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The circadian regulation of gene expression allows plants and animals to

anticipate predictable environmental changes. While the influence of the cir-

cadian clock has recently been shown to extend to ribosome biogenesis, the

dynamics and regulation of the many small nucleolar RNA that are required

in pre-ribosomal RNA folding and modification are unknown. Using a novel

computational method, we show that 18S and 28S pre-rRNA are subject to

circadian regulation in a nuclear RNA sequencing time course. A population

of snoRNA with circadian expression is identified that is functionally associ-

ated with rRNA modification. More generally, we find the abundance of

snoRNA known to modify 18S and 28S to be inversely correlated with the

abundance of their target. Cyclic patterns in the expression of a number of

snoRNA indicate a coordination with rRNA maturation, potentially through

an upregulation in their biogenesis, or their release from mature rRNA at the

end of the previous cycle of rRNA maturation, in antiphase with the diurnal

peak in pre-rRNA. Few cyclic snoRNA have cyclic host genes, indicating the

action of regulatory mechanisms in addition to transcriptional activation of

the host gene. For highly expressed independently transcribed snoRNA,

we find a characteristic RNA polymerase II and H3K4me3 signature that

correlates with mean snoRNA expression over the day.
1. Introduction
Circadian rhythms in animal physiology and metabolism anticipate predictable

diurnal variations in the environment [1,2]. In mammals, the master clock is

located in the hypothalamic suprachiasmatic nucleus (SCN) region of the

brain. Cells and peripheral organs have autonomous oscillators coordinated

with the SCN through hormonal signals [3]. The molecular basis of these

cycles is well understood: the Clock:Bmal1 heterodimer activates the transcrip-

tion of Per and Cry genes, these proteins then repress Clock and Bmal1

transcription [2,3]. Despite Clock:Bmal1 binding its targets in a narrow time

window, 6 h after dawn in mouse, the targeted genes peak in expression at

varying times [4]. Recent genome-wide sequencing studies of nascent and

mature mRNA have shown that rhythmic pre-mRNA transcription is not

necessarily followed by rhythmic mRNA levels, and that rhythms in mRNA

expression are observed in genes lacking rhythmic transcription [5]. In addition,

oscillations in protein levels and phosphorylation states give further evidence

for circadian regulation operating at all levels from transcription to translation,

splicing and the maintenance of transcript stability [6–10]. Of particular

relevance, many proteins involved in ribosome biogenesis have been found

to be rhythmic by quantitative proteomics in mouse liver nuclei [10].

Ribosome biogenesis has also been shown to be influenced by the circadian

clock through the transcription of translation initiation factors, ribosomal pro-

teins and ribosomal RNAs [11]. For example, in mouse, Rps18 and Rpl30

mRNA expression in the polysomal RNA fraction peaks at 14–22 h after

dawn [11]. The 45S pre-rRNA peaks around the middle of the day and is
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synchronized with ribosomal proteins potentially through

UBF1 binding [11]. Ribosome biogenesis consumes a large

amount of cellular energy and appears to be diurnally coor-

dinated, possibly to synchronize with nutrient availability

[10]. However, little is known about the dynamics of the

complex process of rRNA biogenesis across the circadian

cycle, or the regulation of the many small nucleolar RNAs

(snoRNAs) that support the folding and modification of

rRNA precursors.

SnoRNAs are short non-coding RNAs with a conserved

role in ribosome biogenesis. SnoRNAs are found in both

eukaryotes and archaea indicating an ancient origin [12]. In

mammals, many of the currently characterized snoRNA are

located in the introns of protein-coding genes, from which

they are processed after splicing and debranching of the

intron lariat [13]. SnoRNA are also found embedded within

annotated non-coding host genes (named processed tran-

scripts in current genome biotype annotations), lincRNAs

and in non-genic regions. Two classes of snoRNA have

been defined, box C/D and box H/ACA, guiding the methyl-

ation of rRNA and its pseudouridylation, respectively. Box

C/D snoRNAs have an additional role in the cleavage and

folding of pre-rRNA. However, numerous ‘orphan’ snoRNAs

outside of these two classes are also known to exist in mam-

malian genomes, and a variety of novel functional roles for

snoRNAs have also emerged. Suggested non-canonical func-

tions of snoRNA include the cross-modification of other

snoRNA, binding to other ncRNAs (e.g. 7SK), the editing

and splicing of mRNA, association with accessible chromatin

and as precursors for miRNA [13]. A potential role for

snoRNA in circadian metabolism in mouse and human

has also been suggested [14], and snoRNA host genes in

Drosophila have been shown to oscillate [15] but, to date,

the extent of circadian dynamics across the diversity of

mammalian snoRNA transcripts is unknown.

Here we take advantage of published nascent (nuclear poly

A2) and mature (total poly Aþ) RNA sequencing datasets [5]

to explore the expression dynamics of ribosome biogenesis in

mouse liver. We show that nascent RNA-seq data are a rich

resource that reveal both snoRNA and pre-rRNA dynamics,

and using a new approach to detect periodic expression we

reveal novel subpopulations of circadian snoRNA and a

distinct subpopulation with time-varying expression greatly

in excess of their host genes. Additional data on chromatin

state [16] give further novel insights into snoRNA biogenesis.

Overall these data suggest that snoRNAs regulated with

circadian periodicity are tightly integrated with ribosome

biogenesis in mammalian cells.
2. Results
We quantify the remarkable variations in snoRNA, host

mRNA and rRNA abundance, and explore their interrelation-

ships, in next-generation sequencing data generated across

the circadian cycle in mouse liver [5,16]. Cyclical variations

in microRNA expression across the circadian cycle have

been noted [17,18], as have such variations in lincRNA [5],

but to date such changes in snoRNA and rRNA have not

been revealed. We adopt the current mouse assembly

(Ensembl GRCm38) and annotation (84) for coding and

non-coding genes. Approximately 1500 snoRNA genes are

included, many from RFAM computational predictions
(which have had a controversial status [19]). Thus, we explore

the current catalogue of snoRNA gene expression in a diverse

range of sequencing data from mouse.

2.1. SnoRNA are a major constituent of nascent
sequencing data

Nascent sequencing captures nuclear RNA prior to the for-

mation of the 30-end [5]: samples were DNase-treated and

depleted of polyadenylated RNA but rRNA was not

removed. The importance of polyA depletion in nascent

sequencing is stressed in [20]. Thus, we found the nascent

sequencing data contained reads mapping to most RNA

species, including those that are not polyadenylated in their

mature form such as snoRNA and rRNA. Two biological

samples were obtained at six time points from Zeitgeber

Time 0 (ZT0, dawn) to ZT20 (20 h after dawn) from 12

different mice (see [5] for details).

The abundance of RNA transcripts was quantified in TPM

using the Kallisto pseudo-alignment technique [21]. This

requires the set of transcripts of interest to be compiled

(Ensembl GRCm38) to which we added the 5.8S, 18S and

28S pre-rRNA sequences (snOPY database [22]). The large

proportions of snoRNA and rRNA species, and their variation

over the day in nascent sequencing data were unexpected but

readily apparent (figure 1a). It was evident that mRNA consti-

tuted between 16% and 27% of the RNA in nascent sequencing

across the day, with rRNA, snoRNA and snRNA all account-

ing for at least 15% of sequenced RNA. By contrast, mRNA

constituted over 94% of RNA abundance in conventional

RNA sequencing data (figure 1b).

2.2. SnoRNA hosted by protein-coding genes and
non-genic snoRNA are extensively expressed
in mouse liver

There is a considerable discrepancy between the number of

snoRNA genes curated in the literature and the number anno-

tated as snoRNA in Ensembl, based on a computational

prediction protocol. The number of snoRNA genes in mam-

mals has been estimated as 216 (H. sapiens) [23], which is

only a fraction of the 1484 snoRNA annotated in the mouse

assembly GRCm38 (mm10). To address whether these

genes are expressed in mouse liver, for each of the 12 sequen-

cing datasets, we selected a lower threshold of TPM

expression as the first quartile (0.7–1.6 TPM) and considered

all genes with expression above this threshold in any dataset

to be expressed. As an additional test, we required at least a

single uniquely mapping read per transcript to call a snoRNA

identifiable.

The categorization of all Ensembl snoRNAs according to

the gene type of the host gene (if any), and the numbers

expressed in nascent sequencing are indicated in figure 1c,d.

Overall, we found 516 snoRNA (37%) to be both expressed

and identifiable in mouse liver. For snoRNA hosted by

protein-coding genes the fraction rises to 83%. A smaller pro-

portion of antisense snoRNA were expressed and identifiable,

but the fraction was still surprisingly high at 65%. By con-

trast, only 12% of other non-genic snoRNA meet these

criteria. As this analysis was based on the alignment of

reads to sequences, duplicate sequences had to be eliminated

(101 snoRNA genes had one or more duplicates and were

http://rsif.royalsocietypublishing.org/
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Figure 1. All major categories of non-coding RNA are captured by nascent sequencing. (a) Stacked bar charts show the total expression of five selected RNA
biotypes in nascent sequencing, and in RNA sequencing data (b), at six time points (data from [5]). Quantification is in TPM and hence sums to 106 at each
time point. (c) Chart depicts the numbers of small nucleolar RNAs annotated in Ensembl classified according to host gene biotype, designated antisense if on
the opposite strand to an overlapping gene, else designated non-genic. (d ) The number of small nucleolar RNAs categorized as in (c) that are both expressed
and identifiable by a uniquely mapping read in nascent sequencing data.
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replaced by 17 exemplars to give a total of 1400 unique

genes). Electronic supplementary material, file S1, lists the

snoRNA in mm10 along with their locus, that of their host,

RFam family, snoRNA type, equivalence class and whether

expressed or not.

We then examined whether non-genic snoRNA tend to

have higher sequence similarity with other snoRNA as an

explanation of their lack of identifiability. Using Blast, we

built sets of genes with sequence alignments from 85 to

95%, and identified genes with 100% sequence identity to

another gene and found that snoRNA with processed tran-

script hosts were more prevalent than expected in the 85%

similarity set and that non-genic snoRNA were not (electronic

supplementary material, figure S1). The number of identifi-

able genes (those with uniquely mapping reads) reduced as

sequence similarity increased, and in the 85% similarity set

antisense snoRNA were more identifiable than expected

and non-genic snoRNA less so (electronic supplementary

material, figure S1). However, at 85% similarity, only 71

non-genic genes were not identifiable, and so sequence simi-

larity appeared to be only a small factor in the eightfold

reduction in the number of non-genic snoRNA that were

actually expressed and identifiable: This class of snoRNA

does not appear to be active in mouse liver.

2.3. A subpopulation of snoRNA have time-varying
expression greatly in excess of their host gene

The difference in expression between genic snoRNA and their

host genes was a striking feature of the nascent sequencing

data. For example, Snord14c and Snord14d were 20 times

more highly expressed than their host Hspa8 at certain

times of the day (figure 2a and electronic supplementary
material, figure S2). Many snoRNA were consistently more

highly expressed than their nascent host gene; indeed, 56

were at least 10 times more greatly expressed than their

host gene at all time points (figure 2b). To assess the

change in expression in these genes, we might consider the

fold change between maximum and minimum values over

the time course. However, simply requiring a threshold of a

twofold change in mean expression would lead to the con-

clusions that 63% of all snoRNA with a host showed

differential expression, and that a comparable fraction (66%)

of snoRNA with expression in excess of their host were differ-

entially expressed. In fact, testing for differential expression

using the Wald test (implemented in sleuth [24]) such that

variability between replicates is accounted for led to a very

different conclusion: 4% of snoRNA with a host (21 genes)

showed significant changes and 25% of snoRNA with

expression in excess of their host were differentially

expressed. The 21 genes identified had adjusted p-values

�0.05 after accounting for the testing of 98 327 transcripts,

and the same set were significant if we considered only

snoRNA and chose a conservative threshold of 0.005 after

Benjamini–Hochberg correction (a conservative threshold is

warranted to account for the selection of minimum and maxi-

mum values over the time course). The extent and

significance of the fold changes in snoRNA expression over

the day are indicated in figure 2c by the plot of effect size

(the b value computed by sleuth, proportional to log fold

change) over the time course against mean expression.

Known modifiers of 28S are among the 14 genes satisfying

both criteria in figure 2b,c: Snord17, Snora23, Snora65,

Snora74a and Gm23946. (Electronic supplementary material,

file S2, lists these genes and provides their expression data.)

These properties of snoRNA abundance raise questions as

http://rsif.royalsocietypublishing.org/


0

1

2

3

Hspa8

chromosome 9

lo
g 10

 n
or

m
al

iz
ed

 r
ea

d 
co

un
t

40803199 40803699 40804199 40804699 40805199

ZT0
ZT4
ZT8
ZT12
ZT16
ZT20

Snord14c Snord14eSnord14d

(d) snoRNA modifying 28S rRNA
(c)

ZT0 ZT4 ZT8 ZT12 ZT16 ZT20

Snord17
Snord15b
Snord15a
Gm26447
Gm23946
Snora65
Snora74a
Gm23455
Gm25791
Gm22357
Gm23608
Gm25617
Snora68
Snord88a
Gm22806
Snord49b
Snord21
Snord55
Snora62
Gm23991
Gm24044
Gm22980
Snora33
Mir3068
Gm25272
Gm24888
Snord47
Gm24233
Snord60
Snord34
Snord12
Snord35a
Gm24201
Snora3
Snora30
Gm22786
Snora34
Gm22457
Snora21
Gm23297
Snora16a
Gm25053
Gm26330
Snora61
Snora31
Snora52
Snora64
Snora23
Snora7a
Snord104
28S rRNA

0 1 2 3 4

value

0 0.5 1.0 1.5 2.0

0

1

2

3

4

5

log10 host gene expression (TPM)

lo
g 10

 s
no

R
N

A
 e

xp
re

ss
io

n 
(T

PM
)

0 1 2 3 4

0

1

2

3

4

5

6

log10 mean snoRNA expression (TPM)

ex
pr

es
si

on
 c

ha
ng

e 
(e

ff
ec

t s
iz

e 
b)

expression exceeds host
significant change
both

20 000 40 000 60 000 80 000

0

200

400

600

TPM 28S rRNA

T
PM

Snora16a
Snhg12

20 000 40 000 60 000 80 000

0

500

1000

1500

2000

TPM 28S rRNA

T
PM

Snora52
Rplp2

(a)

(b)

(e) ( f )

Figure 2. SnoRNA expression varies considerably over time. (a) Normalized read depth in nascent sequencing data over the Hspa8 locus at six time points.
The locations of Hspa8 exons are shown by black bars, snoRNA by blue bars. Nascent sequencing depth was 70M – 157M and coverage was normalized to 108.
(b) Scatterplot of snoRNA expression against host gene expression at ZT0. Points above the solid black line represent snoRNA with abundance greater than their
host, and those above the dashed black line have expression 10 times greater than their host. (c) Scatterplot of log fold change in snoRNA expression (b value calculated
by sleuth) against mean expression over the time series. In (b,c), blue symbols indicate snoRNA with expression at least 10 times that of their host gene at all time points,
red indicates a significant change in expression (adjusted p � 0.05), and purple shows snoRNA satisfying both criteria. (d ) Heatmap of the expression of 28S rRNA and
snoRNA known to modify 28S. Scale is log10 difference in TPM from minimum. 28S rRNA (top row) has peak expression at ZT12 – ZT16, whereas snoRNA known to
interact with 28S have minimum expression at this time. Box H/ACA snoRNA are indicated by blue side colours and box C/D by green. (e,f ) Scatterplots of the expression
of selected 28S-modifying snoRNA against 28S expression for the 12 samples available (two replicates at six time points). (e) Scatterplot of Snord92 (host gene Wdr43)
and ( f ) Snora52 (host gene Rplp2) against 28S expression; lines show linear regressions for snoRNA (red) and host gene (grey).

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170034

4

 on May 12, 2017http://rsif.royalsocietypublishing.org/Downloaded from 
to the relationship between snoRNA and the rRNA they

modify, and raise the possibility that some snoRNA may be

cyclically expressed. The limitations of assessing circadian

regulation through comparisons of maximal and minimal

expression are also evident and we address these below.
2.4. The expression of snoRNA known to modify 18S
and 28S rRNA is negatively correlated with
rRNA expression

To obtain a reliable functional annotation of snoRNA, we

found exact sequence matches for Ensembl genes in the

snOPY database [22] and thereby accessed curated data on

the modification of rRNA by snoRNA. This resource also
provided informative names for many mouse genes whose

names in Ensembl begin ‘Gm’ (following snOPY usage,

these names are capitalized). Using this information, we

observed many snoRNA known to modify 18S and 28S

rRNA to have minimum expression at ZT12 or ZT16, that

is, precisely the time when 18S and 28S expression reached

a peak (figure 2d and electronic supplementary material,

figure S3) and to increase thereafter. To quantify this unex-

pected relationship, we derived linear models for the

expression of each snoRNA as a function of 28S expression,

and similarly for the host genes of these snoRNA and 28S

expression. The scatterplots of figure 2e,f illustrate two

examples where snoRNA expression is negatively correlated

with 28S and the host gene is positively correlated with

28S. To assess the statistical significance of these correlations,

http://rsif.royalsocietypublishing.org/
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we compared the number of snoRNA targeting 28S that are

negatively correlated with 28S with the numbers negatively

correlated in the remainder of expressed genes at a specified

value of R2 using the hypergeometric test (and similarly with

positively correlated genes, and for host genes). Rather than

select a value of R2 a priori, we assessed overrepresentation

for R2 from 0 to 1, and found the negative correlation of

snoRNA to be significant up to an R2 of 0.56 ( p ¼ 0.009).

The fractions of snoRNA and host genes with positive and

negative correlations to 28S are plotted in electronic sup-

plementary material, figure S4, where it can be seen that as

R2 increases the number of genes reaching this level of corre-

lation reduces until there are insufficient genes to test.

A similar pattern is found for snoRNA modifying 18S.

It should be noted that to counteract the variation in total

rRNA, rRNA genes were removed and the expression of

other genes rescaled to 106 in the above analysis. This analy-

sis was repeated by quantifying counts of uniquely mapping

reads (see Material and methods) and again we saw a strik-

ing increase in counts at ZT20 in comparison with ZT16

(electronic supplementary material, figure S5).

A positive correlation between nascent mRNA and

pre-rRNA potentially reflects coordinated transcriptional

regulation as reported for ribosomal protein genes [11]. By

contrast, the negative correlation between snoRNA and pre-

rRNA expression implicates post-transcriptional mechanisms

that may include intra-nuclear trafficking and release from

the ribosome precursor.
2.5. Inference of circadian rhythms: a novel method
combining residual error and standard deviation
of phase

To further analyse potential rhythmic oscillations in snoRNA

and host genes, we adopted an established false discovery

method based on Fourier analysis named F24 [25] (as used

in [5]) as an initial filter. Genes with p-value for their F24 stat-

istic of greater than 0.2 were not considered further.

Exploring alternative mathematical models of circadian

dynamics we found that nascent expression data were

better fitted by a cosine function raised to a power, creating

a more peaked cycle, than a simple cosine function. The

improvement in fit of the new model in comparison with

the standard cosine model for 12 clock genes is illustrated

in figure 3. When assessing the goodness of fit of circadian

models to data, we found it important to account for the

variability between replicates both in the computational

analysis and in visualization. The variability in expression

between replicates across the time series is readily perceived

by plotting curves between the upper values across the time

series, and similarly between the lower values, forming a

polygon (as in figure 3). The cosine models were fitted to

the median of the replicates at each time point and so the

cosine curve would ideally be equally spaced between

the upper and lower replicates at each time point. Recall

that each data point is from a different mouse, hence the

importance of accounting for biological variability.

This modified cosine model with period 24 h, with period

12 h and a linear model were fitted to each time series to

assess the fit of a true circadian rhythm, a rapidly oscillating

signal (likely noise given the sampling frequency of these

data, but potentially due to transcription factor binding
[26]) and a gradual change in expression respectively. The

Bayesian evidence for each of the three models was calculated

using nested sampling [27,28] and time courses were desig-

nated circadian where the evidence for the 24 h cycle was

10 times that for the alternative models. The nested sampling

algorithm infers the phase and its standard deviation, both of

which are of interest in assessing rhythmic behaviour. The

likelihood function accounts for the consistency between

replicate data, giving less weight to times where replicates

differ more (see Material and methods).

In line with comparable methods, 9% of protein coding

genes were found to be circadian. To compare the results of

our method with published results in more detail, the

phase calculated by nested sampling is plotted against the

phase calculated by the Fourier method in electronic sup-

plementary material, figure S6a, for protein-coding genes

designated circadian in [5] (R2 ¼ 0.53, p�2 � 10216). To

further refine the set of circadian genes, those whose phase

could not be inferred accurately, or whose fit to the cosine

model was less good (as determined by the standard devi-

ation of the phase and the residual (L1) error, respectively,

see Material and methods) were excluded. As these two

measures can be traded off, we defined a radial score that

combines them, and excluded the worst scoring 5% of these

circadian genes (electronic supplementary material, figure

S6b). The distribution of phase values by our method and

by the published method (where both the quantification of

expression and phase calculation differ) are comparable (elec-

tronic supplementary material, figure S6c). The range of

values chosen for the power parameter (q) in the proposed

cosine model is shown in electronic supplementary material,

figure S6d. Values of q . 1, the value of the standard model,

were chosen extensively. Plots of nascent and RNA sequen-

cing data and the fitted models for 12 clock genes can be

found in electronic supplementary material, figure S7. Turn-

ing to snoRNA and their host genes, the filtering and

selection procedure yielded 43 circadian snoRNA and 26 cir-

cadian host genes (electronic supplementary material, figure

S6e). The absolute radial score threshold determined from

circadian genes was also applied in this case.

2.6. A subpopulation of snoRNA show cyclical
expression

Thirteen snoRNA located in introns were found to be cycli-

cally expressed, including Snord35b, Snord57 and Snord14d.

The peak expression of these snoRNA occurred across the

day with some preference for the beginning or end of the

day (figure 4a). Thirty non-genic snoRNA were cyclically

expressed, showing peak expression within a more defined

period 4–16 h after dawn (figure 4b). The distribution of

phase values (figure 4c) illustrates the differing peak times of

these two populations of snoRNA. We next looked for cycli-

cally expressed host genes in both nascent sequencing and

RNA sequencing data and identified 26 and 14 cyclic host

genes, respectively (electronic supplementary material,

figure S8). Of the 30 snoRNA whose host showed cyclic

expression in nascent sequencing data, two were found to be

cyclically expressed and we observed one of these to be in

anti-phase with its host and the other to be in phase (electronic

supplementary material, figures S9 and S10). Thus, we found

only minimal overlap between snoRNA and host expression

patterns possibly indicating that their cyclic behaviour is

http://rsif.royalsocietypublishing.org/


10

20

30

40

0 4 8 12 16 20 24
time (h)

ex
pr

es
si

on
 (

T
PM

)
cos
cosq

Nr1d1

40

60

80

100

0 4 8 12 16 20 24
time (h)

ex
pr

es
si

on
 (

T
PM

)

Clk1

10

20

30

40

50

0 4 8 12 16 20 24
time (h)

ex
pr

es
si

on
 (

T
PM

)

Dbp

10

20

30

0 4 8 12 16 20 24
time (h)

ex
pr

es
si

on
 (

T
PM

)

Nr1d2

10

20

30

40

0 4 8 12 16 20 24
time (h)

ex
pr

es
si

on
 (

T
PM

)

Per3

20

30

40

0 4 8 12 16 20 24
time (h)

ex
pr

es
si

on
 (

T
PM

)

Cry2

10

20

30

40

0 4 8 12 16 20 24
time (h)

ex
pr

es
si

on
 (

T
PM

)

Per1

10

20

30

40

50

0 4 8 12 16 20 24
time (h)

ex
pr

es
si

on
 (

T
PM

)

Per2

10

20

30

40

50

0 4 8 12 16 20 24
time (h)

ex
pr

es
si

on
 (

T
PM

)

Rorc

4

6

8

10

0 4 8 12 16 20 24
time (h)

ex
pr

es
si

on
 (

T
PM

)

Cry1

2

4

6

8

0 4 8 12 16 20 24
time (h)

ex
pr

es
si

on
 (

T
PM

)

Arntl

15

20

25

30

0 4 8 12 16 20 24
time (h)

ex
pr

es
si

on
 (

T
PM

)

Npas2

Figure 3. A novel cosine model better fits nascent sequencing data for known clock genes. Expression of 12 established clock genes plotted as a polygons (blue
shaded areas) between the maximum replicate data values across the time series and their minimum. Black symbols are data values. The solid lines are the best fit
of the standard cosine model (black) and the cosineq model (blue) to the median of the replicates at each time point.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170034

6

 on May 12, 2017http://rsif.royalsocietypublishing.org/Downloaded from 
regulated by mechanisms in addition to transcriptional acti-

vation. The model parameters for cyclical snoRNA and their

host genes can be found in the electronic supplementary

material, file S3.

As is apparent from figure 4, few of the cyclical snoRNA

are currently designated ‘Snora’ or ‘Snord’ which indicates a

lack of recognition of their status in mouse. However, from

the snOPY database we identified SNORA21 (Gm25821),

SNORA46 (Gm26493), SNORD88 (Gm26247), SNORD115

(Gm26337) and three SNORA17 genes (Gm25272, Gm24607

and Gm24656) among the cyclic snoRNA with host genes.

Considering cyclic snoRNA without host genes, we identified

SNORA63 (Gm23679), SNORA71 (Gm22797), SNORD86

(Gm23706) and seven SNORA17 genes (Gm22778, Gm26421,

Gm23910, Gm24375, Gm24556, Gm23674 and Gm22670). Of

note, genes in the SNORD88 and SNORD115 families are

associated with the regulation of splicing [13].

The abundance of cyclic snoRNA was on average 1.5 times

that of their host genes. Of these genes, only SNORA46

(Gm26493) was among the set of snoRNA with consistently

high ratios of expression relative to their host (at least 10

times greater). None of the cyclic snoRNA were among

those found to have statistically significant fold changes

(figure 2b), thus these populations of snoRNA were disjoint.
2.7. 18S and 28S rRNA are cyclically expressed
Applying the circadian modelling introduced above, we next

determined that the temporal variations noted earlier in both
18S and 28S rRNA were indeed circadian, while 5.8S

expression dynamics did not pass the initial false discovery

filtering step. The cyclical patterns of these transcripts are

shown in figure 5a along with selected circadian snoRNAs

(Snord35b, Snord57 and Snord14d; figure 5b) and their

respective host genes (figure 5c). Snord57 and Snord14d are

known to modify 18S rRNA and it is readily seen that their

expression profiles show starkly contrasting phase.

Of the 10 cyclic snoRNA with host genes that had

matches in the snOPY database, four modify 28S:

Snord35b, SNORA21, SNORA17 (Gm25272) and SNORD88.

Three modifiers of 18S were found among the cyclic

snoRNA with hosts: Snord57, Snord14d and SNORA46.

Thus, we found the majority of cyclic snoRNA with host

genes to be associated with rRNA modification; however,

as the majority of these genes modify 28S or 18S this

number did not constitute a statistical enrichment. The

cyclic snoRNA without hosts we found included SNORA17

(Gm24375) a modifier of 28S, and SNORA71, a modifier

of 18S.
2.8. Highly expressed non-genic snoRNA have a distinct
chromatin signature

Histone modifications H3K4me3 and H3K27ac have been

shown to vary rhythmically around gene promoters in

mouse liver [17], and the rhythmic recruitment of PolII at

the promoter has been demonstrated to oscillate in phase

http://rsif.royalsocietypublishing.org/
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with RNA polymerase II (PolII) levels on the gene body indi-

cating that it is the recruitment of PolII rather than its release

that is critical to diurnal transcription [16]. A set of strong cir-

cadian promoters has been proposed to drive circadian genes

with high amplitude and high average expression, and is

associated with high paused PolII levels (relative to

H3K4me3) and the extension of H3K4me3 into the gene

body [29]. While we are interested to discover whether the

cyclic non-genic snoRNA discovered above have a cyclic

chromatin environment that would explain these variations,

we do not limit our analysis to these genes but consider all

non-genic snoRNA.

To investigate whether non-genic snoRNA have a chro-

matin signature that might support their transcription as
independent genes, and to explore any temporal variations

indicative of circadian expression, we mapped the PolII and

H3K4me3 time-series data from mouse liver published by

Le Martelot [16] and located peaks at each time point, and

in the combined data using MACS2 [30]. Beginning with

clock genes, the abundance of PolII and H3K4me3 around

clock gene promoters, and the variation in these signals is

shown in electronic supplementary material, figure S11, for

Per2 and Nr1d1. Consistent with previous studies, a substan-

tial peak in PolII was observed at the gene start with peaks in

H3K4me3 downstream. Of the 12 clock genes examined, PolII

levels decreased towards background levels at one or more

time points in three cases (Per2, Dbp and Npas2), whereas

H3K4me3 levels remained above background across the day

http://rsif.royalsocietypublishing.org/
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in all cases. We then examined the chromatin signature of

three snoRNA known to be independently transcribed,

namely, Rnu3a (U3), Snord13 and Snord118 [23,31], and

found a distinctive peak in PolII at the gene start in all

three cases (figure 6 and electronic supplementary material,

figure S12). A considerable temporal variation in this signal

was also apparent. These genes overlapped with peaks in

PolII and H3K4me3 called by MACS2 and so we searched

for other non-genic snoRNA that shared these properties

and found six: Snord104 and SNORA76 (Gm22711) (which

are clustered as in human [23]), Snora57 (reported to be

monocistronic in [22]), Snora17, Gm25501 and Gm23596

(which are antisense to Ank2 and intergenic, respectively).

In the cases of Rnu3a and Snord13, the upstream peaks in

H3K4me3 were over the start of an adjacent gene on the

opposite strand (Gtf3c6 and Tti2, respectively). Although

Snora17 has no annotated host gene in the release of Ensembl

we have adopted, it overlaps Snhg7 in Refseq. The major

peaks in the chromatin signals around Snora17 were located

over the Refseq host gene start (with minor peaks over the

gene itself ) which support the existence of the host.
The eight snoRNA we characterize as independently tran-

scribed had higher PolII, H3K4me3 and nascent sequencing

expression than did non-genic snoRNA that lack overlapping

MACS2 peaks in PolII and H3K4me3 ( p � 2.7 � 1024 by Wil-

coxon test). The input PolII and H3K4me3 levels of these

genes did not differ from that of the remaining non-genic

snoRNA (to determine an overlap the snoRNA gene locus

was extended by 200 bases, and the expression of these

extended features was quantified in RPKM). It is readily evi-

dent in electronic supplementary material, figure S13, that

these eight genes form a distinct cluster of highly expressed

snoRNA with corresponding chromatin marks. In addition,

we found Snord60 and Snora78 (which overlap short anti-

sense transcripts Rab26 and Snhg9, respectively) to have

similar chromatin signatures.

The PolII signal of each of the eight independently tran-

scribed snoRNA had a distinct minimum at ZT6, and for

all except Rnu3a there was a dip in nascent sequencing

expression at ZT8 relative to ZT4, followed by an increase

at ZT12 (electronic supplementary material, figure S14) and

variable expression thereafter. The differing sampling times

http://rsif.royalsocietypublishing.org/
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of these data made the assessment of any correlations unreli-

able. The minimum PolII signal was at least twice the

background, and the log2 fold change of the maximum

signal (relative to the same background) was at least 1.4

greater than the minimum which again indicated a notable

temporal variation. Snord13 was the most circadian with a

F24 FDR 0.12 (three other genes also had p , 0.2). Our Baye-

sian method could not be applied to the chromatin data as

there were no replicates. None of these snoRNA had cyclic

expression in the nascent sequencing data. However, the

log2 fold change in nascent expression was in the range

0.9–2.9 when maximum and minimum expression over the

day were compared, and therefore temporal variation was

evident in all cases. The H3K4me3 signal dipped at ZT14

or ZT18 in six cases but with less pronounced fold changes

over background than for PolII (electronic supplementary

material, figure S14). Applying the F24 FDR test, we found

three snoRNA to have p-values for H3K4me3 expression

less than 0.2 (Rnu3a, Snord104 and Gm22711).
3. Discussion
Using novel computational statistical techniques, we have

uncovered previously unrecognized patterns in the abun-

dance of nuclear pre-rRNAs and snoRNAs, and correlations

between them. A population of snoRNA that were at least

10 times as abundant as their nascent host gene, some with

statistically significant diurnally varying expression (but not

fitting the cosine function taken as the model for a circadian

rhythm) was identified. The expression of snoRNA that

modify 18S and 28S was typically in antiphase with that of

the target rRNA precursor, as evidenced by negative

correlations in abundance.

We found the expression of ribosome precursors 18S and

28S rRNA to follow a circadian rhythm in mammalian liver,
peaking at ZT16 and that snoRNA including Snord14d,

Snord35b and Snord57 also had cyclical expression patterns

in this tissue. Snord57 is known to modify 18S and the

protein of its host gene, Nop56, is a component of the box

C/D ribonucleoprotein complex. Indeed, proteins Nop56

and Fbl of this complex were found to be cyclical in recently

published data [10], with minimum expression at ZT15 and

ZT18, respectively, indicating a temporal variation that is

comparable with that of many snoRNA that modify 18S

and 28S rRNA (figure 2). Thus, there may be common under-

lying regulation that we are now beginning to unravel. The

scope for confirmation of our findings in other time course

data was limited as gene expression is typically measured

by microarray, or by poly Aþ and rRNA depleted RNA

sequencing. However, a small number of microarray probes

in [11] did match snoRNA and the expression of three cyclical

snoRNA was reproduced (electronic supplementary material,

figure S15).

The intersection between circadian snoRNAs and circa-

dian host genes was minimal as only two cases were

found. In the first, snoRNA and host expression were in anti-

phase, in the second, expression was in phase. Given the

overall proportions of cyclic genes in these categories, there

was no enrichment for cyclic host genes among cyclic

snoRNAs, hence no evidence for cyclic transcription as the

key regulator. As for messenger RNA [2,5], mechanisms in

addition to transcription must contribute the regulation of

cyclic nuclear snoRNAs.

The correlation of snoRNA host gene and rRNA

expression may be the result of co-regulation with rRNA as

reported for ribosomal protein genes [11]. An antiphase

relationship between many snoRNA and their pre-rRNA

target is more surprising, and may show an upregulation of

snoRNA biogenesis in anticipation of the increased rRNA

levels that peak around ZT16, or may be due to a release

(or relocation) of snoRNA from the previous cycle of rRNA
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maturation that restores their abundance in the nucleus. The

peaks in 18S and 28S rRNA after dusk (lights out) are consist-

ent with previous findings of diurnal 45S rRNA synthesis,

and coordinated ribosomal protein dynamics in the nucleus

that occur during the active period of the day when feeding

takes place [10,11]. Such a coordination would provide the

energy for ribosome assembly.

Mature snoRNA are concentrated in the nucleolus; how-

ever, they undergo extensive intranuclear trafficking during

biogenesis [32]. Indeed, the box C/D motif functions as the

nucleolar localization signal [33]. In addition, snoRNAs

have been found to be involved in splicing outside of the

nucleolus [34]. Human U8 (SNORD118) snoRNA precursors

have been found in cytoplasmic extracts in levels comparable

with those in nuclear extracts [35], but this does not appear to

be a typical biogenesis pathway [36]. Thus, for a number of

snoRNA, variation in abundance may be attributed in part

to cytoplasmic trafficking, and possibly to trafficking

between nuclear structures, as well as to their established

role in rRNA biogenesis.

Little is known about the role of the chromatin environ-

ment as a potential regulator of independently transcribed

snoRNA. We found peaks in RNA polymerase II over the

gene locus and adjacent peaks in H3K4me3 to be signatures

of independently transcribed snoRNA, and, in addition,

mean PolII and H3K4me3 levels correlated with mean

snoRNA transcript abundance. Time-varying but noncyclic

patterns were found in these chromatin marks, with a distinct

dip in PolII at ZT6 that may indicate a common regulatory

input for this class of snoRNA.

Differences in phase of clock-regulated genes in different

organs have been reported [3,14,37], offering insights into

the coordination of the peripheral clocks. Our methodology

is particularly suited to such investigations as it yields

standard deviations for key model parameters such as

phase, and the potential to model multiple datasets in an

integrative manner.
4. Material and methods
4.1. Definition of cosine models
Circadian rhythms were modelled by a cosine function that

varied between 0 and the maximum expression a, with peak

expression (i.e. phase) p minutes after time 0, raised to the

power q as follows:

y(t) ¼ a( cos (p� 2pt=1440)þ 1)

2

� �q

: ð4:1Þ

Parameters a, p and q were constrained by the following prior

ranges:

1 � a � 10

0 � p � 2p or � p � p � p

0:8 � q � 3:

All time-series data were scaled such that the minimum

median value was 0 and the maximum median was 10, hence

a could be at most 10. Two alternative constraints on p were

used to ensure that the fitted value of this parameter did not

lie at the end of the prior range. This might occur for p close to

0 or 2p in which case the alternative prior centred on 0 (2p)

was used 2p � p � p.
The fit between the cosine models and expression data was

assessed using the nested sampling algorithm to calculate the

log of Bayesian evidence (also known as the marginal likelihood),

log Z [27] from the likelihood function and the prior. All priors

were selected uniformly from a range bounded by maximum

and minimum values given above. A likelihood based on the

l1-norm was defined by equations (4.2) and (4.3) [38].

Equation (4.2) defines the normalizing constant e t as the expected

value of the moduli of the difference between the replicate obser-

vations at time t (xt) and the value predicted by the kinetic model

(mt). The product of the probabilities of the median observation

at time t (~xt) defines the likelihood function for a time series x
of m samples (equation (4.3)). Maximization of this likelihood

minimizes the sum of the moduli of the residuals (rather than

their squares) on the basis that the testable information is

restricted to the expected value of the modulus of the difference

between theory and experiment. Should we know both the mean

and variance, maximum entropy considerations would lead

instead to the Gaussian distribution [38].

et ¼ kjxt � mtjl ¼
ð
jxt � mtjp(x) dNx ð4:2Þ

and

p(x j {mt,et}) ¼
Ym
t¼1

1

2et
exp

j~xt � mtj
et

� �
: ð4:3Þ

Bayesian evidence values and model parameter estimates

(and their standard deviations) were computed using nested

sampling for each time series that passed an initial FDR test

(the F24 test [25] with p � 0.2). A cosine model with a 12 h

period and a linear model were also fitted to each time series.

Time series where the log Z for the 24 h cosine model was 10

times greater than that for the alternative models were con-

sidered circadian if, in addition, they passed a test on the

standard deviation of phase and L1 error. The threshold for the

final radial score test was derived empirically from genes

found to be circadian in earlier studies [5]. R code for nested

sampling is provided in electronic supplementary material,

file S4.
4.2. Processing of sequencing data
The gene annotation file for GRCm38 was downloaded from

Ensembl (version 84) and processed with bedtools [39] and in

R to identify snoRNA, their locus, snoRNA host genes and

their locus, and gene biotypes. SnoRNA–host gene assignments

were reviewed manually using the IGV genome browser.

Additional data on RFam families were downloaded from the

EBI, and data from the snoPY database [22] were also used. A

blast database was created from a fasta file of all snoRNA

sequences (using parameters -in snoRNA.fasta -input_type

fasta -dbtype nucl -title snoRNAdb -out snoRNAblastdb) and

this file was queried using blastn (with parameters -query snoR-

NA.fasta -db snoRNAblastdb -outfmt 6). The blastn output was

further processed in R to obtain data on sequences at 85%, 90%

and 95% similarity in addition to those with sequence identity

(electronic supplementary material, figure S1).

Nascent and RNA sequencing time-series data were down-

loaded from GEO GSE36916 [5]. Coding and non-coding

transcripts for mouse genome GRCm38 were downloaded from

Ensembl to which the 5.8S, 18S and 28S pre-rRNA sequences

were added from [22] to create an index file for quantification

in TPM using Kallisto [21]. The database consisted of 98 327

transcripts (38 080 genes), and included all protein-coding tran-

scripts, snRNA, lincRNA, scaRNA, processed transcripts,

snoRNA plus the three pre-rRNA. As the data in [5] comprised

single reads, the effective length parameter was set manually.

The length distributions of snoRNA and snoRNA host genes
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were very different, median lengths 127 and 947 bases, respect-

ively. Hence we set the effective length parameter to minimize

the possible inflation of TPM for shorter transcripts (using par-

ameters -single -l 40 -s 200). The Kallisto index was built with

kmers of length 19. TPM values for genes were summed from

those of their transcripts. Reads were also mapped to Ensembl

GRCm38 using bowtie2 (using parameters -L 18 -N 1 -k 20; elec-

tronic supplementary material, figure S2) [40]. Uniquely

mapping reads were extracted using samtools [41], and unique

read counts for snoRNA genes found using htseq-count [42].

These counts were used to determine snoRNA identifiability.

Read pileups (figure 2) were created from multiply mapped

reads using bedtools with output files subsequently processed

in R.

Following [5], the F24 test [25] was applied to the nascent

and RNA time-series data by concatenating first and second

replicates to create a series from ZT0 to ZT44. We constructed

the replicated time series in the same manner in order to have

a sample at ZT24 while not duplicating the ZT24 sample alone

(electronic supplementary material, figures S3 and S5, show

ZT0–ZT24 only).
PolII, H3K4me3 and input time-series data were downloaded

from GEO GSE35790 [16]. Reads were mapped to Ensembl

GRCm38 using bowtie2 (using parameters -k 2) and uniquely

mapping reads were extracted using samtools. MACS2 [30]

was used to find peaks in uniquely mapping PolII and

H3K4me3 reads at each time point, and in the combined data.

Peaks found in the combined data appeared most robust and

were intersected with snoRNA locus using bedtools. Read

counts and pileups for genomic features were obtained using

bedtools and output files were subsequently processed in R

(electronic supplementary material, figures S6, S9–S11).
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