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Instantaneous quantum computing is a subuniversal quantum complexity class, whose circuits have
proven to be hard to simulate classically in the discrete-variable realm. We extend this proof to the
continuous-variable (CV) domain by using squeezed states and homodyne detection, and by exploring
the properties of postselected circuits. In order to treat postselection in CVs, we consider finitely
resolved homodyne detectors, corresponding to a realistic scheme based on discrete probability
distributions of the measurement outcomes. The unavoidable errors stemming from the use of finitely
squeezed states are suppressed through a qubit-into-oscillator Gottesman-Kitaev-Preskill encoding of
quantum information, which was previously shown to enable fault-tolerant CV quantum computation.
Finally, we show that, in order to render postselected computational classes in CVs meaningful, a
logarithmic scaling of the squeezing parameter with the circuit size is necessary, translating into a
polynomial scaling of the input energy.

DOI: 10.1103/PhysRevLett.118.070503

The question of whether quantum systems practically
allow information to be processed faster than classical
devices, i.e., whether a quantum supremacy in information
processing can be experimentally observed and exploited,
is of paramount importance both at the technological and
fundamental level. On the one hand, devices overcoming
classical computational power would allow solving cur-
rently intractable problems, such as the simulation of
quantum physical processes from chemistry [1], biology
[2] and solid state physics [3,4], security breaking of several
cryptosystems [5], and database search [6]. On the other
hand, the observation of a quantum supremacy would
disprove a foundational hypothesis in computer science,
namely, the extended Church-Turing thesis, stating that any
physical model of computation can be efficiently simulated
on a classical computer, modeled by a Turing machine.
Although quantum algorithms outperforming classical

capabilities have been proposed [5,6], building a universal
quantum computer capable of running arbitrary quantum
algorithms has been an elusive goal, so far. Thus, a recent
trend has emerged, where subuniversal models of quantum
computers are considered, instead. In these models, specific
problems are addressed which can be solved by a dedicated
quantum platform efficiently, i.e., in a number of rounds
that scales polynomially with the size of the input while no
classical efficient solution exists. An example of such a
model is boson sampling [7], which is related to the problem
of computing the permanent of a unitary matrix. Proof-of-
principle experiments have recently been performed, yet are
too small to challenge classical devices [8–11].

A distinct subuniversal model that has been recently
defined in the context of discrete-variable (DV) systems is
instantaneous quantum computing (IQP), where the “P” in
the acronym stands for polytime [12–14]. An IQP circuit is
composed of input Pauli-X̂ eigenstates, gates diagonal in the
Pauli-Ẑ basis, and output Pauli-X̂measurements (Fig. 1, left).
Since all the gates commute they can be performed in
any order and possibly simultaneously, hence, the name
“Instantaneous.”The resulting output probability distribution
has been proven to be hard to sample classically, provided
some standard conjectures in computer science hold true.
In particular, we are concerned with the definition of IQP

within continuous-variable (CV) systems. Unlike DV, CV
hardware for quantum information processing offers the
possibility of deterministically preparing large resource
states, such as multimode squeezed states and cluster states
[15–18], containing up to 106 entangled modes in a recent
experiment [19]. Furthermore, typical detection techniques
available in this context, such as homodyne detection, have
near unity detection efficiencies. Despite these specific
features, only a few works exist that address subuniversal
models of quantum computation (QC) featuring input
squeezed states [20–23] and, to our knowledge, none with
homodyne detection.
In this Letter, we define IQP circuits in CV, involving

input squeezed states and output finite-precision homodyne
detectors, and we prove these circuits are hard to simulate
classically. The use of CVs requires specific tools to handle
errors associated with finite squeezing. We deal with this
by using Gottesman-Kitaev-Preskill (GKP) states [24],
which were shown to enable fault-tolerant CV quantum
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computation [24–26]. GKP encoding consists essentially in
discretizing quantum information through encoding a qubit
into the infinite-dimensional Hilbert space of a harmonic
oscillator, e.g., the quantized electromagnetic field. As
such, it enables us to link CV quantum complexity classes
to ordinary DV ones. Interestingly, in order to properly
establish this link for the classes relevant for this work
(namely, postselected ones), it will be necessary to assume
a specific scaling of the input squeezing with the size of the
circuit. This requirement supports the role of energy as an
essential parameter entering the definition of CV computa-
tional classes, as time and space do [27]. Inclusion of finite
resolution in modeling homodyne detection allows us, on
the one hand, to discretize the measurement outcomes; on
the other hand, it incorporates in the model an intrinsic
experimentally relevant imperfection.
The model.—In order to map the IQP paradigm from DV

to CV, we use the correspondence between universal
gate sets introduced in Ref. [28]. Thereby, in CV, IQP
circuits have the following structure: input momentum-
squeezed states jσip ¼ ½1=ð ffiffiffi

σ
p

π1=4Þ�R dte−ðt2=2σ2Þjtip, gates
diagonal in the position quadrature q̂, and homodyne
p̂ measurements (Fig. 1, right). We restrict to the finite
set of logical gates [24] fẐ ¼ eiq̂

ffiffi

π
p
; ĈZ ¼ eiq̂1q̂2 ; T̂ ¼

eiðπ=4Þ½2ðq̂=
ffiffi

π
p Þ3þðq̂= ffiffi

π
p Þ2−2ðq̂= ffiffi

π
p Þ�g, all diagonal in the q̂

operator. This would be a universal gate set for CV QC
on GKP-encoded states, if a Hadamard gate was included,
implemented on the CV level by the Fourier transform F̂ ¼
eiðπ=2Þðp̂2þq̂2Þ [24]. Input GKP states are assumed being
all in the j ~þLi ¼ ðj~0Li þ j~1LiÞ=

ffiffiffi

2
p

state, with (up to a
normalization constant)

hqj~0Li ∝
X

n

exp

�

−
ð2nÞ2πΔ2

2

�

exp

�

−
ðq − 2n

ffiffiffi

π
p Þ2

2Δ2

�

;

hqj~1Li ∝
X

n

exp

�

−
ð2nþ 1Þ2πΔ2

2

�

× exp

�

−
ðq − ð2nþ 1Þ ffiffiffi

π
p Þ2

2Δ2

�

;

where the tilde emphasizes that we consider finitely
squeezed GKP states and where Δ describes the squeezing
degree [29]. This allows us to respect the IQP-analog
pattern: X̂-diagonal input states, Ẑ-diagonal evolution, and
X̂-diagonal measurement.
Homodyne detection is modeled by the finitely resolved

p̂η operator that we define as [30]

p̂η ¼
X

∞

k¼−∞
pk

Z

∞

−∞
dpχηkðpÞjpihpj≡

X

∞

k¼−∞
pkP̂k; ð1Þ

with χηkðpÞ ¼ 1 for p ∈ ½pk − η; pk þ η� and 0 outside,
pk ¼ 2ηk, and 2η the resolution, associated with the width
of the detector pixels [31]. It is easy to check that this is still
a projective measurement, since

P∞
k¼−∞ P̂k ¼ I , and

P̂kP̂k0 ¼ P̂kδk;k0 [32]. Note that this modelization is distinct
from modeling imperfect detection efficiency [30,33,34].
We refer to this newly defined class of circuits as

CVrIQP, where the label “r” stands for “realistic,” incor-
porating both finite squeezing and finite resolution in the
homodyne detection.
Recalling the proof of hardness of DV IQP.—In DV, the

proof of hardness of IQP [14] follows a general structure
that can also be used to prove the hardness of other models
[7,35,36]. In general, given a restricted model of quantum
computing, if that model becomes universal when supple-
mented with the ability to postselect on a subset of the
outputs, then that model cannot be simulated classically,
otherwise, widely held conjectures of complexity theory
would be violated. Classical simulation of IQP corresponds
to a black box made of classical circuits that outputs bit
strings according to a probability distribution multiplica-
tively close to the quantum probability. The details of
this argument, involving Toda’s theorem and the polyno-
mial hierarchy, have been explained in detail, e.g., in
Refs. [14,37].
Universality through postselection in IQP circuits is

achieved through the so-called “Hadamard gadget,”
Fig. 2. This gadget is measurement based; i.e., the input
state is entangled to an ancillary jþi state, and then
measured [39]. In the postselected scenario, only those
trials where a desired value for a chosen output qubit is
measured are retained [40]. Postselecting the circuit of
Fig. 2 on the outcome þ1 allows us to implement the
Hadamard gate, thereby promoting IQP to the most general
postselected QC, in other words,

FIG. 2. Left: Hadamard gadget in a postselected IQP circuit,
where h takes value 0 if þ1 is measured, while h ¼ 1 if the result
is −1. Right: Ideal Fourier gadget in CVs, exact translation of the
Hadamard gadget. j0ip represents an infinitely p̂-squeezed state
with σ ¼ 0, thus, satisfying p̂j0ip ¼ 0.

FIG. 1. Left: IQP circuit on n qubits. jþi is the X̂ eigenstate
associated with eigenvalue þ1. Measurements are performed in

the fj�ig basis.We denoteDZðnÞ ¼
Q

z∈Zn
2
exp ðiθðz; nÞ ⊗n

j¼1
ZzjÞ.

Right: IQP circuit in CVs. jσip are finitely squeezed states with
variance σ in the p̂ representation and j ~þLi are finitely squeezed
GKP states. The gate D̂q is a uniform combination of elementary
gates from the set mentioned in the text. The finitely resolved
homodyne measurement p̂η has resolution 2η.

PRL 118, 070503 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

17 FEBRUARY 2017

070503-2



PostIQP ⊇ PostBQP; ð2Þ

where BQP stands for “bounded quantum polytime” and
corresponds to the decision problems efficiently solved by
quantum computers.
Hardness of CVrIQP: structure of the proof.—We use

the same proof structure as in the DV case, and in
particular, we aim at proving that postselected CVrIQP
circuits yield postselected universal QC, i.e., that

PostCVrIQP ⊇ PostBQP: ð3Þ
As an intermediate step, it will be useful to prove
that PostCVrIQP contains the class of GKP-encoded CV
measurement-based quantum computations (MBQC) with
ancillary finitely squeezed and GKP states [26,28,46] and
finite resolution, i.e., that CVrMBQC⊆ PostCVrIQP. We
structure our proof via the following steps. (1) Fourier
gadget: Adding postselection to CVrIQP yields a universal
set for QC. This requires a CV analog of the Hadamard
gadget in DV. As for DV, it will bemeasurement-based. This
easily shows that CVrMBQC⊆ PostCVrIQP. (2) Error
correction: Adding finite resolution in the homodyne detec-
tion preserves fault-tolerance for sufficiently high resolution,
i.e., CVrMBQC ¼ BQP. Previous results [26] already show
that CVMBQC ¼ BQP, where CVMBQCdisplays ancillary
finitely squeezed states, but perfect homodyne detection
[28,46]. Combining items 1 and 2, we have BQP⊆
PostCVrIQP. (3) Postselection: The logical, qubit postse-
lection procedure defining the class PostBQP can bemapped
to the CV hardware, thereby, completing the demonstration
of Eq. (3). This requires imposing a well-defined scaling of
the squeezing with the circuit size. In what follows, we
address, separately, each of the three steps of the proof.
Fourier gadget.—In analogy to the Hadamard gadget,

we consider a toolbox circuit where an intermediate step of
the computation jψi is entangled to a squeezed state by
means of a ĈZ gate—the latter belonging to the model.
Figure 2 represents an idealized version with infinitely
squeezed ancilla and infinite resolution. Obtaining the
outcome p ¼ 0 after the homodyne measurement yields
the Fourier transform of the input state, which, in GKP
encoding, translates onto the Hadamard gate. The proba-
bility of selecting p ¼ 0 is not zero because of finite
resolution, and its scaling with the number of iterations of
the gadget is not conceptually worse than for the DV case
[41]. We stress that as in DV, this postselection should be
regarded as a mathematical tool for the hardness proof, and
its actual implementation is not required in practice.
In the actual gadget, finite resolution, as well as finite

squeezing, affects the postselected output state. The leading
order in η yields the usual pure state that would be obtained
if the resolution was infinite

jψið1Þk¼0;cond ¼
1

π1=4
ffiffiffi

σ
p

Z

dqdte−
ðt−qÞ2
2σ2 ψðqÞjtip; ð4Þ

where the Gaussian convolution factor is due to finite
squeezing [46,47]. As will be addressed next, and in more
detail in [41], both the Gaussian convolution and the
mixedness can be corrected by GKP error correction.
Error correction.—The fault-tolerance proof of Ref. [26]

shows that errors which accumulate due to finite squeezing
can be corrected by means of the GKP error-correcting
gadget [24,25]. This can be generalized to the case of
finitely resolved homodyne detectors [24,41].
The error correction consists in nondestructively meas-

uring q̂mod
ffiffiffi

π
p

on the data qubit by measuring p̂ on an
ancillary GKP state entangled to it (Fig. 3) [48]. The
measurement effectively projects the error onto a specific
value q and determines the shift that needs to be applied to
the data qubit to correct it. q is a random variable whose
distribution is given by the noise in the data qubit. The
value of q is recovered by the measurement outcome up to
the noise of the ancilla and the finite resolution. If these are
too high, namely, exceeding a

ffiffiffi

π
p

-long window, the error is
recovered as q� ffiffiffi

π
p

, resulting in a logical error after
shifting the data qubit back.
Most importantly, this procedure replaces the original

noise in q̂ with the one coming from the ancilla and the
finite resolution. Therefore, it can be kept under control, if
the characteristic parameters—GKP squeezing and detector
resolution—are sufficiently small. Thus, repeating this
protocol after a Fourier transform enables correcting errors
in both quadratures.
Postselection.—The definition of the class PostBQP is

based on the conditional probability of obtaining the
answer of the decision problem on the second qubit,
conditioned on having obtained a given outcome, say +,
on the first. Mapping PostBQP onto a PostCVrIQP circuit
requires approximating this conditional probability. This, in
turn, requires approximating multiplicatively the probabil-
ity of the conditioning event Pðþ1Þ by the simulation on
the PostCVrIQP circuit Psðþ1Þ, i.e., 1=cPðþ1Þ <
Psðþ1Þ < cPðþ1Þ with 1 ≤ c ≤ 21=4 [14,49].
Realistic GKP states j ~�Li are not orthogonal. So,

projective measurements like homodyne detection cannot
perfectly distinguish between the two. By binning the real
axis, using

ffiffiffi

π
p

-long windows centered at integer multiples
of

ffiffiffi

π
p

, such that peaks of the j ~þLi (j ~−Li) state are centered
on an even (odd) bin, one can associate an outcome of a
homodyne measurement belonging to an even (odd) bin
with the j ~þLi (j ~−Li) state. Doing so, the probability Pe of

FIG. 3. Procedure to correct for errors in the q̂ quadrature. jψi is
the data qubit and j~0Li is a realistic, i.e., noisy, GKP state. After
measurement on the second mode, the result pk is used to shift the
first mode back.
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wrongly associating an outcome with a state is given by
summing the contributions from the tails of all the
Gaussians, yielding an approximate upper bound as a
function of the squeezing [24]

Pe <
2Δ
π

e−
π

4Δ2 : ð5Þ

Additionally, we assume that the resolution η defined
previously matches the

ffiffiffi

π
p

binning, i.e.,
ffiffiffi

π
p

=η∈N.
Overall we require that the error probability Pe is upper
bounded by a fraction of the target probability Pðþ1Þ,
i.e., that

Pe <
1

10
Pðþ1Þ; ð6Þ

which ensures the above mentioned multiplicative approxi-
mation of Pðþ1Þ with Psðþ1Þ.
On the other hand, the definition of the class PostBQP

requires the conditioning probability to scale as [50]

Pðþ1Þ ∼
1

2n
: ð7Þ

Combining Eqs. (5), (6), and (7) yields the following
scaling law for the squeezing of the GKP states:

Δ2
dB > 10log10

�

n ln 2 − ln
π

20

�

þ 10log10
2

π
; ð8Þ

with Δ2
dB ¼ −10log10ð2Δ2Þ the squeezing in decibels,

resulting in an energy scaling E∝Δ2∼OðnÞ. Incidentally,
we remark that a similar scaling of the squeezing parameter
was found in the Supplemental Material of Ref. [51] to
ensure that noise accumulated in a CV teleportation chain
lies below a fixed value (see, also, [52]). Eventually, we note
that the exponential precision needed for the consistent
definition of PostBQP can be attained with faulty gates and
error correction bymeans of concatenation and a polynomial
overhead of resources, as ensured by the Threshold theorem,
provided the error rate is below a given threshold [53].
To summarize, Eq. (3) means that any PostBQP

computation can be mapped onto a cleverly chosen
PostCVrIQP circuit. Qubits are encoded within GKP states
and gates diagonal in the computational basis correspond to
evolutions diagonal in q̂. All Hadamard gates are imple-
mented through the measurement-based procedure
described in the first step. The second step ensures that
the subsequent circuit retains the fault tolerance feature.
The last one guarantees that the PostCVrIQP circuit
multiplicatively approximates the original PostBQP com-
putation, at the cost of a scaling of the squeezing param-
eters with the computation size. Computer science
theorems and assumptions then imply that this result makes
CVrIQP impossible to simulate efficiently classically.
Concluding remarks and perspectives.—We have proven

the hardness of CVrIQP circuits. To our knowledge, this is
the first subuniversal model involving homodyne detection.

The proof has required assuming a logarithmic scaling of the
input squeezing with the circuit size, which corroborates
the emerging idea that energy, as time and space, must enter
the definition of CV complexity classes. Input squeezed
states can be easily produced and homodyne detection
efficiently performed. Methods have been proposed to
perform high-order evolutions diagonal in the position
representation [54–60]. Thus, this work takes a significant
step towards the demonstration of quantum advantage.
On the other hand, the experimental realization of GKP

states is challenging. An interesting question is whether
CVrIQP circuits remain hard-to-sample without explicitly
assuming available input GKP states. In this context, one
would rather consider a continuous family of q̂-diagonal
gates. The Fourier gadget allows obtaining CV universality
[46]. Hence, there is a (possibly big) fixed size circuit that
generates aGKP state. Adding a polynomial number of such
circuits ensures fault tolerance and sums up to a polynomial
size circuit; hence, the proof goes through as considered in
this work. The continuous gates, however, should be
bounded, to ensure a physical and energy-efficient model.
Then, issues arise from this constraint: how many times
should these gates be repeated to achieve universality?
Would the resulting family of circuits still be uniform, as
required for IQP?
Assuming GKP states available at the input yields a

conceptually simpler framework, where these issues do not
need to be addressed. We leave a possible removal of this
hypothesis for future work, in connection to the very
general question of specifying the minimal resources,
possibly quantified in terms of non-Gaussianity [61], that
yield quantum advantage.

We thank N. Menicucci, R. Alexander, and F. Arzani for
helpful discussions. We also thank the anonymous Referees
for their insightful reports that have allowed us to improve
the presentation of this Letter. This work was supported by
the ANR COMB Project, Grant No. ANR-13-BS04-0014
of the French Agence Nationale de la Recherche, and by
the DAAD-Campus France Project Procope No. 35465RJ.
G. F. acknowledges support from the European Union
through the Marie Sklodowska-Curie Grant agreement
No. 704192.

*giulia.ferrini@gmail.com
†Tom.Douce@lip6.fr

[1] I. Kassal, S. P. Jordan, P. J. Love, M. Mohseni, and A.
Aspuru-Guzik, Proc. Natl. Acad. Sci. U.S.A. 105, 18681
(2008).

[2] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M.
Troyer, arXiv:1605.03590.

[3] S. Lloyd, Science 273, 1073 (1996).
[4] D. S. Abrams and S. Lloyd, Phys. Rev. Lett. 79, 2586

(1997).
[5] P. W. Shor, SIAM Rev. 41, 303 (1999).
[6] L. K. Grover, Phys. Rev. Lett. 80, 4329 (1998).

PRL 118, 070503 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

17 FEBRUARY 2017

070503-4

http://dx.doi.org/10.1073/pnas.0808245105
http://dx.doi.org/10.1073/pnas.0808245105
http://arXiv.org/abs/1605.03590
http://dx.doi.org/10.1126/science.273.5278.1073
http://dx.doi.org/10.1103/PhysRevLett.79.2586
http://dx.doi.org/10.1103/PhysRevLett.79.2586
http://dx.doi.org/10.1137/S0036144598347011
http://dx.doi.org/10.1103/PhysRevLett.80.4329


[7] S.Aaronson andA. Arkhipov, TheoryComput. 9, 143 (2013).
[8] M. Tillmann, B. Dakic, R. Heilmann, S. Nolte, A. Szameit,

and P. Walther, Nat. Photonics 7, 540 (2013).
[9] J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S.

Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-
Peter, N. K. Langford, D. Kundys et al., Science 339, 798
(2013).

[10] N. Spagnolo, C. Vitelli, D. J. Brod, A. Crespi, F. Flamini,
S. Giacomini, G. Milani, R. Ramponi, P. Mataloni, R.
Osellame et al., Nat. Photonics 8, 615 (2014).

[11] M. A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J.
Dove, S. Aaronson, and A. G. White, Science 339, 794
(2013).

[12] D. Shepherd and M. J. Bremner, Proc. R. Soc. A 465, 1413
(2009).

[13] D. Hangleiter, M. Kliesch, M. Schwarz, and J. Eisert,
arXiv:1602.00703.

[14] M. J. Bremner, R. Josza, and D. Shepherd, Proc. R. Soc. A
467, 459 (2010).

[15] J. Roslund, R. Medeiros de Araújo, S. Jiang, C. Fabre, and
N. Treps, Nat. Photonics 8, 109 (2014).

[16] S. Yokoyama, R. Ukai, S. C. Armstrong, C.
Sornphiphatphong, T. Kaji, S. Suzuki, J.-i. Yoshikawa,
H. Yonezawa, N. C. Menicucci, and A. Furusawa, Nat.
Photonics 7, 982 (2013).

[17] X. Su, Y. Zhao, S. Hao, X. Jia, C. Xie, and K. Peng, Opt.
Lett. 37, 5178 (2012).

[18] M. Chen, N. C. Menicucci, and O. Pfister, Phys. Rev. Lett.
112, 120505 (2014).

[19] J.-i. Yoshikawa, S. Yokoyama, T. Kaji, C. Sorphiphatphong,
Y. Shiozawa, K. Makino, and A. Furusawa, APL Photonics
1, 060801 (2016).

[20] A. P. Lund, A. Laing, S. Rahimi-Keshari, T. Rudolph, J. L.
OBrien, and T. C. Ralph, Phys. Rev. Lett. 113, 100502
(2014).

[21] J. P. Olson, K. P. Seshadreesan, K. R. Motes, P. P. Rohde,
and J. P. Dowling, Phys. Rev. A 91, 022317 (2015).

[22] K. P. Seshadreesan, J. P. Olson, K. R. Motes, P. P. Rohde,
and J. P. Dowling, Phys. Rev. A 91, 022334 (2015).

[23] C. S. Hamilton, R. Kruse, L. Sansoni, S. Barkhofen, C.
Silberhorn, and I. Jex, arXiv:1612.01199v1.

[24] D. Gottesman, A. Kitaev, and J. Preskill, Phys. Rev. A 64,
012310 (2001).

[25] S. Glancy and E. Knill, Phys. Rev. A 73, 012325 (2006).
[26] N. C. Menicucci, Phys. Rev. Lett. 112, 120504 (2014).
[27] N. Liu, J. Thompson, C. Weedbrook, S. Lloyd, V. Vedral,

M. Gu, and K. Modi, Phys. Rev. A 93, 052304 (2016).
[28] N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook,

T. C. Ralph, and M. A. Nielsen, Phys. Rev. Lett. 97,
110501 (2006).

[29] For consistency and simplicity, it is natural (though un-
essential) to assume that the GKP states and input squeezed
states possess the same squeezing degree, i.e., Δ ¼ σ. This
choice greatly simplifies the calculations in Ref. [26].
Keeping this in mind, we will carry out our calculations
maintaining two independent squeezing parameters Δ and
σ, respectively, for the GKP states and the squeezed states.
This will allow us to keep trace of the origin of the
requirements on the squeezing scaling that we will find
later in this Letter.

[30] M. G. A. Paris, M. Cola, and R. Bonifacio, Phys. Rev. A 67,
042104 (2003).

[31] Note that this model turns out to be equivalent to an ideal
scheme with perfectly resolving homodyne detectors and a
discretization (binning) of the measurement outcomes.

[32] This result uses that
R

∞
−∞ dp0χηk0 ðp0Þhp0jδðp − p0Þ ¼

χηk0 ðpÞhpj despite χηk0 ðp0Þ is not a smooth function, which
can be verified with Riemann sum formalism.

[33] U. Leonhardt,Measuring the Quantum State of Light, 1st ed.
(Cambridge University Press, New York, 1997).

[34] U. Leonhardt and H. Paul, Phys. Rev. A 48, 4598 (1993).
[35] E. Farhi and A.W. Harrow, arXiv:1602.07674.
[36] T. Morimae, K. Fujii, and J. F. Fitzsimons, Phys. Rev. Lett.

112, 130502 (2014).
[37] We mention that the DV IQP hardness proof has been

strengthened recently to additive approximation of IQP
circuits by classical computers in [38].

[38] M. J. Bremner, A. Montanaro, and D. Shepherd, Phys. Rev.
Lett. 117, 080501 (2016).

[39] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188
(2001).

[40] The probability of success of the Hadamard gadget is 1=2 at
each iteration [41]. Given that the number of postselected
lines l is of order of the total number of lines in the circuit n,
l ∼OðnÞ, the overall success probability distribution 1=2l is
exponentially low in the circuit size.

[41] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.118.070503 for calcu-
lation details, which includes Refs. [42–45].

[42] J. Watrous, Encyclopedia of Complexity and Systems
Science (Springer, New York, 2009), pp. 7174–7201.

[43] S. Aaronson, The Complexity Zoo, https://complexityzoo
.uwaterloo.ca/Complexity_Zoo.

[44] S. Aaronson, Proc. R. Soc. A 461, 3473 (2005).
[45] G. Kuperberg, Theory Comput. 11, 183 (2015).
[46] M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and

P. van Loock, Phys. Rev. A 79, 062318 (2009).
[47] R. N. Alexander, S. C. Armstrong, R. Ukai, and N. C.

Menicucci, Phys. Rev. A 90, 062324 (2014).
[48] The j~0Li state needed for this error-correction gadget can be

obtained from the j ~þLi states that we have in our model by a
Fourier transform through postselection.

[49] This ensures that, for the conditional probabilityPsðm2=þ1Þ,
a multiplicative approximation also holds, i.e.,
that ð1=c0ÞPðm2=þ1Þ < Psðm2=þ1Þ < c0Pðm2=þ1Þ with
1≤c0≤

ffiffiffi

2
p

.
[50] S. Aaronson, PostBQP Postscripts: A Confession of Math-

ematical Errors, www.scottaaronson.com/blog/?p=2072.
[51] R. Ukai, N. Iwata, Y. Shimokawa, S. C. Armstrong, A.

Politi, J. I. Yoshikawa, P. van Loock, and A. Furusawa,
Phys. Rev. Lett. 106, 240504 (2011).

[52] R. N. Alexander, N. Gabay, P. P. Rohde, and N. C.
Menicucci, arXiv:1606.00446v1.

[53] Assuming that the limiting factor in relevant experiments
is the squeezing degree and, thus, neglecting finite
resolution effects, we obtain that stringent error proba-
bilities of 10−6 would result in a squeezing of roughly
20.5 dB [41].

[54] P. Marek, R. Filip, and A. Furusawa, Phys. Rev. A 84,
053802 (2011).

PRL 118, 070503 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

17 FEBRUARY 2017

070503-5

http://dx.doi.org/10.4086/toc.2013.v009a004
http://dx.doi.org/10.1038/nphoton.2013.102
http://dx.doi.org/10.1126/science.1231692
http://dx.doi.org/10.1126/science.1231692
http://dx.doi.org/10.1038/nphoton.2014.135
http://dx.doi.org/10.1126/science.1231440
http://dx.doi.org/10.1126/science.1231440
http://dx.doi.org/10.1098/rspa.2008.0443
http://dx.doi.org/10.1098/rspa.2008.0443
http://arXiv.org/abs/1602.00703
http://dx.doi.org/10.1098/rspa.2010.0301
http://dx.doi.org/10.1098/rspa.2010.0301
http://dx.doi.org/10.1038/nphoton.2013.340
http://dx.doi.org/10.1038/nphoton.2013.287
http://dx.doi.org/10.1038/nphoton.2013.287
http://dx.doi.org/10.1364/OL.37.005178
http://dx.doi.org/10.1364/OL.37.005178
http://dx.doi.org/10.1103/PhysRevLett.112.120505
http://dx.doi.org/10.1103/PhysRevLett.112.120505
http://dx.doi.org/10.1063/1.4962732
http://dx.doi.org/10.1063/1.4962732
http://dx.doi.org/10.1103/PhysRevLett.113.100502
http://dx.doi.org/10.1103/PhysRevLett.113.100502
http://dx.doi.org/10.1103/PhysRevA.91.022317
http://dx.doi.org/10.1103/PhysRevA.91.022334
http://arXiv.org/abs/1612.01199v1
http://dx.doi.org/10.1103/PhysRevA.64.012310
http://dx.doi.org/10.1103/PhysRevA.64.012310
http://dx.doi.org/10.1103/PhysRevA.73.012325
http://dx.doi.org/10.1103/PhysRevLett.112.120504
http://dx.doi.org/10.1103/PhysRevA.93.052304
http://dx.doi.org/10.1103/PhysRevLett.97.110501
http://dx.doi.org/10.1103/PhysRevLett.97.110501
http://dx.doi.org/10.1103/PhysRevA.67.042104
http://dx.doi.org/10.1103/PhysRevA.67.042104
http://dx.doi.org/10.1103/PhysRevA.48.4598
http://arXiv.org/abs/1602.07674
http://dx.doi.org/10.1103/PhysRevLett.112.130502
http://dx.doi.org/10.1103/PhysRevLett.112.130502
http://dx.doi.org/10.1103/PhysRevLett.117.080501
http://dx.doi.org/10.1103/PhysRevLett.117.080501
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.070503
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.070503
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.070503
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.070503
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.070503
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.070503
http://link.aps.org/supplemental/10.1103/PhysRevLett.118.070503
https://complexityzoo.uwaterloo.ca/Complexity_Zoo
https://complexityzoo.uwaterloo.ca/Complexity_Zoo
https://complexityzoo.uwaterloo.ca/Complexity_Zoo
http://dx.doi.org/10.1098/rspa.2005.1546
http://dx.doi.org/10.4086/toc.2015.v011a006
http://dx.doi.org/10.1103/PhysRevA.79.062318
http://dx.doi.org/10.1103/PhysRevA.90.062324
www.scottaaronson.com/blog/?p=2072
www.scottaaronson.com/blog/?p=2072
www.scottaaronson.com/blog/?p=2072
http://dx.doi.org/10.1103/PhysRevLett.106.240504
http://arXiv.org/abs/1606.00446v1
http://dx.doi.org/10.1103/PhysRevA.84.053802
http://dx.doi.org/10.1103/PhysRevA.84.053802


[55] M. Yukawa, K. Miyata, H. Yonezawa, P. Marek, R. Filip,
and A. Furusawa, Phys. Rev. A 88, 053816 (2013).

[56] K.Park, P.Marek, andR.Filip, Phys.Rev.A90, 013804 (2014).
[57] K. Marshall, R. Pooser, G. Siopsis, and C. Weedbrook,

Phys. Rev. A 91, 032321 (2015).
[58] J. Etesse, B. Kanseri, and R. Toualle-Brouri, Opt. Express

22, 30357 (2014).

[59] F. Arzani, N. Treps, and G. Ferrini (to be published).
[60] K. Miyata, H. Ogawa, P. Marek, R. Filip, H. Yonezawa, J.-i.

Yoshikawa, and A. Furusawa, Phys. Rev. A 93, 022301
(2016).

[61] H. Pashayan, J. J. Wallman, and S. D. Bartlett, Phys. Rev.
Lett. 115, 070501 (2015).

PRL 118, 070503 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

17 FEBRUARY 2017

070503-6

http://dx.doi.org/10.1103/PhysRevA.88.053816
http://dx.doi.org/10.1103/PhysRevA.90.013804
http://dx.doi.org/10.1103/PhysRevA.91.032321
http://dx.doi.org/10.1364/OE.22.030357
http://dx.doi.org/10.1364/OE.22.030357
http://dx.doi.org/10.1103/PhysRevA.93.022301
http://dx.doi.org/10.1103/PhysRevA.93.022301
http://dx.doi.org/10.1103/PhysRevLett.115.070501
http://dx.doi.org/10.1103/PhysRevLett.115.070501

