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0.1 Paradigms and challenges

Resource discovery is more than just search: it is browsing, searching, selecting, assessing and
evaluating, ie, ultimately accessing information. Giving users access to collections is one of the
defining tasks of a library. For thousands of years the traditional methods of resource discovery
have been facilitated by librarians: they create reference cards with meta-data that are put into
catalogues (nowadays, databases); they also place the objects in physical locations that follow
certain classification schemes and they answer questions at the reference desk.

The advent of digital documents has radically changed the organisation principles; now it is
possible to automatically index and search document collections as big as the world-wide web
à la Google and browse collections utilising author-inserted links. It is almost as if automated
processing has turned the traditional library access paradigm upside down. Instead of searching
meta-data catalogues in order to retrieve the document, web search engines search the full content
of documents and retrieve their meta-data, ie, the location where documents can be found. Not all
manual intervention has been abandoned, though. For example, the Yahoo directory1 is an edited
classification scheme of submitted web sites that are put into a browsable directory structure akin
to library classification schemes.

At its very core, multimedia information retrieval means the process of searching for and finding
multimedia documents; the corresponding research field is concerned with building multimedia
search engines. The intriguing bit about multimedia retrieval is that the query itself can be a
multimedia excerpt: for example, if you walk around in pleasant Milton Keynes, you may stumble
across the interesting building that is depicted in Figure 1.

Figure 1: Milton Keynes’s Peace Pagoda

Would it not be nice if you could just take a picture with your mobile phone and send it to a
service that matches your picture to their database and tells you more about the building? The
service could reply with “Built by the monks and nuns of the Nipponzan Myohoji, this was the first
Peace Pagoda to be built in the western hemisphere and enshrines sacred relics of Lord Buddha.
The Inauguration ceremony, on 21st September 1980, was presided over by the late most Venerable
Nichidattsu Fujii, founder . . .”2

1http://dir.yahoo.com/
2 http://www.mkweb.co.uk/places to visit/displayarticle.asp?id=411 accessed Aug 2010

http://dir.yahoo.com/
http://dir.yahoo.com/
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Given the much wider remit of multimedia search over just text search, and assuming we could
perfectly search with queries that are“multimedia” itself, what could we do with multimedia search?

The previous example is an obvious application for tourism. There are also applications for
advertising that so much seems to underpin the whole search industry: Snaptell Inc, is a startup
company that specialises in mobile image search; their idea is that customers take pictures from
print-media adverts, send them in and receive promotion or product information, vouchers and so
on. For example, customers sending in a picture of the print poster that advertises a new movie
receive an exclusive trailer, see showtimes of cinemas in the area and, in theory, could straight away
phone to order tickets. One added benefit for advertisers is that they receive feedback as to where
print adverts were noticed. Snaptell has since then specialised on recognising book, CD and DVD
covers, from photographs that can then be bought with a few clicks.

Another considerable and obvious application is for medical image databases. When someone
who suffers from shortness of breath consults doctors, they might wonder where they have seen
the light shadow on the x-ray before. If computers were able to match significant, medically
relevant patterns with those in the database, they could return data on these diagnosed cases,
so the specialists can undertake an informed differential diagnosis using medical-image retrieval
(Figure 2).

Figure 2: Medical-image retrieval (mock-up)

The common factor of the previous examples was that documents and queries can consist
of various different media. Figure 3 takes this observation radically forward by looking at the
full matrix of combining different query modes (columns) with document repository types (rows).
Entry A in this matrix corresponds to a traditional text search engine; this deploys a completely
different technology than Entry B, a system that allows you to express musical queries by humming
a tune and that then plays the corresponding song. The three C entries in Figure 3 correspond
to a multi-modal video search engine allowing search by emotion with example images and text
queries, eg, find me video shots of “sad” scenes using an image of a dilapidated castle and the text
“vampire”. In contrast to this, Entry D could be a search engine with a query text box that returns
BBC Radio 4 discussions.

It is relatively easy to come up with a usage scenario for each of the matrix elements in Fig-
ure 3: for example, the image input speech output matrix element might be “given an X-ray image
of a patient’s chest, retrieve dictaphone documents with a relevant spoken description of a match-
ing diagnosis”. However, creating satisfying retrieval solutions is highly non-trivial and the main
subject of the multimedia information retrieval discipline. This chapter summarises different basic
technologies involved in these multimedia search modes. Not all combinations are equally useful,
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desirable or well researched, though: Entry E might be a query where you roar like a lion and hope
to retrieve a wildlife documentary.

Figure 3: New search engine types

Undoubtedly, it is the automated approaches that have made all the difference to the way the
vast world-wide web can be used. While the automated indexing of text documents has been
successfully applied to collections as large as the world-wide-web for more than a decade now,
multimedia indexing by content involves different, still less mature and less scalable technologies.

Multimedia collections pose their very own challenges; for example, images and videos don’t
often come with dedicated reference cards or meta-data, and when they do, as in museum collections,
their creation will have been expensive and time-consuming. Section 0.3 explores the difficulties
and limitations of automatically indexing, labelling and annotating image and video content. It
briefly discusses the inherent challenges of the semantic gap, polysemy, fusion and responsiveness.

Even if all these challenges were solved, indexing sheer mass is no guarantee of a successful
annotation either: While most of today’s inter-library loan systems allow access to virtually any
publication in the world — around 198m bibliographic records in OCLC’s Worldcat database3

in contrast to only 3m entries from Bowker’s Books In Print that can be bought — students
and researchers alike seem to be reluctant to actually make use of this facility. On the other
hand, the much smaller catalogue offered by the online bookseller Amazon appears to be very
popular, presumably owing to added services such as subject categories; fault tolerant search tools;
personalised services telling the customer what’s new in a subject area or what other people with a
similar profile bought; pictures of book covers; media and customer reviews; access to the table of
contents, to selections of the text and to the full-text index of popular books; and the perception
of fast delivery. In the multimedia context Section 0.4 argues that automated added services such
as visual queries, relevance feedback and summaries can prove useful for resource discovery in
multimedia digital libraries. Sections 0.4.1 is about summarising techniques for videos, Section
0.4.2 exemplifies visualisation of search results, while Section 0.4.3 discusses content-based visual
search modes such as query-by-example and relevance feedback.

Finally, Section 0.5 promotes browsing as resource discovery mode and looks at underlying
techniques to automatically structure the document collection to support browsing.

3http://www.oclc.org/worldcat/statistics accessed Aug 2010

http://www.oclc.org/worldcat/statistics
http://www.oclc.org/worldcat/statistics
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0.2 Basic Multimedia Search Technologies

The current best practice to index multimedia collections is via the generation of a library card,
ie, a dedicated database entry of meta-data such as author, title, publication year and keywords.
Depending on the concrete implementation these can be found with SQL queries, text-search engines
or XML query language, but all these search modes are based on text descriptions of some form
and are agnostic to the structure of the actual objects they refer to, be it books, CDs, videos,
newspaper articles, paintings, sculptures, web pages, consumer products etc.

The text column of the matrix of Figure 3 is underpinned by text search technology and requires
the textual representation of the multimedia objects, an approach that I like to call piggy-back text
retrieval. Other approaches are based on an automatic classification of multimedia objects and on
assigning words from a fixed vocabulary. This can be a certain camera motion that can be detected
in a video (zoom, pan, tilt, roll, dolly in and out, truck left and right, pedestal up and down, crane
boom, swing boom etc); a genre for music pieces such as jazz, classics; a generic scene description in
images such as inside/outside, people, vegetation, landscape, grass, city-view etc or specific object
detection like faces and cars etc. These approaches are known as feature classification or automated
annotation.

The type of search that is most commonly associated with multimedia is content-based: The
basic idea is that still images, music extracts, video clips themselves can be used as queries and
that the retrieval system is expected to return ‘similar’ database entries. This technology differs
most radically from the thousands-year-old library card paradigm in that there is no necessity for
meta-data at all. In certain searches there is the desire to match not only the general type of scene
or music that the the query represents, but instead one and only one exact multimedia object. For
example, you take a picture of a painting in a gallery and submit this as a query to the gallery’s
catalogue in the hope of receiving the whole database record about this particular painting, and
not a variant or otherwise similar exhibit. This is sometimes called fingerprinting or known-item
search.

The rest of this section outlines these four basic multimedia search technologies.

0.2.1 Piggy-back text retrieval

Amongst all media types, TV video streams arguably have the biggest scope for automatically
extracting text strings in a number of ways: directly from closed-captions, teletext or subtitles;
automated speech recognition on the audio and optical character recognition for text embedded
in the frames of a video. Full text search of these strings is the way in which most video re-
trieval systems operate, including Google’s TV search engine http://video.google.com or Blinkx-TV
http://www.blinkx.tv. In contrast to television, for which legislation normally requires subtitles to
assist the hearing impaired, videos stored on DVD don’t usually have textual subtitles. They have
subpicture channels for different languages instead, which are overlayed on the video stream. This
requires the extra step of optical character recognition, which can be done with a relatively low
error rate owing to good quality fonts and clear background/foreground separation in the subpic-
tures. In general, teletext has a much lower word error rate than automated speech recognition. In
practice, it turns out that this does not matter too much as query words often occur repeatedly in
the audio — the retrieval performance degrades gracefully with increased word error rates.

Web pages afford some context information that can be used for indexing multimedia objects.
For example, words in the anchor text of a link to an image, a video clip or a music track, the file

http://video.google.com
http://www.blinkx.tv


6

name of the object itself, meta-data stored within the files and other context information such as
captions. A subset of these sources for text snippets are normally used in web image search engines.

Some symbolic music representations allow the conversion of music into text, such as MIDI files
which contain a music representation in terms of pitch, onset times and duration of notes. By
representing differences of successive pitches as characters one can, for example, map monophonic
music to one-dimensional strings. A large range of different text matching techniques can be
deployed, for example the edit distance of database strings with a string representation of a query.
The edit distance between two strings computes the smallest number of deletions, insertions or
character replacements that is necessary to transform one string into the other. In the case of
query-by-humming, where a pitch tracker can convert the hummed query into a MIDI-sequence
(Birmingham et al, 2006), the edit distance is also able to deal gracefully with humming errors.
Other techniques create fixed-length strings, so called n-grams, with windows that glide over the
sequence of notes. The resulting strings can be indexed with a normal text search engine. This
approach can also be extended to polyphonic music, where more than one note can be sounded at
any one time (Doraisamy and Rüger, 2003).

0.2.2 Automated annotation

Two of the factors limiting the uptake of digital libraries for multimedia are the scarcity and the
expense of metadata for digital media. Flickr4, a popular photo sharing site, lets users upload,
organise and annotate their own photographs with tags. In order to search images in Flickr, little
more than user tags are available with the effect that many photographs are difficult or impossible
to find. The same is true for the video sharing site YouTube5. At the other end of the spectrum
are commercial sites such as the digital multimedia store iTunes6, which sells music, movies, TV
shows, audio-books, podcasts and games. They tend to have sufficiently many annotations as the
commercial nature of iTunes makes it viable to supply metadata to the required level of granularity.
While personal photographs and videos do not come with much metadata except for the data that
the camera provides (time-stamp and technical data such as aperture, exposure, sensitivity and focal
length), a whole class of surveillance data carries even less incentive to create metadata manually:
CCTV recordings, satellite images, audio recordings in the sea and other sensor data. The absence
of labels and metadata is a real barrier for complex and high-level queries such as “what did the
person with a red jumper look like who exited the car park during the last 6 hours in a black Volvo
at high speed”.

One way to generate useful tags and metadata for multimedia objects is to involve a community
of people who carry out the tagging collaboratively. This process is also called folksonomy, social
indexing or social tagging. Del.icio.us7 is a social bookmarking system and a good example for
folksonomies. Similarly, the ability of Flickr to annotate images of other people falls also into this
category. Von Ahn and Dabbish (2004) have invented a computer game that provides an incentive
(competition and points) for people to label randomly selected images. All these approaches tap into
“human computing power” for a good cause: the structuring and labelling of multimedia objects.
Research in this area is still in the beginning, and it is by no way clear how to best harness the
social power of collaborative tagging to improve metadata for, and access to, digital museums and

4http://flickr.com
5http://www.youtube.com
6http://www.apple.com/itunes
7http://del.icio.us

http://flickr.com
http://www.youtube.com
http://www.apple.com/itunes
http://del.icio.us
http://flickr.com
http://www.youtube.com
http://www.apple.com/itunes
http://del.icio.us
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libraries.

Another way to bridge the semantic gap (see Section 0.3) is to try to assign simple words
automatically to images solely based on their pixels. Methods attempting this task include dedicated
machine vision models for particular words such as“people”or“aeroplane”. These individual models
for each of the words can quickly become very detailed and elaborate: Thomas Huang of the
University of Illinois at Urbana Champaign once joked during his keynote speech at CIVR 2002
that in order to enable a system to annotate 1,000 words automatically, it was merely a case of
supervising 1,000 corresponding PhD projects!

Automated annotation can be formulated in more general terms of machine translation as seen
in Figure 4. The basic idea is to first dissect images into blobs of similar colour and then use these
blobs as “words” of a visual vocabulary. Given a training set of annotated images a correlation
between certain words and certain blobs can then be established in a similar way to correlations
between corresponding words of two different languages using a parallel corpus (for example, the
official records of the Canadian Parliament in French and English). Duygulu et al (2002) created
the first successful automated annotation mechanisms based on this idea.

Figure 4: Automated annotation as machine translation problem

However, the most popular and successful generic approaches are based on classification tech-
niques. This normally requires a large training set of images that have annotations from which one
can extract features and correlate these with the existing annotations of the training set. For ex-
ample, images with tigers will have orange-black stripes and often green patches from surrounding
vegetation, and their existence in an unseen image can in turn bring about the annotation “tiger”.
As with any machine learning method, it is important to work with a large set of training examples.
Figure 5 shows randomly selected, royalty free images from the Corel’s Gallery 380,000 product
that were annotated with sunset (top) and city (bottom). Each of these images can have multiple
annotations: there are pictures that are annotated with both sunset and city, and possibly other
terms.

Automated algorithms build a model for the commonalities in the features of images, which
can later be used for retrieval. One of the simplest machine learning algorithms is the Näıve Bayes
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Figure 5: Machine learning training samples for sunset (top) and city images (bottom)
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formula,

P (w|i) =
P (w, i)
P (i)

=
∑

j P (w, i|j)P (j)∑
j P (i|j)P (j)

=
∑

j P (i|w, j)P (w|j)P (j)∑
j

∑
w P (i|w, j)P (w|j)P (j)

,

where j are training images, w are word annotations and P (w|i) is the probability of a word w
given an (unseen) image i. The probability P (w, j) that word w is used to annotate image j can
be estimated from an empirical distribution of annotations in the training data.

Figure 6 shows an unseen image i for which the five words with the highest probabilities p(w|i)
according to above Näıve Bayes classification are all sensible and useful.

Figure 6: Automated annotation results in water, buildings, city, sunset and aerial

Yavlinsky et al (2005) built models based on a similar idea for which the model for keywords
appearance is derived from non-parametric density estimators with specialised kernels that utilise
the Earth mover’s distance. The assumption is that these kernels reflect the nature of the underlying
features well. Yavlinsky built a corresponding search engine behold8, where one could search for
Flickr images using these detected terms. These algorithms all make errors as one can expect from
fully automated systems. Figure 7 shows screenshots from an early version of behold. Clearly, not
all words are predicted correctly, and the ugly examples from this figure might motivate to study
methods that use external knowledge, for example, that stairs and icebergs normally do not go
together.

Today, Makadia et al’s recent (2008) work on the nearest neighbour label transfer provide a
baseline for automatic image annotation using global low-level features and a straightforward label
transfer from the 5 nearest neighbours. This approach is likely to work very well if enough images
are available in a labelled set that are very close to the unlabelled application set. This may be the
case, for example, in museums where images of groups of objects are taken in a batch fashion with
the same lighting and background and only some of the objects in the group have received manual
labels. Liu et al (2009a) also use label transfer, albeit in a slightly different setting since they aim
to segment and recognise scenes rather than assign global classification labels.

Automated annotation from pixels faces criticism not only owing to its current inability to model
a large and useful vocabulary with high accuracy. Enser and Sandom (2002, 2003) argue that some

8http://www.behold.cc

http://www.behold.cc
http://www.behold.cc
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Figure 7: The good, the bad and the ugly: three examples for automated annotation
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of the vital information for significance and content of images has to come from metadata: it is
virtually impossible to, eg, compute the date or location of an image from its pixels. A real-world
image query such as “Stirling Moss winning Kentish 100 Trophy at Brands Hatch, 30 August 1968”
cannot be answered without metadata. They argue that pixel-based algorithms will never be able
to compute significance of images such as “first public engagement of Prince Charles as a boy” or
“the first ordination of a woman as bishop”. Their UK-funded arts and humanities research project
“Bridging the Semantic Gap in Visual Information Retrieval” (Hare et al, 2006; Enser and Sandom,
2003) brought a new understanding about the role of the semantic gap in visual image retrieval.

Owing to these observations and also owing to their relatively large error rates, automated
annotation methods seem to be more suitable in the context of browsing or in conjunction with
other search methods. For example, if you want to “find shots of the front of the White House
in the daytime with the fountain running”9, then a query-by-example search in a large database
may be solved quicker and better by emphasising those shots that were classified as “vegetation”,
“outside”, “building” etc — even though the individual classification may be wrong in a significant
proportion of cases.

There is a host of research that supports the bridging of the semantic gap via automated anno-
tation. Hare and Lewis (2004) use salient interest points and the concept of scale to the selection of
salient regions in an image to describe the image characteristics in that region; they then extended
this work (2005) to model visual terms from a training set that can then be used to annotate unseen
images. Magalhães and Rüger (2006) developed a clustering method that is more computationally
efficient than the currently very effective method of non-parametric density estimation, which they
later (2007) integrated into a unique multimedia indexing model for heterogeneous data. Torralba
and Oliva (2003) obtained relatively good results with simple scene-level statistics, while others
deploy more complex models: Jeon et al (2003) and Lavrenko et al (2003) studied cross-lingual
information retrieval models, while Metzler and Manmatha (2004) set up inference networks that
connect image segments with words. Blei and Jordan (2003) carry out probabilistic modelling with
latent Dirichlet allocation, while Feng et al (2004) use Bernoulli distributions.

Machine learning methods for classification and annotation are not limited to images at all.
For example, one can extract motion vectors from MPEG-encoded videos and use these to classify
a video shot independently into categories such as object motion from left to right, zoom in, tilt,
roll, dolly in and out, truck left and right, pedestal up and down, crane boom, swing boom etc. In
contrast to the above classification tasks, the extracted motion vector features are much more closely
correlated to the ensuing motion label than image features are to text labels, and the corresponding
learning task should be much simpler a consequence.

The application area for classification can be rather diverse: Baillie and Jose (2004) use audio
analysis of the crowd response in a football game to detect important events in the match; Caval-
laro and Ebrahimi (2004) propose an interaction mechanism between the semantic and the region
partitions, which allows to detect multiple simultaneous objects in videos.

On a higher level, Salway and Graham (2003) developed a method to extract information about
emotions of characters in films and suggested that this information can help describe higher levels
of multimedia semantics relating to narrative structures. Salway et al (2005) contributed to the
analysis and description of semantic video content by investigating what actions are important in
films.

Musical genre classification can be carried out on extracted audio-features that represent a
performance by its statistics of pitch content, rhythmic structure and timbre texture (Tzanetakis

9Topic 124 of TRECVid 2003, see http://www-nlpir.nist.gov/projects/tv2003

http://www-nlpir.nist.gov/projects/tv2003
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and Cook, 2002): timbre texture features are normally computed using short-time Fourier transform
and Mel-frequency cepstral coefficients that also play a vital role in speech recognition; the rhythmic
structure of music can be explored using discrete wavelet transforms that have a different time
resolution for different frequencies; pitch detection, especially in polyphonic music, is more intricate
and requires more elaborate algorithms. For details, see the work of Tolonen and Karjalainen (2000).
Tzanetakis and Cook (2002) report correct classification rates of between 40% (rock) and 75% (jazz)
in their experiments with 10 different genres.

0.2.3 Content-based retrieval

Content-based retrieval uses characteristics of the multimedia objects themselves, ie, their content
to search and find multimedia. Its main application is to find multimedia by examples, ie, when
the query consists not of words but of a similar example instance.

Figure 8: Millions of pixels with intensity values and the corresponding intensity histogram

One of the difficulties of matching multimedia is that the parts the media are made from are not
necessarily semantic units. Another difficulty comes about by the sheer amount of data with little
apparent structure. Look at the black and white photograph of Figure 8, for example. It literally
consists of millions of pixels, and each of the pixels encodes an intensity (one number between
0=black and 255=white) or a colour (three numbers for the red, green and blue colour channel,
say). One of the prime tasks in multimedia retrieval is to make sense out of this sea of numbers.

The key here is to condense the sheer amount of numbers into meaningful pieces of information,
which we call features. One trivial example is to compute an intensity histogram, ie, count which
proportion of the pixels falls into which intensity ranges. In Figure 8 I have chosen 8 ranges, and
the histogram of 8 numbers conveys a rough distribution of brightness in the image.

Figure 9 shows the main principle of query-by-exampleQuery-by-Example; in this case, the
query is the image of an ice-bear on the left. This query image will have a representation as a
certain point (o) in feature space. In the same way, every single image in the database has its
own representation (x) in the same space. The images, whose representations are closest to the
representation of the query are ranked top by this process. The two key elements really are features
and distances. Our choice of feature space and how to compute distances has a vital impact on
how well visual search by example works.
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Figure 9: Features and distances

Features and distances are a vital part of content-based retrieval and so is the ability to effi-
ciently find nearest neighbours in high-dimensional spaces. Lew et al (2006) and Datta et al (2008)
have published overview articles on content-based retrieval, and Rüger (2010) treats content-based
retrieval including features and distances commonly used in depth.

The architecture presented here is a typical albeit basic one; there are many variations and
some radically different approaches that have been published in the past. A whole research field
has gathered around the area of video and image retrieval as exemplified by the annual International
ACM Conferences on Video and Image Retrieval (CIVR), Multimedia (ACM MM) and Multimedia
Information Retrieval (MIR) and the TREC video evaluation workshop TRECVid; there is another
research field around music retrieval, see the annual International Conference on Music Information
Retrieval (ISMIR).

0.2.4 Fingerprinting

Multimedia fingerprints are unique indices in a multimedia database. They are computed from
the contents of the multimedia objects, are small, allow the fast, reliable and unique location
of the database record and are robust against degradation or deliberate change of the multimedia
document that do not alter their human perception. Audio fingerprints of music tracks are expected
to distinguish even between different performances of the same song by the same artist at perhaps
different concerts or studios.

Interesting applications include services that allow broadcast monitoring companies to identify
what was played, so that royalties are fairly distributed or programmes and advertisements verified.
Other applications uncover copyright violation or, for example, provide a service that allows you
to locate the meta-data such as title, artist and date of performance from snippets recorded on a
(noisy) mobile phone.

Cano et al (2005) review some audio fingerprinting methods and Seo et al (2004) proposes an
image fingerprinting technique.
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0.3 Challenges of automated visual indexing

There are a number of open issues with the content-based retrieval approach in multimedia. On a
perceptual level, those low-level features do not necessarily correlate with any high-level meaning
the images might have. This problem is known as the semantic gap: imagine a scene in which
Bobby Moore, the captain of the English National Football team in 1966, receives the world cup
trophy from Queen Elizabeth II; there is no obvious correlation between low-level colour, shape and
texture descriptors and the high-level meaning of victory and triumph (or defeat and misery if you
happened to support the West German team). Some of the computer vision methods go towards
the bridging of the semantic gap, for example the ability to assign simple concrete labels to image
parts such as “grass”, “sky”, “people”, “plates”. A consequent use of an ontology could explain the
presence of higher-level concepts such as “barbecue” in terms of the simpler labels.

Even if the semantic gap could be bridged, there is still another challenge, namely polysemy:
images usually convey a multitude of meanings so that the query-by-example approach is bound to
under-specify the real information need. Users who submit an image such as the one in Figure 8
could have a dozen different information needs in mind: “find other images with the same person”,
“find images of the same art scene”, “find other bright art sculptures”, “find images with gradual
shadow transitions”, . . . It is these different interpretations that make further user feedback so
important.

User feedback can change the weights of features in content-based retrieval scenarios; these
weights represent the plasticity of the retrieval system. Hence, putting the user in the loop and
designing a human-computer interaction that utilises the user’s feedback has been one of the main
approaches to tackle these perceptual issues. Amongst other methods there are those that seek to
reformulate the query (Ishikawa et al, 1998) or those that weight the various features differently
depending on the user’s feedback. Weight adaptation methods include cluster analysis of the images
(Wood et al, 1998); transposed files for feature selection (Squire et al, 2000); Bayesian network
learning (Cox et al, 2000); statistical analysis of the feature distributions of relevant images and
variance analysis (Rui et al, 1998); and analytic global optimisation (Heesch and Rüger, 2003).
Some approaches give the presentation and placement of images on screen much consideration to
indicate similarity of images amongst themselves (Santini and Jain, 2000; Rodden et al, 1999) or
with respect to a visual query (Heesch and Rüger, 2003).

On a practical level, the multitude of features assigned to images poses a fusion problem; how
to combine possibly conflicting evidence of two images’ similarity? There are many approaches to
carry out fusion, some based on labelled training data and some based on user feedback for the
current query (Aslam and Montague, 2001; Bartell et al, 1994; Shaw and Fox, 1994; Yavlinsky et al,
2004).

There is a responsiveness problem, too, in that the näıve comparison of query feature vectors
to the database feature vectors requires a linear scan through the database. Although the scan
is eminently scalable, the practicalities of doing this operation can mean an undesirable response
time in the order of seconds rather than the 100 milli-seconds that can be achieved by text search
engines. The problem is that high-dimensional tree structures tend to collapse to linear scans above
a certain dimensionality (Weber et al, 1998). As a consequence, some approaches for fast nearest-
neighbour search use compression techniques to speed up the disk access of linear scan as in (Weber
et al, 1998) using VA-files; or they approximate the search (Nene and Nayar, 1997; Beis and Lowe,
1997); decompose the features componentwise (de Vries et al, 2002; Aggarwal and Yu, 2000) saving
access to unnecessary components; or deploy a combination of these (Müller and Henrich, 2004;
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Figure 10: News search engine interface

Howarth and Rüger, 2005c).

0.4 Added Services

0.4.1 Video summaries

Even if the challenges of the previous section were all solved and if the automated methods of
Section 0.2 enabled a retrieval process with high precision (proportion of the retrieved items that
are relevant) and high recall (proportion of the relevant items that are retrieved) it would still be
vital to present the retrieval results in a way so that the users can quickly decide to which degree
those items are relevant to them.

Images are most naturally displayed as thumbnails, and their relevance can quickly be judged
by users. Presenting and summarising videos is a bit more involved. The main metaphor used for
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this is that of a storyboard that contains keyframes with some text about the video. Several systems
exist that summarise news stories in this way, most notably Informedia (Christel et al, 1999) and
F́ıschlár (Smeaton et al, 2004). The Informedia system devotes much effort to added services such
as face recognition and speaker voice identification allowing retrieval of the appearance of known
people. Informedia also provides alternative modes of presentation, eg, through film skims or by
assembling ‘collages’ of images, text and other information (eg, maps) sourced via references from
the text (Christel and Warmack, 2001). F́ıschlár’s added value lies in the ability to personalise the
content (with the user expressing like or dislike of stories) and in assembling lists of related stories
and recommendations.

Our very own TV news search engine ANSES (Pickering et al, 2003; Pickering, 2004) records
the main BBC evening news along with the sub-titles, indexes them, breaks the video stream into
shots (defined as those video sequences that are generated during a continuous operation of the
camera), extracts one key-frame per shot, automatically glues shots together to form news stories
based on an overlap in vocabulary in the sub-titles of adjacent shots (using lexical chains), and
assembles a story-board for each story. Stories can be browsed or retrieved via text searches. Fig 10
shows the interface of ANSES. We use the natural language toolset GATE (Cunningham, 2002)
for automated discovery of organisations, people, places and dates; displaying these prominently as
part of a storyboard as in Figure 10 provides an instant indication of what the news story is about.
ANSES also displays a short automated textual extraction summary, again using lexical chains to
identify the most salient sentences. These summaries are never as informative as hand-made ones,
but users of the system have found them crucial for judging whether or not they are interested in
a particular returned search result.

Dissecting the video stream into shots and associating one keyframe along with text from
subtitles to each shot has another advantage: A video collection can essentially be treated as
an image collection, where each, possibly annotated image acts as entry point into the video.

0.4.2 New Paradigms in Information Visualisation

The last decade has witnessed an explosion in interest in the field of information visualisation,
(Hemmje et al, 1994; Ankerst et al, 1996; Card, 1996; Shneiderman et al, 2000; Börner, 2000).
Here we present three new visualisation paradigms, based on our earlier design studies (Au et al,
2000; Carey et al, 2003). These techniques all revolve around a representation of documents in
the form of bag-of-words vectors, which can be clustered to form groups. We use a variant of the
buckshot clustering algorithm for this. Basically, the top, say, 100 documents that were returned
from a query are clustered via hierarchical clustering to initialise document centroids for k-means
clustering that puts all documents returned by a query into groups. Another common element
of our visualisations is the notion of keywords that are specific to the returned set of documents.
The keywords are computed using a simple statistic; for details see (Carey et al, 2003). The new
methods are:

Sammon Cluster View. This paradigm uses a Sammon map to generate a two dimensional
screen location from a many-dimensional vector representing a cluster centroid. This map is com-
puted using an iterative gradient search (Sammon, 1969) while attempting to preserve the pairwise
distances between the cluster centres. Clusters are thus arranged so that their mutual distances
are indicative of their relationship. The idea is to create a visual landscape for navigation. Fig 11
shows an example of such an interface. The display has three panels, a scrolling table panel to
the left, a graphic panel in the middle and a scrolling text panel to the right that contains the
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Figure 11: Sammon map for cluster-guided search

traditional list of returned documents as hotlinks and snippets. In the graphic panel each cluster
is represented by a circle and is labelled with its two most frequent keywords. The radius of the
circle represents the cluster size. The distance between any two circles in the graphic panel is an
indication of the similarity of their respective clusters - the nearer the clusters, the more likely the
documents contained within will be similar. When the mouse passes over the cluster circle a tool-tip
box in the form of a pop-up menu appears that allows the user to select clusters and drill down,
ie, re-cluster and re-display only the documents in the selected clusters. The back button undoes
this process and climbs up the hierarchy (drill up). The table of keywords includes box fields that
can be selected. At the bottom of the table is a filter button that makes the scrolling text window
display only the hot-links and snippets from documents that contain the selected keywords.

Dendro Map Visualisation. The Dendro Map visualisation represents documents as leaf nodes of
a binary tree that is output by the buckshot clustering algorithm. With its plane-spanning property
and progressive shortening of branches towards the periphery, the Dendro Map mimics the result
of a non-Euclidean transformation of the plane as used in hyperbolic maps without suffering from
their computational load. Owing to spatial constraints, the visualisation depth is confined to five
levels of the hierarchy with nodes of the lowest level representing either documents or subclusters.
Different colours facilitate visual discrimination between individual documents and clusters. Each
lowest level node is labelled with the most frequent keyword of the subcluster or document. This
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Figure 12: Dendro Map - A plane-spanning binary tree (query “Beethoven”)

forms a key component of the Dendro Map as it gives the user the cues needed for navigating
through the tree. As the user moves the mouse pointer over an internal node, the internal nodes
and branches of the associated subcluster change colour from light blue to dark blue while the leaf
nodes, ie, document representations, turn bright red. As in the Sammon Map, a tool-tip window
provides additional information about the cluster and can be used to display a table with a list of
keywords associated with the cluster. The user may drill down on any internal node. The selected
node will as a result replace the current root node at the center and the entire display is re-organized
around the new root. The multi-level approach of the Dendro Map allows the user to gain a quick
overview over the document collection and to identify promising subsets.

Radial Interactive Visualisation. Radial (Figure 13) is similar to VIBE (Korfhage, 1991), to
Radviz (Hoffman et al, 1999) and to Lyberworld (Hemmje et al, 1994). It places the keyword
nodes round a circle, and the position of the document dots in the middle depend on the force of
invisible springs connecting them to keyword nodes: the more relevant a keyword for a particular
document, the stronger its spring pulls on the document. Hence, we make direct use of the bag-
of-words representation without explicit clustering. Initially, the twelve highest ranking keywords
are displayed in a circle. The interface lets the user move the keywords, and the corresponding
documents follow this movement. This allows the user to manually cluster the documents based on
the keywords they are interested in. As the mouse passes over the documents, a bubble displays
a descriptive piece of text. The location of document dots is not unique owing to dimensionality
reduction, and there may be many reasons for a document to have a particular position. To
mitigate this ambiguity in Radial the user can click on a document dot, and the keywords that
affect the location of document are highlighted. A choice of keywords used in the display can be
exercised by clicking on two visible lists of words. Zoom buttons allow the degree of projection to
be increased or reduced so as to distinguish between documents around the edges of the display
or at the centre. The Radial visualisation appears to be a good interactive tool to structure the
document set according to one’s own preferences by shifting keywords around in the display.

Unified Approach. The integration of the paradigms into one application offers the possibility
of browsing the same result set in several different ways simultaneously. The cluster-based visual-
isations give a broader overall picture of the result, while the Radial visualisation allows the user
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Figure 13: Radial Visualisation



20

(a) Query by example (left panel) with initial results in the right panel

(b) A new query made of three images from (a) results in many more dark-door images

Figure 14: Visual search for images of dark doors starting with a bright-door example
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to focus on subsets of keywords. Also, as the clusters are approximations that highlight particular
keywords, it may be useful to return to the Radial visualisation and examine the effect of these
keywords upon the whole document set. The Radial visualisation will perhaps be more fruitful if
the initial keywords match the user’s area of interest. The Sammon Map will let the user dissect
search sets and re-cluster subsets, gradually homing in on target sets. This interface was developed
within the joint NSF-EC project CHLT (http://www.chlt.org); it was evaluated from a human-
computer-interaction point of view with encouraging results (Chawda et al, 2005) and has proven
useful in real-world multi-lingual scholarly collections (Rydberg-Cox et al, 2004).
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Figure 15: A relevance feedback model

0.4.3 Visual search and relevance feedback

The visual query-by-example paradigm discussed in Section 0.3 gives rise to relatively straightfor-
ward interfaces; an image is dragged into a query box, or, eg, specified via a URL, and the best
matching images are displayed in a ranked list to be inspected by the user, see Fig 14(a). A natural
extension of such an interface is to offer the selection of relevant results as new query elements.
This type of relevance feedback, a.k.a. query point moving, is shown in Fig 14(b).

One other main type of relevance feedback, weight space movement, assumes that the relative
weight of the multitude of features that one can assign to images (eg, structured meta-data fields
such as author, creation date and location; low-level visual features such as colour, shape, structure
and texture; free-form text) can be learned from user feedback. Of the methods mentioned in
Section 0.3 our group chose analytic weight updating as this has a very small execution time. The
idea is that users can specify the degree to which a returned image is relevant to their information
needs. This is done by having a visual representation; the returned images are listed in a spiral,
and the distance of an image to the centre of the screen is a measure of the relevance that the
search engine assigns to a specific image. Users can now move the images around with the mouse
or place them in the centre with a left mouse click and far away with a right click. Fig 15 shows this
relevance feedback model. We evaluated the effectiveness of negative feedback, positive feedback
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and query point moving, and found that combining the latter two yields the biggest improvement
in terms of mean average precision (Heesch and Rüger, 2003).

A new and relatively unexplored area of relevance feedback is the exploitation of social context
information. By looking not only at the behaviour and attributes of the user, but also his past
interactions and also the interactions of people he has some form of social connection with could
yield useful information when determining whether search results are relevant or not. Browsing
systems could recommend data items based on the actions of a social network instead of just a
single user, using more data to yield better results.

The use of such social information is also becoming important for multimedia meta data gen-
eration, particular in the area of folksonomies where the feedback of users actively produces the
terms and taxonomies used to describe the media in the system instead of using a predetermined,
prescribed dictionary (Voss, 2007). This can be seen being effectively used in online multimedia
systems such as Flickr (http://www.flickr.com) and del.icio.us (http://del.icio.us).

0.5 Browsing: lateral and geo-temporal

The idea of representing text documents in a nearest-neighbour network was first presented by Croft
and Parenty (1985), albeit, as an internal representation of the relationships between documents
and terms, not for browsing. Document networks for interactive browsing were identified by Cox
(1992 and 1995). Attempts to introduce the idea of browsing into content-based image retrieval
include Campbell’s work 2000; his ostensive model retains the basic mode of query based retrieval
but in addition allows browsing through a dynamically created local tree structure. Santini and
Jain’s El niño system 2000 is another attempt to combine query-based search with browsing. The
system tries to display configurations of images in feature space such that the mutual distances
between images are preserved as well as possible. Feedback is given in the same spirit as in Fig 15
by manually forming clusters of images that appear similar to the user. This in turn results in an
altered configuration with potentially new images being displayed.

Other network structures that have increasingly been used for information visualisation and
browsing are Pathfinder networks (Dearholt and Schvaneveldt, 1990). They are constructed by
removing redundant edges from a potentially much more complex network. Fowler et al (1992)
use Pathfinder networks to structure the relationships between terms from document abstracts,
between document terms and between entire documents. The user interface supports access to the
browsing structure through prominently marked high-connectivity nodes.

Our group (Heesch and Rüger, 2004) determines the nearest neighbour for the image under
consideration (which we call the focal image) for every combination of features. This results in a
set of what we call lateral neighbours. By calculating the lateral neighbours of all database images,
we generate a network that lends itself to browsing. Lateral neighbours share some properties of the
focal image, but not necessarily all. For example, a lateral neighbour may share text annotations
with the focal image, but no visual similarity with it at all, or it may have a very similar colour
distribution, but no structural similarity, or it may be similar in all features except shape, etc. As a
consequence, lateral neighbours are deemed to expose the polysemy of the focal image. Hence, when
they are presented, the user may then follow one of them by making it the focal image and explore
its lateral neighbours in turn. The user interaction is immediate, since the underlying network was
computed offline.

We provide the user with entry points into the database by computing a representative set
of images from the collection. We cluster high-connectivity nodes and their neighbours up to a
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(a) Initial visual summary of the database (right panel) from which the user chooses the falcon, its
nearest lateral neighbours are then displayed in the left panel.

(b) Clicking on any image will make it the centre of the nearest neighbours panel and display is
associated lateral neighbours around it.

Figure 16: Lateral browsing for an image “from behind the pitcher in a baseball game. . .”
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Starting with the football image (upper left) from the database overview, one of its lateral neigh-
bours is an image of a lawn with a sprinkler; when this is made the focal image (upper right) there
are already images from baseball scenes. Clicking on one of them (lower left) reveals that there
are more of this kind; they can be enlarged and the corresponding video played in the “viewer tab”
(lower right).

Figure 17: Alternative ways to browse for images “from behind the pitcher . . .”
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certain depth using the Markov chain clustering algorithm (van Dongen, 2000), which has robust
convergence properties and allows one to specify the granularity of the clustering. The clustering
result can be seen as a image database summary that shows highly-connected nodes with far-
reaching connections. The right panel of Fig 16(a) is such a summary for our TRECVid (2003)
database. The user may select any of these images as an entry point into the network. Clicking
on an image moves it into the centre around which the lateral neighbours are displayed, see the
nearest-neighbour panel on the left side of fig 16(a). If the size of the lateral-neighbour set is above
a certain threshold the actual number of images displayed is reduced to the most salient ones.

If a user wanted to find “video shots from behind the pitcher in a baseball game as he throws a
ball that the batter swings at” (TRECVid, 2003, topic 102) then they might explore the database
in Fig 16 by clicking on the falcon image. The hope is that the colour of a baseball field is not
far off from the green colour of that image. The resulting lateral neighbours, displayed in the left
panel of Fig 16(a), do not contain the desired scene. However, there is an image of a sports field.
Making that the focal image, as seen in the left part of fig 16(b), reveals it has the desired scene
as a lateral neighbour. Clicking that will unearth a lot more images from baseball fields, see the
right side of Fig 16(b). The network structure, a bit of lateral thinking and three mouse clicks have
brought the desired result.

In the same way, and again with only three clicks, one could have started from the football
image in the database overview to find “video shots from behind the pitcher in a baseball game as
he throws a ball that the batter swings at”. Heesch (2005) has shown that this is no coincidence;
lateral-neighbour networks computed in this way have the so-called small world property (Watts and
Strogatz, 1998) with only 3–4 degrees of separation even for the large TRECVid (2003) database
that contains keyframes from 32,000 video shots. Lateral browsing has proven eminently successful
for similar queries (Heesch et al, 2003).

Geo-temporal browsing takes the idea of timelines and automatically generated maps, eg as
offered in the Perseus Digital Library (Crane, 2005), a step further. It integrates the idea of
browsing in time and space with a selection of events through a text search box. In this way, a
large newspaper or TV news collection can be made available through browsing based on what
happened where and when as opposed to by keyword only.

The interface in Fig 18 is a design study in our group that allows navigation within a large news
event dataset along three dimensions: time, location and text subsets. The search term presents a
text filter. The temporal distribution can be seen in lower part. The overview window establishes
a frame of reference for the user’s region of interest. In principle, this interface could implement
new zooming techniques, eg speed-dependent automatic zooming (Cockburn and Savage, 2003),
and link to a server holding a large quantity of maps such as National Geographic’s MapMachine
(http://plasma.nationalgeographic.com/mapmachine/ as of May 2005) with street-level maps and
aerial photos.

0.6 Summary

This chapter has introduced basic concepts of multimedia resource discovery technologies for a
number of different query and document types; these were the piggy-back text search, automated
annotation, content-based retrieval and fingerprinting. The paradigms we have discussed include
summarising complex multimedia objects such as TV news, information visualisation techniques for
document clusters, visual search by example, relevance feedback and methods to create browsable
structures within the collection. These exploration modes share three common features: they are
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Figure 18: Geo-temporal browsing in action

automatically generated, depend on visual senses and interact with the user of the multimedia
collections.

Multimedia resource discovery has its very own challenges in the semantic gap, in polysemy
inherently present in under-specified query-by-example scenarios, in the question how to combine
possibly conflicting evidence and the responsiveness of the multimedia searches. In the last part of
the chapter we have given some examples of user-centred methods that support resource discovery
in multimedia digital libraries. Each of these methods can be seen as an alternative mode to the
traditional digital library management tools of meta-data and classification. The new visual modes
aim at generating a multi-faceted approach to present digital content: video summaries as succinct
versions of media that otherwise would require a high bandwidth to display and considerable time
by the user to assess; information visualisation techniques help the user to understand a large set
of documents that match a query; visual search and relevance feedback afford the user novel ways
to express their information need without taking recourse to verbal descriptions that are bound
to be language-specific; alternative resource discovery modes such as lateral browsing and geo-
temporal browsing will allow users to explore collections using lateral associations and geographic
or temporal filters rather than following strict classification schemes that seem more suitable for
trained librarians than the occasional user of multimedia collections. The cost for these novel
approaches will be low, as they are automated rather than human-generated. It remains to be seen
how best to integrate these services into traditional digital library designs and how much added
value these services will bring about (Bainbridge et al, 2005).

My 2010 book provides further reading for content-based multimedia retrieval and complements
the material of this chapter: Rüger (2010), Multimedia information retrieval, Lecture notes in the
series Synthesis Lectures on Information Concepts, Retrieval, and Services, Morgan and Claypool
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Publishers, DOI: 10.2200/S00244ED1V01Y200912ICR010
In fact, this chapter utilised some excerpts and figures from this book.
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