interface JNDIResourceMBean,
and the Java library class RMISocketFactory, which
implements the interfaces RMIClientSocketFactory and
RMIServerSocketFactory.

C. Freemind

We extracted 652 class identifier names from Freemind and
the frequency of the most common grammatical patterns can
be seen in Table VI. The four most common patterns are the
same as those found with the greatest frequency for all projects
(Table I), and were found with similar frequencies apart from
the VBNN+ pattern where the frequency for Freemind was
almost double that for all the projects analysed. In total the
four most common grammatical patterns describe 91% of the
class identifier names in Freemind.

The distribution of class identifier names in the inheritance
categories for Freemind given in Table VII show a greater
proportion of classes in Freemind either extend a super class
or implement one or more interfaces than is observed across
all the projects analysed (see Table II). Indeed, 66% of classes
in Freemind extend a super class, as opposed 58% across all
classes.

TABLE VI
COMMON PART OF SPEECH PATTERNS AND FREQUENCIES FOR FREEMIND

Pattern Absolute Frequency Relative Frequency

NN+ 459 0.70
JJ+NN+ 81 0.12
VBNN+ 39 0.06
NN+JJ+NN+ 20 0.03

Table VIII shows the distribution of common grammatical
forms of class identifier names that include words derived
from the super class or implemented interfaces for each of
the inheritance categories in Freemind. While many patterns
are common to the same categories in Table VIII and Table V,
there are key differences that indicate the existence of project-
specific naming conventions in Freemind. For example, the
two most frequently occurring patterns in the E0I1 and E0In
categories overall, NN+II+ and NN+IIF+, are much more
common in Freemind. Furthermore, the pattern NN+IIF+,
where a fragment of the interface name is repeated in the class
identifier name, is the more frequent of the two in Freemind
and accounts for 29% of the class identifier names in the E0In
category.

TABLE VII
DISTRIBUTION OF INHERITANCE CATEGORIES FOR FREEMIND

Category Absolute Frequency Relative Frequency

E0I0 82 0.13
E0I1 128 0.20
E0In 14 0.02
E1I0 318 0.49
E1I1 78 0.12
E1In 32 0.05

The NN+SCF+NN+ pattern observed with a frequency
of 7% in the E1I0 inheritance category in Freemind occurs
with much lower frequency across the projects analysed.
Inspection of the instances of the NN+SCF+NN+ pattern
reveals a local naming convention, an example of which is
the class MindMapCloudModel that implements the interface
CloudAdapter. The pattern occurs mainly in a small cluster
of packages where it is used for classes that form fundamental
components of Freemind’s mind maps.

Another feature of Freemind is the relative prominence
of class names with grammatical patterns beginning with a
verb in the E1I0 and E1I1 categories. Identifier names of the
VB NN+SCF+ pattern are mainly of the form VB NN+,
when the origin of component words is ignored, and, as
already noted, Freemind has a relatively high frequency of
identifier names of this general pattern (See Table VI). As
we discuss below, many of the classes responsible for han-
dling user initiated actions in the GUI start with a verb.
The VB NN+SCF+ pattern is also prominent in the E1I1
category, where it is notable that the NN+SCF+ pattern
occurs with a much higher frequency in Freemind (38%)
than amongst all the projects analysed (15%). The IIF+

pattern found in the E1I1 and E1In categories for all the

TABLE VIII
COMMON GRAMMATICAL FORMS OF CLASS NAME COMPONENT

INHERITANCE FOR FREEMIND

Category Grammatical Form Relative Frequency

E0I1 NN+IIF+ 0.27
NN+II 0.20
IIF+NN+ 0.05
JJ+NN+IIF+ 0.05
IINN+ 0.04

E0In NN+IIF+ 0.29
NN+II 0.21
IIF+ 0.07

E1I0 NN+SCF+ 0.35
NN+SCF+NN+ 0.07
NN+SC 0.06
SCF+NN+ 0.05
JJ+NN+SCF+ 0.04
VB NN+SCF+ 0.04
JJ SCF+ 0.04

E1I1 NN+SCF+ 0.38
IIF+SCF+ 0.09
II SCF+ 0.08
VB NN+SCF+ 0.05
SCF+NN+ 0.05

E1In NN+SCF+ 0.28
SCF+NN+ 0.09

projects surveyed are not found in the same categories for
Freemind. Where components from implemented interface
identifier names are incorporated into class names in the E1I1
and E1In categories in Freemind so are fragments of the super
class identifier name.

In addition to the four most common grammatical patterns
given in Table VI, further patterns were identified accounting
for a total of 53 class names (see Table IX), or a relative
frequency of 0.08. The most common grammatical pattern
amongst this group was VB NN+INNN+, where IN rep-
resents a preposition. Each of the 53 unconventionally named
classes was inspected to understand whether the name used
was appropriate and a clear reflection of the role the class
plays in the application. If the name did not meet those criteria
we explored possible name refactorings that adhered to the
established naming conventions found in the project and were
permitted within the same namespace. We also considered
whether the class might be refactored into classes that could
be named conventionally.

The majority of the 53 classes inspected represented actions
taken by the user in the GUI, or coordinating events such as
automatically saving all open files. On the whole these class
identifier names clearly described the role of each class and
were not prone to name refactoring.

Some class names were identified that could be refactored
to more conventional identifier names. Three were mem-
ber classes with identifier names prefixed with My, which
gives the reader little information about the origins of the
class, or the detail of the functionality they might expect
to encounter. For example the class MyRenderer, a mem-
ber class of the class ImportAttributesDialog in the

package freemind.modes.mindmapmode.attributeactors,
is responsible for rendering the cells of a tree used for
display in the dialogue. Other member classes of the same
class have clear identifier names reflecting the detail of
their purpose, e.g. AttributeTreeNodeInfo. To make the
class name consistent with the other member classes, and
to improve clarity, we suggest the name is refactored to
AttributeTreeCellRenderer, which adheres to the com-
mon NN+ pattern.

The class ArrayListTransferable is designed to protect
an array list from modification while it is transferred between
two objects. The adjective has been placed after the noun
phrase it is intended to modify, and we suggest the name is
refactored to TransferableArrayList, which is both clearer
and conforms to the common JJ+NN+ pattern.

The class ThreeCheckBoxProperty is a GUI component
that implements a button used in dialogues where the user
has a number of settings available. The button cycles through
three states when clicked, which are represented by a plus
sign, a minus sign and an empty box and have the meanings
change property, remove property and ignore, respectively. The
GUI component does not look like a check box or behave
like one, so that aspect of the name appears to be incorrect.
It is used in properties dialogues, but property in isolation
does not adequately represent its usage context. The common
name for this type of widget is a tri-state checkbox, so the
most appropriate name refactorings are TristateCheckBox

or TristateButton, both of which conform to the JJ+NN+

pattern, and do not contain extraneous detail about the type of
dialogue in which the component is used.

We also found one instance of a spelling mistake: a
class named FileChooseListener, which should have been
FileChooserListener to be consistent with the name of
the Swing JFileChooser instance it creates. The spelling
mistake was identified as the result of the PoS tagger
recording Choose as a verb, thus giving the identifier
name the pattern NN+VBNN+, which is relatively un-
common. The remaining four instances of this pattern in
Freemind are a part of a local naming convention in the
freemind.controller.filter.condition package. Most
classes extend NodeCondition or one of its subclasses and
follow a consistent naming scheme based on their position in
the hierarchy. A feature of the naming scheme is the insertion
of a verb between the two component words of the super
class. The classes are used to support a filtering mechanism
that selects particular nodes for display. For example the
class NodeContainsCondition is used to test whether a
node contains a particular condition or attribute. We consider
the class identifier names not to be a problem because the
unconventional naming is used consistently, and the classes,
on inspection, appear to function as described. However, we
would argue that the awkward nature of the naming pattern
may be a design smell, and that a more conventional design,
e.g. the visitor pattern [20], should result in more conventional
class identifier names.

The class StdOutErrLevel is a candidate for

/**
* Level for STDOUT activity.
*/
final static Level STDOUT =

new StdOutErrLevel("STDOUT", Level.WARNING.
intValue()+53);

/**
* Level for STDERR activity
*/
final static Level STDERR =
new StdOutErrLevel("STDERR", Level.SEVERE.

intValue()+53);

Fig. 2. Partial listing from freemind.main.StdFormatter

refactoring. StdOutErrLevel is a member class of
freemind.main.StdFormatter used in logging and was
identified because the intended abbreviations of ‘output’ as
‘out’ and ‘error’ as ‘err’ are also words. On initial reading
of the name, it appears to be an abbreviation of standard
output error level, or stdout error level. On inspection, the
StdFormatter class is responsible for formatting log records
for Freemind, and StdOutErrLevel is used to assign the
logging threshold for the stdout and stderr streams. The
developers combine the task of setting the logging thresholds
for two streams into the same object, before specifying each
output stream in the call to the constructor (see Figure 2).
There are two solutions: either the class name is refactored to
remove the reference to both standard streams, or the class,
which wraps the java.util.logging.Level class without
adding any functionality, is removed and replaced by direct
calls to the Level library class. The latter is the preferable
solution as it results in a less cluttered class that is easy to
read.
EdgeWidthBackTransformer is one of a group of

member classes of StylePatternFrame in the pack-
age freemind.modes.mindmapmode.dialogs that transform
strings to widths and back again. The class performs the
inverse function of the class EdgeWidthTransformer and
invokes the method transformStringToWidth. We suggest
the renaming the class to StringToEdgeWidthTransformer

may be clearer and more consistent. However, the identifier
name remains unconventional.

D. Threats to Validity

As with any empirical study there are threats to validity.
In this case threats to validity concern construct and external
validity. We do not consider internal validity because we make
no claims of causality. Also we have not used any statistical
tests, so we do not consider statistical conclusion validity.

a) Construct Validity: The key threat to construct validity
is the accuracy of the PoS tagger used in the experiment.
The Stanford PoS tagger’s test mode for our tagger reports
an accuracy of 95% for individual words and an accuracy of
85% for whole identifier names. The sources of error include
words that commonly have more than one part of speech,
abbreviations and unknown words. However, despite the error

TABLE IX
CLASSES INSPECTED IN FREEMIND

Refactor
Package Class name Name Class Comment

accessories.plugins ExportToImage No No Describes action initiated in UI
ExportToOoWriter No No Describes action initiated in UI
ExportWithXSLT No No Describes action initiated in UI
FitToPage No No Describes action initiated in UI
JumpToMapAction No No Describes action initiated in UI
MyFreemindPropertyListener Yes No Rename AutomaticLayoutPropertyListener
SaveAll No No Describes action initiated in UI
UnfoldAll No No Describes action initiated in UI

accessories.plugins.dialogs ArrayListTransferable Yes No Rename TransferableArrayList
accessories.plugins.time ReplaceAllInfo No No Local naming convention

ReplaceSelectedInfo No No Local naming convention
accessories.plugins.util.xslt FileChooseListener Yes No Rename FileChooserListener
freemind.common ThreeCheckBoxProperty Yes No Rename TristateButton
freemind.controller AboutAction No No Describes action initiated in UI

DisposeOnClose No No Wraps Swing GUI action
HideAllAttributesAction No No Describes action initiated in UI
MoveToRootAction No No Describes action initiated in UI
ShowAllAttributesAction No No Describes action initiated in UI
ShowSelectionAsRectangle No No Describes action initiated in UI
ZoomInAction No No Describes action initiated in UI
ZoomOutAction No No Describes action initiated in UI

freemind.controller.filter CreateNotSatisfiedConditionAction No No Local naming convention
freemind.controller.filter.condition AttributeCompareCondition No No Local naming convention

AttributeExistsCondition No No Local naming convention
AttributeNotExistsCondition No No Local naming convention
ConditionNotSatisfiedDecorator No No Local naming convention
IgnoreCaseNodeContainsCondition No No Local naming convention
NodeCompareCondition No No Local naming convention
NodeContainsCondition No No Local naming convention
NoFilteringCondition No No Local naming convention

freemind.extensions AllDestinationNodesGetter No No Describes action initiated in UI
freemind.main StdOutErrLevel No Yes Remove member class
freemind.modes NodeDownAction No No Describes action initiated in UI

SaveAsAction No No Describes action initiated in UI
freemind.nodes.common CommonToggleFoldedAction No No Describes action initiated in UI
freemind.modes.mindmapmode DoAutomaticSave No No Time-based backup task

ExportBranchToHTMLAction No No Describes action initiated in UI
ExportToHTMLAction No No Describes action initiated in UI
SetImageByFileChooserAction No No Describes action initiated in UI
SetLinkByFileChooserAction No No Describes action initiated in UI

freemind.modes.mindmapmode.actions AddLocalLinkAction No No Describes action initiated in UI
ChangeArrowsInArrowLinkAction No No Describes action initiated in UI
NodeUpAction No No Describes action initiated in UI
RemoveAllIconsAction No No Describes action initiated in UI
SelectAllAction No No Describes action initiated in UI
SetLinkByTextFieldAction No No Describes action initiated in UI
UsePlainTextAction No No Describes action initiated in UI

freemind.modes.mindmapmode.attributeactors MyRenderer Yes No Rename AttributeTreeCellRenderer
ToggleAllAction No No Describes action initiated in UI

freemind.modes.mindmapmode.dialogs EdgeWidthBackTransformer Yes No Rename StringToEdgeWidthTransformer
freemind.modes.viewmodes CommonToggleChildrenFoldedAction No No Describes action initiated in UI
freemind.view.mindmapview Selected Yes No Rename SelectedNodes
freemind.view.mindmapview.attributeview MyFocusListener Yes No Rename AttributeTableFocusListener

rate we successfully identified unconventionally constructed
identifier names that were candidates for refactoring as well
as a possible design smell. An associated threat is that the
training and testing corpora were hand tagged by the first
author, a native speaker of English, which is a possible source
of bias.

The consequence of collapsing the Penn Treebank PoS tags
is that 50 proper nouns and 15049 plural nouns are included
in the NN tag, and a total of 1393 verb forms are included in

the VB tag. These account for 13% of class identifier names
containing nouns and 24% of those containing verbs. Only
0.2% of adjectives are tagged as JJR and JJS . While this
approach hides some detail, it allows the observation of a
general form of class identifier name containing a verb, which
might otherwise have been missed.

b) External Validity: We used a corpus of 60 open
source Java projects totalling some 16.5 MSLOC as the source
of the class identifier names analysed in this project. The

60 projects are drawn from a variety of domains to reduce
the influence of domain specific identifier names or naming
styles. We found considerable variation in the proportions of
class and identifier based inheritance used in the projects.
Accordingly, while our observations of the patterns of the
reuse of component words from the names of super classes and
implemented interfaces are reliable for the corpus analysed,
caution should be exercised when extrapolating the proportions
of these patterns to other projects.

V. DISCUSSION

We employed two methods of analysing of class identifier
name structure. The first relied solely on the parts-of-speech
used in the class names, and the second considered the
origins of the component words in the names of the super
class and implemented interfaces. We found that more than
90% of class identifier names can be described using four
simple grammatical patterns. Despite the advice given in
programming conventions [4], [3] that class identifier names
should be nouns, we found that a proportion – around 2% –
incorporate verbs and describe actions, rather than entities.
From inspection of a sample of the class identifier names
containing verbs, we found that many were related to actions
initiated by the user in GUI environments.

Programming conventions offer no advice on whether, or
how to incorporate information from super class or interface
names in class identifier names. Praxis, in the Java library,
for example, is for some class and interface hierarchies to
retain part of the class identifier name through the inheritance
hierarchy. Our analysis of the origins of component words in
class identifier names found that 70-80% of classes that extend
a superclass or implement an interface include one or more
words repeated from the super class or implemented interface
name (See Table IV, Table V and Table VIII).

In general, class identifier names repeat fragments of the
super class or interface name, rather than the entire name, and
it is words found in the super class names that are repeated
with the higher frequency. Manual inspection showed that
fragments are mostly derived from the latter, or right hand,
part of the super class or interface name. Though a common
pattern found in exception classes involves the insertion of
words in the super class name. We were unable to identify
any obvious mechanisms from single generation inheritance
that explain how a decision is made to repeat either part or
all of the super class or interface name. We expect that it will
be possible to derive heuristics from inheritance trees where
name fragments are repeated over more than one generation.

The repetition of components of super class and imple-
mented interface identifier names in some class identifier
names appears to violate the conciseness rule of Deißenböck
and Pizka’s system of concise and consistent naming [13].
A concise name is one that unambiguously represents a
given concept within a program. For example, the identifier
names position and absolutePosition would break the
conciseness rule because the concept of ‘position’ contains
the concept ‘absolute position’.

Lawrie et al. [14] used a syntactic methodology to investi-
gate violations of concise and consistent naming. They defined
Type I and Type II syntactic violations, both of which imply
that the conciseness rule has been broken, and may indicate a
failure of the consistency rule. A Type I violation occurs when
an identifier name is repeated entirely within another identifier
name; and a Type II violation occurs when an identifier name
is similarly contained by two or more others. Type I violations
occur in a single generation of inheritance where a class
identifier name includes the whole of the name of either the
super class or an implemented interface.

In Freemind, for example, 89 (14%) of the class identi-
fier names we surveyed are Type I violations. Some class
names appear to be genuine violations of the conciseness
rule, but most are part of the process of creating program
concepts through inheritance. The same is true of the Type
II violations we identified. In the latter case the false pos-
itives are typified by classes that implement a common
interface or base class, e.g. SortedComboBoxModel and
ClonedComboBoxModel both implement the Swing interface
ComboBoxModel, and describe the concept hierarchy clearly.
Lawrie et al. suggested that parts-of-speech may help discrim-
inate between identifier names that represent new concepts
and those that are genuine violations. The adjectives in our
example fulfil that role, but further study is required to confirm
the viability of the method.

Importantly, around 20-30% of class identifier names in
each inheritance category were found not to incorporate any
words derived from the identifier names of the extended
super class or implemented interfaces. Further investigation is
needed to identify the occasions on which names are incorpo-
rated and those when they are not. One approach is to derive
rules of name inheritance from existing behaviour within a
code base, which may have a practical application by alerting
a developer to an unusual repetition of a component word in
a class identifier name, or the omission of a component that
is commonly repeated. For example, the Java library interface
names Cloneable and Serializable are rarely incorporated
in the identifier names of implementing classes. While such
a solution is attractive, it does not explain when and why
super class and interface name components are repeated. A
more detailed approach, analysing identifier names in terms
of their grammatical structure, their semantics, and their role
or position in the inheritance hierarchy, may result in methods
that predict the circumstances under which component words
are repeated and which words should be repeated.

The common class identifier naming patterns are familiar
mechanisms developers use to communicate ideas. Høst and
Østvold demonstrated that the link between Java method
identifier names is sufficiently strong that poor quality or
misleading names can be identified and candidate refactorings
suggested [9]. By identifying candidates for renaming, such
as ThreeCheckBoxProperty, and a possible design smell,
we show that practical results may be achieved through
the recognition of unconventionally constructed Java class
identifier names. However, while identifier names may reflect

the implementation of a class, conventionally structured class
identifier names are not a guarantee of flawless design.

Knowledge of the common conventional grammatical pat-
terns of class identifier naming can be incorporated in IDE-
based tools to support the creation of class identifier names that
are more readily understood by developers, and that conform
to project standards determined by software project managers.
Such a tool could alert the developer to an unconventionally
structured name and, eventually, recommend possible improve-
ments, including the incorporation of words used in the super
class and interfaces, if any. Developers new to a project would
have a ready made style guide to support the creation of class
identifier names that are familiar to existing colleagues. The
same knowledge can be leveraged to provide quality assurance
for software project managers that is an improvement on
the functionality of current tools. For example, CheckStyle6

provides only very basic checks of the typographical structure
of identifier name, e.g. whether a class identifier name begins
with an upper case letter.

For software maintainers new to a project, a tool that
extracts the project’s class naming conventions provides an
overview of how the project’s developers encode informa-
tion in identifier names, particularly the extent to which
names reflect inheritance. Such information supports program
comprehension by identifying which component words are
repeated in inheritance trees and can be used to identify related
classes and help target lexical searches.

VI. CONCLUSIONS

Through the analysis of class identifier names extracted
from 60 Java open source projects and a case study of Free-
mind, we have taken a step towards a detailed understanding
of Java class identifier naming conventions used in practice.
This paper makes three contributions:

1) We identify the common grammatical structures of Java
class identifier names found in praxis and their distribu-
tions.

2) We identify the patterns by which component words
from the super class or implemented interfaces are
repeated in class identifier names, and record their
distributions.

3) We show, for the example of Freemind, how the detailed
knowledge of project-specific uncommon class identifier
naming patterns can be put to practical use to help detect
poor class names and design smells and thereby improve
program comprehension and design.

Our analysis can be applied in practical software engineer-
ing tools to support identifier naming by making developers
aware of the naming conventions used in the project they
are working on. A tool could offer guidance that supports
the creation of more commonly recognisable names, such as
indicating when an unconventional form is being used, or
making recommendations of possible identifier names during
development. The same knowledge can also be applied by

6http://checkstyle.sourceforge.net/

software project managers to configure the developers’ tools
with project-specific standards, and in tools for identifier name
quality assurance that are a considerable improvement on
current tools that check the typographical form of names.

We propose to build on this work in two ways. The first is to
seek methods of determining the relationship between a class
identifier name, its inheritance hierarchy and the identifier
names of class members including fields and methods, to sup-
port a finer-grained analysis of the correctness, or otherwise,
of class identifier names. The second is to apply the knowledge
acquired in this research to develop methods for the semantic
analysis of identifier names in order to support the creation of
ontologies of source code.

REFERENCES

[1] V. Rajlich and N. Wilde, “The role of concepts in program comprehen-
sion,” in Proc. 10th Int’l Workshop on Program Comprehension. IEEE,
2002, pp. 271–278.

[2] F. Deissenboeck and M. Pizka, “Concise and consistent naming,” in
Proc. 13th Int’l Workshop on Program Comprehension, 2005, pp. 97–
106.

[3] A. Vermeulen, S. W. Ambler, G. Bumgardner, E. Metz, T. Misfeldt,
J. Shur, and P. Thompson, The Elements of Java Style. Cambridge
University Press, 2000.

[4] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java language
specification, 3rd ed. Addison-Wesley, 2005.

[5] K. Beck, Implementation Patterns. Addison–Wesley, 2008.
[6] B. Liblit, A. Begel, and E. Sweetser, “Cognitive perspectives on the role

of naming in computer programs,” in Proc. 18th Annual Psychology of
Programming Workshop. Psychology of Programming Interest Group,
2006.

[7] B. Caprile and P. Tonella, “Restructuring program identifier names,” in
Proc. Int’l Conf. on Software Maintenance. IEEE, 2000, pp. 97–107.

[8] E. W. Høst and B. M. Østvold, “The Java programmer’s phrase book.”
in Software Language Engineering, ser. LNCS, vol. 5452. Springer,
2008, pp. 322–341.

[9] ——, “Debugging method names,” in Proc. of the 23rd European Conf.
on Object-Oriented Programming. Springer-Verlag, 2009, pp. 294–317.

[10] D. Raţiu, “Intentional meaning of programs,” Ph.D. dissertation, Tech-
nische Universität München, 2009.

[11] J. Y. Gil and I. Maman, “Micro patterns in Java code,” in Proc.
ACM SIGPLAN conference on Object oriented programming, systems,
languages, and applications. ACM, 2005, pp. 97–116.

[12] J. Singer and C. Kirkham, “Exploiting the correspondence between
micro patterns and class names,” in Int’l Working Conf. on Source Code
Analysis and Manipulation. IEEE, Sept. 2008, pp. 67–76.

[13] F. Deißenböck and M. Pizka, “Concise and consistent naming,” Software
Quality Journal, vol. 14, no. 3, pp. 261–282, Sep 2006.

[14] D. Lawrie, H. Feild, and D. Binkley, “An empirical study of rules
for well-formed identifiers,” Journal of Software Maintenance and
Evolution: Research and Practice, vol. 19, no. 4, pp. 205–229, 2007.

[15] S. L. Abebe, S. Haiduc, P. Tonella, and A. Marcus, “Lexicon bad smells
in software,” in Proc. Working Conf. on Reverse Engineering. IEEE,
2009, pp. 95–99.

[16] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Exploring the influence
of identifier names on code quality: an empirical study,” in Proc. of
the 14th European Conf. on Software Maintenance and Reengineering.
IEEE Computer Society, 2010, pp. 159–168.

[17] ——, “Improving the tokenisation of identifier names,” in ECOOP 2011,
LNCS 6813, M. Mezini, Ed. Springer-Verlag, 2011, pp. 130–154.

[18] B. Caprile and P. Tonella, “Nomen est omen: analyzing the language of
function identifiers,” in Proc. Sixth Working Conf. on Reverse Engineer-
ing. IEEE, Oct 1999, pp. 112–122.

[19] J.-R. Falleri, M. Huchard, M. Lafourcade, C. Nebut, V. Prince, and
M. Dao, “Automatic extraction of a wordnet-like identifier network from
software,” in 18th Int’l Conf. on Program Comprehension. IEEE, jun.
2010, pp. 4 –13.

[20] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, 1995.

