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Abstract

This thesis explores the topic of mathematical modelling involving the simulation of population
growth associated with mathematical biology and more specifically ecology.

Chapter 1 studies how populations are modelled by looking at single equation models as well
as systems of equation models of continuous and discrete nature. We also consider interacting
populations including predator-prey, competition and mutualism and symbiosis relationships.

In Chapters 2 and 3, we review stability properties for both continuous and discrete cases
including differential and difference equations respectively. For each case, we examine linear
examples involving equilibrium solutions and stability theory, and non-linear examples by im-
plementing eigenvalue, linearisation and Lyapunov methods.

Chapter 4 is a study of the research paper - A Model of a Three Species Ecosystem with
Mutualism Between The Predators by K. S. Reddy and N. C. Pattabhiramacharyulu [32].
Here, we study the basic definitions and assumptions of the model, examine different cases for
equilibrium solutions, prove global stability of the system and implement numerical examples
for the model before reviewing existence and uniqueness and permanence properties.

In Chapter 5, we construct a discrete scheme of the model from Chapter 4. We do this
in two ways, by using Euler’s method to create one autonomous time-invariant form of the
system, and utilising the method of piecewise constant arguments implemented in [6] to es-
tablish another autonomous time-invariant form of the system. For both discretisations, we
study equilibrium solutions, stability, numerical examples and existence and uniqueness, and
permanence properties.

Finally, we conclude the findings of the thesis, summarising what we have discovered, stating
new questions that arise from the investigation and examine how this work could be taken
further and built upon in future.
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Chapter 1: An Introduction to
Population Modelling

1 Introduction / Background

In this chapter we look at the relationship between Mathematics and Biology, Ecology and the
application of Mathematical Modelling in Ecology and how we use and construct continuous
differential equations and discrete difference equations whilst modelling populations. We will
analyse linear and non-linear types of these equations as well as single equation models and
models consisting of systems of equations.

Mathematics and Biology are said to have a synergistic relationship [36]. Biology presents
interesting problems that Mathematics models to understand them before Biology can then be
used to test these models. Mathematical Biology therefore exploits the natural relationship
between Biology and Mathematics. Biology is a complex subject. Whilst mathematical models
cannot fully calculate and describe biological processes, they can be useful [35]. In order to
develop a model, detailed knowledge of the studied topic is needed. When constructing the
model, small initial steps are taken that are built upon to create larger more complex models.
As Shonkwiler and Herod [36] suggest, Mathematical models ask new questions of biological
processes that can only be tested on real biological systems.

Ecology is the study of the interrelationships between different species and their environ-
ment or, in it’s simplest terms, the study of population biology [30], [33]. This area of biology
involving the study of population change has a long history. Of all aspects of Biology, Ecol-
ogy has been the most mathematically used and developed. The application of mathematical
modelling can be used to simulate predator-prey systems, competition interactions, renewable
resource management pest control strategies, the evolution of pesticide resistant strains, multi-
species societies, plant-herbivore systems as well as a continually expanding list of additional
applications [30]. The use of these applications in turn help to understand dynamic processes
involved in biology and allow biologists to make practical predictions. Early studies conducted
included small mammals and laboratory controlled organisms which were easily associated
with mathematical formulation [33]. In recent years, there has been an increase in the study
of realistic, practical and useful applications of mathematical modelling in biology [30]. This
research has mainly focused on human populations including and not including age distribu-
tion, the study of endangered species, bacterial and viral growth as well as the highly practical
applications of single-species models in biomedical sciences. Recent research has also focused
on modelling mult-species and spatial population growth despite uncertain predictions involv-
ing their behaviour outside the laboratory [33]. This uncertainty is associated with the fact
that populations in their natural environment are regulated from within by density-dependent
factors or external density-independent factors. As noted by Renshaw [33], theoretical develop-
ments in modelling generally use density-dependent factors. This is primarily due to the lack of
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Chapter 1: An Introduction to Population Modelling

information available regarding external factors because of their complex and variable nature
[10].

Scientists propose that mathematical models represent real population systems [36]. But,
in most cases, real population systems are too complex for this proposal and are prone to a
range of changes in their many influencing factors. Despite these changes, a ”wrong model” can
be adapted and developed further whilst a ”right model” may be too complex or contain too
much detail [35]. As Renshaw [33] states, whilst considering the implementation of mathemat-
ics in biology, we need to develop models which are strongly influenced by considerations and
ideas of mathematical simplicity [28], [39]. The simplest model should be descriptive. Here, the
”essence” of the subject is captured whilst the detail is neglected by concentrating on the essen-
tial aspects to include in the model [35]. Differential equations can be used to utilise continuous
changes in population whilst difference equations are implemented to monitor discrete changes
in population. Therefore a good mathematical model should be simple whilst exhibiting the
behaviour of a real system to the best of it’s ability [4], [13], [15], [20].

6



Chapter 1: An Introduction to Population Modelling

2 Single Equation Models

We start by exploring single equation models of a continuous differential equation nature:

2.1 Continuous / Differential Equation Models

Despite single-species models being of relevance to laboratory studies, in real-world situations,
a telescoping of effects, where events that take place are not percieved in correct order along a
given time period, occurs which influences the dynamics of the population [30]. When studying
a culture of bacteria, there is little purpose in taking account of every single bacterium. Instead,
the focus should be on the mass, volume and optical density of the culture [46]. This leads us
to the implementation of continuous variables.

Let N(t) denote the population of species at time t, then the rate of change in a population
can be calculated by:

dN

dt
= Births − Deaths + Migration (1)

Factoring migration can make the model more complex. The simplest model contains no
migration whilst births and deaths are proportional to N(t):

Malthus Model (1798) [27]
The earliest application of mathematics and mathematical modelling to population theory was
conducted by Thomas Robert Malthus [27]. A British clergyman and economist, Malthus
formulated the following model using the law of exponential growth [46]:

dN

dt
= bN − dN (2)

where b and d are positive constants and are proportional to N(t).

Rearranging and integrating (2), we have:

dN

dt
= N(b− d) (3)∫

1

N
dN =

∫
(b− d)dt (4)

lnN = (b− d)t+ C where C is a constant. (5)

N = e(b−d)t+C (6)

N = e(b−d)teC (7)

N(t) = Ce(b−d)t (8)

At t = 0, we have:

N(0) = N0 = Ce(b−d)(0) (9)

N0 = C (10)

Therefore

N(t) = N0e
(b−d)t (11)
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Chapter 1: An Introduction to Population Modelling

where N(0) = N0 denotes the initial population.

Here, if:

b<d - The population N(t) grows exponentially.
b>d - The population N(t) dies out, eventually becoming extinct.

Whilst this model is fairly unrealistic, it can be used as a form of estimation, for example,
estimating world population [30]. The approximation assumes that populations change con-
tinuously and differentiably over time. A linear model for population growth is satisfactory if
the studied population is not too large [2]. For a large population, this becomes a much less
accurate model considering the influences of individuals competing for limited living space, nat-
ural resources and food available. Therefore, an improved population model must implement
competition as a contributing factor. This leads us to the Verhulst model or Logistic Growth
Model:

Verhulst Model - Logistic Growth Model (1838,1845)[45]
Pierre-Francois Verhulst [45], a Belgian mathematician, proposed a sigmoidal logistic growth
function, often encountered in microbial populations, and formulated the following logistic
growth model [46]:

dN

dt
= rN

(
1− N

K

)
(12)

where

• r and K are positive constants.

• K is the carrying capacity of the environment (determined by the available sustaining
resources).

• r
(
1− N

K

)
denotes the per capita birth rate dependent on N(t) at time t.

Rearranging (12), we have:

rdt =
dN

N(1− N
K

)
(13)

Using Partial Fractions:

1

N
(
1− N

K

) =
A

N
+

B(
1− N

K

) (14)

1 = A

(
1− N

K

)
+BN (15)

1 = A+N

(
B − A

K

)
(16)

B − A

K
= 0 or B =

A

K
(17)

Substituting B = A
K

in (16) yields:

1 = A+N

(
A

K
− A

K

)
(18)

A = 1 (19)
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Chapter 1: An Introduction to Population Modelling

Hence, by (17), we get:

B =
1

K
(20)

Substituting values for A and B in (14), we have

1

N
(
1− N

K

) =
1

N
+

1
K

(1− N
K

)
(21)

Hence, (13) becomes:

rdt =
dN

N
(
1− N

K

) (22)

=
dN

N
+

dN
K

(1− N
K

)
(23)

Integrating both sides of (23), we get:∫
rdt =

∫
1

N
dN +

∫ dN
K

1− N
K

(24)

rt+ C = lnN − ln

(
1− N

K

)
(25)

rt+ C = ln

[
N

1− N
K

]
(26)

ert+C =
N

1− N
K

(27)

erteC =
N

1− N
K

(28)

Cert =
N

1− N
K

(29)

At t = 0, we have:

C =
N0

1− N0

K

=
N0

1− N0

K

K

K
=

N0K

K −N0

(30)

where N(0) = N0.

Therefore (
1− N

K

)
Cert = N (31)

Cert = N

[
1 +

Cert

K

]
(32)

Solving for N(t), we have:

N(t) =
Cert

1 + Cert

K

(33)

=
KN0

K−N0
ert

1 +
KN0
K−N0

ert

K

(34)
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Multiplying the numerator and denominator by (K −N0)e
−rt yields:

N(t) =
KN0

N0 + (K −N0)e−rt
(35)

N(t) =
N0Ke

rt

[K +N0(ert − 1)]
(36)

Here

N(t) =
N0Ke

rt

[K +N0(ert − 1)]
→ K as t→∞ (37)

If:

• N0 < K - The population N(t) increases monotonically to K.

• N0 > K - The population N(t) decreases monotonically to K.

This model provides a algebraicly simple and preliminary qualitative idea for further develop-
ment and realistic forms [30].

Subsequent literature involving populations has focused on human, animal, plant, bacteria,
cell and virus population growth. The majority of this research has involved simple, non-linear
functions of continuous and discrete nature as well as using solutions of ordinary differential
equations (ODEs) [46]. Differential equations have been greatly utilized in these models due
to being easier to analyse and understand than discrete and stochastic models as well as being
effective forms of capturing growth behaviour.

Noted below are some additional well-known models that have been used in population
studies:

Richards Function[34]
Widely used in plant-science, agriculture and forestry [34], [46].

NR(t) = K{1 +Qe−αv(t−t0)}−
1
v (38)

where

• NR is the population function of time t.

• N0 = NR(0) is the population size at time t = 0.

• K is the carrying capacity.

• α, v are positive parameters.

• Q =
(
K
N0

)v
− 1.

Gompertz Growth Law [8]
Often used in actuarial sciences [8], [46].

NG(t) = Ke−be
−rt

(39)

where

• K is the carrying capacity.

• r is the growth rate.

• b is a positive parameter.
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Chapter 1: An Introduction to Population Modelling

Example - Monod’s Nightmare [20], [31]
Jaques Monod (1910-1976) was a recipient of the Nobel Prize for Medicine for his work on gene
regulation in 1965. He also conducted several innovative experimental studies on kinetics and
stoichiometry of microbial growth [31]. His model, commonly known as ”Monod’s Nightmare”
simulates the growth of Escherichia coli or E. coli, a bacterium used extensively in microbio-
logical studies [20]. The bacterium consists of rod shaped cells that are 0.75µm wide and 2µm
long. In ideal conditions, the population of these cells would double in just over 20 minutes.
Here, the model consists of one continuous differential equation:

The Model
Consider a per capita growth rate that decreases linearly, the population size is denoted by:

1

N

dN

dt
= r

(
1− N

k

)
(40)

where:

• The decrease in per capita growth rate is a simple form of density- regulation.

• The per capita growth rate → 0 at the carrying capacity k.

Defects / Problems with the Model

1. The constant per capita birth and death rates generate limitless growth, which is patently
unrealistic.

2. This is a deterministic model, hence, chance is ignored as well as stochastic effects. These
stochastic effects are very important to small population sizes.

3. Lags are ignored. Here, the growth rate does not depend on the past. The population
responds instantaneously to changes in current population size.

4. Temporal and spatial variability is ignored.

11



Chapter 1: An Introduction to Population Modelling

2.2 Discrete / Difference Equation Models

When studying different organisms, it becomes apparent that in many species, births take place
in regular and well-defined ”breeding seasons” [20].

Plants have a range of flowering patterns that greatly differ from species to species. Herbs
are monocarpic, they flower once then die after setting seed, roots included [20]. Bamboo are
types of grasses that grow vegetatively for 20 years before flowering and consequently dying.
Other plant species have flowering times ranging from 1 to 60 years such as trees, which flower
repeatedly over a number of decades [29]. Insects are divided into three categories: univoltine,
bivoltine and multivoltine [20]. Univoltine species only have one generation a year, bivoltine
have two generations a year and multivoltine have multiple generations in one year. Mayflies
or Dayflies are well-known for their semel parity (monocarpy in plants) or being univoltine.
Most species of insects are univoltine but tend to be bivoltine or multivoltine if they come from
warmer climates [43]. There are 22,000 different species of fish with varying migration patterns.
Less than one percent of these are semelparous - die after spawning. They can live up to 10-15
years in freshwater lakes before the majority migrate to the sea, spawn and die [7]. All birds
are iteroparous. In other words, they have multiple reproductive cycles over the course of a
lifetime [20]. They also have short breeding seasons and various migration patterns. Mammals
have the widest range of birth patterns, including univoltine, bivoltine and multivoltine [20].

Differential equations such as ordinary, delay, partial and stochastic equations imply a con-
tinuous overlap of generations when studying populations [30]. Many species have no overlap
between successive generations therefore population growth is said to be discrete. Various
changes in ”breeding seasons” and birth patterns contradict the assumption, when using differ-
ential equations, that births occur continuously. Therefore we must apply a discrete approach
using difference equations.

The mathematics of difference equations is a topic that has been studied in depth and
applied in a range of diverse fields. These include cancer growth, aging, cell proliferation and
genetics. But their largest use, by far, has been in Ecology [30]. Difference equations describe
the evolution of certain phenomena over the course of time [5]. Therefore, they can be used to
model populations and the generations found within them.

Density-Independent Growth
Let:

• Nt be the size of the population in year / generation t.

• R0 be the net productive rate where each individual leaves R0 offspring before dying.

Then, we have the following linear first-order difference equation with constant coefficients [20]:

Nt+1 = R0Nt (41)

Since the offspring leave the same number of offspring with each generation:

N1 = R0N0

N2 = R0N1 = R0(R0N0) = R2
0N0

...

Nt = Rt
0N0

(42)

The solution of (41) will display geometric growth or decay.

If:
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Chapter 1: An Introduction to Population Modelling

• R0 > 1 - Each individual leaves more than one descendent.
⇒ Population grows exponentially.

• 0 < R0 < 1 - Each individual leaves only one descendent (on average).
⇒ Population decays geometrically.

Density-Dependent Growth
Density-dependent growth occurs if the number of offspring per adult varies with density and
is associated with non-linear difference equations [20]. Here, we have two cases:

1. Assuming that the per capita number of offspring is inversely proportional to a linearly
increasing function of the number of adults, we have:

Nt+1

Nt

=
R0

1 + [ (R0−1)
K

]Nt

(43)

which results in the following difference equation also known as the Beverton-Holt Stock-
Recruitment Curve [1]:

Nt+1 =
R0Nt

1 + [ (R0−1)
K

]Nt

(44)

which is a monotonically increasing hyperbolic mapping [20].

2. The second type of density-dependent growth has a similar form to the logistic differential
equation but does not resemble the same solution. It is also a direct approximation of
the logistic differential equation.

Here, we have:
dN

dt
= rN

(
1− N

K

)
(45)

Approximating the LHS derivative of (45) with a finite-difference quotient yields:

∆N

∆t
= rN

(
1− N

K

)
(46)

For the organism in question, time step ∆t is one generation, hence, let ∆t = 1. Therefore:

Nt+1 −Nt = rNt

(
1− Nt

K

)
(47)

which yields the following logistic difference equation:

Nt+1 = (1 + r)Nt −
r

K
N2
t (48)
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Example 1 - Fibonacci Sequence [30]
In the 18th century, Leonardo of Pisa, more well know as Fibonacci, conducted a modelling
exercise involving a hypothetical growing rabbit population in the arithmetic book of 1202 [30].
Here, the model starts at the beginning of the breeding season with a pair of immature rabbits,
male and female. After one reproductive season, the first pair produce 2 pairs of male and
female immature rabbits after which the first pair of rabbits, or parents, stop reproducing. The
offspring then replicate this process. Here, the question is, how to determine the number of
pairs of rabbits at each reproductive period?

Let

• Nt be the number of pairs, male and female, of rabbits.

• Hence, at the tth reproductive stage, we have:

Nt+1 = Nt +Nt−1 for t = 2, 3, . . . (49)

• If N0 = 1, we have the following Fibonacci sequence:

1, 1, 2, 3, 5, 8, 13, . . . (50)

where each term in the sequence is the sum of the previous two.

Example 2 - Cell Division[4]
Edelstein-Keshet [4] notes the following model involving cell division. A population of cells
divide synchronously where each member produces a daughter cell.

Let

• M1,M2, . . . ,Mn be the number of cells in each generation. Therefore, successive genera-
tions are denoted by:

Mn+1 = aMn (51)

where M0 is the initial cell population.

• By applying (51) recursively, we get:

Mn+1 = a(aMn−1)

= a[a(aMn−2)]

= . . .

= an+1M0

(52)

• Therefore, the nth generation is given by:

Mn = anM0 (53)

Here, a determines the growth of the population. If:

1. |a|> 1 - Mn increases over successive generations.

2. |a|< 1 - Mn decreases over successive generations.

3. a = 1 - Mn is constant.
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Example 3 - An Insect Population[4]
As previously mentioned, insects have more than one stage in their life cycle, from progeny
to maturity. The complete cycle can last from weeks to months to years. A single generation
represents a basic unit of time. But, to model several stages of a life cycle, several equations
must be used to construct a model, which we will look at in Chapter 3.

Poplar Gall Aphid
An aphid is a small insect that commonly takes the form of a fly. They are capable of very
quick reproduction and can cause large amounts of damage to plants and crops [20]. An adult
female aphid produces galls, a type of growth, on leaves of poplars, a tall and fast-growing tree.
The progeny of a single aphid are contained in one gall with only a fraction of these surviving
and maturing to adulthood [49].

Here, let:

• an be the number of adult female aphids in the nth generation.

• pn be the number of progeny in the nth generation.

• m be the fractional mortality of young aphids.

• f be the number of progeny per female aphid.

• r be the ratio of female aphids to total adult aphids.

Each female produces f progeny, thus:

pn+1 = fan (54)

denotes the number of progeny in the (n + 1)st generation. This is equal to the number of
females in the previous generation, an, multiplied by the number of offspring per female, f .

Here, the fraction (1 − m) survives to adulthood, yielding a final proportion of r females.
Hence:

an+1 = r(1−m)pn+1 (55)

(54) and (55) can be combined into the following linear first-order difference equation that
describes the aphid population:

an+1 = fr(1−m)an (56)

Noting that f, r and m are constants, we have:

an = [fr(1−m)]na0 (57)

where a0 is the initial number of adult females.
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3 Systems of Equations Models

Mathematical models as equations or sets of equations are processes that describe phenomena
that occur in science, economics and engineering [23]. Here we examine their application in
biology, more importantly ecology. A model aims to provide a qualitative prediction as well
as make sense of the natural world. But, in most cases, scientific exactness must be sacrificed
for mathematical tractability. The complexity of a model derives from the large numbers of
parameters and variables considered [23]. A one population model would indicate that a size
of a population converges to a constant value whilst a population of two species may show
different behaviour in the form of periodical cycles [17]. These cycles are often observed in
nature and therefore justify the use of systems of equations. Systems of equations allow us to
start on the side of simplicity before building upon the complexity of the model as needed [23].
Systems of equations are of continuous type, consisting of systems of differential equations, and
discrete type, with the application of difference equation systems. These can then be included in
models of interacting species including predator-prey, competition and mutualism or symbiosis
relationships [20], [30].

3.1 Continuous / Differential Equation Models

3.1.1 The Elimination Method

Consider the following system of two first-order equations [4]:

dx

dt
= a11x+ a12y (58)

dy

dt
= a21x+ a22y (59)

The system of equations (58) and (59) can be reduced to a single second-order equation in x(t)
using the following procedure of elimination:

1. First, we differentiate equation (58) with respect to t:

d2x

dt2
= a11

dx

dt
+ a12

dy

dt
(60)

2. Substituting (59) in (60), we get:

d2x

dt2
= a11

dx

dt
+ a12 (a21x+ a22y)

= a11
dx

dt
+ a12a21x+ a12a22y

(61)

3. Rearranging (58), we have:

y =
1

a12

dx

dt
− a11
a12

x (62)
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4. Substituting (62) in (61) yields:

d2x

dt2
= a11

dx

dt
+ a12a21x+ a12a22

(
1

a12

dx

dt
− a11
a12

x

)
(63)

d2x

dt2
= a11

dx

dt
+ a12a21x+ a22

dx

dt
− a11a22x (64)

d2x

dt2
= (a11 + a22)

dx

dt
+ (a12a21 − a11a22)x (65)

d2x

dt2
− (a11 + a22)

dx

dt
+ (a11a22 − a12a21)x = 0 (66)

(67)

5. Therefore
d2x

dt2
− βdx

dt
+ γx = 0 (68)

where β = a11 + a22 and γ = a11a22 − a12a21.

The general solution of (68) has the form:

x(t) = c1e
λ1t + c2e

λ2t (69)

where λ1, λ2 =
β±
√
β2−4γ
2

.

Let δ = β2 − 4γ. When δ < 0, equation (69) produces complex eigenvalues.

3.1.2 The Eigenvalue-Eigenvector Method

Consider the following system of first order differential equations in vector notation [4]:

dx

dt
= Ax (70)

where x =

(
x
y

)
and A =

 a11 · · · a1n
...

. . .
...

an1 · · · ann

 for n = 2, 3, . . ..

Finding the eigenvalues and corresponding eigenvectors of A yields the following general solu-
tion:

x(t) = c1v1e
λ1t + . . .+ cnvne

λnt for n = 2, 3, . . . λ1 6= λ2 (71)

where v1, . . . , vn are eigenvectors of A and λ1, . . . , λn are eigenvalues of A.

For different eigenvalues of A we have the following special cases:

• λ1 = λ2 - Repeated Eigenvalues
⇒ Here only one eigenvector is produced. Therefore the form of the general solution must
be amended to allow for two distinct linearly independent eigenvectors.

• λ1, λ2 = r ± ci - Complex Eigenvalues
⇒ Here eigenvectors v1, v2 have the form a± bi which produce the general solution:

x(t)c1(a+ bi)e(r+ci)t + c2(a− bi)e(r−ci)t (72)
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Example 1: A System of Two Ordinary Differential Equations with Exponential
Solutions [35]
Here, we have the following linear system of 2 ODEs:

dx

dt
= −3x− y (73)

dy

dt
= x (74)

Solution

1. First, we differentiate both sides of (73) with respect to t:

d2x

dt2
= −3

dx

dt
− dy

dt
(75)

2. Substituting (74) in (75), we get:

d2x

dt2
= −3

dx

dt
− x (76)

3. Rearranging (76), we have the following second-order ODE:

d2x

dt2
+ 3

dx

dt
+ x = 0 (77)

4. Using (77), we can write the characteristic equation:

m2 + 3m+ 1 = 0 (78)

which produces the following two real roots:

m1 = −3

2
+

√
5

2
≈ −0.38 m2 = −3

2
−
√

5

2
≈ −2.62 (79)
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3.2 Discrete / Difference Equation Models

Consider the following Autonomous or Time-Invariant system of k linear equations [5]:

x1(n+ 1) = a11x1(n) + a12x2(n) + . . .+ a1kxk(n)

x2(n+ 1) = a21x1(n) + a22x2(n) + . . .+ a2kxk(n)

...

xk(n+ 1) = ak1x1(n) + ak2x2(n) + . . .+ akkxk(n)

(80)

and Non-autonomous or Time-Variant system of k linear equations [5]:

x1(n+ 1) = a11(n)x1(n) + a12(n)x2(n) + . . .+ a1k(n)xk(n)

x2(n+ 1) = a21(n)x1(n) + a22(n)x2(n) + . . .+ a2k(n)xk(n)

...

xk(n+ 1) = ak1(n)x1(n) + ak2(n)x2(n) + . . .+ akk(n)xk(n)

(81)

Systems (80) and (81) can be written in the following matrix form respectively:

Autonomous Time-Invariant:
x(n+ 1) = Ax(n) (82)

Non-autonomous Time-Variant:
x(n+ 1) = A(n)x(n) (83)

where

• x(n) = (x1(n), x2(n), . . . , xk(n))T ∈ Rk.

• A, A(n) are k × k real non-singular matrices.

3.2.1 Systems of Linear Difference Equations

A system of linear first-order difference equations has the general form [4]:

xn+1 = a11xn + a12yn

yn+1 = a21xn + a22yn
(84)

3.2.2 Systems of Non-linear Difference Equations

A system of non-linear first-order difference equations has the general form [4]:

xn+1 = f(xn, yn)

yn+1 = g(xn, yn)
(85)
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3.3 Interacting Populations

Different species within a population or biosystem interact with each other on a regular basis.
This affects the population dynamics for each species [30]. There are three types of interaction
in populations:

1. Predator-Prey

2. Competition

3. Mutualism / Symbiosis

This section examines each type as well as relevant mathematical models.

3.3.1 Predator-Prey Models

Predator-Prey models occur when the growth rate of one population is decreased whilst the
other population is increased [30].

The Lotka-Volterra Model [25], [26], [47]
The Lotka-Volterra Model is a simple model that implements the predation of one species by
another, for example, being able to explain the oscillatory levels of fish catches in the Adriatic
sea [30]. Here, we have the following model:

Definitions

• N(t) - The prey population at time t.

• P (t) - The predator population at time t.

Assumptions

1. The prey population grows unboundedly in a Malthusian way in the absence of a predator,
denoted by aN .

2. The effect of predation reduces the prey per capita growth rate which is proportional to
the population of predator and prey, denoted by −bNP .

3. The predator death rate exhibits exponential decay in the absence of prey, denoted by
−dP .

4. The prey’s contribution to the predator’s growth rate is proportional to the available prey
and size of the predator population, denoted by −cNP .

The Model

• The population of predator and prey is given by:

dN

dt
= N(a− bP ) (86)

dP

dt
= P (cN − d) (87)

where a, b, c and d are positive constants and N(t) and P (t) are proportional to time t.
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• Despite the model’s structural instability it can be of considerable value. It presents
relevant questions and a base for further development by it’s application to real-world
oscillatory problems.

Example - Canadian Lynx and Snowshoe Hare [30]
The Canadian Lynx and Snowshoe Hare were interacting species in the fur catch records of
the Hudson Bay Company, Canada from 1845 to the 1930s. Applying the Lotka-Volterra
Model to this situation produced questionable data whilst assuming that the numbers recorded
reflected a fixed proportion of the total population. This inconsistent data suggested that
the hare population were eating the lynx, which was highly doubtful. This was a result of
complications with unaccounted factors such as culling of the hare and diseases that occurred
in both populations.

Therefore, when constructing a model, it is not adequate to simply produce a system which
only exhibits oscillations. Here, proper explanation of the studied phenomenon is needed which
can stand up to ecological and biological scrutiny.

In conclusion, the Lotka-Volterra Model, in general, is unrealistic due to the fact that it
suggests that a simple predator-prey interaction can result in periodic behaviour of populations.

3.3.2 Competition Models

Competition between two or more species occurs when the growth rate of each population is de-
creased [30]. Here, two or more species compete for the same limited food source which inhibits
each other’s population growth. This competition can also result in territory that contains food
and other valuable resources. A simple competition model consists of two species competing
for the same limited resources which results in one of the species eventually becoming extinct.

We consider the following basic two-species Lotka-Volterra competition model with each species,
denoted by N1 and N2 respectively, demonstrating logistic growth in the absence of the other
[30]. Here, the inclusion of logistic growth makes the model more realistic.

Let

• r1, r2 be the linear birth rates.

• K1, K2 be the carrying capacities.

• b12, b21 measure the competitive effect of N2 on N1 and N1 on N2, which are generally
not equal.

Hence

dN1

dt
= r1N1

[
1− N1

K1

− b12
N2

K1

]
(88)

dN2

dt
= r2N2

[
1− N2

K2

− b21
N1

K2

]
(89)

3.3.3 Mutualism / Symbiosis Models

A mutualistic or symbiotic relationship takes place when the growth rate of each population is
increased [30]. Mutualism or Symbiosis plays a crucial role in promoting and maintaining the
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advantage of interaction between two or more species. It’s importance in ecology is compara-
ble to that of Predator-Prey and Competition systems but is not as widely studied. This is
somewhat associated with the fact that it often produces incorrect or inconsistent results.

Considering the simplest form of a mutualism model, equivalent to a Lotka-Volterra system,
we have [30]:

dN1

dt
= r1N1 + a1N1N2 (90)

dN2

dt
= r2N2 + a2N2N1 (91)

where r1, r2, a1 and a2 are positive constants.

Here, since dN1

dt
> 0 and dN2

dt
> 0, N1 and N2 grow unboundedly.

3.3.4 Discrete Growth Models for Interacting Populations

The above systems and models for interacting species all assume a continuous form by using
differential equations. When considering interacting species, models can also be constructed
using a discrete form using difference equations. If we consider two interacting species with
non-overlapping generations, each species affects each other’s population dynamics. Along with
unpredictable environmental factors, this produces complex solutions to single equation models
which are greatly increased when modelling systems of equations. When studying predator-
prey systems, species such as insects have a substantial body of experimental data. Insects life
cycles are modelled by two-species discrete models [30].

Here, we present a discrete form of the predator-prey model. Consider the interaction for
prey, N , and predator, P , to be governed by the following discrete time t system of coupled
equations [30]:

Nt+1 = rNtf(Nt, Pt) (92)

Pt+1 = Ntg(Nt, Pt) (93)

where:

• r > 0 is the net linear increase rate of the prey.

• f and g relate to the predator - influence reproductive efficiency of prey and searching
efficiency of the predator respectively.
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Example: Host-Parasitoid Systems [4]
Discrete difference equations apply most readily to groups such as insects [5]. This is due to
the natural division of time in discrete generations of the species. A host-parasitoid system has
been the topic of considerable study and has seen a great increase of research conducted in the
area in recent years. Both species, the host and the parasite, have multiple life-cycle stages.
The parasite generally develops from egg to larvae to pupae to mature, fully grown adult. Then
the adult female parasite searches for a host to oviposit her eggs, also known as implanting
the eggs. In some cases, these eggs are attached to the outer surface of the host during their
larval or pupal stage. From here, the eggs are injected into the host’s flesh. Then, the larval
parasitoids develop and mature at the expense of the host, consuming and eventually killing
the host before pupating. Here, Elaydi [5] presents the following discrete difference equation
model for the host-parasite relationship:

Assumptions

1. Hosts that have been parasitized give rise to the next generation of parasites.

2. Hosts that have not been parasitized give rise to their own progeny or offspring.

3. The percentage of hosts that have been parasitized depend on the rate of interaction
between the two species as well as the densities and population sizes of both host and
parasite.

Definitions

• Nt - Density of host species in generation t.

• Pt - Density of parasitoid in generation t.

• f - f(Nt, Pt) - Fraction of hosts not parasitized.

• λ - Reproductive Rate of Host.

• c - The average number of viable eggs laid by parasitoid on a single host.

The 3 assumptions also lead to the following definitions:

• Nt+1 - The number of hosts in previous generation (Nt) × Fraction of hosts not parasitized
(f) × Reproductive Rate of Host (λ).

• Pt+1 - The number of hosts parasitized in previous generation (Pt) × The average number
of viable eggs laid by parasitoid on a single host (c).

The Model

• Where 1− f denotes the fraction of hosts parasitized, we have the following model for a
parasitoid-host interaction:

Nt+1 = λNtf(Nt, Pt)

Pt+1 = cNt[1− f(Nt, Pt)]
(94)

This model outlines a general framework and provides a good base for further develop-
ment.
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3.3.5 More Complex Population Growth

Population growth generally follows certain laws which are collected over time. Although this
is true, there is no guarantee that data that is collected from populations that adhere to these
laws can be accurately modelled [46].

An example of this is the calculation of the maximal size of a human population. If the
growth function of the population is known, then the maximal size is easily determined. Human
populations are unpredictable. They require agent-based modelling techniques using computer
simulations. This is due to heuristic rules that occur in human populations that guide their
decisions and interactions with other members. Although these models can become highly com-
plex and commonly produce incorrect results as well as being very difficult to mathematically
analyse, they can be very powerful and useful as a form of approximation [46].

An unsolved problem in population dynamics is the formulation and analysis of models
for metapopulations. Metapopulations consist of hundreds or thousands of different species of
microbes. These microbes compete for space and nutrients and rely upon each other in order
to survive. Typical population studies ignore spatial considerations which are very important.
These present problems in modelling due to their complex and ever changing nature. An
example of this is the following study of the spread of an introduced pest [46]:

Example: Spread of an Introduced Pest - Red and Black Fire Ant [22], [46]
The Black Fire Ant or Solenopsis richteri was introduced in the US in 1918, reaching the port of
Mobile, Alabama. In the 1930s, it was joined by the more aggressive Red Fire Ant or Solenopsis
invicta. In the absence of any significant predators, the two species spread very quickly which
was fitting of the red ant’s Latin name meaning ”undefeated”. In 1953, the US Department
of Agriculture announced that both species had invaded 102 counties in 10 states. In 1996,
300,000 acres of land throughout the south were infected. An organized modelling approach to
this situation would provide biological strategies in order to control the pest as well as decrease
the species population.
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4 Linear Systems of Differential Equations

Consider functions x1(t), x2(t), . . . , xn(t) of time t that satisfy the following system of n linear
differential equations [2], [42]:

dx1
dt

= a11x1 + a12x2 + . . .+ a1nxn

dx2
dt

= a21x1 + a22x2 + . . .+ a2nxn

...

dxn
dt

= an1x1 + an2x2 + . . .+ annxn

(95)

where a11, a12, . . . , ann are constants.

4.1 Equilibrium Solutions / Critical Points

An equilibrium solution is a solution to (95) where v(t) =


x1(t)
x2(t)

...
xn(t)

 is a constant vector and

x1, x2, . . . , xn = x01, x
0
2, . . . , x

0
n are independent of t.

Let φ(t) be the equilibrium solution obtained by

d

dt
v = 0 (96)

and
a11x

0
1 + a12x

0
2 + . . .+ a1nx

0
n = 0

a21x
0
1 + a22x

0
2 + . . .+ a2nx

0
n = 0

...

an1x
0
1 + an2x

0
2 + . . .+ annx

0
n = 0

(97)

where the system (97) consists of line equations that go through the origin in the xy-plane.
Here, if the equilibrium solutions exist, they are points where the two lines intersect in the
xy-plane [2], [42].
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4.2 Stability Theory

Considering the system (95) in matrix form, we have:

x′ = Ax (98)

where

x′ =


x′1
x′2
...
x′n

 A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 x =


x1
x2
...
xn

 (99)

Here, we have the following theorems:

Theorem 1 (Stability of a System of Differential Equations [2]). Consider the following system
of differential equations in matrix form:

x′ = Ax (100)

• If all eigenvalues of A have negative real part
⇒ Every equilibrium solution x = φ(t) is stable.

• If at least one eigenvalue of A has positive real part
⇒ Every equilibrium solution x = φ(t) is unstable.

• Let the eigenvalues of A have real part ≤ 0, then:

– If A has kj linearly independent eigenvectors for each eigenvalue λj = iσj
⇒ Equilibrium solution x = φ(t) is stable.

– Otherwise
⇒ Equilibrium solution x = φ(t) is unstable.

Theorem 2 (Asymptotic Stability of a System of Differential Equations [2]). An equilibrium
solution x = φ(t) is said to be asymptotically stable if:

1. The equilibrium solution x = φ(t) is stable.

2. Every equilibrium solution → φ(t) as t→∞.

Example 1 - An Asymptotically Stable System [2]
Determine whether each solution x(t) of the following system of differential equations:

dx1
dt

= −x1
dx2
dt

= −2x1 − x2 + 2x3

dx3
dt

= −3x1 − 2x2 − x3

(101)

is stable, asymptotically stable or unstable.
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Solution

1. First, we write system (101) in matrix form ẋ = Ax:

ẋ =

 −1 0 0
−2 −1 2
−3 −2 −1

x (102)

where ẋ =

 x′1
x′2
x′3

 and x =

 x1
x2
x3

.

2. Next, we calculate the eigenvalues of A. Here, we have the following characteristic poly-
nomial:

p(λ) = |A− λI| =

∣∣∣∣∣∣
−1− λ 0 0
−2 −1− λ 2
−3 −2 −1− λ

∣∣∣∣∣∣ (103)

= (−1− λ)

∣∣∣∣ −1− λ 2
−2 −1− λ

∣∣∣∣ (104)

= −(1 + λ)3 − 4(1 + λ) (105)

= −(1 + λ)(λ2 + 2λ+ 5) (106)

Here, our first eigenvalue is λ1 = −1. In order to find λ2 and λ3, we must use the quadratic
formula to solve λ2 + 2λ+ 5:

λ =
−b±

√
b2 − 4ac

2a
(107)

where a = 1, b = 2 and c = 5, we get:

λ =
−2±

√
22 − 4(1)(5)

2(1)
(108)

=
−2±

√
4− 20

2
(109)

=
−2±

√
−16

2
(110)

=
−2± 4i

2
(111)

= −1± 2i (112)

Therefore

λ1 = −1 λ2 = −1 + 2i λ3 = −1− 2i (113)

3. Since all 3 eigenvalues of A have negative real part.
⇒ Every equilibrium solution of (101) is Stable.

4. Since every equilibrium solution of (101) is stable and → x(t) as t→∞.
⇒ Every equilibrium solution of (101) is Asymptotically Stable.
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Example 2 - An Unstable System [2]
Determine whether each solution x(t) of the following system of differential equations:

dx1
dt

= x1 + 5x2

dx2
dt

= 5x1 + x2

(114)

is stable, asymptotically stable or unstable.

Solution

1. First, we write system (114) in matrix form ẋ = Ax:

ẋ =

(
1 5
5 1

)
x (115)

where ẋ =

(
x′1
x′2

)
and x =

(
x1
x2

)
.

2. Next, we calculate the eigenvalues of A. Here, we have the following characteristic poly-
nomial:

p(λ) = |A− λI| =
∣∣∣∣ 1− λ 5

5 1− λ

∣∣∣∣ (116)

= (1− λ)2 − 25 (117)

= λ2 − 2λ− 24 (118)

= (λ− 6)(λ+ 4) (119)

Therefore
λ1 = 6 λ2 = −4 (120)

3. Since one eigenvalue of A has positive real part.
⇒ Every equilibrium solution of system (114) is Unstable.
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5 Non-linear Systems of Differential Equations

For the non-linear case of differential equation systems, we present the following mathematical
techniques for calculating stability:

5.1 Eigenvalue Method

For a nonlinear system of differential equations, we use the same process as the linear case but
separate the nonlinear terms from the matrix A. Considering a nonlinear system in matrix
form, we have [2]:

x′ = Ax+ g(x) (121)

where

x′ =


x′1
x′2
...
x′n

 A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 x =


x1
x2
...
xn

 and g(x) =


g1(x)
g2(x)

...
gn(x)


where the non-linear terms are included in g(x).

Here, we present the following example:

Example - An Asymptotically Stable System: Non-linear Case [2]
Determine whether each solution x(t) of the following non-linear system of differential equations:

dx1
dt

= −2x1 + x2 + 3x3 + 9x32

dx2
dt

= −6x2 − 5x3 + 7x53

dx3
dt

= −x3 + x21 + x22

(122)

is stable, asymptotically stable or unstable.

Solution

1. First, we write system (122) in matrix form:

ẋ = Ax+ g(x) (123)

Hence

ẋ =

 −2 1 3
0 −6 −5
0 0 −1

x+

 9x32
7x53

x21 + x22

 (124)

where ẋ =

 x′1
x′2
x′3

 and x =

 x1
x2
x3

.
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2. Next, we calculate the eigenvalues of A. Here, we have the following characteristic poly-
nomial:

p(λ) = |A− λI| =

∣∣∣∣∣∣
−2− λ 1 3

0 −6− λ −5
0 0 −1− λ

∣∣∣∣∣∣ (125)

= (−2− λ)

∣∣∣∣ −6− λ −5
0 −1− λ

∣∣∣∣ (126)

= (−2− λ)(λ2 + 7λ+ 6) (127)

= (−2− λ)(λ+ 1)(λ+ 6) (128)

Therefore
λ1 = −2 λ2 = −1 λ3 = −6 (129)

3. Since all 3 eigenvalues of A have negative real part.
⇒ Every equilibrium solution of (122) is Stable.

4. Since every equilibrium solution of (122) is stable and → x(t) as t→∞.
⇒ Every equilibrium solution of (122) is Asymptotically Stable.
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5.2 Linearisation Method

Consider the following system of non-linear differential equations [2], [42]:

dx

dt
= f(x, y)

dy

dt
= g(x, y)

(130)

Since (130) is a non-linear system, it must be linearised using the following method:

1. First, we calculate the equilibrium points, (x0, y0) of (130).

2. Next we let W =

(
x
y

)
, hence:

dW

dt
= J(x0,y0)W (131)

where J is the Jacobian matrix of system (130).

3. Calculating the Jacobian matrix of (130), we have:

Jacobian = J(x0,y0) =

(
∂f(x0,y0)

∂x
∂f(x0,y0)

∂y
∂g(x0,y0)

∂x
∂g(x0,y0)

∂y

)
(132)

4. Then we find the eigenvalues λ1 and λ2 of J .

If:

• λ1 < 0 and λ2 < 0
⇒ (x0, y0) is a Stable equilibrium solution.

• λ1 < 0 and λ2 > 0 or λ1 > 0 and λ2 < 0
⇒ (x0, y0) is an Unstable equilibrium solution.

• λ1 > 0 and λ2 > 0
⇒ (x0, y0) is an Unstable equilibrium solution.

Example - Linearisation Method [2]
Consider the following non-linear system of differential equations:

dx

dt
= f(x, y) = 3x− y2

dy

dt
= g(x, y) = sin y − x

(133)

Since (133) is a non-linear system, it must be linearised using the following method:

1. Here, (133) has two equilibrium points. One of these equilibrium points is (0, 0).

2. Next, we let W =

(
x
y

)
hence:

dW

dt
= J(0,0)W (134)

where J is the Jacobian matrix of system (133).
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3. Calculating the Jacobian matrix of (133), we have the following partial derivatives of
system (133):

∂f

∂x
= 3 ⇒ ∂f(0, 0)

∂x
= 3 (135)

∂f

∂y
= −2y ⇒ ∂f(0, 0)

∂y
= 0 (136)

∂g

∂x
= −1 ⇒ ∂g(0, 0)

∂x
= −1 (137)

∂g

∂y
= cos y ⇒ ∂g(0, 0)

∂y
= 1 (138)

Hence:

Jacobian = J(0,0) =

(
∂f(0,0)
∂x

∂f(0,0)
∂y

∂g(0,0)
∂x

∂g(0,0)
∂y

)
=

(
3 0
−1 1

)
(139)

4. Finding the eigenvalues of J , we have

|J(0, 0)− λI| =
∣∣∣∣ 3 0
−1 1

∣∣∣∣ (140)

= (3− λ)(1− λ) (141)

Therefore:
λ1 = 3 λ2 = 1 (142)

5. Since λ1 > 0 and λ2 > 0
⇒ (0, 0) is an Unstable equilibrium point of system (133).
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5.3 Lyapunov Method

In his famous memoir of 1892, A.M. Liapunov, sometimes spelt Lyapunov, a Russian mathe-
matician suggested a new method of investigating the qualitative nature of solutions without
the calculation of the solutions themselves. This method became known as Liapunov / Lya-
punov’s Direct Method, one of the major tools in stability theory [5].

Here, we have the following definitions and theorems:

Definition 1 (Positive / Negative - Definite / Semi-definite [2]). Let V (x, y) be a continuous
Lyapunov function on the domain D ⊂ R2, where D is the origin (0, 0). Assuming that
V (0, 0) = 0:

1. If V (x, y) > 0 for any (x, y) ∈ D {(0, 0)} then V is called positive definite on D.

2. If V (x, y) ≥ 0 for any (x, y) ∈ D {(0, 0)} then V is called positive semi-definite on D.

3. If V (x, y) < 0 for any (x, y) ∈ D {(0, 0)} then V is called negative definite on D.

4. If V (x, y) ≤ 0 for any (x, y) ∈ D {(0, 0)} then V is called negative semi-definite on D.

Definition 2 (Derivative of a Lyapunov Function [2]). The derivative of a Lyapunov function
V (x, y) is denoted by:

V̇ (x, y) =
∂V

∂x

dx

dt
+
∂V

∂y

dy

dt
(143)

where dx
dt

= f(x, y) and dy
dt

= g(x, y).

Theorem 3 (Lyapunov’s Stability Theorem [2]). Let V (x, y) be a positive definite Lyapunov
function on the domain D containing the origin (0, 0). Assume that (0, 0) is an isolated equi-
librium point for the following system:

dx

dt
= f(x, y)

dy

dt
= g(x, y)

(144)

Then:

• If V̇ (x, y) < 0 for any (x, y) ∈ D {(0, 0)}, then (0, 0) is an Asymptotically Stable equilib-
rium point for the system (144).

• If V̇ (x, y) ≤ 0 for any (x, y) ∈ D {(0, 0)}, then (0, 0) is a Stable equilibrium point for the
system (144).

Theorem 4 (Lyapunov’s Instability Theorem [2]). Let V (x, y) be a defined and continuous
Lyapunov function on the domain D containing the origin (0, 0). Assume that (0, 0) is an
isolated equilibrium point for the following system:

dx

dt
= f(x, y)

dy

dt
= g(x, y)

(145)

If:
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1. V̇ (x, y) > 0 for any (x, y) ∈ D {(0, 0)}.

2. In every disk or circle Br(0, 0) = {(x, y) ∈ R2 :
√
x2 + y2 < r} centred at the origin

(0, 0), there is at least one point (a, b) ∈ Br such that V (a, b) > 0.

⇒ (0, 0) is an Unstable equilibrium point of (145).

Example 1: A Positive Definite Lyapunov Function [2]
Consider the Lyapunov function V (x, y) with domain D where V (0, 0) = 0 [2]:

V (x, y) =
x2

2
+
y2

2
− x4

4
D = {(x, y) : |x|< 1, |y|< 1} (146)

determine whether V (x, y) is positive / negative definite / semi-definite.

Solution

1. Here, |x|< 1 ⇒ x2

2
> x4

4
.

2. Therefore V (x, y) > 0 on domain D.

⇒ V (x, y) is Positive Definite on domain D.

Example 2: Lyapunov’s Direct Method [2]
Use Lyapunov’s direct method to determine the stability of the origin (0, 0) for the system:

dx

dt
= −2y3

dy

dt
= x− 3y3

(147)

Solution

1. First we find the equilibrium points of system (147). Here, we have:

−2y3 = 0 (148)

x− 3y3 = 0 (149)

Hence, from (148), we get:
y = 0 (150)

Substituting (150) in (149) yields:
x = 0 (151)

Therefore, (0, 0) is the only equilibrium point of the system (147).

2. Here, (147) is not an almost linear system. Therefore we cannot apply the linearisation
method to characterise the stability of the equilibrium point (0, 0).

3. Let us consider a candidate Lyapunov function:

V (x, y) = ax2 + by4 a, b > 0 (152)

Hence:
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(a) V (x, y) > 0 for any (x, y) ∈ R2 {(0, 0)}.
(b) Calculating V̇ (x, y):

V̇ (x, y) =
∂V

∂x

dx

dt
+
∂v

∂y

dy

dt
(153)

= 2ax(−2y3) + 4by3(x− 3y3) (154)

= 4(b− a)xy3 − 12by6 (155)

Let b = a, then

V̇ (x, y) = −12by6 (156)

< 0 (157)

for any (x, y) ∈ R2 {(0, 0)}, b > 0.

⇒ By Lyapunov’s Stability Theorem, (0, 0) is an Asymptotically Stable equilibrium point
of the system (147).

Example 3: Lyapunov’s Direct Method [2]
Use Lyapunov’s direct method to determine the stability of the origin (0, 0) for the system:

dx

dt
= −y3

dy

dt
= −x3

(158)

Solution

1. First we find the equilibrium points of system (158). Here, we have:

−y3 = 0 (159)

−x3 = 0 (160)

Hence, from (159), we have
y = 0 (161)

and from (160), we have:
x = 0 (162)

Therefore, (0, 0) is the only equilibrium point of the system (158).

2. Here, (158) is not an almost linear system. Therefore we cannot apply the linearisation
method to characterise the stability of the equilibrium point (0, 0).

3. Let us consider a candidate Lyapunov function:

V (x, y) = −xy (163)

where V (x, y) is continuous on R2.

Hence:
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(a) Calculating V̇ (x, y):

V̇ (x, y) =
∂V

∂x

dx

dt
+
∂V

∂y

dy

dt
(164)

= (−y)(−y3) + (−x)(−x3) (165)

= y4 + x4 (166)

< 0 (167)

for any (x, y) ∈ R2 {(0, 0)}.

(b) For any (x, y) ∈ R2 {(0, 0)} with x < 0, y > 0 or x > 0, y < 0 we have:

V (x, y) > 0 (168)

⇒ By Lyapunov’s Instability Theorem, (0, 0) is an Unstable equilibrium point of the
system (158).
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6 Linear Systems of Difference Equations

When studying the stability of systems, we are interested in the qualitative behaviour of their
solutions without their calculation [5]. Most problems in practice occur in nonlinear cases
which are mostly unsolvable. The investigation of difference equations is of vital importance
in science, engineering as well as applied mathematics. In order to examine the stability of
discrete systems, differential equation methods and techniques must be adapted to difference
equations [5].

Consider the following Autonomous or Time-Invariant system of k linear equations [5]:

x1(n+ 1) = a11x1(n) + a12x2(n) + . . .+ a1kxk(n)

x2(n+ 1) = a21x1(n) + a22x2(n) + . . .+ a2kxk(n)

...

xk(n+ 1) = ak1x1(n) + ak2x2(n) + . . .+ akkxk(n)

(169)

and Non-autonomous or Time-Variant system of k linear equations [5]:

x1(n+ 1) = a11(n)x1(n) + a12(n)x2(n) + . . .+ a1k(n)xk(n)

x2(n+ 1) = a21(n)x1(n) + a22(n)x2(n) + . . .+ a2k(n)xk(n)

...

xk(n+ 1) = ak1(n)x1(n) + ak2(n)x2(n) + . . .+ akk(n)xk(n)

(170)

6.1 Equilibrium Solutions / Critical Points

Consider system (169) in the following vector difference equation form [5]:

x(n+ 1) = f(n, x(n)) (171)

where x(n0) = x0, x(n) ∈ Rk, f : Z+ × Rk → Rk.

Assuming that f(n, x) is continuous in x, a point x∗ in Rk is called an equilibrium point
of (169) if f(n, x∗) = x∗ for all n ≥ n0.
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6.2 Stability Theory

The Autonomous, Time-Invariant system (169) in matrix form can be written as [5]:

x(n+ 1) = Ax(n) (172)

where

x(n) = (x1(n), x2(n), . . . , xk(n))T , x(n+ 1) = (x1(n+ 1), x2(n+ 1), . . . , xk(n+ 1))T

and

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 (173)

and the Non-autonomous, Time-Variant system (170) in matrix form can be written as [5]:

x(n+ 1) = A(n)x(n) (174)

where

x(n) = (x1(n), x2(n), . . . , xk(n))T , x(n+ 1) = (x1(n+ 1), x2(n+ 1), . . . , xk(n+ 1))T

and

A(n) =


a11(n) a12(n) · · · a1n(n)
a21(n) a22(n) · · · a2n(n)

...
...

. . .
...

an1(n) an2(n) · · · ann(n)

 (175)

When considering the stability of systems (172) and (174), we use the following Theorem:

Theorem 5 (Stability of a System of Difference Equations [5]). Consider the matrix A:

• If the characteristic polynomial of A, ρ(A) ≤ 1 and the eigenvalues of A are semi-simple.
⇒ Every equilibrium solution x = φ(t) is stable.

• If the characteristic polynomial of A, ρ(A) < 1
⇒ Every equilibrium solution x = φ(t) is Asymptotically Stable.

Example - Unstable System of Difference Equations [5]
Determine whether each equilibrium solution of the following system of difference equations:

x1(n+ 1) = −x1(n) + x2(n)

x2(n+ 1) = 2x2(n)
(176)

is stable, asymptotically stable or unstable.
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Solution

1. First, we write system (176) in the following matrix form:

x(n+ 1) = Ax(n) (177)[
x1(n+ 1)
x2(n+ 1)

]
=

[
−1 1
0 2

]
=

[
x1(n)
x2(n)

]
(178)

2. Next , we calculate the following characteristic polynomial ρ(A):

ρ(A) = |A− λI| =
∣∣∣∣ −1− λ 1

0 2− λ

∣∣∣∣ (179)

= (−1− λ)(2− λ)− 0 (180)

= λ2 − λ− 2 (181)

3. Since ρ(A) � 1
⇒ Every equilibrium solution of system (176) is Unstable.
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7 Non-linear Systems of Difference Equations

7.1 Linearisation Method

The linearization method is the oldest method in stability theory and is frequently used by
scientists and engineers in the design of control systems and feedback devices [5]. The method
was originated by the mathematicians Liapunov / Lyapunov and Perron in order to study the
stability theory of differential equations. Although their use of the method was for continuous
systems, it can also be used for discrete forms of difference equation systems.

Consider the following Non-autonomous system of difference equations:

y(n+ 1) = A(n)y(n) + g(n, y(n)) (182)

where

• A(n) is a k × k non-singular matrix ∀n ∈ Z+.

• g : Z+ ×G→ Rk, G ⊂ Rk is a continuous function.

(174) can be written in the vector form:

y(n+ 1) = f(n, y(n)) (183)

Applying the linearisation method, we calculate the Jacobian matrix of (174):

Jacobian =
∂f(n, y)

∂y

∣∣∣∣
y=0

=
∂f(n, 0)

∂y
=


∂f1(n,0)
∂y1

∂f1(n,0)
∂y2

. . . ∂f1(n,0)
∂yk

∂f2(n,0)
∂y1

∂f2(n,0)
∂y2

. . . ∂f2(n,0)
∂yk

...
...

. . .
...

∂fk(n,0)
∂y1

∂fk(n,0)
∂y2

. . . ∂fk(n,0)
∂yk

 (184)

which produces a linear solution for system (182).

Similarly, we can use the same technique for the following Autonomous case:

y(n+ 1) = Ay(n) + g(y(n)) (185)

in vector form:

y(n+ 1) = f(y(n)) (186)

Theorem 6 (Exponential Stability of a System of Non-linear Difference Equations [5]). Con-
sider the matrix A:

If the characteristic polynomial, ρ(A) < 1, then
⇒ The equilibrium solution of the non-linear system:

y(n+ 1) = Ay(n) + g(n) (187)

is Exponentially Stable.
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Example 1 - Linearisation Method [5]
Investigate the stability of the equilibrium point (0, 0) of the planar system:

y1(n+ 1) =
ay2(n)

1 + y21(n)

y2(n+ 1) =
by1(n)

1 + y22(n)

(188)

Solution

1. Let f = (f1, f2)
T where

f1 =
ay2(n)

1 + y21(n)
f2 =

by1(n)

1 + y22(n)

2. Applying the linearisation method, at the equilibrium point (0, 0), we have the following
Jacobian matrix:

J =
∂f

∂y

∣∣∣∣
(0,0)

=

(
∂f1(0,0)
∂y1

∂f1(0,0)
∂y2

∂f2(0,0)
∂y1

∂f2(0,0)
∂y2

)
=

(
0 a
b 0

)
(189)

3. Hence, system (188) can be written in the form:

y(n+ 1) = Ay(n) + g(y(n))(
y1(n+ 1)
y2(n+ 1)

)
=

(
0 a
b 0

)(
y1(n)
y2(n)

)
+

( −ay2(n)y21(n)
1+y21(n)

−by22(n)y1(n)
1+y22(n)

)

4. Here, the eigenvalues of A are λ1 =
√
ab, λ2 = −

√
ab.

If |ab|< 1.
⇒ The equilibrium point (0, 0) is Asymptotically Stable.

Since g(y) is continuously differentiable at (0, 0), g(y) is 0(y).
⇒ The equilibrium point (0, 0) is Exponentially Stable.

Example 2 - Linearisation Method: An Asymptotically Stable System [5]
Prove that the equilibrium solution (0, 0) of the following system of 2 difference equations:

x1(n+ 1) = x2(n)− x2(n)[x21(n) + x22(n)]

x2(n+ 1) = x1(n)− x1(n)[x21(n) + x22(n)]
(190)

is Asymptotically Stable.

Solution

1. Let f = (f1, f2)
T where

f1 = x2(n)− x2(n)[x21(n) + x22(n)] f2 = x1(n)− x1(n)[x21(n) + x22(n)]
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2. Applying the linearisation method, at the equilibrium point (0, 0), we have the following
Jacobian matrix:

J =
∂f

∂x

∣∣∣∣
(0,0)

=

(
∂f1(0,0)
∂x1

∂f1(0,0)
∂x2

∂f2(0,0)
∂x1

∂f2(0,0)
∂x2

)
(191)

Here, we have:
∂f1
∂x1

=
∂

∂x1
(x2 − x2(x21 + x22))

=
∂

∂x1
(x2 − x21x2 − x32)

= −2x1x2

(192)

∂f1
∂x2

=
∂

∂x2
(x2 − x2(x21 + x22))

=
∂

∂x2
(x2 − x21x2 − x32)

= 1− x21 − 3x22

(193)

∂f2
∂x1

=
∂

∂x1
(x1 − x1(x21 + x22))

=
∂

∂x1
(x1 − x31 − x1x22)

= 1− 3x21 − x22

(194)

∂f2
∂x2

=
∂

∂x2
(x1 − x1(x21 + x22))

=
∂

∂x2
(x1 − x31 − x1x22)

= −2x1x2

(195)

3. Hence, the Jacobian matrix of system (190) can be written in the form:

J =
∂f

∂x

∣∣∣∣
(0,0)

=

(
−2(0)(0) 1− (0)2 − 3(0)2

1− 3(0)2 − (0)2 −2(0)(0)

)
=

(
0 1
1 0

)
(196)

4. Therefore, system (190) can be written in the form:

x(n+ 1) = Ax(n) + g(x(n))(
x1(n+ 1)
x2(n+ 1)

)
=

(
0 1
1 0

)(
x1(n)
x2(n)

)
+

(
x2(n)− x2(n)[x21(n) + x22(n)]
x1(n)− x1(n)[x21(n) + x22(n)]

)
5. Finding the eigenvalues of A, we have

|A− λI| =
∣∣∣∣ −λ 1

1 −λ

∣∣∣∣ (197)

= λ2 − 1 (198)

Therefore
λ1 = 1 λ2 = −1 (199)

⇒ The equilibrium point (0, 0) is Asymptotically Stable.
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7.2 Lyapunov Method

Adapting Liapunov / Lyapunov’s direct method to difference equations, we consider the fol-
lowing Autonomous difference equation:

x(n+ 1) = f(x(n)) (200)

Here, we have the following theorem:

Theorem 7 (Lyapunov’s Stability Theorem [5]). Let V be a Lyapunov function for the system
(200). If:

• V is positive definite in the neighbourhood H of the equilibrium point x∗, then
⇒ x∗ is a Stable equilibrium solution.

• ∆V (x) < 0, whenever x, f(x) ∈ H and x 6= x∗, then
⇒ x∗ is an Asymptotically Stable equilibrium solution.

• G = H = Rk and

V (x)→∞ as ||x||→ ∞ (201)

then
⇒ x∗ is a Globally Asymptotically Stable equilibrium solution.

Example - Lyapunov Method: A Globally Asymptotically Stable System [5]
Consider the following planar system:

x1(n+ 1) =
x2(n)

1 + x21(n)
(202)

x2(n+ 1) =
x1(n)

1 + x22(n)
(203)

Find the equilibrium solutions and determine their stability using the Lyapunov method.

Solution

1. First, we find the equilibrium points of the system of equations (202)(203). From (202),
we have:

x2
1 + x21

= 0 ⇒ x2 = 0 (204)

From (203), we have:
x1

1 + x22
= 0 ⇒ x1 = 0 (205)

Therefore, the only equilibrium solution of system (202)(203) is (0, 0).
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2. Considering the stability of the equilibrium solution (0, 0). Let V (x1, x2) be a Lyapunov
function, hence:

V̇ (x1, x2) =
∂V

∂x1

(
x2

1 + x21

)
+
∂V

∂x2

(
x1

1 + x22

)
(206)

= 2x1

(
x2

1 + x21

)
+ 2x2

(
x1

1 + x22

)
(207)

=
2x1x2
1 + x21

+
2x1x2
1 + x22

(208)

= 2x1x2

(
1

1 + x21
+

1

1 + x22

)
(209)

3. Here, let x1 = x2:

V̇ (x1, x2) =
4x21
x1 + 1

(210)

If:

x1 < 0 ⇒ V̇ (x1, x2) ≤ 0

x1 = 0 ⇒ V̇ (x1, x2) = 0

x1 > 0 ⇒ V̇ (x1, x2) > 0

⇒ By Lyapunov’s Stability Theorem, the equilibrium solution (0, 0) is Globally Asymp-
totically Stable.
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Chapter 4: A Model of a Three Species
Ecosystem with Mutualism Between
The Predators - K. S. Reddy & N. C.
Pattabhiramacharyulu [32]

8 Introduction

The research paper [32] studies a system of three first order non-linear differential equations in
the form of a population model. It proves the asymptotic stability and examines the local and
global stability of the system. The model consists of a prey (S1) and two predators (S2, S3)
which are in mutualism with each other whilst preying on the same prey (S1). For the given
system, equilibrium points and stability conditions are stated.

9 The Mathematical Model

The model uses the following definitions:

Definitions

• Ni(t) - Population density of species Si at time t, where i = 1, 2, 3.

• ai - Natural growth rates of species Si, where i = 1, 2, 3.

• α11 - The decrease rate of species Si due to own insufficient resources, where i = 1, 2, 3.

• α12 - The decrease rate of prey (S1) due to inhibition by predator (S2).

• α13 - The decrease rate of prey (S1) due to inhibition by predator (S3).

• α21 - The increase rate of predator (S2) due to its successful attacks on prey (S1).

• α23 - The increase rate of predator (S2) due to its successful attacks on predator (S3).

• α31 - The increase rate of predator (S3) due to its successful attacks on prey (S1).

• α32 - The increase rate of predator (S3) due to its successful attacks on predator (S2).

• Ki = ai
αii

- Carrying capacity of species Si, where i = 1, 2, 3.
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Here, N1, N2 and N3 are non-negative variables. We also assume that ai, Ki and αij are non-
negative constants, where i = 1, 2, 3 and j = 1, 2, 3.

Hence, we have the following multi-system model in the form of a system of three first or-
der non-linear ODEs:

dN1

dt
= a1N1 − α11N

2
1 − α12N1N2 − α13N1N3

dN2

dt
= a2N2 − α22N

2
2 + α21N1N2 + α23N2N3

dN3

dt
= a3N3 − α33N

2
3 + α31N1N3 + α32N2N3

(211)

10 Existence of Equilibrium Points

Finding the equilibrium points of the system (211), we have the following cases:

Case 1

a1N1 − α11N
2
1 − α12N1N2 − α13N1N3 = 0 (212)

a2N2 − α22N
2
2 + α21N1N2 + α23N2N3 = 0 (213)

a3N3 − α33N
2
3 + α31N1N3 + α32N2N3 = 0 (214)

By using (213), we get:

a2N2 − α22N
2
2 + α21N1N2 + α23N2N3 = 0

N2(a2 − α22N2 + α21N1 + α23N3) = 0

N2 = 0 or a2 − α22N2 + α21N1 + α23N3 = 0

(215)

By using (214), we get:

a3N3 − α33N
2
3 + α31N1N3 + α32N2N3 = 0

N3(a3 − α33N3 + α31N1 + α32N2) = 0

N3 = 0 or a3 − α33N3 + α31N1 + α32N2 = 0

(216)

Substituting N2 = N3 = 0 in (212), we have:

a1N1 − α11N
2
1 = 0

N1(a1 − α11N1) = 0

N1 = 0

(217)

Hence we have the following equilibrium point in the absence of all species:

(N1, N2, N3) = (0, 0, 0) = E1(0, 0, 0)

Therefore the population is extinct and this state always exists.
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Case 2

In the absence of the second predator (S3) we have N3 = 0, hence (211) becomes

dN1

dt
= a1N1 − α11N

2
1 − α12N1N2

dN2

dt
= a2N2 − α22N

2
2 + α21N1N2

(218)

Finding the equilibrium points of (218), we have:

a1N1 − α11N
2
1 − α12N1N2 = 0 (219)

a2N2 − α22N
2
2 + α21N1N2 = 0 (220)

By using (219), we get:

a1N1 − α11N
2
1 − α12N1N2 = 0

N1(a1 − α11N1 − α12N2) = 0

N1 = 0 or a1 − α11N1 − α12N2 = 0

(221)

Assuming a positive solution N̄1 of N1, we have:

a1 − α11N1 − α12N2 = 0 (222)

−α11N1 = −a1 + α12N2 (223)

∴ N̄1 = N1 =
a1 − α12N2

α11

(224)

Substituting (224) in (220) and assuming a positive solution N̄2 of N2 yields:

a2N2 − α22N
2
2 + α21N1N2 = 0

N2(a2 − α22N2 + α21N1) = 0

N2 = 0 or a2 − α22N2 + α21N1 = 0

(225)

∴ a2 − α22N2 + α21N1 = 0 (226)

a2 − α22N2 + α21

(
a1 − α12N2

α11

)
= 0 (227)

a2 − α22N2 +
a1α21

α11

− α12α21

α11

N2 = 0 (228)

−α22N2 −
α12α21

α11

N2 = −a2 −
a1α21

α11

(229)(
−α22 −

α12α21

α11

)
N2 =

−a2α11 − a1α21

α11

(230)(
−α11α22 − α12α21

α11

)
N2 =

−a2α11 − a1α21

α11

(231)

∴ N̄2 = N2 =
a2α11 + a1α21

α11α22 + α12α21

(232)
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Substituting (232) in (224) yields:

N̄1 = N1 =
a1 − α12N2

α11

(233)

=
a1 − α12

(
a2α11+a1α21

α11α22+α12α21

)
α11

(234)

=
a1α22 − a2α12

α11α22 + α12α21

(235)

Therefore, assuming N̄1 and N̄2 are positive solutions of N1 and N2, then

N̄1 =
a1α22 − a2α12

α11α22 + α12α21

and N̄2 =
a2α11 + a1α21

α11α22 + α12α21

(236)

where N̄1 is positive provided that a1α22 > a2α12.

In conclusion, we have the following equilibrium point in the absence of the second preda-
tor (S3):

(N1, N2, N3) = (N1, N2, 0) = E2(N̄1, N̄2, 0)

Case 3

In the absence of the first predator (S2), we have N2 = 0 hence (211) becomes

dN1

dt
= a1N1 − α11N

2
1 − α13N1N3

dN3

dt
= a3N3 − α33N

2
3 + α31N1N3

(237)

Finding the equilibrium points of (237), we have:

a1N1 − α11N
2
1 − α13N1N3 = 0 (238)

a3N3 − α33N
2
3 + α31N1N3 = 0 (239)

By using (238), we get

a1N1 − α11N
2
1 − α13N1N3 = 0

N1(a1 − α11N1 − α13N3) = 0

N1 = 0 or a1 − α11N1 − α13N3 = 0

(240)

Assuming a positive solution Nφ
1 of N1, we have:

a1 − α11N1 − α13N3 = 0 (241)

−α11N1 = −a1 + α13N3 (242)

∴ Nφ
1 = N1 =

a1 − α13N3

α11

(243)

Substituting (243) in (239) and assuming a positive solution Nφ
3 of N3 yields:

a3N3 − α33N
2
3 + α31N1N3 = 0

N3(a3 − α33N3 + α31N1) = 0

N3 = 0 or a3 − α33N3 + α31N1 = 0

(244)
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∴ a3 − α33N3 + α31N1 = 0 (245)

a3 − α33N3 + α31

(
a1 − α13N3

α11

)
= 0 (246)

a3 − α33N3 +
a1α31

α11

− α13α31

α11

N3 = 0 (247)

−α33N3 −
α13α31

α11

N3 = −a3 −
a1α31

α11

(248)(
−α33−

α13α31

α11

)
N3 = −a3 −

a1α31

α11

(249)(
−α11α33 − α13α31

α11

)
N3 =

−a3α11 − a1α31

α11

(250)

∴ Nφ
3 = N3 =

a3α11 + a1α31

α11α33 + α13α31

(251)

Substituting (251) in (243) yields:

Nφ
1 = N1 =

a1 − α13N3

α11

(252)

=
a1 − α13

(
a3α11+a1α31

α11α33+α13α31

)
α11

(253)

=
a1α33 − a3α13

α11α33 + α13α31

(254)

Therefore, assuming Nφ
1 and Nφ

3 are positive solutions of N1 and N3, then

Nφ
1 =

a1α33 − a3α13

α11α33 + α13α31

and Nφ
3 =

a3α11 + a1α31

α11α33 + α13α31

(255)

where Nφ
1 is positive provided that a1α33 > a3α13.

In conclusion, we have the following equilibrium point in the absence of the first predator
(S2):

(N1, N2, N3) = (N1, 0, N3) = E3(N
φ
1 , 0, N

φ
3 )

Case 4

The interior equilibrium can be calculated, using (211), by the following:

a1N1 − α11N
2
1 − α12N1N2 − α13N1N3 = 0 (256)

a2N2 − α22N
2
2 + α21N1N2 + α23N2N3 = 0 (257)

a3N3 − α33N
2
3 + α31N1N3 + α32N2N3 = 0 (258)

Using (256), we get

a1N1 − α11N
2
1 − α12N1N2 − α13N1N3 = 0

N1(a1 − α11N1 − α12N2 − α13N3) = 0

N1 = 0 or a1 − α11N1 − α12N2 − α13N3 = 0

(259)
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Assuming a positive solution N∗1 of N1, we have:

a1 − α11N1 − α12N2 − α13N3 = 0 (260)

−α11N1 = −a1 + α12N2 + α13N3 (261)

∴ N∗1 = N1 =
a1 − α12N2 − α13N3

α11

(262)

Substituting (262) in (257) and assuming a positive solution N∗2 of N2 yields:

a2N2 − α22N
2
2 + α21N1N2 + α23N2N3 = 0

N2(a2 − α22N2 + α21N1 + α23N3) = 0

N2 = 0 or a2 − α22N2 + α21N1 + α23N3 = 0

(263)

∴ a2 − α22N2 + α21N1 + α23N3 = 0 (264)

a2 − α22N2 + α21

(
a1 − α12N2 − α13N3

α11

)
+ α23N3 = 0 (265)

a2 − α22N2 +
a1α21

α11

− α12α21

α11

N2 −
α13α21

α11

N3 + α23N3 = 0 (266)

−α22N2 −
α12α21

α11

N2 = −a2 −
a1α21

α11

+
α13α21

α11

N3 + α23N3 (267)(
−α22 −

α12α21

α11

)
N2 =

−a2α11 − a1α21

α11

+

(
α23 +

α13α21

α11

)
N3 (268)(

−α11α22 − α12α21

α11

)
N2 = −a2α11 − a1α21

α11

+

(
α11α23 + α13α21

α11

)
N3 (269)

∴ N∗2 = N2 =
a2α11a1α21

α11α22 + α12α21

+

(
α11α23 + α13α21

−α22α11 − α12α21

)
N3 (270)

Substituting (270) and (262) in (258) and assuming a positive solution N∗3 of N3 yields:

a3N3 − α33N
2
3 + α31N1N3 + α32N2N3 = 0

N3(a3 − α33N3 + α31N1 + α32N2) = 0

N3 = 0 or a3 − α33N3 + α31N1 + α32N2 = 0

(271)

a3 − α33N3 + α31

(
a1 − α12N2 − α13N3

a11

)
+

α32

(
a2α11a1α21

α11α22 + α12α21

+

(
α11α23 + α13α21

−α22α11 − α12α21

)
N3

)
= 0 (272)

a3 − α33N3 + α31

a1 − α12

(
a2α11a1α21

α11α22+α12α21
+
(

α11α23+α13α21

−α22α11−α12α21

)
N3

)
− α13N3

α11


+ α32

(
a2α11a1α21

α11α22 + α12α21

+

(
α11α23 + α13α21

−α22α11 − α12α21

)
N3

)
= 0 (273)

∴ N∗3 = N3 =
a1(α21α32 + α22α31) + a2(α11α32 − α12α31) + α3(α11α22 + α12α21)

α11(α22α33 − α23α32) + α12(α21α33 + α31α23) + α13(α31α32 + α31α22)
(274)
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Substituting (274) in (270) yields:

N∗2 = N2 =
a1(α21α33 + α31α23) + a2(α11α33 + α13α31) + a3(α11α23 − α13α21)

α11(α22α33 − α23α32) + α12(α21α33 + α31α23) + α13(α31α32 + α31α22)
(275)

Substituting (274) and (275) in (262) yields:

N∗1 = N1 =
a1(α22α33 − α23α32)− a2(α12α33 + α13α32)− a3(α12α23 + α13α22)

α11(α22α33 − α23α32) + α12(α21α33 + α31α23) + α13(α31α32 + α31α22)
(276)

Therefore
N∗1 =

ρ1
D

N∗2 =
ρ2
D

N∗3 =
ρ3
D

(277)

where

ρ1 = a1(α22α33 − α23α32)− a2(α12α33 + α13α32)− a3(α12α23 + α13α22) (278)

ρ2 = a1(α21α33 + α31α23) + a2(α11α33 + α13α31) + a3(α11α23 − α13α21) (279)

ρ3 = a1(α21α33 + α31α23) + a2(α11α33 + α13α31) + a3(α11α23 − α13α21) (280)

D = α11(α22α33 − α23α32) + α12(α21α33 + α31α23) + α13(α31α32 + α31α22) (281)

provided that the following expressions hold:

[a2(α12α33 + α13α32) + a3(α12α23 + α13α22)] < a1(α22α33 − α23α32)

α11α23 > α13α21

α11α32 > α12α31

α22α33 > α23α32

In conclusion, we have the following equilibrium point for the interior equilibrium:

(N1, N2, N3) = E4(N
∗
1 , N

∗
2 , N

∗
3 )
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11 Global Stability

Theorem 8. The equilibrium point E4(N
∗
1 , N

∗
2 , N

∗
3 ) is globally asymptotically stable.

Proof. Considering the following Lyapunov function:

V (N1, N2, N3) = N1 −N∗1 −N∗1 ln

[
N1

N∗1

]
+ d∗1

{
N2 −N∗2 −N∗2 ln

[
N2

N∗2

]}
+ d∗2

{
N3 −N∗3 −N∗3 ln

[
N3

N∗3

]}
(282)

Differentiating V with respect to t yields:

dV

dt
(N1, N2, N3) =

(
N1 −N∗1
N1

)
dN1

dt
+ d∗1

(
N2 −N∗2
N2

)
dN2

dt
+ d∗2

(
N3 −N∗3
N3

)
dN3

dt
(283)

(284)

=

(
N1 −N∗1
N1

)
(a1N1 − α11N

2
1 − α12N1N2 − α13N1N3)

+ d∗1

[(
N2 −N∗2
N2

)
(a2N2 − α22N

2
2 + α21N1N2 + α23N2N3)

]
+ d∗2

[(
N3 −N∗3
N3

)
(a3N3 − α33N

2
3 + α31N1N3 + α32N2N3)

]

(285)
= −α11(N1 −N∗1 )2 − α12(N1 −N∗1 )(N2 −N∗2 )− α13(N1 −N∗1 )(N3 −N∗3 )

+ d∗1
[
α21(N1 −N∗1 )(N2 −N∗2 )− α22(N2 −N∗2 )2 + α23(N2 −N∗2 )(N3 −N∗3 )

]
+ d∗2

[
α31(N1 −N∗1 )(N3 −N∗3 ) + α32(N2 −N∗2 )(N3 −N∗3 )− α33(N3 −N∗3 )2

]

(286)

< −α11(N1 −N∗1 )2 − (α12 − α21d
∗
1)

[
(N1 −N∗1 )2

2
+

(N2 −N∗2 )2

2

]
− (α13 − α31d

∗
2)

[
(N1 −N∗1 )2

2
+

(N3 −N∗3 )2

2

]
− d∗1α22(N2 −N∗2 )2

+ (d∗1α23 + α32d
∗
2)

[
(N2 −N∗2 )2

2
+

(N3 −N∗3 )2

2

]
− d∗2α33(N3 −N∗3 )2

Choosing d∗1 = a12
a21

and d∗2 = a13
a31

, then

(287)

= −α11(N1 −N∗1 )2 − (α12 − α21
a12
a21

)

[
(N1 −N∗1 )2

2
+

(N2 −N∗2 )2

2

]
− (α13 − α31

a13
a31

)

[
(N1 −N∗1 )2

2
+

(N3 −N∗3 )2

2

]
− a12
a21

α22(N2 −N∗2 )2

+ (
a12
a21

α23 + α32
a13
a31

)

[
(N2 −N∗2 )2

2
+

(N3 −N∗3 )2

2

]
− a13
a31

α33(N3 −N∗3 )2

(288)

= −α11(N1 −N∗1 )2 − (α12 − α12)

[
(N1 −N∗1 )2

2
+

(N2 −N∗2 )2

2

]
− (α13 − α13)

[
(N1 −N∗1 )2

2
+

(N3 −N∗3 )2

2

]
− α12

α21

α22(N2 −N∗2 )2

+ (
α12

α21

α23 + α32
α13

α31

)

[
(N2 −N∗2 )2

2
+

(N3 −N∗3 )2

2

]
− α13

α31

α33(N3 −N∗3 )2
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(289)
= −α11(N1 −N∗1 )2 − α12

α21

α22(N2 −N∗2 )2 +
1

2

α12

α21

α23(N2 −N∗2 )2 +
1

2

α12

α21

α23(N3 −N∗3 )2

+
1

2
α32

α13

α31

(N2 −N∗2 )2 +
1

2
a32

α13

α31

(N3 −N∗3 )2 − α13

α31

α33(N3 −N∗3 )2

(290)
= −α11(N1 −N∗1 )2 +

(
−α12

α21

α22 +
1

2

α12

α21

α23 +
1

2
α32

α13

α31

)
(N2 −N∗2 )2

+

(
−α13

α31

α33 +
1

2

α12

α21

α23 +
1

2
α32

α13

α31

)
(N3 −N∗3 )2

(291)
= −α11(N1 −N∗1 )2 +

(
−α12

α21

α22 +
1

2

(
α12

α21

α23 + α32
α13

α31

))
(N2 −N∗2 )2

+

(
−α13

α31

α33 +
1

2

(
α12

α21

α23 +
1

2
α32

α13

α31

))
(N3 −N∗3 )2

(292)

∴
dV

dt
< −α11(N1 −N∗1 )2 −

(
α12

α21

α22 −
1

2

(
α12

α21

α23 + α32
α13

α31

))
(N2 −N∗2 )2

−
(
α13

α31

α33 −
1

2

(
α12

α21

α23 +
1

2
α32

α13

α31

))
(N3 −N∗3 )2

< 0

provided that the following inequalities hold:

α12

α21

α22 >
1

2

(
α12

α21

α23 + α32
a13
a31

)
α13

α31

α33 >
1

2

(
α12

α21

α23 + α32
α13

α31

)

∴ E4(N
∗
1 , N

∗
2 , N

∗
3 ) is globally asymptotically stable.
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12 Numerical Examples

Example 1

Here, let

a1 = 8 a2 = 1 a3 = 1.5
α11 = 0.05 α21 = 0.7 α31 = 0.15
α12 = 0.6 α22 = 0.17 α32 = 0.18
α13 = 0.7 α23 = 0.13 α33 = 0.4

with initial values:

N1 = 10
N2 = 10
N3 = 10

for the Time t interval 0 < t < 20.

Hence, we have the following MATLAB function:

% dN1/dt = a1N1-a11N1^2-a12N1N2-a13N1N3

% dN2/dt = a2N2-a22N2^2+a21N1N2+a23N2N3

% dN3/dt = a3N3-a33N3^2+a31N1N3+a32N2N3

function dNdt = odefcn(t,N)

% Numerical Example 1

a1 = 8;

a11 = 0.05;

a12 = 0.6;

a13 = 0.7;

a2 = 1;

a21 = 0.7;

a22 = 0.17;

a23 = 0.13;

a3 = 1.5;

a31 = 0.15;

a32 = 0.18;

a33 = 0.4;

dNdt = zeros(3,1);

dNdt(1) = a1*N(1)-a11*(N(1).^2)-a12*N(1)*N(2)-a13*N(1)*N(3);

dNdt(2) = a2*N(2)-a22*(N(2).^2)+a21*N(1)*N(2)+a23*N(2)*N(3);

dNdt(3) = a3*N(3)-a33*(N(3).^2)+a31*N(1)*N(3)+a32*N(2)*N(3);

and MATLAB script for solving the system with ODE solver ode45 as well as plotting the
results on a 2D and 3D plane:

% dN1/dt = a1N1-a11N1^2-a12N1N2-a13N1N3

% dN2/dt = a2N2-a22N2^2+a21N1N2+a23N2N3

% dN3/dt = a3N3-a33N3^2+a31N1N3+a32N2N3
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% Solving system of equations (Using ODE45)

%Example 1

[t,N] = ode45(’odefcn’, [0, 20], [10 10 10]);

%2D Plot

plot(t,N(:,1),’-o’,t,N(:,2),’-.’,t,N(:,3),’--’)

title(’Example 1’)

xlabel(’Time’), ylabel(’Population’)

%3D Plot

plot3(N(:,1),N(:,2),N(:,3))

title(’Example 1’)

xlabel(’Prey Population’),

ylabel(’Predator 1 Population’), zlabel(’Predator 2 Population’)

which yields the following 2D and 3D plots:
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Figure 1: Example 1 2D Plot

Figure 2: Example 1 3D Plot
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Example 2

Here, let

a1 = 3 a2 = 1 a3 = 1
α11 = 0.01 α21 = 0.1 α31 = 0.1
α12 = 0.1 α22 = 0.2 α32 = 0.1
α13 = 0.1 α23 = 0.1 α33 = 0.3

with initial values:

N1 = 50
N2 = 75
N3 = 60

for the Time t interval 0 < t < 20.

Hence, we have the following MATLAB function:

% dN1/dt = a1N1-a11N1^2-a12N1N2-a13N1N3

% dN2/dt = a2N2-a22N2^2+a21N1N2+a23N2N3

% dN3/dt = a3N3-a33N3^2+a31N1N3+a32N2N3

function dNdt = odefcn2(t,N)

% Numerical Example 2

a1 = 3;

a11 = 0.01;

a12 = 0.1;

a13 = 0.1;

a2 = 1;

a21 = 0.1;

a22 = 0.2;

a23 = 0.1;

a3 = 1;

a31 = 0.1;

a32 = 0.1;

a33 = 0.3;

dNdt = zeros(3,1);

dNdt(1) = a1*N(1)-a11*(N(1).^2)-a12*N(1)*N(2)-a13*N(1)*N(3);

dNdt(2) = a2*N(2)-a22*(N(2).^2)+a21*N(1)*N(2)+a23*N(2)*N(3);

dNdt(3) = a3*N(3)-a33*(N(3).^2)+a31*N(1)*N(3)+a32*N(2)*N(3);

and MATLAB script for solving the system with ODE solver ode45 as well as plotting the
results on a 2D and 3D plane:

% dN1/dt = a1N1-a11N1^2-a12N1N2-a13N1N3

% dN2/dt = a2N2-a22N2^2+a21N1N2+a23N2N3

% dN3/dt = a3N3-a33N3^2+a31N1N3+a32N2N3

% Solving system of equations (Using ODE45)
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%Example 2

[t,N] = ode45(’odefcn2’, [0, 20], [50 75 60]);

%2D Plot

plot(t,N(:,1),’-o’,t,N(:,2),’-.’,t,N(:,3),’--’)

title(’Example 2’)

xlabel(’Time’), ylabel(’Population’)

%3D Plot

plot3(N(:,1),N(:,2),N(:,3))

title(’Example 2’)

xlabel(’Prey Population’),

ylabel(’Predator 1 Population’), zlabel(’Predator 2 Population’)

which yields the following 2D and 3D plots:
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Figure 3: Example 2 2D Plot

Figure 4: Example 2 3D Plot

59



Chapter 4: A Model of a Three Species Ecosystem with Mutualism Between The Predators -
K. S. Reddy & N. C. Pattabhiramacharyulu

Here, comparing the above MATLAB plots and the figures included in [32], there seems to
be an error between the values for Examples 1 and 2 and the corresponding plots of [32]. Rather
than the given values for Example 1 and Example 2, the figures (1) and (2) of the research
paper [32] correspond to Example 2 with initial values N1 = 50, N2 = 75, N3 = 60 whilst
figures (3) and (4) correspond to Example 2 with initial values N1 = N2 = N3 = 10. Therefore,
the values in Example 1 of the paper [32] are not correct. Implementing these corrections, we
have the following MATLAB code and plots which correspond to the figures included in the
research paper [32]:

Example 1 (with corrections)

Here, let

a1 = 3 a2 = 1 a3 = 1
α11 = 0.01 α21 = 0.1 α31 = 0.1
α12 = 0.1 α22 = 0.2 α32 = 0.1
α13 = 0.1 α23 = 0.1 α33 = 0.3

with initial values:

N1 = 50
N2 = 75
N3 = 60

for the Time t interval 0 < t < 20.

Hence, we have the following MATLAB function:

% dN1/dt = a1N1-a11N1^2-a12N1N2-a13N1N3

% dN2/dt = a2N2-a22N2^2+a21N1N2+a23N2N3

% dN3/dt = a3N3-a33N3^2+a31N1N3+a32N2N3

function dNdt = odefcn2(t,N)

% Numerical Example 1

a1 = 3;

a11 = 0.01;

a12 = 0.1;

a13 = 0.1;

a2 = 1;

a21 = 0.1;

a22 = 0.2;

a23 = 0.1;

a3 = 1;

a31 = 0.1;

a32 = 0.1;

a33 = 0.3;

dNdt = zeros(3,1);

dNdt(1) = a1*N(1)-a11*(N(1).^2)-a12*N(1)*N(2)-a13*N(1)*N(3);

dNdt(2) = a2*N(2)-a22*(N(2).^2)+a21*N(1)*N(2)+a23*N(2)*N(3);
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dNdt(3) = a3*N(3)-a33*(N(3).^2)+a31*N(1)*N(3)+a32*N(2)*N(3);

and MATLAB script for solving the system with ODE solver ode45 as well as plotting the
results on a 2D and 3D plane:

% dN1/dt = a1N1-a11N1^2-a12N1N2-a13N1N3

% dN2/dt = a2N2-a22N2^2+a21N1N2+a23N2N3

% dN3/dt = a3N3-a33N3^2+a31N1N3+a32N2N3

% Solving system of equations (Using ODE45)

%Example 1

[t,N] = ode45(’odefcn2’, [0, 20], [50 75 60]);

%2D Plot

plot(t,N(:,1),’-o’,t,N(:,2),’-.’,t,N(:,3),’--’)

title(’Example 1’)

xlabel(’Time’), ylabel(’Population’)

%3D Plot

plot3(N(:,1),N(:,2),N(:,3))

title(’Example 1’)

xlabel(’Prey Population’),

ylabel(’Predator 1 Population’), zlabel(’Predator 2 Population’)

which yields the following 2D and 3D plots, which correspond to figures (1) and (2) of the
research paper [32]:
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Figure 5: Example 1 (with corrections) 2D Plot

Figure 6: Example 1 (with corrections) 3D Plot
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Example 2 (with corrections)

Here, let

a1 = 3 a2 = 1 a3 = 1
α11 = 0.01 α21 = 0.1 α31 = 0.1
α12 = 0.1 α22 = 0.2 α32 = 0.1
α13 = 0.1 α23 = 0.1 α33 = 0.3

with initial values:

N1 = 10
N2 = 10
N3 = 10

for the Time t interval 0 < t < 20.

Hence, we have the following MATLAB function:

% dN1/dt = a1N1-a11N1^2-a12N1N2-a13N1N3

% dN2/dt = a2N2-a22N2^2+a21N1N2+a23N2N3

% dN3/dt = a3N3-a33N3^2+a31N1N3+a32N2N3

function dNdt = odefcn2(t,N)

% Numerical Example 2

a1 = 3;

a11 = 0.01;

a12 = 0.1;

a13 = 0.1;

a2 = 1;

a21 = 0.1;

a22 = 0.2;

a23 = 0.1;

a3 = 1;

a31 = 0.1;

a32 = 0.1;

a33 = 0.3;

dNdt = zeros(3,1);

dNdt(1) = a1*N(1)-a11*(N(1).^2)-a12*N(1)*N(2)-a13*N(1)*N(3);

dNdt(2) = a2*N(2)-a22*(N(2).^2)+a21*N(1)*N(2)+a23*N(2)*N(3);

dNdt(3) = a3*N(3)-a33*(N(3).^2)+a31*N(1)*N(3)+a32*N(2)*N(3);

and MATLAB script for solving the system with ODE solver ode45 as well as plotting the
results on a 2D and 3D plane:

% dN1/dt = a1N1-a11N1^2-a12N1N2-a13N1N3

% dN2/dt = a2N2-a22N2^2+a21N1N2+a23N2N3

% dN3/dt = a3N3-a33N3^2+a31N1N3+a32N2N3

% Solving system of equations (Using ODE45)
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%Example 2

[t,N] = ode45(’odefcn2’, [0, 20], [50 75 60]);

%2D Plot

plot(t,N(:,1),’-o’,t,N(:,2),’-.’,t,N(:,3),’--’)

title(’Example 2’)

xlabel(’Time’), ylabel(’Population’)

%3D Plot

plot3(N(:,1),N(:,2),N(:,3))

title(’Example 2’)

xlabel(’Prey Population’),

ylabel(’Predator 1 Population’), zlabel(’Predator 2 Population’)

which yields the following 2D and 3D plots, which correspond to figures (3) and (4) of the
research paper [32]:
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Figure 7: Example 2 (with corrections) 2D Plot

Figure 8: Example 2 (with corrections) 3D Plot
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13 Existence and Uniqueness

In order to study the existence and uniqueness of the system (211), we use the following theorem:

Theorem 9 (Existence and Uniqueness [2]). Let each of the functions f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)
have continuous partial derivatives with respect to x1, . . . , xn. Then, the initial-value problem

ẋ = f(x) x(t0) = x0 (293)

has one, and only one solution x = x(t), for every x0 in Rn.

Proof. First, we will show that x(t) satisfies the following integral equation

x(t) = x0 +

∫ t

t0

f(s, x(s))ds (294)

and x(t) is continuous.

The Picard iterates xn(t) are defined recursively by:

xn+1(t) = x0 +

∫ t

t0

f(s, xn(s))ds (295)

Taking limits of both sides of (295) yields:

x(t) = x0 + lim
n→∞

∫ t

t0

f(s, xn(s))ds (296)

Showing that the right-hand side of (296) equals:

x0 +

∫ t

t0

f(s, x(s))ds (297)

we must show that:∣∣∣∣∫ t

t0

f(s, x(s))ds−
∫ t

t0

f(s, xn(s))ds

∣∣∣∣→ 0 as n→∞ (298)

Hence ∣∣∣∣∫ t

t0

f(s, x(s))ds−
∫ t

t0

f(s, xn(s))ds

∣∣∣∣ ≤ ∫ t

t0

|f(s, x(s))− f(s, xn(s))|ds (299)

≤ L

∫ t

t0

|x(s)− xn(s)|ds (300)

where L = max(t,x)∈R

∣∣∣∂f(t,x)∂x

∣∣∣.
We observe that:

x(s)− xn(s) =
∞∑

j=n+1

[xj(s)− xj−1(s)] (301)

since

x(s) = x0 +
∞∑
j=1

[xj(s)− xj−1(s)] (302)
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and

xn(s) = x0 +
n∑
j=1

[xj(s)− xj−1(s)] (303)

Consequently:∣∣∣∣∫ t

t0

f(s, x(s))ds−
∫ t

t0

f(s, xn(s))ds

∣∣∣∣ ≤ L

∫ t

t0

|x(s)− xn(s)|ds (304)

≤ L

∫ t

t0

(
∞∑

j=n+1

|xj(s)− xj−1(s)|

)
ds (305)

≤M
∞∑

j=n+1

∫ t

t0

Lj−1
(s− t0)j

j!
ds (306)

≤Mα
∞∑

j=n+1

∫ t

t0

(αL)j

j!
ds→ 0 as n→∞ (307)

Therefore

lim
n→+∞

∫ t

t0

f(s, xn(s))ds =

∫ t

t0

f(s, x(s))ds (308)

and we have shown that x(t) satisfies:

x(t) = x0 +

∫ t

t0

f(s, x(s))ds (309)

In order to show that x(t) is continuous, we have, for any ε > 0 and δ(ε) > 0 : |h|< δ, then

|x(t+ h)− x(t)|< ε (310)

observe that, by choosing a large integer N :

x(t+ h)− x(t) = [x(t+ h)− xN(t+ h)] + [xN(t+ h)− xN(t)] + [xN(t)− x(t)] (311)

We choose N , such that:
M

L

∞∑
j=N+1

(αL)j

j!
<
ε

3
(312)

Therefore
|x(t+ h)− xN(t+ h)|< ε

3
and |xN(t)− x(t)|< ε

3
(313)

But, choosing δ > 0, we get:

|xN(t+ h)− xN(t)|< ε

3
for |h|< δ (314)

since xN is continuous by it’s definition, for any ε > 0 there exists a δ(ε) > 0.

Consequently:

|x(t+ h)− x(t)| ≤ |x(t+ h)− xN(t+ h)|+|xN(t+ h)− xN(t)|+|xN(t)− x(t)| (315)

<
ε

3
+
ε

3
+
ε

3
(316)

= ε (317)
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for |h|< δ.

Therefore, x = x(t) is a continuous solution of the initial-value problem (293).

Now we prove the uniqueness of x = x(t). We have already proved the existence of at least one
solution x = x(t) of (293). Suppose that y(t) is a second solution. Then:

x(t) = x0 +

∫ t

t0

f(s, x(s))ds and y(t) = x0 +

∫ t

t0

f(s, y(s))ds (318)

Subtracting each equation of (318), we have:

|x(t)− y(t)| = max{|x1(t)− y1(t)|, . . . , |xn(t)− yn(t)|} (319)

= max{
∣∣∣∣∫ t

t0

[f(s, x1(s))− f(s, y1(s))]ds

∣∣∣∣ , . . . , ∣∣∣∣∫ t

t0

[f(s, xn(s))− f(s, yn(s))]ds

∣∣∣∣}
(320)

≤ max{
∫ t

t0

|f(s, x1(s))− f(s, y1(s))|ds, . . . ,
∫ t

t0

|f(s, xn(s))− f(s, yn(s))|ds}

(321)

≤ L

(∫ t

t0

|x1(s)− y1(s)|ds, . . . ,
∫ t

t0

|xn(s)− yn(s)|ds
)

(322)

where L = max(t,x)∈R

∣∣∣∂f(t,x)∂x

∣∣∣.
Using the following Lemma:

Lemma 10 ([2]). Let w(t) be a non-negative function, with

w(t) ≤ L

∫ t

t0

w(s)ds (323)

Then, w(t) is identically zero.

Hence

|x(t)− y(t)| ≤ L

∫ t

t0

|x(s)− y(s)|ds (324)

|w(t)| = L

∫ t

t0

w̃(t)ds (325)

where w̃(s) = |w(s)|.

Therefore:

w̃(t) ≤ L

∫ t

t0

w̃(s)ds (326)

Define:

U(t) =

∫ t

t0

w̃(s)ds (327)

and
dU

dt
= w̃(t) ⇒ dU

dt
≤ LU (328)
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Hence
∴ e−L(t−t0)U(t) ≤ U(0) = 0 ⇒ U(t) = 0 (329)

0 ≤ w̃(t) ≤ L

∫ t0

0

w̃(s)ds = LU(t) = 0 (330)

w̃(t) = 0 ⇒ x(t) = y(t) (331)

Therefore, x = x(t) is a unique solution of the initial-value problem (293).

In conclusion, x = x(t) is a unique and continuous solution of the initial-value problem
(293).

13.1 Proving Existence and Uniqueness of The System

Considering the following system:

dN1

dt
= a1N1 − α11N

2
1 − α12N1N2 − α13N1N3

dN2

dt
= a2N2 − α22N

2
2 + α21N1N2 + α23N2N3

dN3

dt
= a3N3 − α33N

2
3 + α31N1N3 + α32N2N3

(332)

in the form:

ẋ = f(x) (333)

= f(t, x) =

 f1(t, x)
f2(t, x)
f3(t, x)

 =

 a1N1 − α11N
2
1 − α12N1N2 − α13N1N3

a2N2 − α22N
2
2 + α21N1N2 + α23N2N3

a3N3 − α33N
2
3 + α31N1N3 + α32N2N3

 (334)

Calculating the partial derivatives of ẋ, we have:

∂

∂N
ẋ =

∂f(x)

∂N
(335)

=
∂f(t, x)

∂N
=


∂f1(t,x)
∂N1

∂f2(t,x)
∂N2

∂f3(t,x)
∂N3

 =

 a1 − 2α11N1 − α12N2 − α13N3

a2 − 2α22N2 + α21N1 + α23N3

a3 − 2α33N
2
3 + α31N1 + α32N2

 (336)

Here, we can see that:
∂f

∂N
→ Continuous in Rn (337)

Therefore, by Theorem 9 [2], there exists a unique continuous solution to the system of differ-
ential equations (332).
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14 Permanence and Persistence

When studying systems involved in the modelling of population growth, we begin analysis of the
system by studying local stability or steady states, global stability and existence and stability of
periodic solutions [21]. Although these concepts are of interest and importance in population
study, from a mathematical and biological perspective, the more basic and important topic
would be the longevity of the population. The long-term survival of interacting species in a
population or ecosystem can be a very important concept of population dynamical systems
[52]. This long-term survival is referred to as the permanance of a system of populations [21].
Permanence occurs when all trajectories starting in the interior are ultimately bounded away
from the predetermined boundary that is independent of initial values [19]. Here, sufficiently
small fluctuations in population cannot lead to the extinction of any species. Here, we have
the following definitions:

Definition 3 (Persistence [52]). In general, a population or species x(t) is said to be persistent
if:

lim inf
t→∞

x(t) > 0. (338)

Definition 4 (Uniform Persistence [11]). In general, a population or species x(t) is said to be
uniformly persistent if:

lim inf
t→∞

x(t) = η. (339)

where η > 0.

Definition 5 (Permanence [21]). In general, a population or species x(t) is said to be permanent
if there exists two positive constants m and M where m < M , such that, for large values of t
(dependent on x0), we have:

m ≤ x(t) ≤M. (340)

Considering these definitions, then [52]:

• If all involved populations are persistent.
⇒ The system is Persistent.

• If all populations eventually have densities which are larger than some positive constant.
⇒ The system is Uniformly Persistent.

• If

1. A system is Uniformly Persistent.

2. All involved populations are bounded.

⇒ The system is Permanent.

14.1 Proving Permanence and Persistence of The System

Considering the following non-linear continuous system of differential equations:

dN1

dt
= a1N1 − α11N

2
1 − α12N1N2 − α13N1N3 (341)

dN2

dt
= a2N2 − α22N

2
2 + α21N1N2 + α23N2N3 (342)

dN3

dt
= a3N3 − α33N

2
3 + α31N1N3 + α32N2N3 (343)
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Here, we prove that the system is persistent. Hence, we prove that:

lim inf
t→∞

dN1(t)

dt
> 0 (344)

lim inf
t→∞

dN2(t)

dt
> 0 (345)

lim inf
t→∞

dN3(t)

dt
> 0 (346)

Here, we assume that the parameters Ni > 0 and the constants ai, αij > 0 for i = 1, 2, 3 and
j = 1, 2, 3.

1. Considering equation (341):

dN1

dt
= a1N1 − α11N

2
1 − α12N1N2 − α13N1N3 (347)

If:

a1N1 > α11N
2
1 + α12N1N2 + α13N1N3 (348)

then:

lim inf
t→∞

dN1(t)

dt
> 0 (349)

and equation (341)/(347) is said to be persistent.

2. Considering equation (342):

dN2

dt
= a2N2 − α22N

2
2 + α21N1N2 + α23N2N3 (350)

If:

α22N
2
2 < a2N2 + α21N1N2 + α23N2N3 (351)

then:

lim inf
t→∞

dN2(t)

dt
> 0 (352)

and equation (342)/(350) is said to be persistent.

3. Considering equation (343):

dN3

dt
= a3N3 − α33N

2
3 + α31N1N3 + α32N2N3 (353)

If:

α33N
2
3 < a3N3 + α31N1N3 + α32N2N3 (354)

then:

lim inf
t→∞

dN3(t)

dt
> 0 (355)

and equation (343)/(353) is said to be Persistent.

Therefore, if:
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1.

lim inf
t→∞

dN1(t)

dt
> 0 (356)

lim inf
t→∞

dN2(t)

dt
> 0 (357)

lim inf
t→∞

dN3(t)

dt
> 0 (358)

2. Conditions (348), (351) and (354) are true.

⇒ The system of equations (211) is Persistent.
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System of Difference Equations Model

15 Converting a Continuous System of Differential Equa-

tions to a Discrete System of Difference Equations

In this chapter we create a discrete analogue of the continuous system of differential equations
studied in Chapter 4. Here, we aim to convert the system of differential equations to a system
of difference equations. We construct a discrete form by using the following two methods:

1. Euler’s Method

2. Method of Piecewise Constant Arguments

These methods produce two Autonomous Time-Invariant systems:

15.1 Euler’s Method

Euler’s method is regarded as the most elementary approximation technique for finding solutions
to initial-value problems [3]. Although the method is only occasionally used in practice, it’s
simplicity can help in the construction of more advanced techniques without the complex use
of algebra involved in other methods. One of these uses is converting a system of differential
equations to a system of difference equations. Here we have the following definition:

Definition 6 (Euler’s Method [3], [40]). We define the following initial-value problem:

dy

dt
= f(t, y) a ≤ t ≤ b y(a) = α (359)

The aim of Euler’s method is to find approximations for (359). Continuous approximations to
the solution y(t) are not obtained. Alternatively, approximations for y values are generated at
various values referred to as mesh points in the interval [a, b]. Consecutive approximations are
then calculated by interpolation.

Assuming that the mesh points are equally distributed throughout the interval [a, b] and choos-
ing a positive integer N, we have the following mesh points:

ti = a+ ih for i = 0, 1, 2, . . . , N (360)

with step size:

h = ti+1 − ti =
(b− a)

N
(361)
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By Taylor’s theorem, assuming that y(t) is a unique solution of the initial-value problem (359)
and has two continuous derivatives in the interval [a, b] for i = 0, 1, 2, . . . , N − 1, we get:

y(ti+1) = y(ti) + (ti+1 − ti)y′(ti) +
(ti+1 − ti)2

2
y′′(ξi) (362)

for some number ξi ∈ (ti, ti+1).

Let h = ti+1 − ti, then:

y(ti+1) = y(ti) + hy′(ti) +
h2

2
y′′(ξi) (363)

Since y(t) satisfies the initial-value problem (359), we get:

y(ti+1) = y(ti) + hf(ti, y(ti)) +
h2

2
y′′(ξi) (364)

Noting that wi ≈ y(ti) for each i = 1, 2, . . . , N , we have the following Euler Method:

w0 = α

wi+1 = wi + hf(ti, wi) for i = 0, 1, . . . , N − 1
(365)

15.1.1 Application of Euler’s Method

Here, we have the following continuous system of non-linear differential equations:

dN1

dt
= N ′1(t) = a1N1 − α11N

2
1 − α12N1N2 − α13N1N3

dN2

dt
= N ′2(t) = a2N2 − α22N

2
2 + α21N1N2 + α23N2N3

dN3

dt
= N ′3(t) = a3N3 − α33N

2
3 + α31N1N3 + α32N2N3

(366)

with the initial conditions:
N1(t

0) = N0
1

N2(t
0) = N0

2

N3(t
0) = N0

3

(367)

Applying Euler’s method, we have the following notation [3], [40]:

Nk+1 = Nk + hf(tk, Nk) (368)

Nk+1 =

 Nk
1

Nk
2

Nk
3

+ h

 a1N
k
1 − α11N

k
1
2 − α12N

k
1N

k
2 − α13N

k
1N

k
3

a2N
k
2 − α22N

k
2
2

+ α21N
k
1N

k
2 + α23N

k
2N

k
3

a3N
k
3 − α33N

k
3
2

+ α31N
k
1N

k
3 + α32N

k
2N

k
3

 (369)

for a uniform partition t0 < t1 < . . . < tK where tk = t0 + kh and step size h = tK−t0
K

.

Therefore, we have the following autonomous time-invariant discrete scheme of system (366):

N(k + 1) = N(k) + h

 a1N1(k)− α11N
2
1 (k)− α12N1(k)N2(k)− α13N1(k)N3(k)

a2N2(k)− α22N
2
2 (k) + α21N1(k)N2(k) + α23N2(k)N3(k)

a3N3(k)− α33N
2
3 (k) + α31N1(k)N3(k) + α32N2(k)N3(k)

 (370)

where N(k + 1) =

 N1(k + 1)
N2(k + 1)
N3(k + 1)

, N(k) =

 N1(k)
N2(k)
N3(k)

 and k = 0, 1, 2, . . ..
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15.2 Method of Piecewise Constant Arguments

Along with the help of differential equations with piecewise constant arguments, we can find a
discrete analogue of continuous time radio-dependent systems [6], [50]. Here, there is no unique
way of determining discrete-time versions of dynamical systems corresponding to continuous
time formulations. One method of deriving difference equations which model the dynamics of
populations with non-overlapping generations is by using appropriate modifications of models
with overlapping generations. This approach utilises the use of differential equations with
piecewise constant arguments [6].

15.2.1 Application of the Method of Piecewise Constant Arguments

Consider the following continuous system of non-linear differential equations:

dN1

dt
= N ′1(t) = a1N1 − α11N

2
1 − α12N1N2 − α13N1N3

dN2

dt
= N ′2(t) = a2N2 − α22N

2
2 + α21N1N2 + α23N2N3

dN3

dt
= N ′3(t) = a3N3 − α33N

2
3 + α31N1N3 + α32N2N3

(371)

Let us assume that the average growth rates of system (371) change at regular intervals of time.
By incorporating this aspect, we obtain the following modified system [6]:

1

N1(t)

dN1(t)

dt
= a1([t])N1([t])− α11([t])N

2
1 ([t])− α12([t])N1([t])N2([t])− α13([t])N1([t])N3([t])

1

N2(t)

dN2(t)

dt
= a2([t])N2([t])− α22([t])N

2
2 ([t]) + α21([t])N1([t])N2([t]) + α23([t])N2([t])N3([t])

1

N3(t)

dN3(t)

dt
= a3([t])N3([t])− α33([t])N

2
3 ([t]) + α31([t])N1([t])N3([t]) + α32([t])N2([t])N3([t])

(372)
for t 6= 0, 1, 2, . . ., where [t] denotes the integer part of t, t ∈ (0,+∞).

Equations of type (372) are known as differential equations with piecewise constant arguments.
These equations occupy a position midway between differential and difference equations. A
solution of (372) is denoted by the function N = (N1, N2, N3)

T defined for t ∈ [0,+∞) and has
the following properties:

1. N is continuous on the interval [0,∞).

2. The derivatives dN1(t)
dt

, dN2(t)
dt

and dN3(t)
dt

exist at each point t ∈ [0,+∞) with the possible
exception of the points t ∈ {0, 1, 2, . . .}, where left-sided derivatives exist.

3. The equations of system (372) are satisfied on each interval [k, k+1) where k = 0, 1, 2, . . ..

On any interval of the form [k, k + 1) for k = 0, 1, 2, . . ., we can integrate (372) and obtain the
following system:

N1(t) = N1(k)e[a1(k)N1(k)−α11(k)N2
1 (k)−α12(k)N1(k)N2(k)−α13(k)N1(k)N3(k)](t−k)

N2(t) = N2(k)e[a2(k)N2(k)−α22(k)N2
2 (k)+α21(k)N1(k)N2(k)+α23(k)N2(k)N3(k)](t−k)

N3(t) = N3(k)e[a3(k)N3(k)−α33(k)N2
3 (k)+α31(k)N1(k)N3(k)+α32(k)N2(k)N3(k)](t−k)

(373)
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for k ≤ t ≤ k + 1, where k = 0, 1, 2, . . ..

By letting t → k + 1, we get the following autonomous time-invariant discrete time analogue
of the system (371):

N1(k + 1) = N1(k)ea1(k)N1(k)−α11(k)N2
1 (k)−α12(k)N1(k)N2(k)−α13(k)N1(k)N3(k)

N2(k + 1) = N2(k)ea2(k)N2(k)−α22(k)N2
2 (k)+α21(k)N1(k)N2(k)+α23(k)N2(k)N3(k)

N3(k + 1) = N3(k)ea3(k)N3(k)−α33(k)N2
3 (k)+α31(k)N1(k)N3(k)+α32(k)N2(k)N3(k)

(374)

for k = 0, 1, 2, . . ..
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16 Existence of Equilibrium Points

Here we find the equilibrium solutions of each discrete system of difference equations (370) and
(374).

16.1 Discrete Form of System Using Euler’s Method

Consider the following discrete non-linear autonomous time-invariant system of difference equa-
tions:

N(k + 1) = N(k) + h

 a1N1(k)− α11N
2
1 (k)− α12N1(k)N2(k)− α13N1(k)N3(k)

a2N2(k)− α22N
2
2 (k) + α21N1(k)N2(k) + α23N2(k)N3(k)

a3N3(k)− α33N
2
3 (k) + α31N1(k)N3(k) + α32N2(k)N3(k)

 (375)

where N(k) =

 N1(k)
N2(k)
N3(k)

.

Finding the equilibrium points of (375), we have the following cases:

Case 1

N1(k) + h[a1N1(k)− α11N
2
1 (k)− α12N1(k)N2(k)− α13N1(k)N3(k)] = 0 (376)

N2(k) + h[a2N2(k)− α22N
2
2 (k) + α21N1(k)N2(k) + α23N2(k)N3(k)] = 0 (377)

N3(k) + h[a3N3(k)− α33N
2
3 (k) + α31N1(k)N3(k) + α32N2(k)N3(k)] = 0 (378)

By using (377), we get:

N2(k) + h[a2N2(k)− α22N
2
2 (k) + α21N1(k)N2(k) + α23N2(k)N3(k)] = 0

N2(k) + hN2(k)[a2 − α22N2(k) + α21N1(k) + α23N3(k)] = 0

(1 + h)N2(k)[a2 − α22N2(k) + α21N1(k) + α23N3(k)] = 0

(379)

Therefore

(1 + h)N2(k) = 0⇒ N2(k) = 0 or a2 − α22N2(k) + α21N1(k) + α23N3(k) = 0 (380)

By using (378), we get:

N3(k) + h[a3N3(k)− α33N
2
3 (k) + α31N1(k)N3(k) + α32N2(k)N3(k)] = 0

N3(k) + hN3(k)[a3 − α33N3(k) + α31N1(k) + α32N2(k)] = 0

(1 + h)N3(k)[a3 − α33N3(k) + α31N1(k) + α32N2(k)] = 0

(381)

Therefore

(1 + h)N3(k) = 0⇒ N3(k) = 0 or a3 − α33N3(k) + α31N1(k) + α32N2(k) = 0 (382)

Substituting N2(k) = N3(k) = 0 in (376), we have:

a1N1(k)− α11N
2
1 (k) = 0

N1(k)(a1 − α11N1(k)) = 0

N1(k) = 0 or a1 − α11N1(k) = 0

(383)

Hence we have the following equilibrium point in the absence of all species:

(N1(k), N2(k), N3(k)) = (0, 0, 0) = E1(0, 0, 0)

Therefore the population is extinct and this state always exists.
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Case 2

In the absence of the second predator (S3) we have N3(k) = 0, hence system (375) becomes:

N1(k + 1) = N1(k) + h[a1N1(k)− α11N
2
1 (k)− α12N1(k)N2(k)]

N2(k + 1) = N2(k) + h[a2N2(k)− α22N
2
2 (k) + α21N1(k)N2(k)]

(384)

Finding the equilibrium points of (384), we have:

N1(k) + h[a1N1(k)− α11N
2
1 (k)− α12N1(k)N2(k)] = 0 (385)

N2(k) + h[a2N2(k)− α22N
2
2 (k) + α21N1(k)N2(k)] = 0 (386)

By using (385), we get:

N1(k) + h[a1N1(k)− α11N
2
1 (k)− α12N1(k)N2(k)] = 0

N1(k) + hN1(k)[a1 − α11N1(k)− α12N2(k)] = 0

(1 + h)N1(k)[a1 − α11N1(k)− α12N2(k)] = 0

(387)

Therefore

(1 + h)N1(k) = 0⇒ N1(k) = 0 or a1 − α11N1(k)− α12N2(k) = 0 (388)

Assuming a positive solution N̄1(k) of N1(k), we have:

a1 − α11N1(k)− α12N2(k) = 0 (389)

−α11N1(k) = −a1 + α12N2(k) (390)

∴ N̄1(k) = N1(k) =
a1 − α12N2(k)

α11

(391)

Substituting (391) in (386) and assuming a positive solution N̄2(k) of N2(k) yields:

N2(k) + h[a2N2(k)− α22N
2
2 (k) + α21N1(k)N2(k)] = 0

N2(k) + hN2(k)[a2 − α22N2(k) + α21N1(k)] = 0

(1 + h)N2(k)[a2 − α22N2(k) + α21N1(k)] = 0

(1 + h)N2(k) = 0⇒ N2(k) = 0 or a2 − α22N2(k) + α21N1(k) = 0

(392)

∴ a2 − α22N2(k) + α21N1(k) = 0 (393)

a2 − α22N2(k) + α21

(
a1 − α12N2(k)

α11

)
= 0 (394)

a2 − α22N2(k) +
a1α21

α11

− α12α21

α11

N2(k) = 0 (395)

−α22N2(k)− α12α21

α11

N2(k) = −a2 −
a1α21

α11

(396)(
−α22 −

α12α21

α11

)
N2(k) =

−a2α11 − a1α21

α11

(397)(
−α11α22 − α12α21

α11

)
N2(k) =

−a2α11 − a1α21

α11

(398)

∴ N̄2(k) = N2(k) =
a2α11 + a1α21

α11α22 + α12α21

(399)
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Substituting (399) in (391) yields:

N̄1(k) = N1(k) =
a1 − α12N2(k)

α11

(400)

=
a1 − α12

(
a2α11+a1α21

α11α22+α12α21

)
α11

(401)

=
a1α22 − a2α12

α11α22 + α12α21

(402)

Therefore, assuming N̄1(k) and N̄2(k) are positive solutions of N1(k) and N2(k), then

N̄1(k) =
a1α22 − a2α12

α11α22 + α12α21

and N̄2(k) =
a2α11 + a1α21

α11α22 + α12α21

(403)

where N̄1(k) is positive provided that a1α22 > a2α12.

In conclusion, we have the following equilibrium point in the absence of the second preda-
tor (S3):

(N1(k), N2(k), N3(k)) = (N1(k), N2(k), 0) = E2(N̄1(k), N̄2(k), 0)

Case 3

In the absence of the first predator (S2), we have N2(k) = 0, hence system (375) becomes:

N1(k + 1) = N1(k) + h[a1N1(k)− α11N
2
1 (k)− α13N1(k)N3(k)]

N3(k + 1) = N3(k) + h[a3N3(k)− α33N
2
3 (k) + α31N1(k)N3(k)]

(404)

Finding the equilibrium points of (404), we have:

N1(k) + h[a1N1(k)− α11N
2
1 (k)− α13N1(k)N3(k)] = 0 (405)

N3(k) + h[a3N3(k)− α33N
2
3 (k) + α31N1(k)N3(k)] = 0 (406)

By using (405), we get

N1(k) + h[a1N1(k)− α11N
2
1 (k)− α13N1(k)N3(k)] = 0

N1(k) + hN1(k)[a1 − α11N1(k)− α13N3(k)] = 0

(1 + h)N1(k)[a1 − α11N1(k)− α13N3(k)] = 0

(1 + h)N1(k) = 0⇒ N1(k) = 0 or a1 − α11N1(k)− α13N3(k) = 0

(407)

Assuming a positive solution Nφ
1 (k) of N1(k), we have:

a1 − α11N1(k)− α13N3(k) = 0 (408)

−α11N1(k) = −a1 + α13N3(k) (409)

∴ Nφ
1 (k) = N1(k) =

a1 − α13N3(k)

α11

(410)

Substituting (410) in (406) and assuming a positive solution Nφ
3 (k) of N3(k) yields:

N3(k) + h[a3N3(k)− α33N
2
3 (k) + α31N1(k)N3(k)] = 0

N3(k) + hN3(k)[a3 − α33N3(k) + α31N1(k)] = 0

(1 + h)N3(k)[a3 − α33N3(k) + α31N1(k)] = 0

(1 + h)N3(k) = 0⇒ N3(k) = 0 or a3 − α33N3(k) + α31N1(k) = 0

(411)
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∴ a3 − α33N3(k) + α31N1(k) = 0 (412)

a3 − α33N3(k) + α31

(
a1 − α13N3(k)

α11

)
= 0 (413)

a3 − α33N3(k) +
a1α31

α11

− α13α31

α11

N3(k) = 0 (414)

−α33N3(k)− α13α31

α11

N3(k) = −a3 −
a1α31

α11

(415)(
−α33 −

α13α31

α11

)
N3(k) = −a3 −

a1α31

α11

(416)(
−α11α33 − α13α31

α11

)
N3(k) =

−a3α11 − a1α31

α11

(417)

∴ Nφ
3 (k) = N3(k) =

a3α11 + a1α31

α11α33 + α13α31

(418)

Substituting (418) in (410) yields:

Nφ
1 (k) = N1(k) =

a1 − α13N3(k)

α11

(419)

=
a1 − α13

(
a3α11+a1α31

α11α33+α13α31

)
α11

(420)

=
a1α33 − a3α13

α11α33 + α13α31

(421)

Therefore, assuming Nφ
1 (k) and Nφ

3 (k) are positive solutions of N1(k) and N3(k), then

Nφ
1 (k) =

a1α33 − a3α13

α11α33 + α13α31

and Nφ
3 (k) =

a3α11 + a1α31

α11α33 + α13α31

(422)

where Nφ
1 (k) is positive provided that a1α33 > a3α13.

In conclusion, we have the following equilibrium point in the absence of the first predator
(S2):

(N1(k), N2(k), N3(k)) = (N1(k), 0, N3(k)) = E3(N
φ
1 (k), 0, Nφ

3 (k))

Case 4

The interior equilibrium can be calculated, using system (375), by the following:

N1(k) + h[a1N1(k)− α11N
2
1 (k)− α12N1(k)N2(k)− α13N1(k)N3(k)] = 0 (423)

N2(k) + h[a2N2(k)− α22N
2
2 (k) + α21N1(k)N2(k) + α23N2(k)N3(k)] = 0 (424)

N3(k) + h[a3N3(k)− α33N
2
3 (k) + α31N1(k)N3(k) + α32N2(k)N3(k)] = 0 (425)

By using (423), we get:

N1(k) + h[a1N1(k)− α11N
2
1 (k)− α12N1(k)N2(k)− α13N1(k)N3(k)] = 0

N1(k) + hN1(k)[a1 − α11N1(k)− α12N2(k)− α13N3(k)] = 0

(1 + h)N1(k)[a1 − α11N1(k)− α12N2(k)− α13N3(k)] = 0

(426)

Therefore

(1 + h)N1(k) = 0⇒ N1(k) = 0 or a1 − α11N1(k)− α12N2(k)− α13N3(k) = 0 (427)
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Assuming a positive solution N∗1 of N1, we have:

a1 − α11N1(k)− α12N2(k)− α13N3(k) = 0 (428)

−α11N1(k) = −a1 + α12N2(k) + α13N3(k) (429)

∴ N̄1(k) = N1(k) =
a1 − α12N2(k)− α13N3(k)

α11

(430)

Substituting (430) in (424) and assuming a positive solution N∗2 of N2 yields:

N2(k) + h[a2N2(k)− α22N
2
2 (k) + α21N1(k)N2(k) + α23N2(k)N3(k)] = 0

N2(k) + hN2(k)[a2 − α22N2(k) + α21N1(k) + α23N3(k)] = 0

(1 + h)N2(k)[a2 − α22N2(k) + α21N1(k) + α23N3(k)] = 0

(1 + h)N2(k) = 0⇒ N2(k) = 0 or a2 − α22N2(k) + α21N1(k) + α23N3(k) = 0

(431)

∴ a2 − α22N2(k) + α21N1(k) + α23N3(k) = 0 (432)

a2 − α22N2(k) + α21

(
a1 − α12N2(k)− α13N3(k)

α11

)
+ α23N3(k) = 0 (433)

a2 − α22N2(k) +
a1α21

α11

− α12α21

α11

N2(k)− α13α21

α11

N3(k) + α23N3(k) = 0 (434)

−α22N2(k)− α12α21

α11

N2(k) = −a2 −
a1α21

α11

+
α13α21

α11

N3(k) + α23N3(k) (435)(
−α22 −

α12α21

α11

)
N2(k) =

−a2α11 − a1α21

α11

+

(
α23 +

α13α21

α11

)
N3(k) (436)(

−α11α22 − α12α21

α11

)
N2(k) = −a2α11 − a1α21

α11

+

(
α11α23 + α13α21

α11

)
N3(k) (437)

∴ N∗2 (k) = N2(k) =
a2α11a1α21

α11α22 + α12α21

+

(
α11α23 + α13α21

−α22α11 − α12α21

)
N3(k) (438)

Substituting (438) and (430) in (425) and assuming a positive solution N∗3 (k) of N3(k) yields:

N3(k) + h[a3N3(k)− α33N
2
3 (k) + α31N1(k)N3(k) + α32N2(k)N3(k)] = 0

N3(k) + hN3(k)[a3 − α33N3(k) + α31N1(k) + α32N2(k)] = 0

(1 + h)N3(k)[a3 − α33N3(k) + α31N1(k) + α32N2(k)] = 0

(1 + h)N3(k) = 0⇒ N3(k) = 0 or a3 − α33N3(k) + α31N1(k) + α32N2(k) = 0

(439)

a3 − α33N3(k) + α31

(
a1 − α12N2(k)− α13N3(k)

a11

)
+

α32

(
a2α11a1α21

α11α22 + α12α21

+

(
α11α23 + α13α21

−α22α11 − α12α21

)
N3(k)

)
= 0 (440)

a3 − α33N3(k) + α31

a1 − α12

(
a2α11a1α21

α11α22+α12α21
+
(

α11α23+α13α21

−α22α11−α12α21

)
N3(k)

)
− α13N3(k)

α11


+ α32

(
a2α11a1α21

α11α22 + α12α21

+

(
α11α23 + α13α21

−α22α11 − α12α21

)
N3(k)

)
= 0 (441)
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∴ N∗3 (k) = N3(k) =
a1(α21α32 + α22α31) + a2(α11α32 − α12α31) + α3(α11α22 + α12α21)

α11(α22α33 − α23α32) + α12(α21α33 + α31α23) + α13(α31α32 + α31α22)
(442)

Substituting (442) in (438) yields:

N∗2 (k) = N2(k) =
a1(α21α33 + α31α23) + a2(α11α33 + α13α31) + a3(α11α23 − α13α21)

α11(α22α33 − α23α32) + α12(α21α33 + α31α23) + α13(α31α32 + α31α22)
(443)

Substituting (442) and (443) in (430) yields:

N∗1 (k) = N1(k) =
a1(α22α33 − α23α32)− a2(α12α33 + α13α32)− a3(α12α23 + α13α22)

α11(α22α33 − α23α32) + α12(α21α33 + α31α23) + α13(α31α32 + α31α22)
(444)

Therefore
N∗1 (k) =

ρ1
D

N∗2 (k) =
ρ2
D

N∗3 (k) =
ρ3
D

(445)

where

ρ1 = a1(α22α33 − α23α32)− a2(α12α33 + α13α32)− a3(α12α23 + α13α22) (446)

ρ2 = a1(α21α33 + α31α23) + a2(α11α33 + α13α31) + a3(α11α23 − α13α21) (447)

ρ3 = a1(α21α33 + α31α23) + a2(α11α33 + α13α31) + a3(α11α23 − α13α21) (448)

D = α11(α22α33 − α23α32) + α12(α21α33 + α31α23) + α13(α31α32 + α31α22) (449)

provided that the following expressions hold:

[a2(α12α33 + α13α32) + a3(α12α23 + α13α22)] < a1(α22α33 − α23α32)

α11α23 > α13α21

α11α32 > α12α31

α22α33 > α23α32

In conclusion, we have the following equilibrium point for the interior equilibrium:

(N1(k), N2(k), N3(k)) = E4(N
∗
1 (k), N∗2 (k), N∗3 (k))
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16.2 Discrete Form of System Using Method of Piecewise Constant
Arguments

Consider the following discrete non-linear autonomous time-invariant system of difference equa-
tions:

N1(k + 1) = N1(k)ea1(k)N1(k)−α11(k)N2
1 (k)−α12(k)N1(k)N2(k)−α13(k)N1(k)N3(k)

N2(k + 1) = N2(k)ea2(k)N2(k)−α22(k)N2
2 (k)+α21(k)N1(k)N2(k)+α23(k)N2(k)N3(k)

N3(k + 1) = N3(k)ea3(k)N3(k)−α33(k)N2
3 (k)+α31(k)N1(k)N3(k)+α32(k)N2(k)N3(k)

(450)

Finding the equilibrium points of (450), we have the following cases:

Case 1

N1(k)ea1(k)N1(k)−α11(k)N2
1 (k)−α12(k)N1(k)N2(k)−α13(k)N1(k)N3(k) = 0 (451)

N2(k)ea2(k)N2(k)−α22(k)N2
2 (k)+α21(k)N1(k)N2(k)+α23(k)N2(k)N3(k) = 0 (452)

N3(k)ea3(k)N3(k)−α33(k)N2
3 (k)+α31(k)N1(k)N3(k)+α32(k)N2(k)N3(k) = 0 (453)

By using (452), we get:

N2(k)ea2(k)N2(k)−α22(k)N2
2 (k)+α21(k)N1(k)N2(k)+α23(k)N2(k)N3(k) = 0 (454)

Therefore

N2(k) = 0 or ea2(k)N2(k)−α22(k)N2
2 (k)+α21(k)N1(k)N2(k)+α23(k)N2(k)N3(k) = 0 (455)

By using (453), we get:

N3(k)ea3(k)N3(k)−α33(k)N2
3 (k)+α31(k)N1(k)N3(k)+α32(k)N2(k)N3(k) = 0 (456)

Therefore

N3(k) = 0 or ea3(k)N3(k)−α33(k)N2
3 (k)+α31(k)N1(k)N3(k)+α32(k)N2(k)N3(k) = 0 (457)

Substituting N2(k) = N3(k) = 0 in (451), we have:

N1(k)ea1(k)N1(k)−α11(k)N2
1 (k) = 0

N1(k) = 0 or ea1(k)N1(k)−α11(k)N2
1 (k) = 0

(458)

Hence we have the following equilibrium point in the absence of all species:

(N1(k), N2(k), N3(k)) = (0, 0, 0) = E1(0, 0, 0)

Therefore the population is extinct and this state always exists.

Case 2

In the absence of the second predator (S3) we have N3(k) = 0, hence system (450) becomes:

N1(k + 1) = N1(k)ea1(k)N1(k)−α11(k)N2
1 (k)−α12(k)N1(k)N2(k)

N2(k + 1) = N2(k)ea2(k)N2(k)−α22(k)N2
2 (k)+α21(k)N1(k)N2(k)

(459)
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Finding the equilibrium points of (459), we have:

N1(k)ea1(k)N1(k)−α11(k)N2
1 (k)−α12(k)N1(k)N2(k) = 0 (460)

N2(k)ea2(k)N2(k)−α22(k)N2
2 (k)+α21(k)N1(k)N2(k) = 0 (461)

By using (460), we get:

N1(k)ea1(k)N1(k)−α11(k)N2
1 (k)−α12(k)N1(k)N2(k) = 0 (462)

Therefore
N1(k) = 0 or ea1(k)N1(k)−α11(k)N2

1 (k)−α12(k)N1(k)N2(k) = 0 (463)

Assuming a positive solution N̄1(k) of N1(k), we have:

ea1(k)N1(k)−α11(k)N2
1 (k)−α12(k)N1(k)N2(k) = 0 (464)

a1(k)N1(k)− α11(k)N2
1 (k)− α12(k)N1(k)N2(k) = 0 (465)

N1(k)[a1(k)− α11(k)N1(k)− α12N2(k)] = 0 (466)

a1(k)− α11(k)N1(k)− α12N2(k) = 0 (467)

−α11(k)N1(k) = −a1(k) + α12N2(k) (468)

∴ N̄1(k) = N1(k) =
a1(k)− α12(k)N2(k)

α11(k)
(469)

Substituting (469) in (462) and assuming a positive solution N̄2(k) of N2(k) yields:

N2(k)ea2(k)N2(k)−α22(k)N2
2 (k)+α21(k)N1(k)N2(k) = 0 (470)

Therefore
N2(k) = 0 or ea2(k)N2(k)−α22(k)N2

2 (k)+α21(k)N1(k)N2(k) = 0 (471)

ea2(k)N2(k)−α22(k)N2
2 (k)+α21(k)N1(k)N2(k) = 0

a2(k)N2(k)− α22(k)N2
2 (k) + α21(k)N1(k)N2(k) = 0

N2(k)[a2(k)− α22(k)N2(k) + α21(k)N1(k)] = 0

a2(k)− α22(k)N2(k) + α21(k)N1(k) = 0

(472)

∴ a2(k)− α22(k)N2(k) + α21(k)N1(k) = 0 (473)

a2(k)− α22(k)N2(k) + α21(k)

(
a1(k)− α12(k)N2(k)

α11(k)

)
= 0 (474)

a2(k)− α22(k)N2(k) +
a1(k)α21(k)

α11(k)
− α12(k)α21(k)

α11(k)
N2(k) = 0 (475)

−α22(k)N2(k)− α12(k)α21(k)

α11(k)
N2(k) = −a2(k)− a1(k)α21(k)

α11(k)
(476)(

−α22(k)− α12(k)α21(k)

α11(k)

)
N2(k) =

−a2(k)α11(k)− a1(k)α21(k)

α11(k)
(477)(

−α11(k)α22(k)− α12(k)α21(k)

α11(k)

)
N2(k) =

−a2(k)α11(k)− a1(k)α21(k)

α11(k)
(478)

∴ N̄2(k) = N2(k) =
a2(k)α11(k) + a1(k)α21(k)

α11(k)α22(k) + α12(k)α21(k)
(479)
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Substituting (479) in (469) yields:

N̄1(k) = N1(k) =
a1(k)− α12(k)N2(k)

α11(k)
(480)

=
a1(k)− α12(k)

(
a2(k)α11(k)+a1(k)α21(k)
α11(k)α22(k)+α12(k)α21(k)

)
α11(k)

(481)

=
a1(k)α22(k)− a2(k)α12(k)

α11(k)α22(k) + α12(k)α21(k)
(482)

Therefore, assuming N̄1(k) and N̄2(k) are positive solutions of N1(k) and N2(k), then

N̄1(k) =
a1(k)α22(k)− a2(k)α12(k)

α11(k)α22(k) + α12(k)α21(k)
and N̄2(k) =

a2(k)α11(k) + a1(k)α21(k)

α11(k)α22(k) + α12(k)α21(k)
(483)

where N̄1(k) is positive provided that a1(k)α22(k) > a2(k)α12(k).

In conclusion, we have the following equilibrium point in the absence of the second preda-
tor (S3):

(N1(k), N2(k), N3(k)) = (N1(k), N2(k), 0) = E2(N̄1(k), N̄2(k), 0)

Case 3

In the absence of the first predator (S2), we have N2(k) = 0, hence system (450) becomes:

N1(k + 1) = N1(k)ea1(k)N1(k)−α11(k)N2
1 (k)−α13(k)N1(k)N3(k)

N3(k + 1) = N3(k)ea3(k)N3(k)−α33(k)N2
3 (k)+α31(k)N1(k)N3(k)

(484)

Finding the equilibrium points of (484), we have:

N1(k)ea1(k)N1(k)−α11(k)N2
1 (k)−α13(k)N1(k)N3(k) = 0 (485)

N3(k)ea3(k)N3(k)−α33(k)N2
3 (k)+α31(k)N1(k)N3(k) = 0 (486)

By using (485), we get

N1(k)ea1(k)N1(k)−α11(k)N2
1 (k)−α13(k)N1(k)N3(k) = 0 (487)

Therefore
N1(k) = 0 or ea1(k)N1(k)−α11(k)N2

1 (k)−α13(k)N1(k)N3(k) = 0 (488)

Assuming a positive solution Nφ
1 (k) of N1(k), we have:

ea1(k)N1(k)−α11(k)N2
1 (k)−α13(k)N1(k)N3(k) = 0 (489)

a1(k)N1(k)− α11(k)N2
1 (k)− α13(k)N1(k)N3(k) = 0 (490)

N1(k)[a1(k)− α11(k)N1(k)− α13(k)N3(k)] = 0 (491)

a1(k)− α11(k)N1(k)− α13(k)N3(k) = 0 (492)

−α11N1(k) = −a1(k) + α13(k)N3(k) (493)

∴ Nφ
1 (k) = N1(k) =

a1(k)− α13(k)N3(k)

α11(k)
(494)
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Substituting (494) in (486) and assuming a positive solution Nφ
3 (k) of N3(k) yields:

N3(k)ea3(k)N3(k)−α33(k)N2
3 (k)+α31(k)N1(k)N3(k) = 0 (495)

Therefore

N3(k) = 0 or ea3(k)N3(k)−α33(k)N2
3 (k)+α31(k)N1(k)N3(k) = 0 (496)

ea3(k)N3(k)−α33(k)N2
3 (k)+α31(k)N1(k)N3(k) = 0 (497)

a3(k)N3(k)− α33(k)N2
3 (k) + α31(k)N1(k)N3(k) = 0 (498)

N3(k)[a3(k)− α33(k)N3(k) + α31(k)N1(k)] = 0 (499)

a3(k)− α33(k)N3(k) + α31(k)N1(k) = 0 (500)

∴ a3(k)− α33(k)N3(k) + α31(k)

(
a1(k)− α13(k)N3(k)

α11(k)

)
= 0 (501)

a3(k)− α33(k)N3(k) +
a1(k)α31(k)

α11(k)
− α13(k)α31(k)

α11(k)
N3(k) = 0 (502)

−α33(k)N3(k)− α13(k)α31(k)

α11(k)
N3(k) = −a3(k)− a1(k)α31(k)

α11(k)
(503)(

−α33(k)− α13(k)α31(k)

α11(k)

)
N3(k) = −a3(k)− a1(k)α31(k)

α11(k)
(504)(

−α11(k)α33(k)− α13(k)α31(k)

α11(k)

)
N3(k) =

−a3(k)α11(k)− a1(k)α31(k)

α11(k)
(505)

∴ Nφ
3 (k) = N3(k) =

a3(k)α11(k) + a1(k)α31(k)

α11(k)α33(k) + α13(k)α31(k)
(506)

Substituting (506) in (494) yields:

Nφ
1 (k) = N1(k) =

a1(k)− α13(k)N3(k)

α11(k)
(507)

=
a1(k)− α13(k)

(
a3(k)α11(k)+a1(k)α31(k)
α11(k)α33(k)+α13(k)α31(k)

)
α11(k)

(508)

=
a1(k)α33(k)− a3(k)α13(k)

α11(k)α33(k) + α13(k)α31(k)
(509)

Therefore, assuming Nφ
1 (k) and Nφ

3 (k) are positive solutions of N1(k) and N3(k), then

Nφ
1 (k) =

a1(k)α33(k)− a3(k)α13(k)

α11(k)α33(k) + α13(k)α31(k)
and Nφ

3 (k) =
a3(k)α11(k) + a1(k)α31(k)

α11(k)α33(k) + α13(k)α31(k)
(510)

where Nφ
1 (k) is positive provided that a1(k)α33(k) > a3(k)α13(k).

In conclusion, we have the following equilibrium point in the absence of the first predator
(S2):

(N1(k), N2(k), N3(k)) = (N1(k), 0, N3(k)) = E3(N
φ
1 (k), 0, Nφ

3 (k))
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Case 4

The interior equilibrium can be calculated, using the system (450), by the following:

N1(k)ea1(k)N1(k)−α11(k)N2
1 (k)−α12(k)N1(k)N2(k)−α13(k)N1(k)N3(k) = 0 (511)

N2(k)ea2(k)N2(k)−α22(k)N2
2 (k)+α21(k)N1(k)N2(k)+α23(k)N2(k)N3(k) = 0 (512)

N3(k)ea3(k)N3(k)−α33(k)N2
3 (k)+α31(k)N1(k)N3(k)+α32(k)N2(k)N3(k) = 0 (513)

By using (511), we get:

N1(k)ea1(k)N1(k)−α11(k)N2
1 (k)−α12(k)N1(k)N2(k)−α13(k)N1(k)N3(k) = 0 (514)

Therefore

N1(k) = 0 or ea1(k)N1(k)−α11(k)N2
1 (k)−α12(k)N1(k)N2(k)−α13(k)N1(k)N3(k) = 0 (515)

Assuming a positive solution N∗1 of N1, we have:

ea1(k)N1(k)−α11(k)N2
1 (k)−α12(k)N1(k)N2(k)−α13(k)N1(k)N3(k) = 0 (516)

a1(k)N1(k)− α11(k)N2
1 (k)− α12(k)N1(k)N2(k)− α13(k)N1(k)N3(k) = 0 (517)

N1(k)[a1(k)− α11(k)N1(k)− α12(k)N2(k)− α13(k)N3(k)] = 0 (518)

a1(k)− α11(k)N1(k)− α12(k)N2(k)− α13(k)N3(k) = 0 (519)

−α11(k)N1(k) = −a1(k) + α12(k)N2(k) + α13(k)N3(k) (520)

∴ N∗1 (k) = N1(k) =
a1(k)− α12(k)N2(k)− α13(k)N3(k)

α11(k)
(521)

Substituting (521) in (512) and assuming a positive solution N∗2 of N2 yields:

N2(k)ea2(k)N2(k)−α22(k)N2
2 (k)+α21(k)N1(k)N2(k)+α23(k)N2(k)N3(k) = 0 (522)

Therefore

N2(k) = 0 or ea2(k)N2(k)−α22(k)N2
2 (k)+α21(k)N1(k)N2(k)+α23(k)N2(k)N3(k) = 0 (523)

ea2(k)N2(k)−α22(k)N2
2 (k)+α21(k)N1(k)N2(k)+α23(k)N2(k)N3(k) = 0

a2(k)N2(k)− α22(k)N2
2 (k) + α21(k)N1(k)N2(k) + α23(k)N2(k)N3(k) = 0

N2(k)[a2(k)− α22(k)N2(k) + α21(k)N1(k) + α23(k)N3(k)] = 0

a2(k)− α22(k)N2(k) + α21(k)N1(k) + α23(k)N3(k) = 0

(524)

∴ a2(k)− α22(k)N2(k) + α21(k)N1(k) + α23(k)N3(k) = 0 (525)

a2(k)− α22(k)N2(k) + α21(k)

(
a1(k)− α12(k)N2(k)− α13(k)N3(k)

α11(k)

)
+ α23(k)N3(k) = 0 (526)

a2(k)− α22(k)N2(k) +
a1(k)α21(k)

α11(k)
− α12(k)α21(k)

α11(k)
N2(k)

− α13(k)α21(k)

α11(k)
N3(k) + α23(k)N3(k) = 0 (527)
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− α22(k)N2(k)− α12(k)α21(k)

α11(k)
N2(k) = −a2(k)− a1(k)α21(k)

α11(k)

+
α13(k)α21(k)

α11(k)
N3(k) + α23(k)N3(k) (528)

(
−α22(k)− α12(k)α21(k)

α11(k)

)
N2(k) =

−a2(k)α11(k)− a1(k)α21(k)

α11(k)

+

(
α23(k) +

α13(k)α21(k)

α11(k)

)
N3(k) (529)

(
−α11(k)α22(k)− α12(k)α21(k)

α11(k)

)
N2(k) = −a2(k)α11(k)− a1α21(k)

α11(k)

+

(
α11(k)α23(k) + α13(k)α21(k)

α11(k)

)
N3(k) (530)

∴ N∗2 (k) = N2(k) =
a2(k)α11(k)a1(k)α21(k)

α11(k)α22(k) + α12(k)α21(k)

+

(
α11(k)α23(k) + α13(k)α21(k)

−α22(k)α11(k)− α12(k)α21(k)

)
N3(k) (531)

Substituting (531) and (521) in (513) and assuming a positive solution N∗3 (k) of N3(k) yields:

N3(k)ea3(k)N3(k)−α33(k)N2
3 (k)+α31(k)N1(k)N3(k)+α32(k)N2(k)N3(k) = 0 (532)

Therefore

N3(k) = 0 or ea3(k)N3(k)−α33(k)N2
3 (k)+α31(k)N1(k)N3(k)+α32(k)N2(k)N3(k) = 0 (533)

ea3(k)N3(k)−α33(k)N2
3 (k)+α31(k)N1(k)N3(k)+α32(k)N2(k)N3(k) = 0 (534)

a3(k)N3(k)− α33(k)N2
3 (k) + α31(k)N1(k)N3(k) + α32(k)N2(k)N3(k) = 0 (535)

N3(k)[a3(k)− α33(k)N3(k) + α31(k)N1(k) + α32(k)N2(k)] = 0 (536)

a3(k)− α33(k)N3(k) + α31(k)N1(k) + α32(k)N2(k) = 0 (537)

a3(k)− α33(k)N3(k) + α31(k)

(
a1(k)− α12(k)N2(k)− α13(k)N3(k)

a11(k)

)
+

α32(k)

(
a2(k)α11(k)a1(k)α21(k)

α11(k)α22(k) + α12(k)α21(k)
+

(
α11(k)α23(k) + α13(k)α21(k)

−α22(k)α11(k)− α12(k)α21(k)

)
N3(k)

)
= 0 (538)

a3(k)− α33(k)N3(k)

+α31(k)

a1(k)− α12(k)
(

a2(k)α11(k)a1(k)α21(k)
α11(k)α22(k)+α12(k)α21(k)

+
(

α11(k)α23(k)+α13(k)α21(k)
−α22(k)α11(k)−α12(k)α21(k)

)
N3(k)

)
− α13(k)N3(k)

α11(k)


+ α32(k)

(
a2(k)α11(k)a1(k)α21(k)

α11(k)α22(k) + α12(k)α21(k)
+

(
α11(k)α23(k) + α13(k)α21(k)

−α22(k)α11(k)− α12(k)α21(k)

)
N3(k)

)
= 0

(539)
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∴ N∗3 (k) = N3(k) =
ρ3
D

(540)

where

ρ3 = a1(k)[α21(k)α33(k) + α31(k)α23(k)] + a2(k)[α11(k)α33(k) + α13(k)α31(k)]

+ a3(k)[α11(k)α23(k)− α13(k)α21(k)]

D = α11(k)[α22(k)α33(k)− α23(k)α32(k)] + α12(k)[α21(k)α33(k) + α31(k)α23(k)]

+ α13(k)[α31(k)α32(k) + α31(k)α22(k)]

Substituting (540) in (531) yields:

N∗2 (k) = N2(k) =
ρ2
D

(541)

where

ρ2 = a1(k)[α21(k)α33(k) + α31(k)α23(k)] + a2(k)[α11(k)α33(k) + α13(k)α31(k)]

+ a3(k)[α11(k)α23(k)− α13(k)α21(k)]

D = α11(k)[α22(k)α33(k)− α23(k)α32(k)] + α12(k)[α21(k)α33(k) + α31(k)α23(k)]

+ α13(k)[α31(k)α32(k) + α31(k)α22(k)]

Substituting (540) and (541) in (521) yields:

N∗1 (k) = N1(k) =
ρ1
D

(542)

where

ρ1 = a1[α22(k)α33(k)− α23(k)α32(k)]− a2(k)[α12(k)α33(k) + α13(k)α32(k)]

− a3(k)[α12(k)α23(k) + α13(k)α22(k)] (543)

D = α11(k)[α22(k)α33(k)− α23(k)α32(k)] + α12(k)[α21(k)α33(k) + α31(k)α23(k)]

+ α13(k)[α31(k)α32(k) + α31(k)α22(k)] (544)

Therefore
N∗1 (k) =

ρ1
D

N∗2 (k) =
ρ2
D

N∗3 (k) =
ρ3
D

(545)

where

ρ1 = a1[α22(k)α33(k)− α23(k)α32(k)]− a2(k)[α12(k)α33(k) + α13(k)α32(k)]

− a3(k)[α12(k)α23(k) + α13(k)α22(k)] (546)

ρ2 = a1(k)[α21(k)α33(k) + α31(k)α23(k)] + a2(k)[α11(k)α33(k) + α13(k)α31(k)]

+ a3(k)[α11(k)α23(k)− α13(k)α21(k)] (547)
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ρ3 = a1(k)[α21(k)α33(k) + α31(k)α23(k)] + a2(k)[α11(k)α33(k) + α13(k)α31(k)]

+ a3(k)[α11(k)α23(k)− α13(k)α21(k)] (548)

D = α11(k)[α22(k)α33(k)− α23(k)α32(k)] + α12(k)[α21(k)α33(k) + α31(k)α23(k)]

+ α13(k)[α31(k)α32(k) + α31(k)α22(k)] (549)

provided that the following expressions hold:

{a2(k)[α12(k)α33(k) + α13(k)α32(k)] + a3(k)[α12(k)α23(k) + α13(k)α22(k)]}
< a1(k)[α22(k)α33(k)− α23(k)α32(k)]

α11(k)α23(k) > α13(k)α21(k)

α11(k)α32(k) > α12(k)α31(k)

α22(k)α33(k) > α23(k)α32(k)

In conclusion, we have the following equilibrium point for the interior equilibrium:

(N1(k), N2(k), N3(k)) = E4(N
∗
1 (k), N∗2 (k), N∗3 (k))
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17 Stability

17.1 Discrete Form of System Using Euler’s Method

Consider the following discrete non-linear autonomous time-invariant system of difference equa-
tions:

N(k + 1) = N(k) + h

 a1N1(k)− α11N
2
1 (k)− α12N1(k)N2(k)− α13N1(k)N3(k)

a2N2(k)− α22N
2
2 (k) + α21N1(k)N2(k) + α23N2(k)N3(k)

a3N3(k)− α33N
2
3 (k) + α31N1(k)N3(k) + α32N2(k)N3(k)

 (550)

where N(k + 1) =

 N1(k + 1)
N2(k + 1)
N3(k + 1)

, N(k) =

 N1(k)
N2(k)
N3(k)

 and k = 0, 1, 2, . . ..

17.1.1 Linearisation Method

1. Applying a linearisation method to system (550) at equilibrium point (N1, N2, N3) =
(0, 0, 0), let f = (f1, f2, f3)

T where

f1 = h[a1N1(k)− α11N
2
1 (k)− α12N1(k)N2(k)− α13N1(k)N3(k)] (551)

f2 = h[a2N2(k)− α22N
2
2 (k) + α21N1(k)N2(k) + α23N2(k)N3(k)] (552)

f3 = h[a3N3(k)− α33N
2
3 (k) + α31N1(k)N3(k) + α32N2(k)N3(k)] (553)

2. Then, the Jacobian matrix of system (550) is:

J(0,0,0) =
∂f

∂N

∣∣∣∣
(0,0,0)

=


∂f1(0,0,0)
∂N1

∂f1(0,0,0)
∂N2

∂f1(0,0,0)
∂N3

∂f2(0,0,0)
∂N1

∂f2(0,0,0)
∂N2

∂f2(0,0,0)
∂N3

∂f3(0,0,0)
∂N1

∂f3(0,0,0)
∂N2

∂f3(0,0,0)
∂N3

 =

 ha1 0 0
0 ha2 0
0 0 ha3

 (554)

3. Hence, the system (550) can be rewritten as:

N(k + 1) = AN(k) + g(N(k)) (555)

where

N(k + 1) =

 N1(k + 1)
N2(k + 1)
N3(k + 1)

 , A =

 ha1 0 0
0 ha2 0
0 0 ha3

 , N(k) =

 N1(k)
N2(k)
N3(k)

 (556)

and

g(N(k)) = −h

 a1N1(k)− α11N
2
1 (k)− α12N1(k)N2(k)− α13N1(k)N3(k)

a2N2(k)− α22N
2
2 (k) + α21N1(k)N2(k) + α23N2(k)N3(k)

a3N3(k)− α33N
2
3 (k) + α31N1(k)N3(k) + α32N2(k)N3(k)

 (557)

4. Calculating the eigenvalues of A:

|A− λI| =

∣∣∣∣∣∣
ha1 − λ 0 0

0 ha2 − λ 0
0 0 ha3 − λ

∣∣∣∣∣∣
= ha1 − λ

∣∣∣∣ ha2 − λ 0
0 ha3 − λ

∣∣∣∣
= (ha1 − λ)(ha2 − λ)(ha3 − λ)

(558)
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Therefore
λ1 = ha1 λ2 = ha2 λ3 = ha3 (559)

If:

• ha1, ha2, ha3 < 0
⇒ The equilibrium solution (0, 0, 0) of system (550) is Stable.

• Otherwise
⇒ The equilibrium solution (0, 0, 0) of system (550) is Unstable.
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17.2 Discrete Form of System Using Method of Piecewise Constant
Arguments

Consider the following discrete non-linear autonomous time-invariant system of difference equa-
tions:

N1(k + 1) = N1(k)ea1(k)N1(k)−α11(k)N2
1 (k)−α12(k)N1(k)N2(k)−α13(k)N1(k)N3(k)

N2(k + 1) = N2(k)ea2(k)N2(k)−α22(k)N2
2 (k)+α21(k)N1(k)N2(k)+α23(k)N2(k)N3(k)

N3(k + 1) = N3(k)ea3(k)N3(k)−α33(k)N2
3 (k)+α31(k)N1(k)N3(k)+α32(k)N2(k)N3(k)

(560)

17.2.1 Linearisation Method

1. Applying a linearisation method to system (560) at equilibrium point (N1, N2, N3) =
(0, 0, 0), let f = (f1, f2, f3)

T where

f1 = N1(k)ea1(k)N1(k)−α11(k)N2
1 (k)−α12(k)N1(k)N2(k)−α13(k)N1(k)N3(k) (561)

f2 = N2(k)ea2(k)N2(k)−α22(k)N2
2 (k)+α21(k)N1(k)N2(k)+α23(k)N2(k)N3(k) (562)

f3 = N3(k)ea3(k)N3(k)−α33(k)N2
3 (k)+α31(k)N1(k)N3(k)+α32(k)N2(k)N3(k) (563)

2. Then, the Jacobian matrix of system (560) is:

J(0,0,0) =
∂f

∂N

∣∣∣∣
(0,0,0)

=


∂f1(0,0,0)
∂N1

∂f1(0,0,0)
∂N2

∂f1(0,0,0)
∂N3

∂f2(0,0,0)
∂N1

∂f2(0,0,0)
∂N2

∂f2(0,0,0)
∂N3

∂f3(0,0,0)
∂N1

∂f3(0,0,0)
∂N2

∂f3(0,0,0)
∂N3

 =

 1 1 1
1 1 1
1 1 1

 (564)

3. Hence, the system (560) can be rewritten as:

N(k + 1) = AN(k) + g(N(k)) (565)

where

N(k + 1) =

 N1(k + 1)
N2(k + 1)
N3(k + 1)

 , A =

 1 1 1
1 1 1
1 1 1

 , N(k) =

 N1(k)
N2(k)
N3(k)

 (566)

and

g(N(k)) = −

 N1(k)ea1(k)N1(k)−α11(k)N2
1 (k)−α12(k)N1(k)N2(k)−α13(k)N1(k)N3(k)

N2(k)ea2(k)N2(k)−α22(k)N2
2 (k)+α21(k)N1(k)N2(k)+α23(k)N2(k)N3(k)

N3(k)ea3(k)N3(k)−α33(k)N2
3 (k)+α31(k)N1(k)N3(k)+α32(k)N2(k)N3(k)

 (567)

4. Calculating the eigenvalues of A:

|A− λI| =

∣∣∣∣∣∣
1− λ 1 1

1 1− λ 1
1 1 1− λ

∣∣∣∣∣∣
= 1− λ

∣∣∣∣ 1− λ 1
1 1− λ

∣∣∣∣− ∣∣∣∣ 1 1
1 1− λ

∣∣∣∣+

∣∣∣∣ 1 1− λ
1 1

∣∣∣∣
= 1− λ[(1− λ)(1− λ)− 1]− [1− λ− 1] + [1− (1− λ)]

= 1− λ[λ2 − 2λ] + λ+ λ

= −λ3 + λ2 + 2λ

= −λ(λ− 1)(λ+ 2)

(568)
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Therefore
λ1 = 0 λ2 = 1 λ3 = −2 (569)

Since
λ1 ≤ 0 λ2 > 0 λ3 < 0 (570)

⇒ The equilibrium solution (0, 0, 0) of system (560) is Unstable.
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18 Numerical Examples

18.1 Discrete Form of System Using Euler’s Method

Example 1

Modifying values from Example 1 (with corrections) from Chapter 4, for a discrete autonomous
time-invariant system, we have:

a1 = 3 a2 = 1 a3 = 1
α11 = 0.01 α21 = 0.1 α31 = 0.1
α12 = 0.1 α22 = 0.2 α32 = 0.1
α13 = 0.1 α23 = 0.1 α33 = 0.3

with initial values:

N1 = 0.5
N2 = 0.75
N3 = 0.6

and step size h = 0.05 for the k interval 0 < k < 20.

Hence, we have the following MATLAB script for solving the system by using a k-iterate
loop as well as plotting the results on a 2D and 3D plane:

a1 = 3;

a2 = 1;

a3 = 1;

alpha11 = 0.01;

alpha12 = 0.1;

alpha13 = 0.1;

alpha21 = 0.1;

alpha22 = 0.2;

alpha23 = 0.1;

alpha31 = 0.1;

alpha32 = 0.1;

alpha33 = 0.3;

h=0.05;

N1zero = 0.5;

N2zero = 0.75;

N3zero = 0.6;

N1 = zeros(21,1);

N2 = zeros(21,1);

N3 = zeros(21,1);

N1(1) = N1zero;

N2(1) = N2zero;

N3(1) = N3zero;
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n=0:20;

for k=1:20

N1(k+1) = N1(k)+h*(a1*N1(k)-alpha11*N1(k).^2-alpha12*N1(k)*N2(k)

-alpha13*N1(k)*N3(k));

N2(k+1) = N2(k)+h*(a2*N2(k)-alpha22*N2(k).^2+alpha21*N1(k)*N2(k)

+alpha23*N2(k)*N3(k));

N3(k+1) = N3(k)+h*(a3*N3(k)-alpha33*N3(k).^2+alpha31*N1(k)*N3(k)

+alpha32*N2(k)*N3(k));

end

%2D Plot

plot(n,N1,’-o’,n,N2,’-.’,n,N3,’--’)

title(’Example 1’)

xlabel(’Time’), ylabel(’Population’)

%3D Plot

plot3(N1,N2,N3)

title(’Example 1’)

xlabel(’Prey Population’), ylabel(’Predator 1 Population’),

zlabel(’Predator 2 Population’)

which yields the following 2D and 3D plots:
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Figure 9: Example 1 2D Plot

Figure 10: Example 1 3D Plot
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Example 2

Modifying values from Example 1 (with corrections) from Chapter 4, for a discrete autonomous
time-invariant system, we have:

a1 = 3 a2 = 1 a3 = 1
α11 = 0.01 α21 = 0.1 α31 = 0.1
α12 = 0.1 α22 = 0.2 α32 = 0.1
α13 = 0.1 α23 = 0.1 α33 = 0.3

with initial values:

N1 = 10
N2 = 10
N3 = 10

and step size h = 0.05 for the k interval 0 < k < 20.

Hence, we have the following MATLAB script for solving the system by using a k-iterate
loop as well as plotting the results on a 2D and 3D plane:

a1 = 3;

a2 = 1;

a3 = 1;

alpha11 = 0.01;

alpha12 = 0.1;

alpha13 = 0.1;

alpha21 = 0.1;

alpha22 = 0.2;

alpha23 = 0.1;

alpha31 = 0.1;

alpha32 = 0.1;

alpha33 = 0.3;

h=0.05;

N1zero = 0.1;

N2zero = 0.1;

N3zero = 0.1;

N1 = zeros(21,1);

N2 = zeros(21,1);

N3 = zeros(21,1);

N1(1) = N1zero;

N2(1) = N2zero;

N3(1) = N3zero;

n=0:20;
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for k=1:20

N1(k+1) = N1(k)+h*(a1*N1(k)-alpha11*N1(k).^2-alpha12*N1(k)*N2(k)

-alpha13*N1(k)*N3(k));

N2(k+1) = N2(k)+h*(a2*N2(k)-alpha22*N2(k).^2+alpha21*N1(k)*N2(k)

+alpha23*N2(k)*N3(k));

N3(k+1) = N3(k)+h*(a3*N3(k)-alpha33*N3(k).^2+alpha31*N1(k)*N3(k)

+alpha32*N2(k)*N3(k));

end

%2D Plot

plot(n,N1,’-o’,n,N2,’-.’,n,N3,’--’)

title(’Example 2’)

xlabel(’Time’), ylabel(’Population’)

%3D Plot

plot3(N1,N2,N3)

title(’Example 2’)

xlabel(’Prey Population’), ylabel(’Predator 1 Population’),

zlabel(’Predator 2 Population’)

which yields the following 2D and 3D plots:
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Figure 11: Example 1 2D Plot

Figure 12: Example 1 3D Plot
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18.2 Discrete Form of System Using Method of Piecewise Constant
Arguments

Example 1

Modifying values from Example 1 (with corrections) from Chapter 4, for a discrete autonomous
time-invariant system, we have:

a1 = 0.3 a2 = 0.1 a3 = 0.1
α11 = 0.001 α21 = 0.01 α31 = 0.01
α12 = 0.01 α22 = 0.02 α32 = 0.01
α13 = 0.01 α23 = 0.01 α33 = 0.03

with initial values:

N1 = 0.05
N2 = 0.075
N3 = 0.06

and step size h = 0.05 for the k interval 0 < k < 20.

Hence, we have the following MATLAB script for solving the system by using a k-iterate
loop as well as plotting the results on a 2D and 3D plane:

a1 = 0.3;

a2 = 0.1;

a3 = 0.1;

alpha11 = 0.001;

alpha12 = 0.01;

alpha13 = 0.01;

alpha21 = 0.01;

alpha22 = 0.02;

alpha23 = 0.01;

alpha31 = 0.01;

alpha32 = 0.01;

alpha33 = 0.03;

N1zero = 0.05;

N2zero = 0.075;

N3zero = 0.06;

N1 = zeros(21,1);

N2 = zeros(21,1);

N3 = zeros(21,1);

N1(1) = N1zero;

N2(1) = N2zero;

N3(1) = N3zero;

n=0:20;
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for k=1:20

N1(k+1) = N1(k)*exp(a1*N1(k)-alpha11*N1(k).^2-alpha12*N1(k)*N2(k)

-alpha13*N1(k)*N3(k));

N2(k+1) = N2(k)*exp(a2*N2(k)-alpha22*N2(k).^2+alpha21*N1(k)*N2(k)

+alpha23*N2(k)*N3(k));

N3(k+1) = N3(k)*exp(a3*N3(k)-alpha33*N3(k).^2+alpha31*N1(k)*N3(k)

+alpha32*N2(k)*N3(k));

end

%2D Plot

plot(n,N1,’-o’,n,N2,’-.’,n,N3,’--’)

title(’Example 1’)

xlabel(’Time’), ylabel(’Population’)

%3D Plot

plot3(N1,N2,N3)

title(’Example 1’)

xlabel(’Prey Population’), ylabel(’Predator 1 Population’),

zlabel(’Predator 2 Population’)

which yields the following 2D and 3D plots:
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Figure 13: Example 1 2D Plot

Figure 14: Example 1 3D Plot
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Example 2

Modifying values from Example 2 (with corrections) from Chapter 4, for a discrete autonomous
time-invariant system, we have:

a1 = 0.3 a2 = 0.1 a3 = 0.1
α11 = 0.001 α21 = 0.01 α31 = 0.01
α12 = 0.01 α22 = 0.02 α32 = 0.01
α13 = 0.01 α23 = 0.01 α33 = 0.03

with initial values:

N1 = 0.01
N2 = 0.01
N3 = 0.01

and step size h = 0.05 for the k interval 0 < k < 20.

Hence, we have the following MATLAB script for solving the system by using a k-iterate
loop as well as plotting the results on a 2D and 3D plane:

a1 = 0.3;

a2 = 0.1;

a3 = 0.1;

alpha11 = 0.001;

alpha12 = 0.01;

alpha13 = 0.01;

alpha21 = 0.01;

alpha22 = 0.02;

alpha23 = 0.01;

alpha31 = 0.01;

alpha32 = 0.01;

alpha33 = 0.03;

N1zero = 0.01;

N2zero = 0.01;

N3zero = 0.01;

N1 = zeros(21,1);

N2 = zeros(21,1);

N3 = zeros(21,1);

N1(1) = N1zero;

N2(1) = N2zero;

N3(1) = N3zero;

n=0:20;

for k=1:20

N1(k+1) = N1(k)*exp(a1*N1(k)-alpha11*N1(k).^2-alpha12*N1(k)*N2(k)
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-alpha13*N1(k)*N3(k));

N2(k+1) = N2(k)*exp(a2*N2(k)-alpha22*N2(k).^2+alpha21*N1(k)*N2(k)

+alpha23*N2(k)*N3(k));

N3(k+1) = N3(k)*exp(a3*N3(k)-alpha33*N3(k).^2+alpha31*N1(k)*N3(k)

+alpha32*N2(k)*N3(k));

end

%2D Plot

plot(n,N1,’-o’,n,N2,’-.’,n,N3,’--’)

title(’Example 2’)

xlabel(’Time’), ylabel(’Population’)

%3D Plot

plot3(N1,N2,N3)

title(’Example 2’)

xlabel(’Prey Population’), ylabel(’Predator 1 Population’),

zlabel(’Predator 2 Population’)

which yields the following 2D and 3D plots:
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Figure 15: Example 1 2D Plot

Figure 16: Example 1 3D Plot

106



Chapter 5

18.3 Comparison of Both Methods

Here, we compare results for both methods using the same constants and initial values:

Case 1

Using values from Example 1 of the Discrete Form of System Using Euler’s Method, we have

a1 = 3 a2 = 1 a3 = 1
α11 = 0.01 α21 = 0.1 α31 = 0.1
α12 = 0.1 α22 = 0.2 α32 = 0.1
α13 = 0.1 α23 = 0.1 α33 = 0.3

with initial values:

N1 = 0.5
N2 = 0.75
N3 = 0.6

and step size h = 0.05 for the k interval 0 < k < 100.

Hence, results for both discrete schemes produce the following plot of results:

Figure 17: Example 1 2D Plot
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Here, we can see that values for N1, N2 and N3, using Euler’s method, increase over time
until approximately k = 40 for N1 and k = 45 for N2 and N3 where they all decrease. Values
for N1, N2 and N3, using the method of piecewise constant arguments tend very quickly to
infinity before tending very quickly to zero. Therefore, there is a great difference between
results produced by both methods.

Case 2

Using values from Example 2 of the Discrete Form of System Using Euler’s Method, we have

a1 = 3 a2 = 1 a3 = 1
α11 = 0.01 α21 = 0.1 α31 = 0.1
α12 = 0.1 α22 = 0.2 α32 = 0.1
α13 = 0.1 α23 = 0.1 α33 = 0.3

with initial values:

N1 = 0.1
N2 = 0.1
N3 = 0.1

and step size h = 0.05 for the k interval 0 < k < 100.

Hence, results for both discrete schemes produce the following plots of results:

Figure 18: Example 1 2D Plot
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Similar to Case 1, here we can see that values for N1, N2 and N3, using Euler’s method,
until approximately k = 40 for N1 and k = 45 for N2 and N3 where they all decrease, whilst
reaching smaller numbers of population at their highest values. Again, values for N1, using the
method of piecewise constant arguments tend very quickly to infinity whilst values for N2 and
N3 gradually increase over time. Therefore, as in Case 1, there is a great difference between
results produced by both methods.

Case 3

Using values from Example 1 of the Discrete Form of System Using Method of Piecewise Con-
stant Arguments, we have

a1 = 0.3 a2 = 0.1 a3 = 0.1
α11 = 0.001 α21 = 0.01 α31 = 0.01
α12 = 0.01 α22 = 0.02 α32 = 0.01
α13 = 0.01 α23 = 0.01 α33 = 0.03

with initial values:

N1 = 0.05
N2 = 0.075
N3 = 0.06

and step size h = 0.05 for the k interval 0 < k < 100.

Hence, results for both discrete schemes produce the following plots of results:

Figure 19: Example 1 2D Plot
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Case 3 shows a better correlation between results for both Euler and piecewise constant
argument methods. Here, values for N1, N2 and N3 for both methods all gradually increase
over time, with N1 values using the method of piecewise constant arguments rapidly increasing
between the interval 60 < k < 70 before tending very quickly to zero after k = 70.

Case 4

Using values from Example 2 of the Discrete Form of System Using Method of Piecewise Con-
stant Arguments, we have

a1 = 0.3 a2 = 0.1 a3 = 0.1
α11 = 0.001 α21 = 0.01 α31 = 0.01
α12 = 0.01 α22 = 0.02 α32 = 0.01
α13 = 0.01 α23 = 0.01 α33 = 0.03

with initial values:

N1 = 0.01
N2 = 0.01
N3 = 0.01

and step size h = 0.05 for the k interval 0 < k < 100.

Hence, results for both discrete schemes produce the following plots of results:

Figure 20: Example 1 2D Plot
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Case 4 shows the strongest relationship between both methods. Here, N1, N2 and N3

values for both methods display a positive correlation, continuously increasing in the interval
0 < k < 100.
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19 Existence and Uniqueness of The System

In order to study the existence and uniqueness of systems (370) and (374), we use the following
definition and theorem:

Definition 7 (Existence of a Unique Continuous Solution of a Autonomous Time-Invariant
System[5]).

Let x(n) = fn(x0) and x(0) = f 0(x0) = x0.

Hence:
x(n+ 1) = fn+1(x0) = f [fn(x0)] = f(x(n)) (571)

If fn(x0) → 0 as n → ∞, then there exists a unique continuous solution of the Autonomous
Time-Invariant system:

x(n+ 1) = f(x(n)) (572)

Theorem 11 (Unique Continuous Solution of a Discrete System of Difference Equations [41]).
The vector difference equation

EX = F (X, t) (573)

where X = [x1(t), x2(t), . . . , xn(t)], has a solution X defined for t0 ≤ t ≤ t0 + k, where k is a
positive integer or zero, provided that F exists for all X and t, and that for t0 ≤ t ≤ t0 + 1:

X(t) = X0 = [f1(t), f2(t), . . . , fn(t)] (574)

where the functions fj(t), j = 1, 2, . . . , n, are defined for t0 ≤ t ≤ t0 + k.

Hence, the existence of the solution X is unique and continuous.

Proof. Assuming that the function F is defined for all t and X, we look for a solution X such
that, for t = t0:

X = X0 = [x1(t0), x2(t0), . . . , xn(t0)] (575)

Since EX0 = F (X0, t), and F is determined for all X and t, we have

EX0 = [x1(t+ 1), x2(t+ 1), . . . , xn(t+ 1)] = X1 = F (X0, t0) (576)

so that X1 is determined.

But
EX1 = [x1(t0 + 2), x2(t0 + 2), . . . , xn(t0 + 2)] = X2 = F (X1, t0 + 1) (577)

so that X2 is determined.

To complete the proof by induction, we assume that

EXk = [x1(t0 + k + 1), x2(t0 + k + 1), . . . , xn(t0 + k + 1)] = Xk+1

= F (Xk, t0 + k)
(578)

so that Xk+1 is determined.
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In conclusion, we can see that X is determined for t0 + k, where k is an arbitrary positive
integer or zero. This however does not prove that X exists for any t since we have limited
ourselves to values t0 + k, where k is a positive integer or zero. To determine X for any value
of t we need more specific initial conditions.

Assume that, for t0 ≤ t ≤ t0 + 1:

X = X0 = [f1(t), f2(t), . . . , fn(t)] (579)

where the fj(t), j = 1, 2, . . . , n and thus the vector X0, are defined for t0 ≤ t ≤ t0 + 1.

Then

EX0 = F (X0, t) = X1 = [x1(t), x2(t), . . . , xn(t)] (580)

which defines X for t0 + 1 ≤ t ≤ t0 + 2,

EX1 = F (X1, t+ 1) = X2 = [x1(t), x2(t), . . . , xn(t)] (581)

which defines X for t0 + 2 ≤ t ≤ t0 + 3,
...
Assuming that:

Xk = [x1(t), x2(t), . . . , xn(t)] (582)

for t0 + k ≤ t ≤ t0 + k + 1, then:

EXk = F (Xk, t+ k) = Xk+1 (583)

which defines X for the interval t0 + k + 1 ≤ t ≤ t0 + k + 2.

Thus, X is determined for t0 ≤ t ≤ t0 + k, where k is an arbitrary positive integer or zero.

Proving uniqueness, suppose that (573) has two solutions X and Y satisfying the conditions of
Theorem 11, then:

EY = F (Y, t) (584)

EX = F (X, t) (585)

with Y = X0(t) = X for t0 ≤ t ≤ t0 + 1. It follows that:

EX = F (X, t) = F (Y, t) = EY, t0 ≤ t ≤ t0 + 1 (586)

E2X = F (FX, t+ 1) = F (EY, t+ 1) = E2Y, t0 + 1 ≤ t ≤ t0 + 2 (587)

... (588)

Assuming that EkX = EkY for t0 + k − 1 ≤ t ≤ t0 + k, then:

Ek+1X = F (EkX, t+ k) = F (EkY, t+ k) = Ek+1Y (589)

for t0 + k ≤ t ≤ t0 + k + 1.
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19.1 Proving Existence and Uniqueness of The System

19.1.1 Discrete Form of System Using Euler’s Method

Consider the following discrete non-linear autonomous time-invariant system of difference equa-
tions:

N(k + 1) = N(k) + h

 a1N1(k)− α11N
2
1 (k)− α12N1(k)N2(k)− α13N1(k)N3(k)

a2N2(k)− α22N
2
2 (k) + α21N1(k)N2(k) + α23N2(k)N3(k)

a3N3(k)− α33N
2
3 (k) + α31N1(k)N3(k) + α32N2(k)N3(k)

 (590)

where N(k + 1) =

 N1(k + 1)
N2(k + 1)
N3(k + 1)

, N(k) =

 N1(k)
N2(k)
N3(k)

 and k = 0, 1, 2, . . ..

By Definition 7, let:

N(k + 1) = fn+1(x0) and N(k) = fn(x0) (591)

Hence, system (590) becomes:

fn+1(x0) = fn(x0) + h

 a1f
n
1 (x0)− α11f

n
1
2(x0)− α12f

n
1 (x0)f

n
2 (x0)− α13f

n
1 (x0)f

n
3 (x0)

a2f
n
2 (x0)− α22f

n
2
2(x0) + α21f

n
1 (x0)f

n
2 (x0) + α23f

n
2 (x0)f

n
3 (x0)

a3f
n
3 (x0)− α33f

n
3
2(x0) + α31f

n
1 (x0)f

n
3 (x0) + α32f

n
2 (x0)f

n
3 (x0)


(592)

given initial conditions:

x1(0) = f 0
1 (x0) = x01 (593)

x2(0) = f 0
2 (x0) = x02 (594)

x3(0) = f 0
3 (x0) = x03 (595)

If fn+1(x0)→ 0 as n→∞.
⇒ There exists a unique and continuous solution of system (590).

19.1.2 Discrete Form of System Using Method of Piecewise Constant Arguments

Consider the following discrete non-linear autonomous time-invariant system of difference equa-
tions:

N1(k + 1) = N1(k)ea1(k)N1(k)−α11(k)N2
1 (k)−α12(k)N1(k)N2(k)−α13(k)N1(k)N3(k)

N2(k + 1) = N2(k)ea2(k)N2(k)−α22(k)N2
2 (k)+α21(k)N1(k)N2(k)+α23(k)N2(k)N3(k)

N3(k + 1) = N3(k)ea3(k)N3(k)−α33(k)N2
3 (k)+α31(k)N1(k)N3(k)+α32(k)N2(k)N3(k)

(596)

By Definition 7, let:

Ni(k + 1) = fn+1(x0) for i = 1, 2, 3, . . . and Ni(k) = fn(x0) for i = 1, 2, 3, . . . (597)

Hence, system (596) becomes:

fn+1
1 (x0) = fn1 (x0)e

a1(k)fn1 (x0)−α11(k)fn1
2(x0)−α12(k)fn1 (x0)fn2 (x0)−α13(k)fn1 (x0)fn3 (x0)

fn+1
2 (x0) = fn2 (x0)e

a2(k)fn2 (x0)−α22(k)fn2
2(x0)+α21(k)fn1 (x0)fn2 (x0)+α23(k)fn2 (x0)fn3 (x0)

fn+1
3 (x0) = fn3 (x0)e

a3(k)fn3 (x0)−α33(k)fn3
2(x0)+α31(k)fn1 (x0)fn3 (x0)+α32(k)fn2 (x0)fn3 (x0)

(598)
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given initial conditions:

x1(0) = f 0
1 (x0) = x01 (599)

x2(0) = f 0
2 (x0) = x02 (600)

x3(0) = f 0
3 (x0) = x03 (601)

If fn+1(x0)→ 0 as n→∞.
⇒ There exists a unique and continuous solution of system (596).
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20 Permanence

20.1 Discrete Form of System Using Euler’s Method

Considering the following non-linear discrete autonomous time-invariant system of difference
equations:

N1(k + 1) = N1(k) + h[a1N1(k)− α11N
2
1 (k)− α12N1(k)N2(k)− α13N1(k)N3(k)] (602)

N2(k + 1) = N2(k) + h[a2N2(k)− α22N
2
2 (k) + α21N1(k)N2(k) + α23N2(k)N3(k)] (603)

N3(k + 1) = N2(k) + h[a3N3(k)− α33N
2
3 (k) + α31N1(k)N3(k) + α32N2(k)N3(k)] (604)

Here, we prove that the system is persistent. Hence, we prove that:

lim inf
t→∞

N1(k + 1) > 0 (605)

lim inf
t→∞

N2(k + 1) > 0 (606)

lim inf
t→∞

N3(k + 1) > 0 (607)

Here, we assume that the parameters Ni(k) > 0 and the constants ai, αij > 0 for i = 1, 2, 3 and
j = 1, 2, 3.

1. Considering equation (602):

N1(k + 1) = N1(k) + h[a1N1(k)− α11N
2
1 (k)− α12N1(k)N2(k)− α13N1(k)N3(k)] (608)

If:

•
a1N1(k) > α11N

2
1 (k) + α12N1(k)N2(k) + α13N1(k)N3(k) (609)

or

•
a1N1(k) < α11N

2
1 (k) + α12N1(k)N2(k) + α13N1(k)N3(k)

and

N1(k) > h[a1N1(k)− α11N
2
1 (k)− α12N1(k)N2(k)− α13N1(k)N3(k)]

(610)

then:
lim inf
t→∞

N1(k + 1) > 0 (611)

and equation (602)/(608) is said to be persistent.

2. Considering equation (603):

N2(k + 1) = N2(k) + h[a2N2(k)− α22N
2
2 (k) + α21N1(k)N2(k) + α23N2(k)N3(k)] (612)

If:

•
α22N

2
2 (k) < a2N2(k) + α21N1(k)N2(k) + α23N2(k)N3(k) (613)

116



Chapter 5

or

•
α22N

2
2 (k) > a2N2(k) + α21N1(k)N2(k) + α23N2(k)N3(k)

and

N2(k) > h[a2N2(k)− α22N
2
2 (k) + α21N1(k)N2(k) + α23N2(k)N3(k)]

(614)

then:
lim inf
t→∞

N2(k + 1) > 0 (615)

and equation (603)/(612) is said to be persistent.

3. Considering equation (604):

N3(k + 1) = N2(k) + h[a3N3(k)− α33N
2
3 (k) + α31N1(k)N3(k) + α32N2(k)N3(k)] (616)

If:

•
α33N

2
3 (k) < a3N3(k) + α31N1(k)N3(k) + α32N2(k)N3(k) (617)

or

•
α33N

2
3 (k) > a3N3(k) + α31N1(k)N3(k) + α32N2(k)N3(k)

and

N2(k) > h[a3N3(k)− α33N
2
3 (k) + α31N1(k)N3(k) + α32N2(k)N3(k)]

(618)

then:
lim inf
t→∞

N3(k + 1) > 0 (619)

and equation (604)/(616) is said to be Persistent.

Therefore, if:

1.

lim inf
t→∞

N1(k + 1) > 0 (620)

lim inf
t→∞

N2(k + 1) > 0 (621)

lim inf
t→∞

N3(k + 1) > 0 (622)

2. Conditions (609), (610), (613), (614), (617) and (618) are true.

⇒ The system of equations (370) is Persistent.
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20.2 Discrete Form of System Using Method of Piecewise Constant
Arguments

Consider the following discrete non-linear autonomous time-invariant system of difference equa-
tions:

N1(k + 1) = N1(k)ea1(k)N1(k)−α11(k)N2
1 (k)−α12(k)N1(k)N2(k)−α13(k)N1(k)N3(k) (623)

N2(k + 1) = N2(k)ea2(k)N2(k)−α22(k)N2
2 (k)+α21(k)N1(k)N2(k)+α23(k)N2(k)N3(k) (624)

N3(k + 1) = N3(k)ea3(k)N3(k)−α33(k)N2
3 (k)+α31(k)N1(k)N3(k)+α32(k)N2(k)N3(k) (625)

Here, we prove that the system is persistent. Hence, we prove that:

lim inf
t→∞

N1(k + 1) > 0 (626)

lim inf
t→∞

N2(k + 1) > 0 (627)

lim inf
t→∞

N3(k + 1) > 0 (628)

Here, we assume that the parameters Ni(k) > 0 and the constants ai(k), αij(k) > 0 for i = 1, 2, 3
and j = 1, 2, 3.

1. Considering equation (623):

N1(k + 1) = N1(k)ea1(k)N1(k)−α11(k)N2
1 (k)−α12(k)N1(k)N2(k)−α13(k)N1(k)N3(k) (629)

Since

N1(k) > 0 (630)

and

ea1(k)N1(k)−α11(k)N2
1 (k)−α12(k)N1(k)N2(k)−α13(k)N1(k)N3(k) > 0 (631)

then:

lim inf
t→∞

N1(k + 1) > 0 (632)

and equation (623)/(629) is said to be Persistent.

2. Considering equation (624):

N2(k + 1) = N2(k)ea2(k)N2(k)−α22(k)N2
2 (k)+α21(k)N1(k)N2(k)+α23(k)N2(k)N3(k) (633)

Since

N2(k) > 0 (634)

and

ea2(k)N2(k)−α22(k)N2
2 (k)+α21(k)N1(k)N2(k)+α23(k)N2(k)N3(k) > 0 (635)

then:

lim inf
t→∞

N2(k + 1) > 0 (636)

and equation (624)/(633) is said to be Persistent.
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3. Considering equation (625):

N3(k + 1) = N3(k)ea3(k)N3(k)−α33(k)N2
3 (k)+α31(k)N1(k)N3(k)+α32(k)N2(k)N3(k) (637)

Since
N3(k) > 0 (638)

and
ea3(k)N3(k)−α33(k)N2

3 (k)+α31(k)N1(k)N3(k)+α32(k)N2(k)N3(k) > 0 (639)

then:
lim inf
t→∞

N3(k + 1) > 0 (640)

and equation (625)/(637) is said to be Persistent.

Therefore, since

lim inf
t→∞

N1(k + 1) > 0 (641)

lim inf
t→∞

N2(k + 1) > 0 (642)

lim inf
t→∞

N3(k + 1) > 0 (643)

⇒ The system of equations (374) is Persistent.
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Conclusion

To summarise what this investigation has discovered, In Chapter 1 we studied basic concepts of
population modelling. These included single equations of continuous nature such as the Malthus
[27] and Verhulst [45] models and the example of Monod’s Nightmare [20], [31] associated with
the growth of E. coli. We also examined single equations of a discrete nature involving difference
equations, focusing on density-dependent and density-independent growth and examples that
simulated growth of rabbit, cell and insect populations [4], [30]. Next we looked at systems
of equations and how they can be solved. For continuous type systems, this involved the
elimination and eigenvalue-eigenvector method whilst the discrete case of equations required the
classification of autonomous time-invariant or non-autonomous time-variant types of systems
as well as linear and non-linear cases. Following the classification of systems of a continuous or
discrete nature, we examined interacting populations including predator-prey, competition and
mutualism or symbiosis relationships. Here, we investigated the Lotka-Volterra Model [25], [26],
[30], [47] and how it could be modified for each type of interaction. We also studied examples
of these interactions including the Canadian lynx and snowshoe hare [30], a host-parasitoid
system [4] and the spread of and introduced pest in the form of the red and black fire ant [22],
[46].

Chapters 2 and 3 introduced stability analysis of both continuous and discrete systems.
Here we studied theorems and examples of linear problems involving calculating equilibrium
solutions and non-linear problems including eigenvalue, linearisation and Lyapunov methods
[2], [5], [42].

In Chapter 4 we studied the research paper - A Model of a Three Species Ecosystem with
Mutualism Between The Predators by K. S. Reddy and N. C. Pattabhiramacharyulu [32].
Here, we looked at the basic definitions and assumptions of the model, examined different cases
for equilibrium solutions, proved global stability of the system and implemented numerical
examples for the model before reviewing existence and uniqueness and permanence properties.

Chapter 5 involved constructing a discrete scheme of the model from Chapter 4. We were
able to do this in two ways, by using Euler’s method to create one autonomous time-invariant
form of the system, and utilising the method of piecewise constant arguments implemented in
the research paper Periodic Solutions of a DIscrete Time Nonautonomous Ratio-Dependent
Predator-Prey System by M Fan and K Wang [6] to establish another autonomous time-
invariant form of the system. For both discretisations, we studied equilibrium solutions, sta-
bility using the linearisation method, numerical examples and existence and uniqueness, and
permanence properties.

In future, this investigation could be taken further in a number of ways. Many examples
in Chapters 1 and 3 could be developed by studying stability, existence and uniqueness and
permanence properties as studied for systems in Chapters 4 and 5. These examples could also
be implemented in mathematical software such as MATLAB in order to integrate numerical
examples that produce quantitative results and behaviours for each model or system. The
continuous and discrete models in Chapters 4 and 5 are bases for implementing further concepts
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such as delay-differential equations. They can also be studied further in terms of stability
analysis. For systems (211), (370) and (374) we used the linearisation method to determine
stability. The Lyapunov method for a given Lyapunov function could also be used as well
as additional stability methods. For Euler’s method and the method of piecewise constant
arguments, we created two numerical examples each. Here, additional examples could be used,
incorporating different values of ai,αij and Ni(0) for i = 1, 2, 3 as well as different step sizes h
for the scheme using Euler’s method.
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