
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Multilateral bargaining in networks

Citation for published version:
Lee, J 2015, 'Multilateral bargaining in networks: On the prevalence of inefficiencies' Paper presented at
WINE 2015: The 11th Conference on Web and Internet Economics , Amsterdan, Netherlands, 9/12/15 -
12/12/15, .

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Publisher Rights Statement:
This is a pre-copyedited version of a paper by the author which will be published on Springer.com

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/82961926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/multilateral-bargaining-in-networks(a9b22fd2-0364-4b43-9e9e-a1e38d3cc4c9).html


Multilateral Bargaining in Networks:

On the Prevalence of Inefficiencies

Joosung Lee∗

October 2015

Abstract

We introduce a noncooperative multilateral bargaining model for network-restricted
environments. In each period, a randomly selected proposer makes an offer by choos-
ing 1) a coalition, or bargaining partners, among the neighbors in a given network
and 2) monetary transfers to each member in the coalition. If all the members in the
coalition accept the offer, then the proposer buys out their network connections and
controls the coalition thereafter. Otherwise, the offer dissolves. The game repeats un-
til the grand-coalition forms, after which the player who controls the grand-coalition
wins the unit surplus. All the players have a common discount factor.

The main theorem characterizes a condition on network structures for efficient
equilibria. If the underlying network is either complete or circular, an efficient sta-
tionary subgame perfect equilibrium exists for all discount factors: all the players
always try to reach an agreement as soon as practicable and hence no strategic delay
occurs. In any other network, however, an efficient equilibrium is impossible if a dis-
count factor is greater than a certain threshold, as some players strategically delay an
agreement. We also provide an example of a Braess-like paradox, in which the more
links are available, the less links are actually used. Thus, network improvements may
decrease social welfare.

keywords: noncooperative bargaining, coalition formation, network restriction, buy-
out, Braess’s Paradox

JEL Classification: C72, C78; D72, D74, D85

1 Introduction

Network restrictions are imposed to multilateral bargaining problems, where an agreement
among three or more players is required to generate a unit surplus.1 To analyze strategic

∗Business School, University of Edinburgh, 29 Buccluech Place, Edinburgh EH8 9JS, United King-
dom. E-mail: joosung.lee@ed.ac.uk. This paper constitutes the second chapter of my Ph.D. dissertation
submitted to the Pennsylvania State University. This paper has been accepted as a regular paper at
the 11th Conference on Web and Internet Economics (WINE 2015) and a one-page abstract will appear
in the proceedings of the conference published by Springer-Verlag in the ARCoSS/LNCS series. I am
grateful to Kalyan Chatterjee for his guidance, encouragement, and support. I also thank Ed Green, Jim
Jordan, Vijay Krishna, Shih En Lu, Neil Wallace, and the participants of 2013(Fall) Midwest Economic
Theory Meeting and 20th Coalition Theory Network Workshop for helpful discussions and suggestions.
The comments from the three anonymous referees in WINE 2015 were particularly helpful. All remaining
errors are mine.

1Since Aumann and Dreze (1974), cooperation restrictions have been studied mainly in cooperative
games. Myerson (1977) uses a network to described the structure of cooperation restrictions.
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behaviors in such environments, we introduce a new noncooperative bargaining model in
which each player can bargain only with the directly connected players in a given network.
In each period, a proposer is randomly selected and the proposer makes an offer specifying
a coalition among the neighbors and monetary transfers to each member in the proposed
coalition. If all the members in the coalition accept the offer, then the coalition forms and
the proposer buys out the other members’ network connections and controls the coalition
thereafter. Otherwise, the offer dissolves. The game repeats until the grand-coalition
forms, after which the player who controls the grand-coalition wins the unit surplus. All
the players have a common discount factor.

The main result characterizes a condition on network structures for efficient equilibria.
If the underlying network is either complete or circular, then for any discount factor there
exists an efficient stationary subgame perfect equilibrium. In such an efficient equilibrium,
all the players always try to reach an agreement as soon as practicable and hence no
strategic delay occurs. In any other network, however, an efficient stationary subgame
perfect equilibrium is impossible if a discount factor is greater than a certain threshold
level, that is, strategic delay must occur at least some positive probability.

We also provide an interesting example in which adding a new communication link
decreases social welfare. This observation is reminiscent of the Braess’s paradox (Braess,
1968). The Braess’s paradox refers a situation that constructing a new route reduces
overall performance when players choose their route selfishly. Analogously in our model,
the more links are available, the less links are actually used, as each player strategically
chooses communication links to use for bargaining. As the result, network improvements
decrease social welfare.

The model has two important features which distinguish it from the existing nonco-
operative bargaining models in networks. First, we allow strategic coalition formation so
that each player can choose the partners to bargain with. In the literature, however, play-
ers’ strategic interaction is limited in a randomly selected meeting. A bilateral meeting
(Manea, 2011a,b; Abreu and Manea, 2012a,b) or a multilateral meeting (Nguyen, 2015)
randomly occurs, then the players in the random meeting bargain over their joint sur-
plus.2 As Hart and Mas-Colell (1996) pointed out, however, a random-meeting model
does not entirely capture players’ strategic behaviors and strategic decision on coalition
formation should also be considered.

Next, we allow players to buy out other players and it enables them to gradually form
a coalition.In the Manea/Abreu-Manea/Nguyen model, all the players in a randomly se-
lected coalition, once they reach an agreement, must exit the game and they are excluded
in further bargaining. Thus players’ strategic decision is limited on how to split the coali-
tional surplus, and hence those models are not applicable to an environment in which
gradual coalition formation is inevitable to generate a surplus. On the other hand, when
players can buy out other players as an intermediate bargaining step, they not only con-
sider the surplus of the current coalition itself, but also take into account the subsequent
bargaining games. Thus players may even form a zero-surplus coalition strategically.

The notion of buyout in bargaining was initially introduced by Gul (1989). In his
model multilateral bargaining can be done only through a sequence of random bilateral
meetings, and hence players can bargain with only one partner at a time and they cannot
choose their bargaining partner. To complement random-meeting models, Lee (2015) al-
lows players to strategically choose their bargaining partners and analyzes players’ strate-
gic alliance behaviors in bargaining for general transferable utility environments.

2Abreu and Manea (2012a) also consider an alternative model in which a proposer chooses a bargaining
partner. However, their model is still limited to a bilateral bargaining.
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Unlike in Lee (2015), this paper considers network restrictions in bargaining but con-
centrates on unanimity-game situations in which only a grand-coalition generates a sur-
plus. There are at least two reasons why unanimity games should be particularly con-
sidered for bargaining in networks. First, analyzing unanimity games is enough to show
the prevalence of inefficiencies. If any of proper subcoalitions generates a partial surplus,
an efficient equilibrium is impossible even in complete networks for high discount factors,
as Lee (2015) shows. Second, in unanimity games we can investigate the role of network
structure on strategic delay controlling network-irrelevant factors.

The paper is organized as follows. In Section 2, we introduce a noncooperative mul-
tilateral bargaining model for a network-restricted environment. Section 3 provides the
main characterization result with leading examples. Based on the examples, we discuss a
Braess-Like paradox in Section 4. Concluding remarks follows in Section 5. The proofs
are presented in Appendices.

2 A Model

2.1 Networks

A network (or a graph) g = (N,E) consists of a finite set N = {1, 2, · · · , n} of players (or
nodes) and a set E of links (or edges) of N . When g = (N,E) is not the only network
under consideration, the notations N(g) and E(g) are occasionally used for the player set
and the link set rather than N and E to emphasize the underlying network g. Through
this paper, we assume that g is simple3 and connected. Given g = (N,E) and S ⊆ N , a
subgraph restricted on S is g|S = (S, {ij ∈ E | {i, j} ⊆ S}). The (closed) neighborhood of
i ∈ N is given by Ni(g) ≡ {j ∈ N | ∃ij ∈ E} ∪ {i}. Let degi(g) ≡ |Ni(g)| − 1 be a degree
of i and d(i, j; g) be a (geodesic) distance between i and j in g.

A set S ⊆ N is dominating in g if, for all i ∈ N , either i ∈ S or there exists j ∈ S
such that ij ∈ E. A player i ∈ N is dominating in g if {i} is a dominating set. Let D(g)
be a set of dominating players in g. A dominating set S is minimal if no proper subset
is a dominating set. A network is trivial if |N(g)| = 1. For any integer k = 2, · · · , n− 1,
a network is k-regular if degi(g) = k for all i ∈ N(g). A network g is complete if it is
(n− 1)-regular, or equivalently if D(g) = N(g). A connected network g is circular if it is
2-regular.4

2.2 A Noncooperative Bargaining Game

A noncooperative bargaining game, or shortly a game, is a triple Γ = (g, p, δ), where g is

a underlying network, p ∈ R|N |++ is an initial recognition probability with
∑

i∈N pi = 1, and
0 < δ < 1 is a common discount factor.

A game Γ = (g, p, δ) proceeds as follows. In each period, one of the players is randomly
selected as a proposer according to p. Then, the proposer i makes an offer, that is, i
strategically chooses a pair (S, y) of a coalition S ⊆ Ni(g) and monetary transfers y ∈ RS+
with

∑
j∈S yj = 0. Each respondent j ∈ S \ {i} sequentially either accepts the offer or

rejects it.5 If any j ∈ S \ {i} rejects the offer, then the offer dissolves and all the players

3A simple network is an unweighted and undirected network without loops or multiple edges.
4A circular network (or a circle) should not be confused with a cycle in a network. A circular network

is a network that consists of a single cycle.
5The result does not depend on the order of responses.
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repeat the same game in the next period. If each j ∈ S \ {i} accepts the offer, then i buys
out S \ {i}, that is, each respondent j ∈ S \ {i} leaves the game with receiving yj from
the proposer i and the remaining players (N \ S) ∪ {i} play the subsequent game Γ(i,S)

in the next period. All the players have a common discount factor δ.
After i buys out S \ {i}, or i forms S, the subsequent game Γ(i,S) =

(
g(i,S), p(i,S), δ

)
is

defined in the following way:

i) The induced network g(i,S) =
(
N (i,S), E(i,S)

)
, where N (i,S) = (N \ S) ∪ {i} and

E(i,S) = {ij | (∃i′j ∈ E) i′ ∈ S and j ∈ N \ S}
⋃
{jk | (∃jk ∈ E) j, k ∈ N \ S}.

That is, after i’s S-formation, S \ {i} leaves the network, but i inherits all the
network connections from S.

ii) The induced recognition probability p(i,S):

p
(i,S)
j =


pS if j = i

pj if j ∈ N \ S
0 if j ∈ S \ {i}.

That is, the proposer i takes the respondents’ chances of being a proposer as well.

The game continues until only one player remains, after which the last player acquires
one unit of surplus. When the game ends in finite period T , the history h specifies a finite
sequence ỹ(h) = {yt(h)}Tt=0 of monetary transfers and the last player i∗(h) ∈ N . Given
Γ = (g, p, δ) and a history h, player i’s discounted sum of expected payoffs is

Ui(h) =

T∑
t=0

δtyti(h) + δT1(i = i∗(h)).

If the game does not end within finite periods, then the history h induces a sequence ỹ(h)
of monetary transfers without determining the last player, and hence player i’s discounted
sum of expected payoffs is

Ui(h) =

∞∑
t=0

δtyti(h).

2.3 Coalitional States

A (coalitional) state π is a partition of N , specifying a set of active players Nπ ⊆ N .
For each active player i ∈ Nπ, i’s partition block [i]π represents the players i together
with players whom he has previously bought out. Denote π◦ by the initial state, that is,
Nπ◦ = N and [i]π◦ = {i} for all i ∈ N . A state π is terminal if |Nπ| = 1.

A state π is feasible in g, if there exists a sequence of coalition formations {(i`, S`)}L`=1

such that i1 ∈ N and Si1 ⊆ Ni1 ; and i` ∈ N (i1,S1)···(i`−1,S`−1) and S` ⊆ N
(i1,S1)···(i`−1,S`−1)
i`

for all ` = 2, · · · , L; and Nπ = N (i1,S1)···(iL,SL). Let Π(g) be a set of all feasible states in
g. For each π ∈ Π(g), the induced network gπ = (Nπ, Eπ) is uniquely determined by

Eπ ≡
⋃
i∈Nπ

{
ij | ∃i′j′ ∈ E (i′ ∈ [i]π and j′ ∈ [j]π)

}
,
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and the induced recognition probability pπ is determined by

pπi =

{∑
j∈[i]π

pj if i ∈ Nπ

0 otherwise.
(1)

When there is no danger of confusion, we omit π◦ in notations, for instance, gπ
◦

= g,
gπ
◦(i,S) = g(i,S), and so on. The description of the underlying network g may also be

omitted, when it is clear. For notational simplicity, for any v ∈ R|N | and any S ⊆ N , we
denote vS =

∑
j∈S vj .

2.4 Stationary Subgame Perfect Equilibria

We focus on stationary subgame perfect equilibria. A stationary strategy depends only
on the current coalitional state and within-period histories, but not the histories of past
periods. The existence of a stationary subgame perfect equilibrium is known in the
literature including Eraslan (2002) and Eraslan and McLennan (2013). See Lee (2015) for
the formal description of stationary strategies. In the literature, instead of considering all
the possible stationary strategies, a simple stationary strategy, namely a cutoff strategy,
is usually accepted.

A cutoff strategy profile (x,q) consists of a value profile x = {{xπi }i∈Nπ}π∈Π and a
coalition formation strategy profile q = {{qπi }i∈Nπ}π∈Π, where xπi ∈ R and qπi ∈ ∆(2N

π
i )

for each π ∈ Π(g).6 A cutoff strategy profile (x,q) specifies the behaviors of an active
player i ∈ Nπ: in the following way:

• player i proposes (S, y) with probability qπi (S) such that

yk =


δxπk if k ∈ S \ {i}
−δxπS\{i} if k = i

0 otherwise;

• player i accepts any offer (S, y) with i ∈ S if and only if yi ≥ δxπi .

Note that player i can decline to make an offer by choosing S = {i}. A cutoff strategy
profile (x,q) induces a probability measure µx,q on the set of all possible histories. Given
history h, let π̃(h) = {πt(h)}Tt=0 be a sequence of states which is determined by h. Given
(x,q), define the set of inducible states:

Πx,q(g) = {π ∈ Π(g) | (∃h ∃t) µx,q(h) > 0 and π = πt(h)}.

Given x, for each π ∈ Π(g), i ∈ Nπ, and S ⊆ Nπ
i , define a player i’s excess surplus of

S-formation:

eπi (S,x) =

{
δx

π(i,S)
i − δxπS if S ( Nπ

1− δxπNπ if S = Nπ.

Let Dπi (x) = argmaxS⊆Nπ
i
eπi (S,x) be a demand set of player i in π and mπ

i (x) =
maxS⊆Nπ

i
eπi (S,x) be a (net) proposal gain of player i in π. Given a cutoff strategy

6Through this paper, for a finite set X, ∆(X) is the set of all possible probability measures in X.
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profile (x,q), define an active player i’s continuation payoff in π:

uπi (x,q) = pπi
∑
S⊆Nπ

qπi (S)eπi (S,x) +
∑
j∈Nπ

pπj

 ∑
S:i∈S⊆Nπ

qπj (S)δxπi + δ

 ∑
S:i 6∈S⊆Nπ

qπj (S)x
π(j,S)
i


= pπi

∑
S⊆Nπ

qπi (S)eπi (S,x) + δ

∑
j∈Nπ

pπj
∑
S⊆Nπ

qπj (S)
(
1(i ∈ S)xπi + 1(i 6∈ S)x

π(j,S)
i

) .(2)

We close this section with two important lemmas which provide fundamental tools
for our analysis. Lemma 1 shows that any stationary subgame perfect equilibrium can
be uniquely represented by a cutoff strategy equilibrium in terms of a equilibrium payoff
vector. Thus, when we are interested in players’ equilibrium payoffs or efficiency, without
loss of generality, we may consider only cutoff strategy equilibria. Through this paper,
an equilibrium refers a cutoff strategy equilibrium. Lemma 2 characterizes a cutoff strat-
egy equilibrium with two tractable conditions, optimality and consistency. More general
versions of the proofs can be found in Lee (2015).

Lemma 1. For any stationary subgame perfect equilibrium, there exists a cutoff strategy
equilibrium which yields the same equilibrium payoff vector.

Lemma 2. A cutoff strategy profile (x,q) is an stationary subgame perfect equilibrium if
and only if, for all π ∈ Π and i ∈ Nπ, the following two conditions hold,

i) Optimality: qπi ∈ ∆(Dπi (x)); and

ii) Consistency: xπi = uπi (x,q).

3 Efficient Equilibria

In this section, we characterize a necessary and sufficient condition on network structures
for efficient equilibria. Given g, define a maximum coalition formation strategy profile
q̄ = {{q̄πi }i∈Nπ}π∈Π(g) with

q̄πi (S) =

{
1 if S = Nπ

i

0 otherwise,

that is, for each state π ∈ Π(g), each proposer i ∈ Nπ chooses a maximum coalition Nπ
i

to bargain with. Given Γ = (g, p, δ), let ū(Γ) be a maximum welfare. Note that ū(Γ)
is obtained by any cutoff strategy profile involves with a maximum coalition formation
strategy profile. A strategy profile (x,q) is efficient if∑

i∈N
ui(x,q) = ū(Γ). (3)

Example 1. Let N = {1, 2, 3, 4}. Consider two game Γ = (g, p, δ) and Γ′ = (g′, p, δ),
where g = (N, {12, 23, 34, 41}) is a circular network and g′ = (N, {12, 23, 34, 41, 13}) is
a chordal network. For any p, it is easy to see ū(Γ) < ū(Γ′) as ū(Γ) = δ and ū(Γ′) =
(p1 + p3) + δ(p2 + p4).

6



An efficient strategy profile does not necessarily consist of maximum coalition forma-
tion strategies. The following Lemma 3 characterizes the coalition formation strategies
which constitute an efficient equilibrium. The proof is presented in Appendix A. For each
π ∈ Π(g), define a set of i’s coalitions which maximizes the sum of players’ expected
payoffs in the subsequent state:

Eπi ≡ argmax
S⊆Nπ

i

ū(Γπ(i,S)).

Lemma 3. Given Γ = (g, p, δ), an equilibrium (x,q) is efficient if and only if,

∀π ∈ Πx,q(g) ∀i ∈ Nπ qπi ∈ ∆(Eπi ).

Now we state our main theorem, which characterizes a condition on network structures
for efficient equilibria.

Theorem 1. An efficient stationary subgame perfect equilibrium exists for all discount
factors if and only if the underlying network is either complete or circular.

The theorem presents that the strategic delay in bargaining is a prevalent phenomena
and it causes inefficiency. For any network which is neither complete nor circular, players
strategically exclude some of their neighbors from bargaining partners if the discount
factor is sufficiently large but strictly less than one. By doing so, they can be in a better
position in an induced network and hence increase their future bargaining power, but
this inevitably yields social inefficiency. If the underlying network is either complete or
circular, on the other hand, coalition formations never change the structure of network
– in terms of graph theory, any vertex contraction on adjacent nodes in a complete or
a circular network induces a complete or a circular network. Thus, players can not
drastically change their position by coalition formation and hence all the players try to
reach an agreement as soon as practicable and no strategic delay occurs. Those results do
not depend on the players’ recognition probability as long as each player has a positive
chance of being a proposer.

We prove the theorem through the four propositions. For the sufficient condition, in
subsection 3.1, we construct an efficient equilibrium in a complete network (Proposition
1) and in a circular network (Proposition 2). For the necessary condition, Proposition 3
shows the inefficiency result for a specific class of networks, namely pre-complete networks,
in subsection 3.2. That is, if the underlying network is pre-complete and non-circular, then
any stationary subgame perfect equilibrium is inefficient for a sufficiently high discount
factor. In subsection 3.3, Proposition 4 completes the necessary condition by showing
that, for any game with an incomplete non-circular network, any efficient strategy in-
duces a pre-complete non-circular network with positive probability. In the main body,
the propositions are formally stated and leading examples are provided to highlight the
underlying insights.

3.1 The Sufficient Condition

First, we consider a complete network. Proposition 1 shows that a unanimous agreement
is always immediately reached for any p and δ. Furthermore, the equilibrium payoff
vector is unique and hence any stationary subgame perfect equilibrium is efficient. Let
p = {{pπi }i∈Nπ}π∈Π.

Proposition 1. Let g be a complete network. For any Γ = (g, p, δ),
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i) there exists a cutoff strategy equilibrium (p, q̄);

ii) for any equilibrium, the equilibrium payoff vector equals to p.

Example 2 (A Three-Player Complete Network). Let g be a complete network with
N(g) = {i, j, k} and p be an initial recognition probability. In the first period, a proposer
i forms a grand-coalition by buying out other two players at the prices of δpj and δpk.
Thus the unit surplus belongs to i and his payoff is 1− (pj + pk)δ = 1− (1− pi)δ. Thus,
player i’s expected payoff is pi · (1− (1− pi)δ) + (pj + pk) · δpi = pi.

Next, in a circular network, we construct an efficient equilibrium in which each player
always forms a maximum coalition and the equilibrium payoff vector is proportional to
the initial recognition probability. Recall that bxc is the largest integer not greater than
x.

Proposition 2. Let g be a circular network. For any Γ = (g, p, δ), there exists a cutoff
strategy equilibrium (x, q̄), where for all π ∈ Π(g) and all i ∈ Nπ,

xπi = δ

⌊
|Nπ |

2

⌋
−1
pπi . (4)

Example 3 (A Four-Player Circular Network). Let g be a circular network with |N(g)| =
4. For all π with 2 ≤ |Nπ| ≤ 3, since gπ is complete, the equilibrium strategies in a non-
initial state π are xπ = pπ and qπ = q̄π, which are consistent with (4). For the initial
state, take any i ∈ N and let Ni = {i, j, k}. For any {i} ( S ⊆ Ni, since S-formation
induces a complete network, the excess surplus from S-formation is ei(S,x) = pSδ−δxS =
δ(1 − δ)pS , which implies Di = {Ni}. For all ` ∈ N , then q`(N`) = 1. Thus, we have∑

`∈N p`
∑

S3i q`(S) = pNi and
∑

`∈N p`
∑

S 63i q`(S) = 1 − pNi . Therefore, i’s expected
payoff is:

ui(x, q̄) = pi · δ(1− δ)pNi + δ [pNi · δpi + (1− pNi) · pi] = δpi,

which satisfies consistency condition.

3.2 The Necessary Condition : Pre-complete Networks

To prove the necessary condition, we will show that any efficient strategy profile cannot
constitue an equilibrium in any incomplete non-circular network if the discount factor is
sufficiently high. First, we need to define a special class of networks, namely pre-complete
networks, in which all the players can induce a complete network. Given g, denote a set
of i’s feasible coalitions which yield a complete network by

Ci(g) = {S ⊆ Ni(g) | g(i,S) is complete.}

Definition 1. A graph g is pre-complete if

∀i ∈ N(g) {i} /∈ Ci(g) 6= ∅.

See Figure 1 for examples of pre-complete networks. Pre-complete networks can be
distinguished by the four subclasses – (a) networks with a single dominating player, (b)
networks with multiple dominating players, (c) networks with no dominating player, and
(d) circular networks. In a circular network, as Proposition 2, there exists an efficient
equilibrium for any discount factor. Other subclasses of pre-complete networks provide
a different insight for strategic delay, we provide three leading examples in the following
subsections.

8



(a) Single Dominating Player: Inefficient

(b) Multiple Dominating Players: Inefficient

(c) No Dominating Player (Non-circular): Inefficient

(d) Circular: Efficient.

Figure 1: Examples of Pre-complete Networks: Dark nodes represent dominating players.

Proposition 3. Let g be a pre-complete non-circular network. For any p, there exists
δ̄ < 1 such that for all δ > δ̄, any efficient strategy profile (x,q) cannot be an equilibrium
in Γ = (g, p, δ).

3.2.1 Pre-complete Network with a Single Dominating Player

When there is a single dominating player, the other non-dominating players are reluctant
to form a coalition with the dominating player. This causes a delay. For instance in a
three-player chain, in which there is only one dominating player, the unique dominating
player has a stronger bargaining power than the other players so that her value is too
high for the other players to buy her out. Thus, the non-dominating players decline to
make an offer, even when they are recognized as a proposer.

Example 4 (A Chain). Let g = ({1, 2, 3}, {12, 13}). First, we show an impossibility of
an efficient equilibrium. Suppose there exists an efficient equilibrium (x,q). Then player
1 is always included in a proposed coalition, that is, q1(N) = q2({1, 2}) = q3({1, 3}) = 1.
Thus player 1’s expected payoff is u1(x,q) = p1(1− δxN ) + δx1. Since x1 = u1(x,q) and
xN = p1 + (1− p1)δ, it follows (1− δ)x1 = p1(1− δ(p1 + (1− p1)δ)), or equivalently,

x1 = p1(1 + (1− p1)δ). (5)

On the other hand, player 2’s expected payoff is

u2(x,q) = p2m2(x) + δ((p1 + p2)x2 + p3p2) ≥ δ(1− p3)x2 + p3p2δ.

9



By consistency, we have x2 ≥ δp2p3
1−δ(1−p3) and similarly x3 ≥ δp2p3

1−δ(1−p2) . Together with (5),
it requires that

xN ≥ p1(1 + (1− p1)δ) +
δp2p3

1− δ(1− p3)
+

δp2p3

1− δ(1− p2)
.

To see a contradiction, as δ converges to 1, observe that the right-hand side converges
to 1 + p1(1 − p1), which is strictly greater than 1 as long as p1 > 0. However, xN never
exceeds 1. Thus, for a sufficiently high δ, the efficient strategy profile (x,q) cannot be an
equilibrium.

Next, we construct an inefficient equilibrium. Let δ̄ = max
{

p2
(p1+p2)(1−p1) ,

p3
(p1+p3)(1−p1)

}
so that δ̄ < 1. Consider a strategy profile (x,q) such that

• x1 = p1
1−(1−p1)δ ; x2 = x3 = 0; and

• q1(N) = q2({2}) = q3({3}) = 1,

and in any two-player subgame the active players follow the strategy according to Propo-
sition 1. Since player 2 and player 3 decline to be a proposer in the initial state, the
strategy profile is inefficient. To see that (x,q) constructs an equilibrium for δ > δ̄, due
to Lemma 2, it suffices to verify the following two conditions.

i) Optimality: Calculate each player’s excess surpluses. It is easy to see that
e1(N,x) > 0 and ei({i},x) = 0 for all i ∈ N . For all i ∈ {1, 2}, due to Proposition

1, x
(i,{1,2})
i = p1 + p2, and hence

ei({1, 2},x) = δ(p1 + p2)− δ(x1 + x2) = δ(p1 + p2)− δ
(

p1
1−(1−p1)δ + 0

)
= δ

1−(1−p1)δ (p2 − (p1 + p2)(1− p1)δ).

Then, δ > δ̄ implies ei({1, 2},x) < 0. Similarly, we have ei({1, 3},x) < 0 for all
i ∈ {1, 3}. Given x, therefore, D1 = {N}, D2 = {{2}}, and D3 = {{3}}.

ii) Consistency: Compute each player’s expected payoff:

• u1(x,q) = p1e(N,x) + δx1 = p1(1− δx1) + δx1 = p1
1−(1−p1)δ

• u2(x,q) = p2e({2},x) + δx2 = p2 · 0 + δ · 0 = 0

• u3(x,q) = p3e({3},x) + δx3 = p3 · 0 + δ · 0 = 0.

Therefore, ui(x,q) = xi for all i ∈ N .

3.2.2 Pre-complete Network with Multiple Dominating Players

Even if there are multiple dominating players, as see (b) in Figure 1, they can generate an
additional advantage by forming a cut coalition with other dominating players and split-
ting non-dominating players into two isolated groups. In the next example, we construct
an equilibrium in a chordal network in which there are two dominating players.

Example 5 (A Chordal Network). Let g = ({1, 2, 3, 4}, {12, 23, 34, 41, 13}) and p =
(1

4 ,
1
4 ,

1
4 ,

1
4). Suppose δ > δ̄ ≈ 0.91.7 We construct an equilibrium (x,q) such that

7Note that δ̄ is a solution to δ(8 − 8δ + δ2) = (4 − δ)(1 − δ)(4 + 2δ − δ2).

10



• x1 = x3 = (6−δ)δ
4(4−δ)(2−δ) ; x2 = x4 = (6−6δ+δ2)δ

4(4−δ)(2−δ) ;

• q1({1, 3}) = q3({1, 3}) = 1; q2({1, 2}) = q2({2, 3}) = q4({1, 4}) = q4({3, 4}) = 1
2 .

In any subgame in which the number of active players is less than or equal to three,
they follows the equilibrium strategies according to Proposition 1 and Example 4. Note
that the equilibrium welfare is xN = δ(3−δ)

2(2−δ) . The equilibrium payoff vector converges to(
5
12 ,

1
12 ,

5
12 ,

1
12

)
as δ → 1. Now we verify the equilibrium conditions.

i) Odd Players’ Optimality: Since δ > 3
4 , Example 4 implies that x

(1,{1,3})
1 =

p1+p3
1−(1−p1−p3)δ = 1

2−δ and x
(1,{1,3})
1 = x

(1,{1,3})
4 = 0. Given x, calculate player 1’s

excess surpluses:

• e1({1, 2},x) = δx
(1,{1,2})
1 − δ(x1 + x2) = δ(1−δ)(4−δ)

4(2−δ)

• e1({1, 3},x) = δx
(1,{1,3})
1 − δ(x1 + x3) = δ(8−8δ+δ2)

2(2−δ)(4−δ)

• e1({1, 2, 4},x) = δx
(1,{1,2,4})
1 − δ(x1 + x2 + x4) = δ(6−6δ+δ2)

2(4−δ)

• e1(N,x) = 1− δxN = (1−δ)(4+2δ−δ2)
2(2−δ)

Given e1(S,x) for all S ⊆ N1, it is routine to see that δ > δ̄ implies D1(x) =
{{1, 3}}. Similarly, we also have D3(x) = {{1, 3}}.

ii) Even Players’ Optimality: For any {2} ( S ⊆ N2, player 2’s S-formation induces
a complete network. Thus, given x, one can compute player 2’s excess surpluses:

• e2({1, 2},x) = e2({2, 3},x) = δx
(2,{1,2})
2 − δ(x1 + x2) = δ(1−δ)(4−δ)

4(2−δ)

• e({1, 2, 3},x) = δx
(2,{1,2,3})
2 − δ(x1 + x2 + x3) = δ(24−36δ+11δ2−δ3)

4(2−δ)(4−δ)

Observe that e2({1, 2},x) = e2({2, 3},x) > 0 for all δ; while e({1, 2, 3},x) is strictly
negative if δ > δ̄. Thus, for any δ > δ̄, we have D2(x) = {{1, 2}, {2, 3}} and
similarly D4(x) = {{1, 4}, {3, 4}}.

iii) Consistency: Given (x,q), compute each players’ expected payoffs:

• u1(x,q) = p1e({1, 3},x) + δ
[(
p1 + p3 + 1

2(p2 + p4)
)
x1 + p2

2 x
(2,{2,3})
1 + p4

2 x
(4,{3,4})
1

]
= 1

4 ·
δ(8−8δ+δ2)
2(2−δ)(4−δ) + δ

[
3
4 ·

(6−δ)δ
4(4−δ)(2−δ) + 1

2 ·
1
8

]
= (6−δ)δ

4(4−δ)(2−δ) = x1

,

• u2(x,q) = p2e({1, 2},x) + δ [p2x2 + p4p2 + (p1 + p3) · 0]

= 1
4 ·

δ(1−δ)(4−δ)
4(2−δ) + δ

[
1
4 ·

(6−6δ+δ2)δ
4(4−δ)(2−δ) + 1

4 ·
1
4

]
= (6−6δ+δ2)δ

4(4−δ)(2−δ) = x2

,

and similarly u3(x,q) = x3 and u4(x,q) = x4, and hence consistency holds.
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(a) 6-player 4-regular network

6

1

2

3

4

5

(b) Players form a 3-player coalition
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(c) A chordal network is induced

Figure 2: Strategic Delay in a Regular Network.

3.2.3 Pre-complete Networks with No Dominating Player

Now we consider a network without a dominating player. See (c) in Figure 1 for instance.
Even in a case of that there is no dominating player, we will show that some players
can be a dominating player in the induced network by buying out only a part of their
neighbors.

Example 6 (A 6-Player 4-Regular Network). Consider a 6-player 4-regular network g as
in Figure 2 (a) and let pi = 1

6 for all i = 1, 2, · · · , 6. Each proposer can form a 4- or 5-
player coalition for an efficient outcome. However, players always form a 3-player coalition
in any equilibrium rather than pursuing an efficient outcome. To see this, suppose there
exists an efficient equilibrium (x,q). Since ū(g, p, δ) = δ, it is easy to see xi = δ

6 for all
i = 1, 2, · · · , 6. If a player forms a 3-player coalition as in Figure 2 (b), then a chordal
network is induced. For the induced game Γ(1,{1,2,5}), for sufficiently high δ, one can
construct an equilibrium in which player 1 and player 4 form a cut coalition with each
other and player 3 and player 6 form a coalition with one of the connected players as
similar in Example 5, and the equilibrium payoffs are:

• x(1,{1,2,5})
1 = −δ2+21δ+18

6(3−δ)(6−δ) ,

• x(1,{1,2,5})
3 = x

(1,{1,2,5})
6 = δ(δ2−11δ+12

6(3−δ)(6−δ) , and

• x(1,{1,2,5})
4 = −δ2+13δ−6

2(3−δ)(6−δ) ,

and converge to 19
30 , 1

30 , and 3
10 as δ → 1. Going back to the initial game, compare the

excess surpluses. For any S ⊂ N1 with |S| ≥ 4, player 1’s S-formation induces a complete
network and hence

e1(S,x) = δx
(1,S)
1 − δxS = δpS − δxS = δ(1− δ) |S|

6
,

which converges to zero as δ → 1. On the other hand,

e1({1, 2, 5},x) = δx
(1,{1,2,5})
1 − δ (x1 + x2 + x5) = δ

(
−δ2 + 21δ + 18

6(3− δ)(6− δ)
− δ

3

)
,

which converges to 3
10 as δ → 1. Thus the optimality condition is violated for sufficiently

high δ, and hence an efficient equilibrium is impossible.
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(a) Bargaining in a Circular Network (See Example 3): It takes exactly 2 periods for a grand-
coalition in any equilibrium. In the first period, any proposer forms a three-player coalition by
buying out two neighbors. Then the induced game is of two players.

1

2

3

4

(b) Bargaining in a Chordal Network (See Example 5): The expected periods for a grand-coalition
is strictly greater than 2. In the first period, if the even players are selected as a proposer, then
they choose one of the odd players as a bargaining partner to induce a three-player circle. In the
circle, grand-coalition immediately forms. However, if the odd players are initially selected as a
proposer, then they induce a three-player chain. In the chain, the leaf players decline to make
an offer and hence an additional delay occurs with positive probability.

Figure 3: A Braess-Like Paradox

3.3 The Necessary Condition : Incomplete Networks

We have considered pre-complete non-circular networks. To complete the necessary con-
dition, now we consider a general incomplete non-circular network, beyond the class of
pre-complete networks. Proposition 4 implies that for any game with an incomplete non-
circular network, if the players play efficient strategies, then a pre-complete non-circular
network must be induced with positive probability. Once a pre-complete non-circular
network is induced, delay occurs with positive probability by Proposition 3.

Proposition 4. Let g be an incomplete network. For any efficient strategy profile (x,q),
there exists π ∈ Πx,q(g) such that gπ is a pre-complete network. In addition, if g is a non-
circular network, then there exists π ∈ Πx,q(g) such that gπ is a pre-complete non-circular
network.

4 Braess’s Paradox

Comparing Example 5 with Example 3, we observe a negative welfare effect of adding a
new communication link. In the four-player circle with pi = 1

4 for all i ∈ N , the maximum
welfare level δ is achieved in an equilibrium. If we add a link between player 1 and player
3 in the circular network, then it becomes a chordal network as in Example 5. Since odd
players can form a grand-coalition immediately, the maximum welfare level is 1

2(1 + δ),
which is strictly greater than that of the circular network. However, the equilibrium
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welfare in Example 5 is δ(3−δ)
2(2−δ) which is strictly less than δ, which is the maximum welfare

level in the circle. In fact, this result holds for any recognition probability p, as long as
p2 > 0 and p4 > 0.

One can observe the negative welfare effect of adding a new link by computing the
expected periods for a unanimous agreement. See Figure 3. In the circle, it takes exactly
2 periods for a grand-coalition in the equilibrium. Note that all the players fully use their
communication links whenever they are recognized as a proposer. In the chordal network,
however, the expected periods for a unanimous agreement is 2.5.8 If the even players
are recognized as a proposer in the first period, then they chooses one of the odd players
as a bargaining partner to induce a three-player circle. In the circle, grand-coalition
immediately forms. However, if the odd players are initially recognized as a proposer,
they induces a three-player chain. In the chain, then the leaf players decline to make an
offer and hence an additional delay occurs with positive probability.

Remark. In the Braess’s paradox with the original traffic network context, all the players
are worse off; while in this bargaining game in a communication network, some players
may be better off even though overall performance deteriorates.

Remark. In the random-proposer bargaining model, the equilibrium may not be unique
even in the class of stationary subgame perfect equilibria.9 However, the equilibrium
constructed in Example 3, Example 4, and Example 5 is unique in the class of symmetric
cutoff-strategy equilibria, in which identical players in terms of a position in a network
and a recognition probability play the identical cutoff strategy.

5 Concluding Remarks

We introduce a new non-cooperative coalitional bargaining model for network-restricted
environments and show that strategic delay is prevalent. If the underlying network is ei-
ther complete or circular, there exists an efficient equilibrium no matter what the discount
factor is. For any incomplete and non-circular network, however, if the discount factor
is greater than a certain level, then players strategically cause a delay and inefficiency
occurs.

It is worth noting that inefficiency occurs for high discount factors but it is still asymp-
totically efficient. As the discount factor increases over a certain threshold, delay occurs
more and more frequently but it becomes less and less costly and hence the inefficiency
eventually disappears as the discount factor converges to one. On the other hand, if the
discount factor is low enough, then any equilibrium must be efficient no matter what the
underlying network is, because the impatient players try to reach the agreement as soon
as possible. In sum, the efficiency loss occurs if the discount factor is strictly greater than

8 (p2 + p4) × 2 + (p1 + p3)
[
(p1 + p3) × 2 + (p2 + p4)

(
(p1 + p3) × 3 + (p2 + p4)

(
(p1 + p3) × 4 + · · ·

))]
= 1

2
× 2 + 1

4
× 2 + 1

8
× 3 + 1

16
× 4 + · · ·

= 1 +

∞∑
k=2

k
1

2k
= 2.5.

9To overcome multiplicity of equilibria, the uniqueness of equilibrium payoffs has been studied in the
random-proposer bargaining model. Eraslan (2002) shows the equilibrium payoff uniqueness for a weighted
majority game and Eraslan and McLennan (2013) generalizes this result to a general simple game using
fixed point index theorem. Unfortunately, those results cannot be applied to the model in which a
player has a buyout option, because a player can expect some partial payoff by forming an intermediate
subcoalition and hence the actual characteristic function that the players play is not of a simple game.
The uniqueness of stationary equilibrium payoffs is conjectured in a broader class of characteristic function
form games, but it still remains as an open question. See Eraslan and McLennan (2013) for a discussion.
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the threshold but strictly less than 1. If the network is complete or circular, then there
is no such a threshold and an efficient equilibrium exists for all discount factor.

In addition to investigating efficiency, analyzing the equilibrium payoff vector in the
noncooperative model and comparing it with cooperative solution concepts are an im-
portant research agenda. The limiting equilibrium payoff vector in the model proposes a
plausible power index in networks – for instance, it assigns 5

12 to the dominating players
and 1

12 to the non-dominating players in a 4-player chordal network as in Example 5;
while the Myerson-Shapley value assigns the same value to each player in any unanimity
game no matter what the underlying network is (Myerson, 1977).10 In this regard, it
would be of interest as future research to develop an algorithm for finding an equilibrium
payoff vector and to study its normative properties.
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Appendices

A Proof of Lemma 3

If |N(g)| = 2, then the statement is obviously true. As an induction hypothesis, suppose
the statement is true for any less-than-n-player game. Consider g with |N(g)| = n. For
any π ∈ Π(g), observe that summing (2) over Nπ yields

∑
i∈Nπ

uπi (x,q) =
∑
i∈Nπ

pπi
∑
S⊆Nπ

qπi (S)

eπi (S,x) + δ

∑
j∈S

xπj +
∑
j 6∈S

x
π(i,S)
j


=

∑
i∈Nπ

pπi
∑
S⊆Nπ

qπi (S)Xπ(i,S), (6)

where Xπ(i,Nπ) = 1 and Xπ(i,S) = δ
∑

j∈Nπ(i,S) x
π(i,S)
j for all S ( Nπ.

Sufficiency: Let (x,q) is an efficient equilibrium. By the consistency condition, for all
S ( Nπ, ∑

j∈Nπ(i,S)

x
π(i,S)
j =

∑
j∈Nπ(i,S)

u
π(i,S)
j (x,q).

Since (x,q) is efficient, the induction hypothesis and the definition of efficiency yield
Xπ(i,S) = δū(Γπ(i,S)) for all S ( Nπ. Suppose for contradiction that there exists π ∈
Πx,q(g), i ∈ Nπ, and S, S′ ⊆ Nπ

i such that qπi (S) > 0 and ū(Γπ(i,S)) < ū(Γπ(i,S′)). Then
i can strictly improve the sum of the players’ payoff by putting more weight on S′ in his
coalition formation strategy and hence qπi cannot be a part of an efficient equilibrium.
Necessity: Given g, π ∈ Π(g), and (x,q), define a partial strategy profile (x|π,q|π) =

{(xπ′ , qπ′)}π′∈Π(gπ). By induction hypothesis, for all π ∈ Πx,q(g) \ {π◦}, (x|π,q|π) is an
efficient equilibrium for a game with gπ. Consider the initial state. By (6), in order to
maximize

∑
i∈N ui(x,q), each player i must maximize

∑
S⊆N qi(S)X(i,S). Since, for all

i ∈ N and all S ∈ Ei, (x|(i,S),q|(i,S)) is an efficient equilibrium for a game with g(i,S), the
condition qi ∈ ∆(Ei) maximizes

∑
i∈N ui(x,q) and hence (x,q) is efficient.

B Proof of Proposition 1

Proof of Part i).
Case 1: |N(g)| = 2. Let N(g) = {i, j} and p = (pi, pj) with pi + pj = 1. We show that
a cutoff strategy profile ({p1, p2}, {qi(N) = 1, qj(N) = 1}) is an equilibrium by verifying
player i has no profitable deviation strategy given player j’s cutoff strategy. Note that
player i’s expected payoff from following her cutoff strategy is pi(1− δpj) + pj(δpi) = pi.
First, consider player i’s proposal strategy. Either making an offer with yj < δpj or
declining to make an offer yields an expected payoff δpi. Making an offer with yj > δpj is
not profitable since the offer yj = δpj will be accepted. Thus, player i cannot be better off
by deviating from the given proposal strategy. Next, consider player i’s response strategy.
By rejecting any offer, player i expects the payoff pi in the next period. Thus, rejecting
any offer with yi < δpi is optimal. It is clear that accepting any offer with yi ≥ δpi is
optimal. Therefore, player i has no profitable deviation strategy given player j’s cutoff
strategy.
Case 2: |N(g)| > 2. Suppose that, for any game (g′, p′, δ) with |N(g′)| < |N(g)|, (p′, q̄′)
is an equilibrium, where p′ = {{p′πi }i∈Nπ}π∈Π(g′) and q̄′ = {{q̄πi }i∈Nπ}π∈Π(g′). Note that,
in such an equilibrium, for each i ∈ N(g′), player i’s expected payoff is p′i. We show that
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a cutoff strategy profile σ = (p, q̄) is an equilibrium for (g, p, δ) by verifying player i has
no profitable deviation strategy given other players cutoff strategies. Recall that if player
i follows the cutoff strategy, then her expected payoff is pi(1 − δ) + δpi = pi. Since all
the other players except for i are supposed to play stationary strategies, it is enough to
consider the proposal strategy and the response strategy of player i separately.

• Proposal strategy: Consider player i’s proposal strategy qi such that qi(S) > 0

for some S ( N instead of q̄i. By forming S ( N , player i expects p
(i,S)
i in

the subsequent game, because (g(i,S), p(i,S), δ) is a less-than-n-player game with a
complete network. In order for S to form, it must be yj ≥ δpj for all j ∈ S \ {i}.
Note also that p

(i,S)
i ≤ pS .11 Thus, player i’s proposal gain from S-formation is

δp
(i,S)
i −

∑
j∈S\{i}

yj ≤ δpS −
∑

j∈S\{i}

δpj = δpi. (7)

On the other hand, player i’s proposal gain from following q̄i is

1−
∑

j∈N\{i}

δpj = (1− δ)pN + δpi = (1− δ) + δpi. (8)

Since (7) is strictly less than (8), any proposal strategy which forms S ( N is not
optimal for i. Among proposal strategies which form N , it is clear that making an
offer with y = δp is optimal.

• Response strategy: Since each j ∈ N \ {i} is supposed to play the given cutoff
strategy, player i is guaranteed at least δpi by rejecting any offer. Thus, it is optimal
for i to accept any offer with yi ≥ δpi and to reject any offer with yi < δpi.

Proof of Part ii).
The statement is true for |N(g)| = 2 from the proof of Proposition 1. As an induction
hypothesis, suppose that the statement is true for any game with less-than-n-player games
and now consider a game Γ = (g, p, δ) with |N(g)| = n. Due to Lemma 1, only cutoff
strategy equilibria are considered. Suppose that there exists a cutoff strategy equilibrium
(x,q).
Case 1: Suppose that q = q̄. For each i ∈ N , since

∑
k∈N pk

∑
S⊆N qk(S)1(i ∈ S) = 1,

we have
ui(x, q̄) = pi (1− δxN ) + δxi. (9)

Due to consistency, we obtain ui(x, q̄) = xi and xN = 1. Plugging them into (9), we
have xi = pi. Thus, for any cutoff equilibrium involving maximum coalition formation
strategies q̄ yields a payoff vector p.
Case 2: Suppose that there exists i who plays a non-maximum coalition formation
strategy so that qi(S) > 0 with S ( N . This implies that

• xN = uN (x,q) < 1; and

• there exists S ( N such that i ∈ S and ei(S,x) ≥ ei(N,x).

Thus for each i ∈ S, we have

δx
(i,S)
i − δxS ≥ 1− δxN > 1− δ.

11With transferable recognition probabilities, it holds with equality. With non-transferable recognition
probabilities, the inequality is strict.
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By the induction hypothesis, the inequality implies

δxS + 1 < δpS + δ. (10)

On the other hand, by letting Qj =
∑

k∈N pk
∑

S⊆N qk(S)1(j ∈ S), for each j ∈ S, we
have

xj = uj(x,q) ≥ pj (1− δxN ) + δ(Qjxj + (1−Qj)pj)
> pj (1− δ) + δ(Qjxj + (1−Qj)pj)
= pj + δQj(xj − pj). (11)

Rearranging the terms, (11) yields xj > pj for all j ∈ S. However, this contradicts to
(10) for all δ.

C Proof of Proposition 2

Define η(g) = b|N(g)|/2c − 1. If g is circular and η(g) = 0, then g must be a three-player
circle, which is complete. Proposition 1 proves this case. As an induction hypothesis,
suppose that, for all circular network g′ such that η(g′) < m, a cutoff strategy profile
(x′, q̄′) is an equilibrium for (g′, p′, δ), where x′ = {{δη(g′π)p′πi }i∈N(g′π)}π∈Π(g′). Now we
show that a cutoff strategy profile (x, q̄) is an equilibrium for (g, p, δ) with a circular
network g and η(g) = m, where x = {{δη(gπ)pπi }i∈N(gπ)}π∈Π(g). Take any i ∈ N and let
Ni = {i, j, k}. We verify the equilibrium conditions for player i.

i) Optimality: After i’s maximum coalition formation, the active players face a game
with a circular network g′ and η(g′) = m − 1. Due to the induction hypothesis,

since x
(i,{i,j,k})
i = δm−1(pi + pj + pk), we have

ei({i, j, k},x) = δm(pi + pj + pk)− δ(xi + xj + xk)

= δm(pi + pj + pk)− δ(δmpi + δmpj + δmpk)

= δm(1− δ)(pi + pj + pk). (12)

Suppose i decline to make an offer, that is i forms {i}. Since ei({i},x) = 0 is
strictly less than (12), i’s {i}-formation is not optimal. Suppose i forms {i, j}.
Note that

x
(i,{i,j})
i =

{
δm−1(pi + pj) if |N(g)| is even,

δm(pi + pj) if |N(g)| is odd.

Thus, we have

ei({i, j},x) ≤ δm(pi + pj)− δ(xi + xj) = δm(1− δ)(pi + pj),

which is strictly less than (12), and hence i’s S-formation with |S| = 2 is not
optimal.

ii) Consistency: Since all the players play maximum coalition formation strategies,
player i’s continuation payoff is:

ui(x,q) = piei({i, j, k},x) + δ

(pi + pj + pk)xi +
∑

`∈N\{i,j,k}

p`x
(`,N`)
i


= piδ

m(1− δ)(pi + pj + pk) + δ(pi + pj + pk)xi + δ(1− (pi + pj + pk))δ
m−1pi.
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Since ui(x,q) = xi, rearranging the terms, we have

(1− δ(pi + pj + pk))xi = piδ
m(1− δ)(pi + pj + pk) + (1− (pi + pj + pk))δ

mpi,

which yields xi = δmpi.

D Proof of Proposition 3

In a pre-complete network, there may or may not be exist a dominating player. We divide
the proof into two disjoint cases, D(g) 6= ∅ and D(g) = ∅.

Case 1: D(g) 6= ∅

Since g is a pre-complete, note that there exists j1 and j2 such that d(j1, j2; g) = 2. Let
J1(g) = Nj1(g)\D(g), J2(g) = Nj2(g)\D(g), and J(g) = J1(g)∪J2(g). Lemma 4 provides
a lower bound of the unique dominating player’s expected payoff.

Lemma 4. Let g be a pre-complete network with D(g) = {i}. If (x,q) is an equilibrium
of Γ = (g, p, δ), then

xi ≥ pi + pi(1− pi)δ. (13)

Proof. Step 1: Consider a three-person chain, that is, J1 = {j1} and J2 = {j2}. Since

x
(j1,J1)
i = x

(j2,J2)
i = xi and uN (x,q) ≤ ū(Γ) = pi + δ(1− pi), player i’s expected payoff is

xi ≥ piei(N,x) +
∑
k∈N

pk
∑
S3i

qk(S)δxi + δ
∑
k∈N

pk
∑
S 63i

qk(S)xi

≥ pi(1− δ(pi + δ(1− pi))) + δxi.

Rearranging the terms, we have the desired result.
Step 2: As an induction hypothesis, assume that for any pre-complete network g′ with
D(g′) = {i}, ≤ |J1(g′)| ≤ a, and 1 ≤ |J2(g′)| ≤ b, x′i ≥ p′i + p′i(1− p′i)δ. Now we consider
a pre-complete network g with D(g) = {i}, |J1(g)| = a, and |J1(g)| = b + 1. Player i’s
expected payoff is

xi ≥ piei(N,x) +
∑
k∈N

pk
∑
S3i

qk(S)δxi + δ
∑
k∈N

pk
∑
S 63i

qk(S)x
(k,S)
i . (14)

For any k ∈ N and S ⊆ N such that i 6∈ S, the induction hypothesis implies x
(k,S)
i ≥

pi+pi(1−pi)δ. Suppose by way of contradiction that pi+pi(1−pi)δ > xi. Then, (14) can
be written as xi ≥ pi (1− δ(pi + δ(1− pi))) + δxi, or equivalently, xi > pi + pi(1 − pi)δ,
which yields a contradiction. Similarly, induction argument completes the proof.

Proof of Proposition 3 (Case 1: D(g) 6= ∅)
Take any j ∈ J1. Since (x,q) is efficient, we have (∀j′ ∈ J2)

∑
S∈Cj′

qj′(S) = 1 and

(∀i ∈ D ∪ J1)
∑

j∈S⊆N qi(S) = 1. Thus, player j’s payoff is

uj(x,q) = pjmj(x) + δ(pD + pJ1)xj + δ
∑
j′∈J2

pj′
∑
S⊆N

qj′(S)x
(j′,S)
j

≥ δ(pD + pJ1)xj + δpJ2pj ,
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which implies that xj ≥
pjpJ2δ

1−(1−pJ2 )δ . Summing j over J1, we have xJ1 ≥
pJ1pJ2δ

1−(1−pJ2 )δ .

Similarly for J2, we have xJ2 ≥
pJ1pJ2δ

1−(1−pJ1 )δ , and hence

xJ = xJ1 + xJ2 ≥ pJ1pJ2δ
(

1

1− (1− pJ1)δ
+

1

1− (1− pJ2)δ

)
(15)

Now take any i ∈ D. Player i’s optimality implies ei(N,x) ≥ ei(D,x), or equivalently,

1 − δxN ≥ δx
(i,D)
i − δxD. Since g(i,D) has a single dominating player, Lemma 4 implies

x
(i,D)
i ≥ pD + pD(1− pD)δ and it follows that

1− pDδ(1 + δ − pDδ) ≥ δxJ (16)

By (15) and (16), we have

1− pDδ(1 + δ − pDδ) ≥ pJ1pJ2δ
2

(
1

1− (1− pJ1)δ
+

1

1− (1− pJ2)δ

)
. (17)

As δ → 1, the right hand side of (17) converges to pJ ; while the left hand side converges
to p2

J . Since pJ < 1, there exists δ̄ < 1 such that the inequality (17) yields a contradiction
for δ > δ̄.

Case 2: D(g) = ∅

Before proving this, some lemmas are presented. First, whenever there is a dominating
player in an incomplete network, Lemma 5, Lemma 6, and Lemma 7 show dominating
players have some additional bargaining power compared to other non-dominating players.
In a network without a dominating player, Lemma 8 shows that each player’s payoff should
be strictly less than her recognition probability under any efficient equilibrium. For any
non-circular pre-complete network without a dominating player, Lemma 9 finds a player
who can be a dominating player avoiding a complete network. Combining those lemmas,
therefore, when an efficient equilibrium is assumed, at least one player can be strictly
better off by strategically delaying a unanimous agreement, which is a contradiction in
turn.

More graph-theoretic definitions are required. A complete cover of g is a collectionM
of subsets of N(g), such that, ∪M = N(g) and g|M is a complete network for all M ∈M.
A complete covering number of g is the minimum cardinality of a complete cover of g. A
minimal complete cover is a complete cover of which cardinality is minimum.

Lemma 5. Let g be a pre-complete network with ∅ ( D(g) ( N(g) and (x,q) be an
equilibrium of (g, p, δ) with δ < 1. If i ∈ D(g) then xi > pi.

Proof. If |N(g)| = 3, due to Lemma 4, then xi ≥ pi + pi(1− pi)δ > pi for any i ∈ D. As
an induction hypothesis, suppose the statement is true for any g′ with |N(g′)| < n. Now
consider g with |N(g)| = n. Take any i ∈ D(g). For any k ∈ N and any S such that

i 6∈ S, if g(k,S) is complete then x
(k,S)
i = pi; and if g(k,S) is incomplete then x

(k,S)
i > pi by

the induction hypothesis. Thus, letting Qi =
∑

k∈N pk
(∑

S3i qi(S) + qk({k})
)
, we have

xi ≥ pi(1− δxN ) +Qiδxi + δ(1−Qi)pi, and hence xi ≥ pi + δ(1−δ)
1−δQi pi > pi.

Lemma 5 says that for any dominating player, her expected payoff is strictly greater
than her recognition probability. However, we need a stronger result: the difference
between the expected payoff and the recognition probability is strictly positive even in
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the limit of that the discount factor converges to one. Lemma 6 shows that there exists
such a dominating player and Lemma 7 proves it for all dominating players. For notational

convenience, denote ∆i = xi − pi and ∆
(j,S)
i = x

(j,S)
i − p(j,S)

i . If g(i,S) is complete and

non-trivial, by Proposition 1, note that ei(S,x) = δ(x
(i,S)
i − xS) = δ(pS − xS) = −δ∆S .

Lemma 6. Let g be a pre-complete network with ∅ ( D(g) ( N(g) and (x,q) be an
equilibrium of (g, p, δ). There exists h ∈ D(g) such that

xh − ph ≥
ph
(
pD(1− pD)δ2 − (1− δ)

)
1 + (|D| − 1)phδ

.

Furthermore, limδ→1(xh − ph) ≥ phpD(1−pD)
1+(|D|−1)ph

> 0

Proof. Take any h ∈ argmaxi∈N ∆i and let Qh =
∑

i∈N
∑

S3h piqi(S). For any i ∈ N and

S ⊆ N such that h 6∈ S, since h ∈ D(g(i,S)), Lemma 5 implies x
(i,S)
h ≥ ph, and hence we

have

xh ≥ pheh(D,x) +Qhδxh + δ(1−Qh)ph

≥ phpD(1− pD)δ2 − ph∆Dδ +Qhδ(ph + ∆h) + (1−Qh)δph

≥ phpD(1− pD)δ2 − ph|D|∆hδ + δph + ph∆hδ, (18)

where the second inequality is due to Lemma 4, which implies

eh(D,x) = δ
(
x

(h,D)
h − xD

)
≥ δ(pD + pD(1− pD)δ − xD) = pD(1− pD)δ2 −∆Dδ,

and the last inequality comes from ph ≤ Qh, ph ≥ xh, and ∆D ≤ |D|∆h. Subtracting ph

from both sides of (18), we have ∆h ≥
ph(pD(1−pD)δ2−(1−δ))

1+(|D|−1)phδ
, as desired. Since D ( N , it

must be pD < 1 and hence limδ→1 ∆h ≥ phpD(1−pD)
1+(|D|−1)ph

> 0.

Lemma 7. Let g be a pre-complete network with ∅ ( D(g) ( N(g) and (x,q) be an
equilibrium of (g, p, δ). For any i ∈ D(g), there exists ∆i > 0 such that xi − pi ≥ ∆i as δ
converges to 1.

Proof. We will show that limδ→1 mini∈D ∆i > 0. Let L = argmini∈D ∆i. Since g is a
pre-complete, as before there exists j1 and j2 such that d(j1, j2; g) = 2, and let J1(g) =
Nj1(g) \D(g), J2(g) = Nj2(g) \D(g), and J(g) = J1(g) ∪ J2(g). Recall Lemma 5, which
implies (∀i ∈ D) ∆i > 0. Thus, for any j ∈ J1 and S ( N , if qj(S) > 0 then either S ⊆ J1

or S ∩D = {`} for some ` ∈ L.
Case 1: Suppose |J1| = |J2| = 1. Then, for each j ∈ J , qj({j}) +

∑
`∈L qj({j, `}) = 1,

and hence there exists ` ∈ L such that
∑

j∈J pj (qj({j}) + qj({j, `})) ≥ pJ
|L| . Let Q` =∑

j∈J pj (qj({j}) + qj({j, `}))+
∑

i∈D
∑

S3` piqi(S), thenQ` ≥ pJ
|L|+p`. Since x` ≥ p`e`(J∪

{`},x) +Q`δx` + (1−Q`)δp`, it follows

∆` ≥ δp`(∆` + ∆J) + δ

(
pJ
|L|

+ p`

)
∆` − (1− δ)p`,

which implies ∆` ≥ −δp`∆J−(1−δ)p`
1−δ pJ|L|

. Since xN−pN = ∆N < 0, we have −∆J ≥ ∆D ≥ ∆h.

Thus, by Lemma 6, we have the desired result,

lim
δ→1

∆` ≥ −
|L|p`
|L| − pJ

∆J ≥
|L|p`
|L| − pJ

∆h ≥
p`phpD(1− pD)|L|

(|L| − pJ)(1 + (|D| − 1)ph)
> 0.
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Case 2: As an induction hypothesis, for any pre-complete network g′ with ∅ ( D(g′) (
N(g′) and 1 ≤ |J1(g′)| ≤ a and 1 ≤ |J2(g′)| ≤ b and any equilibrium (x′,q′) of (g′, p′, δ),
assume that limδ→1 mini∈D(g′)(x

′
i − p′i) > 0. Now we consider a pre-complete network

g with ∅ ( D(g) ( N(g) and |J1(g)| = a and |J2(g)| = b + 1. Due to the induction

hypothesis, there exists ∆′` > 0 such that ∆′` ≥ limδ→1(x
(j,J ′)
` − p`) for all α ∈ {1, 2},

j ∈ Jα, and J ′ ⊆ Jα. Then, we have

x` ≥ p`e`(J ∪ {`},x) +

p` +
∑

α∈{1,2}

∑
j∈Jα

pj (qj({j}) + qj(Jα ∪ {`}))

 δ(p` + ∆`)

+

 ∑
α∈{1,2}

∑
j∈Jα

∑
J ′⊆Jα

pjqj(J
′)

 δ(p` + ∆′`) + pD\{`}δp`. (19)

If limδ→1 ∆` ≥ ∆′`, then there is nothing to prove. Suppose that limδ→1 ∆` ≤ ∆′`. As
δ → 1, then (19) yields x` ≥ −p`δ∆J + δp` + (1 − pD)δ∆`, or equivalently, (1 − (1 −
pD)δ)∆` ≥ −δp`∆J − (1− δ)p`. Take any h ∈ argmaxi∈D ∆i. Since −∆J > ∆D > ∆h, it
follows that

(1− (1− pD)δ)∆` > δp`∆h − (1− δ)p`.

By Lemma 5, we have the desired result, limδ→1 ∆` ≥ p`ph(1−pD)
1+(|D|−1)ph

> 0.

Lemma 8. Let g be a pre-complete network with D(g) = ∅. If (x,q) is an efficient
equilibrium of Γ = (g, p, δ), then for all i ∈ N , xi = δpi.

Proof. Since g is pre-complete and (x,q) is efficient, for all j ∈ N , qj(S) > 0 implies g(j,S)

is complete. Thus, each player i can expect pi in the next period by rejecting any offer.
Suppose player i gets an offer with yi < δ2pi. By rejecting yi, i can be strictly better
since the stationary strategy profile guarantees δpi in the next period. Hence, xi ≥ δpi
for all i ∈ N . If there exists i ∈ N such that xi > δpi, then it must be xN > δpN = δ,
which is infeasible.

Lemma 9. Let g be a pre-complete non-circular network with D(g) = ∅. There exist
i, j ∈ N(g) such that i ∈ D(g(i,{i,j})) ( N(g(i,{i,j})).

Proof. Since g is pre-complete non-circular, its complete covering number is 2. Let M
be a minimal complete cover of g. Since D(g) = ∅, M must be disjoint. Given i ∈ N ,
then let Mi ∈ M such that i ∈ Mi. Since D(g) = ∅, for all k ∈ N , there exists at
least one k′ ∈ M c

k such that kk′ 6∈ E(g), that is, it must be |M c
k \ Nk(g)| ≥ 1. We will

show that there exists i ∈ N and j ∈ M c
i such that i ∈ D(g(i,{i,j})) ( N(g(i,{i,j})), by

constructing such a pair of i and j in the following two cases. First, suppose there exists
k ∈ N such that |M c

k \ Nk(g)| ≥ 2. Take i ∈ M c
k \ Nk(g) and j ∈ M c

i with ij ∈ E(g).
Take i′ ∈ M c

k \ Nk(g) with i′ 6= i. Since g|Mi
and g|Mc

i
are complete, i ∈ D(g(i,{i,j})).

Since d(k, i′; g) = d(k, i′; g(i,{i,j})) = 2, k 6∈ N(g(i,{i,j})), as desired. Second, suppose, for
all k ∈ N , |M c

k \ Nk(g)| = 1. Take any i ∈ N and j ∈ M c
i such that ij ∈ E(g). Take

k ∈ Mi \ {i} and k′ ∈ M c
i such that d(k, k′; g) = 2. Again we have i ∈ D(g(i,{i,j})) and

d(k, k′; g) = d(k, k′; g(i,{i,j})) = 2, as desired.

Proof of Proposition 3 (Case 2: D(g) = ∅)
Suppose (x,q) is an efficient equilibrium. Due to Lemma 8, for all i ∈ N and all S ∈ Ci,

ei(S,x) = δ
(
x

(i,S)
i − xS

)
= δ (pS − δpS) = δ(1− δ)pS ,
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which converges to 0 as δ → 1. By Lemma 9, there exists i, j ∈ N(g) such that i ∈
D(g(i,{i,j})) and {i, j} 6∈ Ci. Due to Lemma 7, there exists ∆i such that x

(i,{i,j})
i −p(i,{i,j})

i ≥
∆i. By Lemma 8, then we have

ei({i, j},x) = δ
(
x

(i,{i,j})
i − (xi + xj)

)
≥ δ

(
(p

(i,{i,j})
i + ∆i − δ(pi + pj)

)
= δ∆i + δ(1− δ)(pi + pj).

As δ → 1, note that ei({i, j},x) ≥ ∆i > 0. Thus for a sufficiently high δ, ei({i, j},x) >
ei(S,x) for all S ∈ Ci, which contradicts to optimality of player i.

E Proof of Proposition 4

Suppose that g is neither pre-complete nor complete. Now we construct a sequence
of coalition formations which is consistent with (x,q) and the sequence induces a pre-
complete network. Take i∗ ∈ argmaxi∈N(g) degi(g). Let I(g) = {i ∈ N(g) | Ci(g) = ∅}.
Let g1 = g and take i1 ∈ argmaxi∈I(g1) d(i, i∗; g1). Pick any S1 such that qi1(S1) > 0.

Let g2 = g(i1,S1). Similarly, pick i2 ∈ argmaxi∈I(g2) d(i, i∗; g2). Pick any S2 such that
qi2(S2) > 0. Since (x,q) is efficient, |S1| ≥ 2, |S2| ≥ 2, and so on; and I(g1) ) I(g2) ) · · · .
Thus, one can repeat this process until I(gT ) = ∅, after which gT is a pre-complete net-
work. This proves the first part. In addition, assume that g is not circular. If g is a
tree, then any induced network cannot be circular and hence gT is not circular. If g has
a cycle but not a circular network, then degi∗(g) = degi∗(gT ) ≥ 3, and hence gT cannot
be circular.
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