
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The VADA Architecture for Cost-Effective Data Wrangling
Citation for published version:
Konstantinou, N, Koehler, M, Abel, E, Civili, C, Neumayr, B, Sallinger, E, Fernandes, AAA, Gottlob, G,
Keane, JA, Libkin, L & Paton, NW 2017, The VADA Architecture for Cost-Effective Data Wrangling. in
Proceedings of the 2017 ACM International Conference on Management of Data. SIGMOD '17, ACM, New
York, NY, USA, pp. 1599-1602, 2017 ACM International Conference on Management of Data, Chicago,
United States, 14/05/17. DOI: 10.1145/3035918.3058730

Digital Object Identifier (DOI):
10.1145/3035918.3058730

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 2017 ACM International Conference on Management of Data

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/82961983?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3035918.3058730
https://www.research.ed.ac.uk/portal/en/publications/the-vada-architecture-for-costeffective-data-wrangling(36295a10-0b57-48a8-82ac-19d856815a89).html


The VADA Architecture for Cost-Effective Data Wrangling

Nikolaos Konstantinou1, Martin Koehler1, Edward Abel1, Cristina Civili2,
Bernd Neumayr3, Emanuel Sallinger3, Alvaro A.A. Fernandes1, Georg Gottlob3,

John A. Keane1, Leonid Libkin2, Norman W. Paton1

School of Computer Science1

University of Manchester
Manchester, M13 9PL, UK

School of Informatics2

University of Edinburgh
Edinburgh, EH8 9AB, UK

Dept. of Computer Science3

University of Oxford
Oxford, OX1 3QD, UK

ABSTRACT
Data wrangling, the multi-faceted process by which the data
required by an application is identified, extracted, cleaned
and integrated, is often cumbersome and labor intensive.
In this paper, we present an architecture that supports a
complete data wrangling lifecycle, orchestrates components
dynamically, builds on automation wherever possible, is in-
formed by whatever data is available, refines automatically
produced results in the light of feedback, takes into account
the user’s priorities, and supports data scientists with di-
verse skill sets. The architecture is demonstrated in practice
for wrangling property sales and open government data.

1. INTRODUCTION
Although there are ever more potentially valuable data

sets available, as a result of both technical developments
such as web data extraction and policy developments such
as open government data, putting that data to effective use
is often a cumbersome and labor intensive process. Indeed,
it is quoted that data scientists may spend up to 80% of their
time on the process of extracting, collating and cleaning data
that is a precursor to its use for analysis1. If this process,
referred to as data wrangling, could be made more systematic
and cost effective, this would free up data scientists to devote
more of their efforts to analysing the data and interpreting
the results [7].

Although there is now tool support for aspects of the data
wrangling process, such as data format transformations [9],
in this paper we make a proposal for a data wrangling archi-
tecture that: (i) combines a comprehensive (and extensible)
collection of wrangling components that between them cover
the complete data wrangling lifecycle; (ii) builds on automa-
tion wherever possible, making use of whatever information
is available about the domain of application; (iii) refines the
results of automated processes in the light of user feedback;
and (iv) takes into account the user’s priorities within the

1New York Times://http://nyti.ms/1Aqif2X

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

wrangling process, for example where it is necessary to trade
off some aspects of data quality with others.

In this paper we demonstrate an approach to data wran-
gling that has comparable scope to typical Extract-Transform-
Load (ETL) systems [12], but that through automation,
feedback and dynamic orchestration seeks to reduce the ex-
tent to which skilled application developers are required to
configure individual components and to specify the depen-
dencies between them. Our aim is to reduce the effort re-
quired for data wrangling, while accommodating diverse user
communities, in terms of the levels of expertise available for
data wrangling and the features that are required of the
resulting data sets.

2. ARCHITECTURE
The VADA (Value Added DAta systems) architecture is

illustrated in Figure 1. Here we briefly summarize the key
components and their relationships, before drilling down to
provide some more details of how they are applied in our
demonstration scenario.

The Transducers are components that represent the func-
tionalities within the wrangling process; a transducer2 is a
software component with input and output dependencies de-
fined as Datalog queries over the knowledge base and/or the
state of the transducer. The input dependencies, for exam-
ple, may initiate the evaluation of a transducer when infor-
mation becomes available on which it can act. For exam-
ple, a mapping generation transducer may start to evaluate
when matches have been created between source and target
schemas, or a data fusion transducer may start to evaluate
when duplicates have been detected. The architecture is not
tied to a specific or fixed set of transducers.

The Knowledge Base is a repository for representing the
data of relevance to the data wrangling process; this includes
information about the requirements of the user (user con-
text), the application domain (data context), and metadata
created and used by the transducers that participate in the
wrangling process. The knowledge base also provides access
to extensional data, but for the most part this is actually
stored in external file systems or databases.

The Vadalog Reasoner supports reasoning over the knowl-
edge base using Vadalog, a member of the Datalog± family
of languages [2]; Vadalog plays several roles in the architec-
ture, including specifying transducer dependencies, coordi-

2The notion of transducer is inspired by earlier work on
relational transducers [1], although the languages used are
not formally equivalent.



Figure 1: VADA Architecture.

nating the orchestration of the transducers, and representing
schema mappings.

Although a wide range of types of interaction with the
architecture are possible, for the demonstration, the User
Interface is being used by a data scientist who provides the
information specifying the user context and the data con-
text, as well as providing feedback on candidate results.

2.1 Real Estate Scenario
The demonstration will act on real estate data sets, bring-

ing together: (i) data about properties that are for sale from
web data extraction; and (ii) open government data that
provides information about the areas in which the proper-
ties are located. The demonstration will use representative
real-world data sets; for the paper we use a subset of these as
a running example. In Figure 2(a), the source tables Right-
move and Onthemarket represent the results of web data
extraction over deep web sources, as can be generated auto-
matically by DIADEM [6]. The source table Deprivation is
from open government data. For ease of comprehension, in
Figure 2 attribute names are consistent across the different
tables, whereas in practice attribute correspondences may
need to be derived by schema matchers.

2.2 User and Data Context
We assume that the user is familiar with the domain of

application (e.g., working as a data scientist to analyse prop-
erty market behavior), and thus has an understanding of
the priorities for the data wrangling activity. As such, we
assume that the user can provide a target schema that de-
scribes the data that they need the data wrangling process
to produce, such as that illustrated in Figure 2(b).

It is often the case, however, that additional information is
available about a domain that can inform the data wrangling
process; we refer to such information as the data context. For
our example scenario, as illustrated in Figure 2(c), there are
publicly available data sets that provide access to lists of ad-
dresses. Thus the user is able to associate the target schema
with such data, which may be, for example, reference data
(e.g., the complete list of postcodes or addresses), master
data (e.g., the complete list of properties the user is inter-
ested in), or simply example data (e.g., a list of properties

Rightmove
price street postcode bedrooms type description

Onthemarket
price street postcode bedrooms type description

Deprivation
postcode crime

(a) Sources.
Target

type description street postcode bedrooms price crimerank

(b) Target Schema.
Address

street city postcode

(c) Data Context.

completeness crimerank very strongly more important than
accuracy property.type

consistency property strongly more important than
completeness property.bedrooms

completeness property.street moderately more important than
completeness property.postcode

(d) User Context.

Figure 2: Demonstration Scenario.

that a user has to hand, such as the properties that an estate
agent has previously sold). The nature and coverage of such
information will vary from user to user and application to
application, but where it is available, we will demonstrate
how it can be used to inform the wrangling process.

Furthermore, the user may be able to make explicit fea-
tures of the resulting data set that are more or less impor-
tant; there are likely to be trade-offs in any wrangling activ-
ity, such as between quality metrics. For example, if the user
is going to analyse the relationship between property prices
and crime levels, then the completeness of the crimerank at-
tribute is likely to be more important to the user than the
accuracy of the type attribute, as illustrated in Figure 2(d).
We refer to such preference information as the user context,
and will demonstrate the use of such a pairwise compari-
son approach, which has been shown to be effective in a
range of multi-criteria decision analysis methodologies. In
this approach, the user can make several pairwise compari-
son statements, for example based on quality metrics, that
make explicit their requirements, and these are taken into
account during data wrangling, to inform activities such as
source or mapping selection. We note that different uses of
the same data set may give rise to different user contexts;
for example, if the user is now interested in analysing the
relationship between property size and the crimerank at-
tribute, then the completeness of the number of bedrooms
becomes more important than in the user context definition
from Figure 2(d).

2.3 Individual Transducers
The architecture is extensible, in that additional trans-

ducers can be added at any time; transducers can be imple-
mented in Vadalog, or by wrapping external systems. There
are typically several transducers associated with each func-
tionality that makes up the wrangling process (data extrac-
tion, schema mapping, etc).

The different transducers associated with a functionality
typically have different input dependencies, as illustrated for



Activity Transducer Input Dependencies
Matching Schema Matching Src/Target Schemas
Matching Instance Matching Src/Target Instances
Mapping Mapping Generation Src/Target Schemas
Mapping Mapping Selection Quality Metrics
Quality CFD Learning Data Examples

Table 1: Example transducer input dependencies

some transducers in Table 1. For example, in schema match-
ing, an Instance Matching transducer requires instances to
be available from both the schemas to be matched, and in
data quality a Conditional Functional Dependency (CFD)
Learning transducer requires that the data context for the
target schema includes instances (e.g., from master or ref-
erence data)[4]. Each transducer knows what data it needs,
and becomes available for execution when that data is avail-
able in the knowledge base; these dependencies define the
data flow between transducers.

The declarative specification of dependencies is relevant to
both the user and data contexts. For example, in the user
context examples in Figure 2(d), although the completeness
of the crimerank attribute can be estimated as the fraction
of non-null values, determining the consistency of the prop-
erty table needs additional information. If the user provides
a reference data set of valid addresses from an open gov-
ernment data source as part of the data context, then this
can be used to learn CFDs, against which the consistency
of the address information within the property table can be
established. Given the new information in the data context,
a Quality Metric transducer becomes able to run, adding
quality metrics on sources and mappings to the knowledge
base. This in turn allows a source selection or a mapping se-
lection transducer to run that selects sources or mappings,
taking into account the user context.

It is a similar story for feedback. For example, assume
that the user has been presented data in the target schema
in Figure 2(b), in which for some tuples the number of bed-
rooms is clearly not correct (e.g., automatic web data ex-
traction may be using the area of the master bedroom as
the number of bedrooms). The user can annotate these val-
ues as incorrect through the user interface, leading to the
feedback being asserted into the knowledge base. A mapping
evaluation transducer, given information about the results
of the mapping may identify a problem with a specific match
used within the mapping, and revise the score of that match
in the knowledge base. This may in run lead to the rerun-
ning of the mapping generation transducer in the light of the
new evidence, and thus to revised results for the user.

2.4 Controlling Transducers
As a consequence of the declarative approach to data de-

pendencies, there may be several transducers available for
execution at the same time; it is the responsibility of a net-
work transducer to select between the executable transduc-
ers. A network transducer supplements the data dependen-
cies with the additional decision making that determines the
order in which transducers are executed. Network transduc-
ers are written by transducer developers or system admin-
istrators, and may be quite generic (e.g., by choosing trans-
ducers for one type of functionality before another, such
as data extraction before mapping, and then using a pri-

ority scheme to make more local decisions) or may be quite
specific (e.g., prefer instance level matchers to schema level
matchers). In the demonstration, we will use a generic net-
work transducer, and will show the dynamic execution of
transducers as the user changes the data and user contexts.

3. DEMONSTRATION
The functionality of VADA will be demonstrated through

hands-on experience with a real estate scenario. Users in-
teract with the system via a web interface; our goals are
to demonstrate: (i) a pay-as-you-go approach to data wran-
gling, in which the more information is provided by the user,
the better the outcome; (ii) the impact of different types of
data context, user context and feedback on the result; and (iii)
dynamic orchestration of components represented as trans-
ducers. Although the demonstration will support different
ways of using the system, one approach would involve the
following steps:

1. Automatic Bootstrapping: Interactively identify a col-
lection of sources and define a target schema, as illus-
trated in Figure 3(a), and allow the system to auto-
matically orchestrate a collection of transducers that
together generate an initial result data set. The out-
come can be expected to be of problematic quality.

2. Data context: Associate the target schema with some
reference data, such as address information, as illus-
trated in Figure 3(b). The presence of such data al-
lows various of the steps from bootstrapping to be re-
visited, including matching (to include the use of the
instance data) and mapping generation (to use the re-
vised matches). Furthermore, it is now also possible
to learn CFDs from the reference data, and thereby to
carry out repairs to the mapping results. The result
data should now be of better quality, but is likely to
contain some errors.

3. Feedback: The user views the result of the wrangling
process from steps (1) and (2) as illustrated in Figure
3(c), and provides feedback to indicate that some of
the results are correct or incorrect – such feedback can
be at the tuple level or the attribute level. Depending
on the feedback provided, this will enable some of the
previous steps in the wrangling process to be revisited,
giving rise to a revised result.

4. User context: The result is now hopefully of reasonable
quality, but the data included in the result may not
exhibit the features that make it especially well suited
to the task at hand. The user specifies the user con-
text by indicating the relative (pairwise) importance
of different features in the result, as illustrated in Fig-
ure 3(d). The pairwise comparisons are used to derive
weights that inform the selection of mappings based
on multi-dimensional optimization.

For all of steps (1) to (4), the system will provide brows-
able trace information that shows what transducers are be-
ing orchestrated, their inputs and results.

4. CONCLUSIONS
The importance of data wrangling for data analytics is

motivating research into techniques and platforms that can



(a) Target schema. (b) Data context.

(c) Results.

(d) User context.

Figure 3: Web interface for configuring data wrangling task.

support the wrangling process. Prominent results to date
have supported the sharing of curation efforts across analyt-
ical tasks by way of data lakes (e.g., [8, 11]), built on linkage
graphs to identify sources for integration [3], or sought to
provide support for specific steps within the wrangling pro-
cess (e.g., [5, 9, 10]). In this paper we complement such ex-
isting work by demonstrating an end-to-end data wrangling
architecture that dynamically orchestrates new or existing
components, automatically taking into account whatever in-
formation may be available to inform the wrangling process,
in the form of the data context, user context or user feedback.
By so doing, the effort directed at the wrangling process
yields immediate results, in a pay-as-you-go manner, and
data scientists can engage with the system in different ways.
In the demonstration, the end-user tunes the wrangling pro-
cess without writing code, but the architecture is flexible;
developers can contribute to data wrangling by adding in
new components as transducers, influencing the orchestra-
tion using control transducers, or by writing mappings or
quality rules. As such the architecture provides mechanisms
that support its deployment in both diverse application sce-
narios and development environments.
Acknowledgments. This work is supported by the VADA
Programme Grant of the UK Engineering and Physical Sci-
ences Research Council.

5. REFERENCES
[1] S. Abiteboul, V. Vianu, B. S. Fordham, and Y. Yesha.

Relational transducers for electronic commerce. J. Comput.

Syst. Sci., 61(2):236–269, 2000.
[2] A. Cal̀ı, G. Gottlob, and T. Lukasiewicz. A general

datalog-based framework for tractable query answering over
ontologies. J. Web Sem., 14:57–83, 2012.

[3] D. Deng et al. The data civilizer system. In CIDR, 2017.
[4] W. Fan and F. Geerts. Foundations of Data Quality

Management. Morgan & Claypool, 2012.

[5] M. H. Farid, A. Roatis, I. F. Ilyas, H.-F. Hoffmann, and
X. Chu. CLAMS: bringing quality to data lakes. In
SIGMOD, pages 2089–2092, 2016.

[6] T. Furche, G. Gottlob, G. Grasso, X. Guo, G. Orsi, and
C. Schallhart. The ontological key: automatically
understanding and integrating forms to access the deep
web. VLDBJ, 22(5):615–640, 2013.

[7] T. Furche, G. Gottlob, L. Libkin, G. Orsi, and N. W.
Paton. Data wrangling for big data: Challenges and
opportunities. In EDBT, pages 473–478, 2016.

[8] R. Hai, S. Geisler, and C. Quix. Constance: An intelligent
data lake system. In SIGMOD, pages 2097–2100, 2016.

[9] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer.
Wrangler: Interactive visual specification of data
transformation scripts. In CHI, pages 3363–3372, 2011.

[10] J. Morcos, Z. Abedjan, I. Francis Ilyas, M. Ouzzani,
P. Papotti, and M. Stonebraker. Dataxformer: An
interactive data transformation tool. In SIGMOD, pages
883–888, 2015.

[11] I. Terrizzano, P. M. Schwarz, M. Roth, and J. E. Colino.
Data wrangling: The challenging journey from the wild to
the lake. In CIDR, 2015.

[12] P. Vassiliadis. A survey of extract-transform-load
technology. IJDWM, 5(3):1–27, 2011.


