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SUMMARY5

We introduce a wavefield gradiometry technique to estimate both isotropic and anisotropic6

local medium characteristics from short recordings of seismic signals by inverting a wave7

equation. The method exploits the information in the spatial gradients of a seismic wave-8

field that are calculated using dense deployments of seismic arrays. The application of the9

method uses the surface wave energy in the ambient seismic field. To estimate isotropic10

and anisotropic medium properties we invert an elliptically anisotropic wave equation.11

The spatial derivatives of the recorded wavefield are evaluated by calculating finite di↵er-12

ences over nearby recordings, which introduces a systematic anisotropic error. A two step13

approach corrects this error: finite di↵erence stencils are first calibrated, then the output14

of the wave-equation inversion is corrected using the linearized impulse response to the15

inverted velocity anomaly. We test the procedure on ambient seismic noise recorded in a16

large and dense ocean bottom cable array installed over Ekofisk field. The estimated az-17

imuthal anisotropy forms a circular geometry around the production-induced subsidence18

bowl. This conforms with results from studies employing controlled sources, and with19
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interferometry correlating long records of seismic noise. Yet in this example, the results20

where obtained using only a few minutes of ambient seismic noise.21

Key words: Surface waves and free oscillations; Seismic anisotropy; Seismic noise;22

Seismic tomography; Seismic interferometry; Wave propagation23

1 INTRODUCTION24

Knowledge of the subsurface stress state and material properties is key to understanding a25

range of earth-scientific phenomena such as earthquake and landslide nucleation, drilling and26

shallow-gas hazards, induced seismicity, and many other types of deformation and material27

failure. Variations of stress state are known to cause concomitant variations in elastic moduli,28

and these properties in turn a↵ect the speed of elastic waves propagating through the medium29

(Brenguier et al., 2008; Korneev & Glubokovskikh, 2013; Brenguier et al., 2014; Hobiger et30

al., 2016). In particular, the orientation and magnitude of stress and the alignment of crystal31

orientation, pores, or layering, causes the wave speed to vary with direction of propagation, a32

property known as anisotropy (Crampin et al., 1980a; Teanby et al., 2004; Boness & Zoback,33

2004; Herwanger & Horne, 2009). Measurements of both isotropic and anisotropic seismic34

velocities therefore place constraints on these various phenomena.35

One of the first observations of anisotropy were incompatibilities of Love and Rayleigh36

wave dispersion curves (Anderson, 1961), and manifestations of shear wave splitting (Ando,37

1980; Crampin et al., 1980b; Vennik et al., 1989). These observations were treated as point38

measurements indicating the properties underneath the stations. With increasing station39

coverage shear wave splitting maps now reveal anisotropy over large regions (Wüstefeld40

et al., 2009). Anisotropy in the crust and upper mantle has been linked to mantle flow41

(Peselnick & Nicolas, 1978; Christensen & Lundquist, 1982; Tanimoto & Anderson 1984).42

Maps of Rayleigh and Love wave anisotropic phase velocity in the upper mantle are found by43

tomography inverting large sets of observations covering di↵erent azimuths (Montagner &44

Jobert, 1988; Montagner & Nataf, 1988; Montagner & Tanimoto, 1990), potentially followed45

by a depth inversion to map anisotropy with depth (Montagner & Nataf 1986). More recently,46
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finite frequency sensitivity kernels are proposed for full waveform inversion strategies to47

recover anisotropic elastic structure from surface waves (Sieminski et al., 2007; Plessix &48

Cao, 2011). In principle two linear orthogonal arrays can reveal the principal component of49

anisotropy, but with two dimensional arrays we can derive a more sophisticated azimuthal50

dependence of surface wave velocity (Forsyth & Li, 2013).51

Observed gradients of propagating and standing seismic wavefields are known to contain52

important information about for example the wave propagation direction, and the medium53

properties. Wavefield gradiometry, literally, is the estimation or observation of a wavefield’s54

spatial-gradients. When dense measurements are available throughout a larger region, the55

observations of temporal and spatial gradients can be exploited as local constraints in an56

inverse problem to estimate medium properties throughout the region. This is in contrast57

to other classes of geophysical inversion techniques such as tomography and full-waveform58

inversion, where the observations are posed as global constraints in an inverse problem for59

the medium parameters.60

Curtis & Robertsson (2002) proposed to directly extract isotropic P- and S-velocities61

from observed three-dimensional derivatives of a wavefield. However the volumetric (tetra-62

hedral) recordings required in order to estimate all such gradients, are rarely available as63

dense deployments of receivers are usually confined to the Earth’s surface. Muijs et al. (2003)64

showed that for plane waves, gradiometry could be accomplished on the seabed using pla-65

nar sensor arrays. Langston (2007a; 2007b; 2007c) and Poppeliers et al. (2013) extracted66

ray parameters and wave directionality from non-overlapping plane waves. However, the as-67

sumption of observing non-interfering plane-waves limits the use of wavefield gradiometry to68

simple wavefields where specific arrivals can be identified and isolated. A direct estimate for69

the phase velocity can also be recovered by inverting an eikonal equation for the travel-times70

of large earthquake surface wave arrivals, or of virtual seismic sources obtained by noise-71

correlations (Lin & Ritzwoller, 2011; Gouédard et al., 2012; De Ridder et al., 2015). These72

techniques are referred to as eikonal or Helmholtz tomography. They were applied on cross-73

correlations of ambient noise recorded by a large and dense ocean bottom cable (OBC) array74



4 S.A.L. de Ridder and A. Curtis

installed over Valhall. OBC is a cable-based seismic receiver system laid down temporarily75

on the seafloor, or installed more permanently trenched a meter deep into the sea floor. De76

Ridder & Dellinger (2011) and Mordret et al. (2013a) found high resolution images of near-77

surface Scholte wave velocity, including anisotropy (Mordret et al., 2013b) at Valhall. Liu &78

Holt (2015) described a link between Helmholtz tomography and wavefield gradiometry, as79

applied to plane waves from large earthquakes. However, these approaches require identifi-80

cation of an arrival time limiting applications to large earthquakes, or requiring observations81

of long time series if estimated Greens functions derived from cross-correlation of ambient82

noise are to be used.83

De Ridder & Biondi (2015b) introduced a gradiometry method applicable for surface-84

wave seismic noise by inverting a two dimensional scalar wave equation for isotropic wave85

velocities. They found that the error in the spatial finite di↵erence approximation for the86

Laplacian operator can result in large velocity errors, especially when employing second87

order derivatives. Edme & Yuan (2016) extracted surface wave dispersion curves directly88

from seismic noise by following the plane wave gradiometry approach of Langston (2007b),89

analyzing the statistics of the first-order derivatives, to identify and discard time-windows90

with multiple interfering arrivals. Sollberger et al. (2016) employed seismic wavefield gra-91

diometry to extract shear-wave information on the shallow lunar crust from the recordings92

of the Apollo active seismic experiment.93

Whereas the wave equation inversion methodology by Curtis & Robertsson (2002) and94

De Ridder & Biondi (2015b) apply to ambient seismic noise, they were not designed for95

anisotropic media. Here, we propose a more general formulation that accounts for anisotropy96

in elastodynamic media. Then we introduce a practical formulation for surface waves in97

azimithal anisotropic media, and we propose a method that corrects the bias in the isotropic98

analysis revealing the anisotropy of the medium. We show how the anisotropic velocity errors99

caused by finite di↵erence approximations of spatial derivatives can be corrected using a two100

step workflow. To illustrate the e�cacy of this technique we carried out a field data study101

using ambient seismic noise recordings made in a large and dense OBC array installed over102
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Ekofisk field in the Norwegian North Sea (Eriksrud, 2010). These results are consistent with103

those obtained from active source data, even though we used data containing only 10 minutes104

of ambient noise recordings.105

2 SEISMIC GRADIOMETRY106

The term seismic gradiometry refers to the measurement or estimation of seismic wavefield107

gradients. These can be used for wavefield separation, estimation of propagation directions,108

or inversion for material properties. Here, we estimate the medium properties in the vicinity109

of each recording station directly from spatial and temporal gradients of the seismic record-110

ings according to the wave equation. This was first referred to as wave equation inversion111

(Curtis & Robertsson, 2002) and later simply as wavefield gradiometry (Langston, 2007a).112

In this study we will refer to (seismic wavefield) gradiometry to avoid confusion between113

wave equation inversion and full waveform inversion.114

A general formulation for elastodynamic wavefields could be based on the wave equation115

for the particle velocity:116

⇢

�1

C

ijkl

@

j

@

l

u

k

(x, t) = @

t

@

t

u

i

(x, t) (1)117

where ⇢ = ⇢(x) is the bulk density and C

ijkl

= C

ijkl

(x) is the elastic sti↵ness, and u

i

with118

(in this equation only) i = 1, 2, 3 are the three components of particle velocity and (in119

this equation only) we used the Einstein summation convention. It is possible to invert this120

equation for local medium parameters directly when measurements of all three components121

of the state vector are available at neighbouring points throughout a volume, since then the122

derivatives in eq. (1) can be estimated using finite di↵erence in space and time. We recognize123

the problem then takes the form124

F
i

m = b
i

(2)125

in which the subscript indicates a particular time-slice and m describes the material density126

and sti↵ness ratios ⇢

�1

C

ijkl

. In principle, when su�cient linearly independent wavestates127

are observed, this equation can be solved for all independent elements of the elasticity,128
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scaled by the inverse of the density. However, inversion of eq. (1) for the medium parameters129

everywhere in a volume, requires recordings throughout the volume. Since recordings are130

usually confined to a surface, we focus on wave equation inversion for surface wave ambient131

noise. A technique to recover the isotropic phase velocity of surface waves directly from132

measured temporal and spatial gradients of an ambient noise wavefield was first formulated133

by De Ridder & Biondi (2015b). We briefly review the theory for isotropic gradiometry then134

formulate elliptically anisotropic wavefield gradiometry.135

2.1 Isotropic Gradiometry136

When the ambient seismic field is dominated by Rayleigh or Scholte surface waves, the137

wavefield recorded in the vertical component of particle velocity or the pressure, may be138

approximated as a superposition of non-dispersive single-mode surface-wave plane waves139

in the far field. In practice this is achieved by filtering the data for a narrow frequency140

bandwidth to avoid dispersion e↵ects, and neglecting the remaining energy associated with141

higher modes. Any superposition of such surface wave plane waves, including standing waves,142

satisfies the following two-dimensional scalar-wave equation:143

M

0

(x, y) [@
x

@

x

+ @

y

@

y

]U(x, y, t) = @

t

@

t

U(x, y, t) (3)144

where M

0

(x, y) is the isotropic surface-wave phase velocity squared, M
0

(x, y) = c

2

0

(x, y).145

This wave equation, and its associated eikonal equation, implicitly form the basis for many146

conventional imaging techniques for surface waves. The concepts of phase and group velocity147

tomography are based on two dimensional wave propagation through a map of e↵ective148

phase and group velocities (Aki, 1957); Wielandt, 1993), the latest non-linear surface wave149

tomography approaches still rest on this principle (Galetti et al., 2015a), and array imaging150

techniques such as eikonal and Helmholtz tomography (Lin, Ritzwoller & Snieder, 2009; Lin151

& Ritzwoller, 2011; De Ridder et al., 2015) are based on an eikonal equation derived for a152

two-dimensional scalar-wave equation.153

The state variable scalar field U(x, y, t) is generally observed discretely in time and space,154
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with regular sampling in time but irregular sampling in space. Dense observations provide155

an opportunity to estimate the second-order spatial derivatives of the wavefield by taking156

irregular finite di↵erences between di↵erent nearby receivers and the time derivatives at each157

single station by standard finite di↵erences. Consequently, the only unknown in eq. (3) is158

the wave speed.159

We estimate the wave speed by inverting eq. (3) with additional regularization con-160

straints. We pose the medium parameter as a perturbation on an average constant back-161

ground value, M
0

(x, y) = M

0

+�M

0

(x, y), and insert this into eq. (3) giving162

�M

0

(x, y)D
�

U
i

= Ü
i

� M

0

D
�

U
i

(4)163

where U
i

is a vector containing the observations at all stations for the i

th time sample164

(from hereon the subscript i denotes time sample), and D
�

denotes a discrete Laplace165

operator which calculates spatial derivatives for all elements of U
i

, we constructed this166

operator following Huiskamp (1991). This wave equation has the form F
i

m = b
i

, where the167

subscript denotes a specific observed state of the wavefield at a di↵erent time, and with168

F
i

= diag {D
�

U
i

} (5)169

b
i

= Ü
i

� M

0

D
�

U
i

(6)170

m = �M
0

(7)171

where diag{ } denotes a diagonal matrix formed with the input vector on the diagonal,172

and Ü denotes the second order derivative in time. The size of the matrices indicates the173

size of the model space: F in eq. (5) has dimensions M ⇥ M , where M is the number174

of model parameters in m (equating to the total number of stations at locations (x, y) in175

eq. 4). We zero the rows in F
i

and b
i

concerning station locations for which we could not176

obtain a reliable finite di↵erence stencil. The presence of diagonal matrices in the linear177

system indicates that in the absence of regularization, all model parameters are constrained178

independent. However, given N observations of states of the wavefield we invert the system179

by least-squares regression, adding additional constraints by 0th and 2nd-order Tikhonov180
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regularization181


NP
i=1

FT

i

F
i

+ ✏

1

D
�

TD
�

+ ✏

2

I

�
m =

NX

i=1

F
i

b
i

(8)182

where I is an identity matrix, and ✏

1

and ✏

2

are the regularization strengths. When ✏

1

= ✏

2

=183

0 eq. (8) reduces to a simple regression at each station of the array. In the examples in this184

study, we selected ✏

1

by comparing the reduction of the variance of the model space versus185

increasing regularization strength with an L-curve criteria (Hansen & OLeary, 1993; Lawson186

& Hanson, 1974). We found the result not to vary on the particular value of ✏
2

and set ✏
2

to187

10�15. We solve equation 8 by LU decomposition of the composite matrix on the left-hand188

side of eq. (8). Using finite di↵erences to estimate the spatial derivative assumes the medium189

parameters do not vary over the spatial stencil spread. In practice the smoothness of the190

recovered velocity map will be a function of regularization strength, and the spatial stencil191

spread forms an upper bound on the resolution.192

2.2 Anisotropic Gradiometry193

We now extend the formulation to include azimuthal anisotropy. We describe the anisotropy194

in local propagation velocity, c = c(x, y,�), of planar surface-waves as elliptical as a function195

of azimuth:196

c

2(�) = c

2

f

sin2(� � ↵) + c

2

s

cos2(� � ↵) (9)197

where c

f

and c

s

are the fast and slow magnitudes of the anisotropic velocity, and ↵ is the198

direction of fast. This form closely resembles the slightly anisotropic Rayleigh phase velocity199

azimuthal anisotropy discussed by Smith & Dahlen (1973) when we omit the 4� term, see200

Appendix A in De Ridder et al. (2015), when data quality does not permit this0term to be fit201

(Lin et al., 2009; Mordret et al., 2013b). Elliptical anisotropy describes SH-wave anisotropy202

in tilted transversely isotropic media (Tsvankin, 2011), and the elegant properties of ellipses203

has been a popular choice for approximately representing anisotropy in other wavefields and204

media (Helbig, 1983; Dellinger, 1991). Dropping the 4� term or for Rayleigh and Scholte205

wave anisotropy when.206
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We aim to derive a scalar wave-equation suitable for seismic noise, filtered to pass a207

narrow frequency range so that we can ignore the frequency dependence in the derivation.208

To derive an elliptically anisotropic form of eq. (3), we substitute c

2(�) into a general dis-209

persion relationship c

2(�) |k|2 = !

2, where k = [k
x

, k

y

]T is the wavenumber vector. Using210

the trigonometric relationships cos(� � ↵) = cos(�)cos(↵) + sin(�)sin(↵), sin(� � ↵) =211

sin(�)cos(↵) � cos(�)sin(↵) and cos2(↵) + sin2(↵) = 1, we find:212

!

2 = M

11

k

x

k

x

+ (M
12

+M

21

) k
x

k

y

+M

22

k

y

k

y

(10)213

where k
x

= |k| sin(�) and k

y

= |k| cos(�). The elements M
11

, M
12

= M

21

, and M

22

form the214

elements of a two-by-two matrix M, and are a function of c
f

, c
s

, and ↵:215

M

11

= (c2
f

� c

2

s

) sin2(↵) + c

2

s

(11)216

M

12

= (c2
f

� c

2

s

) sin(↵)cos(↵) (12)217

M

22

= (c2
f

� c

2

s

) cos2(↵) + c

2

s

(13)218

The eigenvalues of the matrix M are c

2

f

and c

2

s

, and the eigenvectors indicate the fast and219

slow directions. In this manuscript we graphically display the anisotropic medium parameters220

as an isotropic component defined by 1

/

2

(c
f

+ c

s

) and a magnitude anisotropy in percent221

defined by 50 ⇥ (c
f

� c

s

) (c
f

+ c

s

)�1. Performing a spatial and temporal inverse Fourier222

transformation, we find the wave-equation operator that acts on the state variable U(x, y, t)223

in an elliptically anisotropic scalar wave equation:224

[M
11

(x, y) @
x

@

x

+ (M
12

(x, y) +M

21

(x, y)) @

x

@

y

+M

22

(x, y) @
y

@

y

] U(x, y, t) = @

t

@

t

U(x, y, t)225

(14)226

which alternatively can be written in the following matrix form:227


@

x

@

y

�
2

64
M

11

(x0
, y

0) M

12

(x0
, y

0)

M

21

(x0
, y

0) M

22

(x0
, y

0)

3

75

2

64
@

x

@

y

3

75U(x, y, t) = @

t

@

t

U(x, y, t) (15)228

where the presence of a prime on the spatial coordinates of the medium parameters denotes229

that the spatial derivative operators do not operate on the medium parameters, but only230

on the wavefield. In a strict sense we neglected lateral velocity variations in the derivation231
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of eq. (14), and thus neglected lateral surface wave scattering. However by allowing the232

medium parameters to vary as a function of space, we do allow a degree of scattering just233

as the isotropic two-dimensional wave eq. (3) still allows scattering due to lateral velocity234

variations.235

Similarly to the isotropic case, we use the nearby stations to evaluate spatial finite236

di↵erences. In the absence of noise, we would need three linearly independent realizations237

of wave states to resolve all three unknowns in eq. (14). Similarly to the isotropic case we238

pose the medium parameter as a perturbation on the isotropic value, M(x, y) = IM
0

(x, y)+239

�M(x, y), where I is a two-by-two identity matrix:240

�M

11

(x, y)D
xx

U
i

+ [�M

12

(x, y) +�M

21

(x)]D
xy

U
i

+�M

22

(x, y)D
yy

U
i

= (16)241

Ü
i

� M

0

(x, y)D
�

U
i

242

Here D
xx

, D
yy

, and D
xy

denote discrete second-order spatial derivative operators with243

subscripts indicating the spatial directions, and D
�

is as before and also equates to D
�

=244

D
xx

+ D
yy

. This equation, similar to the isotropic case, has the form F
i

m = b
i

, but the245

elements of this linear system are:246

F
i

=


diag {D

xx

U
i

} , 2 diag {D
xy

U
i

} , diag {D
yy

U
i

}
�

(17)247

b
i

= Ü
i

� diag {M
0

}D
�

U
i

(18)248

m =


�M

11

, �M
12

, �M
22

�
T

(19)249

Here, the number of model parameters is three times that in the linear system for the250

isotropic case, and F in eq. (17) has dimensions M ⇥3M , where M is the number of stations251

in the array. If we make N observations of states of the wavefield, we can invert the system252

by least-squares regression, adding additional constraints by 0th and 2nd-order Tikhonov253

regularization:254


NP
i=1

FT

i

F
i

+ ✏

1

DTD+ ✏

2

I

�
m =

NX

i=1

FTb
i

(20)255



Anisotropic Seismic Gradiometry 11

where256

D =

2

66664

D
�

0 0

0 D
�

0

0 0 D
�

3

77775
(21)257

2.3 Inverting synthetic isotropic plane wave data258

We use finite di↵erences to evaluate the spatial derivatives, and consequently we introduce259

an error in the approximation of the continuous operators. These errors depend on the260

station geometry of the array, and on the e↵ective spatial wavelength of the data. In this261

study we use a field dataset from Ekofisk’s ocean bottom cable (OBC) array to evaluate262

the merit of our method. The station array has dense in-line and sparse cross-line station263

spacing, respectively 50 m and 300 m (Fig. 1). For further details on the array and field,264

see the field data example below. We computed stencils by inverting a second-order Taylor265

series expansion on the geometric distribution of the nearby stations (Huiskamp, 1991). For266

each station we select neighboring stations within a 400 m radius to form the stencil (e.g.267

black circle in Fig. 1), hence we cannot resolve anomalies smaller than ˜800 m in size. We268

discarded each station with fewer than 36 such neighboring stations to ensure a minimum269

quality of FD stencil. Thus we could not obtain reliable estimates near the edges of the array270

or in areas where the array was disrupted due to infrastructure. The blue stations in Fig. 1271

indicate the station locations where we have a reliable finite di↵erence stencil.272

From a dispersion analysis by De Ridder & Biondi (2015b) we know that the surface273

waves observed in ambient noise at Ekofisk travel with an average velocity of approximately274

490 m/s at 0.7 Hz, and are not aliased in the in-line or the cross-line direction. For each275

stencil in the array, we synthesize 36 sets of plane waves from di↵erent angles spaced 10276

degrees apart, covering all 360 degrees, oscillating at 0.7 Hz with an isotropic moveout of277

490 m/s.278

This synthetic data is input into the two step algorithm for anisotropic gradiometry.279

We solved the linear inverse system (eq. 2) for isotropic velocities, with eqs. (5) to (7).280
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sderidd, Tue Jul 26 14:35
Figure 1. Station geometry of the ocean bottom cable (OBC) array installed at Ekofisk; stations

are indicated by small red and blue circles. Blue circles indicate those stations where we have a

reliable finite di↵erence stencil using the nearby stations in a radius of 400 m (indicated for example

by the black circle).

To resolve the spatially varying nature of the erroneous recovered anisotropic velocity, we281

used ✏

1

= 0. Secondly, we solved the linear system (eq. 2), with eqs. (17) to (19), for an282

anisotropic velocity map, using the solution of the isotropic case as the background velocity283

map (Fig. 2a). The colours indicate the isotropic component of the retrieved anisotropic284

velocities while the black dashes indicate the magnitude and fast-directions of anisotropy.285

Even though the inversion ought to result in a homogeneous isotropic velocity, the inversion286

yields (apparent) higher isotropic velocity and also include anisotropic components: this is287

the result of stencil error.288

The stencil error is a function of the stencil spacing relative to the wavelength of the289

function being sampled. To visualize the error in second order finite di↵erence stencils, we290
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sderidd, Tue Apr  5 15:27 sderidd, Fri Apr  1 23:19(a) (b)

Figure 2. Synthetic data example using the station geometry of the Ekofisk OBC array, inverting

data that represents recordings of monochromatic plane waves at 0.7 Hz propagating through a

homogeneous and isotropic velocity structure of 490 m/s. Colour indicates isotropic component of

velocity; dashes indicate magnitude and fast-direction of anisotropy (dash in upper right corner

indicates 10% magnitude, the di↵erence between maximum and minimum velocities as a percentage

of the isotropic velocity). a) Apparent anisotropy observed using finite di↵erences with second order

accuracy (without correction). b) Observed homogeneous isotropic velocity map retrieved using

finite di↵erences with second order accuracy including a correction derived from the anisotropy

observed in (a).

plot the Fourier-space spectrum of the stencil coe�cients (computed by discrete Fourier291

transformation) with the ideal spectrum of the continuous operator (|k|2) in Fig. 3. Notice292

that the error is zero for constant-functions, and is largest for wavelengths near Nyquist.293

The frequency of the data and the velocity of the medium determine the spatial wavelength294

of the wavefield along the horizontal axis of Fig. 3. The measurement of second order deriva-295

tives is plotted along the vertical axis of Fig. 3. Notice that we always underestimate the296

magnitudes of the second order derivatives. Thus we over-estimate the velocity by wave-297

field gradiometry, which essentially depends on the ratio between the second order time298

derivatives and the second order space derivatives. In two dimensions the stencil error is299

generally angle dependent. The stencil spacing is larger in the cross-line direction than the300

in-line direction, hence we find an erroneous apparent anisotropy with fast direction in the301

cross-line direction. Subsampling the in-line stations to approximately equalize the inline302

and cross-line station spacing resulted in using a much lower number of stations (samples)303
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Figure 3. Spectra of the finite di↵erence stencil for a second order derivative operator with second

order accuracy. Solid line: spectrum of ideal continuous operator (| � k2| = k2). Dashed line:

spectrum of the original finite di↵erence stencil. Dash-dot line: spectrum of calibrated (by scaling)

finite di↵erence stencil. The e↵ective wavelength of the wavefield determines the position on the

horizontal axis, while the measured second order spatial derivative is plotted along the vertical axis.

The error of the uncorrected finite di↵erence stencil leads to an over estimation of the velocity

c0 > c. The scaled finite di↵erence stencils lead to underestimation of the correct spread of the

second order spatial derivatives due to a true velocity change, �c0 < �c.

being used to measure the spatial gradients of the wavefield. This had an averse e↵ect on304

the quality of the measurement of spatial derivatives and the resulting velocity field.305

3 CORRECTION PROCEDURES FOR FINITE DIFFERENCES306

Ellipses are attractive geometrical shapes to use for describing anisotropy because an el-307

lipse can be turned into a circle or any other ellipse by an invertible linear transformation.308

We aim to establish a correction procedure for the finite di↵erence stencils by approximat-309

ing the angle dependent error as ellipsoidal, and inserting two Jacobians into eq. (15). In310

Fig. 2a we observed an apparent anisotropy, here denoted M
h

(x), while we should have ob-311

served a homogeneous isotropic medium with parameters C
h

(x) = c

2

h

I, with c

h

= 490 m/s,312

everywhere and I a two-by-two identity matrix. The matrix M containing the elliptically313

anisotropic medium parameters is symmetric (m
12

= m

21

). For this matrix we write the314
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eigenvalue-eigenvector decomposition as315

M = P⇤PT (22)316

where317

P =


p
1

p
2

�
=

2

64
p

11

p

12

p

21

p

22

3

75 (23)318

contains the unit-eigenvectors as columns and319

⇤ =

2

64
�

1

0

0 �

2

3

75 (24)320

contains the corresponding eigenvalues. To derive a calibration method from M
h

we seek to321

define a particular combination, J, of the scaled eigenvectors such that322

JTC
h

J = M
h

(25)323

If we define324

S =

2

64

p
�

1

/c

h

0

0
p
�

2

/c

h

3

75 (26)325

then326

M
h

= PSTPTC
h

PSPT = JTC
h

J (27)327

where J(x) = P(x)SPT (x) with the property J = JT .328

Inserting eq. (25) into eq. (15) we see that J describes a rotation and a translation, and329

hence acts as a Jacobian (a standard, orthogonality-preserving transformation) on the coor-330

dinate system of the spatial derivative operators. This Jacobian contains scaled eigenvectors331

of the matrix M
h

. The scaling coe�cient is the ratio between the square root of the relevant332

eigenvalue of M
h

, and the phase velocity used to compute the synthetic data from which we333

measured M
h

. Inclusion of both P and PT in eq. (27) ensures that the orientation of the334

coordinate system of the anisotropic medium properties remains unaltered.335

We could use this relation and correct the observed apparent anisotropy as a final step336

after the inversion for medium parameters. However, it is more prudent to use the Jacobian337

in the wave equation so that we can apply the regularization free from the e↵ect of stencil338
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errors. To derive a correction for the finite di↵erence approximation of the Laplace operator,339

we evaluate:340


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and find in discrete operator form:342

⇥�
diag{J

11

}2 + diag{J
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�
D

xx

+ (29)343

(diag{J
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} + diag{J
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}) (diag{J
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} + diag{J
22

})D
xy

+344

�
diag{J
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}2 + diag{J
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�
D

yy

⇤
= D0

�

345

The elements of the new linear system for isotropic gradiometry, in place of eqs. (5) and346

(6), simply have D0
�

instead of D
�

. To find the modified linear system for anisotropic347

gradiometry, we insert JTMJ into eq. 15 and expand the matrix product to identify the348

elements:349

F
i

=


diag {F
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} , 2 diag {F
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(30)350
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sderidd, Tue Apr  5 22:58 sderidd, Wed Apr  6 01:15 sderidd, Wed Apr  6 00:08 sderidd, Wed Apr  6 11:03(a) (b) (c) (d)

Figure 4. Synthetic data example using the station geometry of the Ekofisk OBC array, inverting

monochromatic plane waves at 0.7 Hz with a homogeneous velocity of 490 m/s and 10% anisotropy

in four directions: (a) 0�; (b) 45�; (c) 90�; (d) 135�. Colour indicates isotropic component of velocity;

dashes indicate magnitude and fast-direction of anisotropy (dash in upper right corner indicates

10% magnitude).

We test these operators within the two step elliptically anisotropic gradiometry technique363

on the previous synthetic plane waves with an isotropic homogeneous moveout. We first solve364

the linear system (eq. 2) with eqs. (5) to (7) using eq. (29), and then solve the linear system365

(eq. 2) with eqs. (30) to (35), and recover almost exactly the correct velocity, up to a remnant366

average error of 0.007 % (Fig. 2b). To test whether we can recover anisotropy, we add 10%367

anisotropy (the di↵erence between maximum and minimum velocities as a percentage of the368

isotropic velocity) in four di↵erent principal directions 0�, 45�, 90�, 135�. Fig. 4 shows that369

we can recover anisotropy in those principal directions throughout the maps: the remaining370

errors in the isotropic component and the angle are on average respectively 0.016% and371

0.267�. However, we underestimate the magnitude of anisotropy by on average 47.45%.372

We now test the ability to invert deviations from the velocity for which we calibrated373

the finite di↵erence stencils (490 m/s). The velocity is varied according to a checkerboard374

pattern with a velocity anomaly of ±5% (Fig. 6a). The computations are kept simple by375

computing a set of plane waves for each subset of stations independently. Therefore, the376

test does not reveal any information regarding the lateral resolution of the recovered image,377

but does assess the ability to estimate velocities given the irregular stencil shapes around378



18 S.A.L. de Ridder and A. Curtis

each location. The retrieved pattern shows that we significantly under estimate anomalies379

(Fig. 6b). The recovered positive anomalies have a 2.6% magnitude, while the recovered380

negative anomalies have a 2.4% magnitude. To understand this we analyse the spectra of381

the scaled finite di↵erence stencils (Fig. 3). Although we corrected the error at a particular382

wavelength corresponding to a given velocity and frequency, for waves propagating with383

higher or lower velocities we will continue to respectively underestimate and overestimate384

the velocity. Fig. S1 in the supplementary material shows the error in retrieved isotropic385

anomaly and in anisotropic magnitude as a function of anomaly magnitude.386

Finally, we test the e↵ect of noise in wavefield gradiometry. Fig. 5 contains the results387

of a similar synthetic plane-wave data experiment as in Fig. 2, where we added Gaussian388

distributed noise to the synthetic plane wave data, with zero mean and a variance of 2%389

times the maximum amplitude. Despite that the added noise has zero mean, the inversion390

is biased towards higher velocities and includes an anisotropic component with the fast-391

direction aligning with the cross-line direction. We expect the bias to be a non linear function392

of the noise strength, and vary with the precise statistical characteristics of the noise. This393

bias diminishes our ability to iterate the calibration approach described above. Nevertheless,394

in the next section we propose a procedure to apply a correction to the recovered anisotropic395

velocity map.396

3.1 Correction for specific anisotropic medium properties397

The above procedure corrects the finite di↵erence stencils, optimized for a specific isotropic398

velocity. We can generalize this procedure to correct the finite di↵erence stencils for spe-399

cific anisotropic medium properties. Say the true-target anisotropy is M
t

, but the estimated400

anisotropy without stencil correction is M
m

. The measured anisotropy can then be trans-401

formed into the true-target anisotropy by the following transform402

M
t

= P
t

⇤
1
2
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2
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(36)403
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sderidd, Tue Apr  5 19:50 sderidd, Tue Jan 10 00:28(a) (b)

Figure 5. Synthetic data example displaying the e↵ect of noise using the station geometry of

the Ekofisk OBC array, inverting monochromatic plane waves at 0.7 Hz with a homogeneous and

isotropic velocity of 490 m/s plus Gaussian distributed noise with a 2% variance. a) Recovered

apparent anisotropic velocity map with linear scalebar in (m/s). b) Error in recovered apparent

anisotropic velocities as a percentage of the true isotropic velocity. Dash in upper right corner

indicates 10% anisotropy magnitude.

where the columns of PT

t

and PT

m

contain the eigenvectors of M
t

and M
m

, while ⇤
t

and ⇤
m

404

are diagonal matrices with the eigenvalues of M
t

and M
m

on the diagonals. We recognize405

that J�1

m

= P
m

⇤
� 1

2
m

PT

m

is a Jacobian transforming the measured anisotropy into an isotropic406

unitary two-by-two matrix, and recognize that J
t

= P
t

⇤
1
2
t

PT

t

is a Jacobian that transforms407

the isotropic unitary two-by-two matrix to the true anisotropy. If we define J�1 = J�1

m

J
t

=408

P
m

⇤
� 1

2
m

PT

m

P
t

⇤
1
2
t

PT

t

we can use a similar linear system as before, because we have M
t

=409

JT

t

{J�1

m

}T M
m

J�1

m

J
t

. For an isotropic true medium J�1

t

reduces to Ic�1

h

, where I is a two-410

by-two identity matrix, this agrees with eq. (27). Ideally, one would iteratively update the411

stencil corrections using the retrieved anisotropic velocities at each iteration. However, due412

to the e↵ect of the unknown precise noise levels (Chartrand, 2011), such a scheme does not413

easily converge. Alternatively one could apply a first order correction for the underestimation414

as follows: use the derived underestimated anisotropic velocity map to compute a syntethic415

dataset, and use gradiometry to derive a new anisotropic velocity map that repeats the416

underestimation. Employ the relationship in eq. (36) to derive a transform that predicts the417

underestimation. Lastly, apply the inverse of this transform to the original retrieved map.418

We illustrate this procedure in Fig. 6b-6d. Fig. 6c contains the secondary derived anisotropic419

velocity map underestimating the correct values from Fig. 6b. The recovered positive anoma-420
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Figure 6. Checkerboard test for anomaly magnitude. Colour indicates isotropic component of

velocity; dashes indicate magnitude and fast-direction of anisotropy (dash in upper right corner

indicates 10% magnitude). a) Input isotropic velocity, with 5% anomaly magnitude. b) Anisotropic

velocity map obtained using a synthetic created using the medium parameters of the isotropic

velocity map in (a) and calibrated finite di↵erence stencils, underestimating the anomalies (positive

anomalies are recovered as 2.6% and negative anomalies are recovered as 2.4%). c) Anisotropic

velocity map obtained using a synthetic created using the medium parameters of the anisotropic

velocity map in (b), underestimating the anomalies again (positive anomalies are recovered as

1.6% and negative anomalies are recovered as 1.5%). d) Final anisotropic velocity map using

the calibrated finite di↵erence stencils plus anomaly-magnitude correction (positive anomalies are

recovered as 3.2% and negative anomalies are recovered as 3.0%).

lies have a 1.6% magnitude, while the recovered negative anomalies have a 1.5% magnitude.421

The derived transform predicts Fig. 6c from Fig. 6b. By assuming that the degree of under-422

estimation of anisotropy is consistent at models with larger anisotropy than the model we423

obtained in Fig. 6b, we apply the inverse of this transform to Fig. 6b resulting in Fig. 6d. The424

retrieved positive positive anomalies have a 3.2% magnitude, while the recovered negative425

anomalies have a 3.0% magnitude (still short of the original 5% anomaly magnitude).426

Though the retrieved anomaly magnitudes remain underestimated, they are closer to427

the true anomaly magnitudes. This procedure relies on linearity of the underestimation428

with anomaly magnitude. But because the stencil error is non-linear with wavelength, the429

underestimation increases for larger anomaly magnitudes (see Fig. S1) in the supplemental430

material which shows the underestimation as a function of anomaly magnitude).431
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4 FIELD DATA EXAMPLE AT EKOFISK FIELD432

Ekofisk field is one of the largest hydrocarbon fields in the North Sea, it was Norway’s first433

producing field in 1971 (Van den Bark & Thomas, 1979) and has a projected lifespan ex-434

ceeding year 2050. Rapid pressure depletion in the early phase of production and weakening435

due to subsequent water injection caused more than 9 m of seafloor subsidence over the436

Ekofisk field (Herwanger & Horne, 2009; Lyngnes et al., 2013). The subsidence is known to437

dominate the pattern in the anisotropic Scholte wave phase velocities in the near-surface438

(Kazinnik et al., 2014; De Ridder et al., 2015).439

An OBC array was installed at Ekofisk in 2010 for the purposes of repeated seismic440

surveying (Eriksrud, 2010). The cables are buried in mud on the seafloor and the stations441

generally exhibit similar coupling to the sea floor. The characteristics of the microseism442

energy recorded by this array are well known (De Ridder & Biondi, 2015a; De Ridder et443

al., 2015). It was found that the pressure sensors record strong microseisms at frequencies444

between 0.35 and 1.35 Hz. This energy is dominated by fundamental-mode Scholte waves445

propagating along the seafloor. Below 0.8 Hz these waves are recorded unaliased in both the446

in-line and cross-line directions. No strong sources of seismic energy were found within the447

array in the microseism frequency range 0.35 to 1.35 Hz.448

A recording of 10 minutes by the pressure sensors of the Ekofisk array was bandpass449

filtered between 0.6 Hz and 0.8 Hz using a Hann taper in the frequency domain, the data450

are downsampled to a 10 Hz sampling rate keeping the error in the temporal finite di↵erence451

stencil small. Ten minutes were found to be su�cient to yield a map of isotropic phase452

velocities using wavefield gradiometry (De Ridder & Biondi, 2015b). We investigate the453

nature of the directionality of the ambient seismic field for a short recording of ten minutes454

by a beamform experiment consisting of plane wave stacks for planes defined by a moveout,455

azimuth and intercept time, i.e., a Tau-P transformation. Finally, we sum the absolute value456

of the plane wave stacks over all intercept times to form an image as a function of moveout457

and azimuth which is defined by horizontal slowness in both spatial directions (Fig. 7)458

(Kostov & Biondi, 1987; Rost & Thomas, 2002). Averaged over as little as 10 minutes, there459
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sderidd, Wed Apr  6 18:50

Figure 7. Beam steering image obtained by plane-wave stacking with di↵erent moveout velocities

and directions, using 10 minutes of data and all stations of the array.

is no obvious preferential direction in the ambient seismic noise: the waves are incident on460

the array from all directions approximately equally strongly. The two circles above and below461

the center circle are aliasing ghost images of the same surface wave energy. The faint inner462

ring visible in Fig. 7 is the manifestation of energy of a higher surface wave mode (traveling463

with approximately 770 m/s), this energy is neglected in this study.464

First, we solved the linear inverse system (eq. 2) for isotropic velocities with eqs. (5) to (7),465

without calibrated finite di↵erence stencils. Second, we solved the linear system (eq. 2) with466

eqs. (17) to (19) for an anisotropic velocity map (Fig. 8a), using the solution of the isotropic467

case as the background velocity map. We find velocities that are much higher than the known468

average velocity from dispersion analysis. Furthermore, we find an anisotropic pattern where469

the fast-directions are generally oriented perpendicular to the cables. This is expected from470

the synthetic plane wave example above (compare to Fig. 2a). We then use the calibrated471

stencils, first solving the linear system (eq. 2) with eqs. (5) to (6) using eq. (29), then solving472

the linear system (eq. 2) with eqs. (30) to (35), and we obtain the anisotropic velocity map473

in Fig. 8b. Finally, we model synthetic plane waves satisfying the recovered anisotropic474

medium parameters in Fig. 8b, and follow the anisotropic gradiometry procedure to recover475

a map with underestimated anisotropic and anomaly magnitudes. We compute the transform476
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sderidd, Sat Nov 21 17:33 sderidd, Wed Mar  2 02:55 sderidd, Wed Mar  2 02:55(a)! ! ! !   ! ! !   (b)!! ! !  !   (c)!

Figure 8. Field data result on Ekofisk’s OBC array. Colour indicates isotropic component of

velocity; dashes indicate magnitude and fast-direction of anisotropy (dash in upper right corner

indicates 10% magnitude). a) Velocity map recovered with finite di↵erence stencils without cali-

bration. b) Velocity map recovered using the calibrated finite di↵erence stencils. c) Final velocity

map recovered using the calibrated finite di↵erence stencils plus anomaly-magnitude correction.

estimating the underestimation and apply the inverse to the medium parameters in Fig. 8b477

to yield Fig. 8c. The magnitude of the velocity anomaly in the center of the array, and the478

magnitude of anisotropy oriented in-line at the left and right flanks of the array increased479

notably from Fig. 8b.480

5 DISCUSSION481

In principle, directionality in the ambient seismic noise will bias the inverted seismic ve-482

locities because the stencil error is directionally dependent. In this manuscript, we have483

given the plane waves from all directions equal weight when computing the synthetic ex-484

ample in Fig. 2. However, an estimate for the directional distribution can in principle be485

used as weights in the implicit regression to compute the bias of the array geometry, and486

thus be taken into account when computing the calibration for the finite di↵erence stencils.487

The beamform experiment on the Ekofisk data provided the basis for not introducing such a488

weighting scheme in the field data application as the noise appeared to be equally distributed489
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with azimuth. Ideally, the stencil calibration is iterated using the recovered anisotropic ve-490

locities to end with a set of finite di↵erence stencils optimized for the recovered velocities.491

However, we found that this scheme does not generally converge. We conclude that this was492

probably due to the presence of noise in the field data because we observed that zero mean493

Gaussian distributed noise in the data causes a velocity bias (Fig. 5). This is a result of the494

error in finite di↵erence stencils not being a linear function of the underlying wavelength495

(Fig. 3).496

Generally, the computational costs of seismic noise gradiometry are relatively low com-497

pared to other techniques to image using ambient seismic noise. Seismic noise gradiometry498

requires only short recordings (De Ridder & Biondi, 2015b), and the regression operation499

itself is also kept computationally e�cient by posing the finite di↵erences on the irregular500

station geometry itself, by-passing the need for an interpolation scheme. Another argu-501

ment for avoiding spatial interpolation is the inherent imposition of a usually non-physical502

model for seismic wavefields when electing an interpolation scheme. It would be physically503

most accurate to base an interpolation scheme on the wave equation itself, however that504

requires a priori knowledge of the underlying wave velocities. The total computational costs505

in our implementation are dominated by the inversion for anisotropic velocities because the506

anisotropic model space is three times larger then the isotropic model space, and the matrix507

in eq. (20) is nine times larger then the matrix in eq. (8). We used an LU decomposition508

to solve the matrix inversion, but employing Krylov subspace techniques may be a faster509

alternative.510

Measurements of near-surface anisotropy are typically of interest for near-surface hazard511

monitoring (Barkved, 2012) and to infer geomechanical changes in the reservoir and overbur-512

den (Herwanger & Horne, 2009). These results match qualitatively with those found by an513

eikonal tomography on travel-time surfaces extracted from noise correlations (De Ridder &514

Biondi, 2015a), and critically refracted P waves, PS converted waves, surface wave analysis515

of controlled source seismic (Van Dok, 2003; Kazinnik et al., 2014). The circular pattern in516
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azimuthal anisotropy has also been observed in seismic noise correlation tomography studies517

at nearby Valhall field (Mordret et al., 2013b; De Ridder 2014).518

The resolution of wavefield gradiometry is limited by the stencil span from the assumption519

of homogeneity over the stencil span: in this study based on the Ekofisk OBC array this is520

at 800 m. In practice, the scattered wavefield due to subsurface changes is neglected, and521

we recover a spatially averaged anisotropic phase velocity map revealing spatially varying522

properties up to the resolution of the stencil span.523

We solved for a phase velocity map at 0.7 Hz, but the procedure could be repeated for524

di↵erent frequencies mapping dispersion curves throughout the array. These surface wave525

dispersion curves could be inverted for depth structure (Kennett, 1976). However, in practice526

this may be di�cult due to aliasing at higher frequencies, and spurious geophone sensitivity527

far below the natural frequency of each sensor.528

Because there is no technique to measure particle velocity throughout the subsurface of529

the earth, seismic gradiometry based on the three dimensional elastodynamic wave equation,530

eq. (1), with the aim of imaging elastic properties throughout the medium remains illusive531

(Curtis & Robertsson, 2002; Muijs et al., 2003). However, in medical sciences a similar532

technique named elastography is used to extract the local sti↵ness from measurements of533

strains due to an induced stress, which has found wide application for the purposes of for534

example examining prostrate lesions, arteries, and tumors (Garra et al., 1997; De Korte535

et al., 1998; Pesavento & Lorenz, 2001; DeWall, 2013). Specifically, magnetic resonance536

elastography is based on tracking waves through human tissue for finding elastic parameters537

(Manduca et al., 2001).538

6 CONCLUSIONS539

Dense seismic networks deployed on the surface of the earth allow surface waves to be540

measured unaliased in time and space. These recordings permit estimation of the spatial541

derivative of surface-wave wavefields by finite di↵erences, thus providing the ingredients542

needed to invert an elliptically anisotropic, two-dimensional wave equation for local medium543
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properties. An advantage of this method is that it permits short recordings of surface-wave544

noise to be inverted. The main challenge is the error caused by the spatial FD stencils: this545

causes an overall anisotropic velocity error, and leads to the under-estimation of isotropic546

velocities. We formulated a two step approach to calibrate finite di↵erence stencils, and547

perform a first order correction for the velocity anomaly magnitudes. The method is a548

promising technique for studying changes in the subsurface geomechanical strain resulting549

from time dependent phenomena operating at short time-scales, which in the example herein550

are likely to be due to subsidence-related extension.551
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Garra, B. S., Céspedes, E. I., Ophir, J., Spratt, S. R., Zuurbier, R. A., Magnant, C. M., & Pennanen,620

M. F., 1997. Elastography of breast lesions: Initial clinical results, Radiology , 202, pp. 79–86.621

Gouédard, P., Yao, H., Ernst, F., & van der Hilst, R. D., 2012. Surface wave eikonal tomography622

in heterogeneous media using exploration data, Geophysical Journal International , 191(2), pp.623

781–788.624

Hansen, P. & OLeary, D., 1993. The use of the L-Curve in the regularization of discrete ill-posed625

problems, SIAM J. Sci. Comput., 14, pp. 1487–1503.626

Helbig, K., 1983. Elliptical anisotropy-its significance and meaning, Geophysics, 48(7), pp. 825–832.627

Herwanger, J. V. & Horne, S. A., 2009. Linking reservoir geomechanics and time-lapse seismics:628

Predicting anisotropic velocity changes and seismic attributes, Geophysics, 74(4), pp. W13–629

W33.630

Hobiger, M., Wegler, U., Shiomi, K., & Nakahara, H., 2016. Coseismic and post-seismic velocity631

changes detected by passive image interferometry: comparison of one great and five strong632

earthquakes in japan, Geophysical Journal International , 205(2), pp. 1053–1073.633

Huiskamp, G., 1991. Di↵erence formulas for the surface Laplacian on a triangulated surface, Journal634

of Computational Physics , 95, pp. 477–496.635

Kazinnik, R., Roy, B., Tura, A., Vedvik, L., & Knoth, O., 2014. Near surface velocities at Ekofisk636

from Scholte and refracted wave analysis, in SEG, Technical Program Expanded Abstracts, pp.637

2036–2039.638

Kennett, B. L. N., 1976. The inversion of surface wave data, pure and applied geophysics, 114(5),639



Anisotropic Seismic Gradiometry 29

pp. 747–751.640

Korneev, V. & Glubokovskikh, S., 2013. Seismic velocity changes caused by an overburden stress,641

Geophysics, 78(5), pp. WC25–WC31.642

Kostov, C. & Biondi, B., 1987. Improved resolution of slant stacks using beam stacks , chap. 247,643

pp. 792–794, Society of Exploration Geophysicists.644

Langston, C. A., 2007a. Spatial gradient analysis for linear seismic arrays, Bulletin of the Seismo-645

logical Society of America, 97(1B), pp. 265–280.646

Langston, C. A., 2007b. Wave gradiometry in two dimensions, Bulletin of the Seismological Society647

of America, 97(2), pp. 401–416.648

Langston, C. A., 2007c. Wave gradiometry in the time domain, Bulletin of the Seismological Society649

of America, 97(3), pp. 926–933.650

Lawson, C.L., Hanson, R.J., 1974 Solving Least Squares Problems, Prentice Hall, Englewood Cli↵s,651

NJ.652

Lin, F.-C. & Ritzwoller, M. H., 2011. Helmholtz surface wave tomography for isotropic and az-653

imuthally anisotropic structure, Geophysical Journal International , 186(3), pp. 1104–1120.654

Lin, F.-C., Ritzwoller, M. H., & Snieder, R., 2009. Eikonal tomography: surface wave tomogra-655

phy by phase front tracking across a regional broad-band seismic array, Geophysical Journal656

International , 177, pp. 1091–1110.657

Liu, Y. & Holt, W. E., 2015. Wave gradiometry and its link with helmholtz equation solutions658

applied to USarray in the eastern U.S., Journal of Geophysical Research: Solid Earth, 120(8),659

pp. 5717–5746.660

Lyngnes, B., Landa, H., Ringen, K., & Haller, N., 2013. Life of Field Seismic at Ekofisk - Utilizing661

4D seismic for evaluating well target, in 75th Conference and Exhibition, EAGE, Extended662

Abstracts , We 12 09.663

Manduca, A., Oliphant, T., Dresner, M., Mahowald, J., Kruse, S., Amromin, E., Felmlee, J., Green-664

leaf, J., & Ehman, R., 2001. Magnetic resonance elastography: Non-invasive mapping of tissue665

elasticity, Medical Image Analysis, 5, pp. 237–254.666

Montagner, J.-P., Jobert, N., 1988. Vectorial tomographyII. Application to the Indian Ocean,667

Geophysical Journal International , 94(2), pp. 309–344.668

Montagner, J.-P., Nataf, H.-C., 1986. A simple method for inverting the azimuthal anisotropy of669

surface waves, Journal of Geophysical Research: Solid Earth, 91(B1), pp. 511–520.670

Montagner, J.-P., Nataf, H.-C., 1988. Vectorial tomographyI. Theory, Geophysical Journal Inter-671

national , 94(2), pp. 295–307.672

Montagner, J.-P., Tanimoto, T., 1990. Global anisotropy in the upper mantle inferred from the673

regionalization of phase velocities, Journal of Geophysical Research: Solid Earth, 95(B4), pp.674



30 S.A.L. de Ridder and A. Curtis

4797–4819.675

Mordret, A., Shapiro, N., Singh, S., Roux, P., & Barkved, O. I., 2013a. Helmholtz Tomography of676

ambient noise surface wave data to estimate Scholte wave phase velocity at Valhall Life of the677

Field, Geophysics, 78(2), pp. WA99–WA109.678

Mordret, A., N. Shapiro, S. Singh, P. Roux, J.-P. Montagner, & O. I. Barkved, 2013b. Azimuthal679

anisotropy at Valhall: The Helmholtz equation approach, Geophysical Research Letters, 40(3),680

pp. 2636-2641.681

Muijs, R., Robertsson, J. O. A., Curtis, A., & Holliger, K., 2003. Near-surface seismic proper-682

ties for elastic wavefield decomposition: Estimates based on multicomponent land and seabed683

recordings, Geophysics, 68(6), pp. 2073–2081.684

Pesavento, A. & Lorenz, A., 2001. Real time strain imaging - a new ultrasonic method for cancer685

detection: first study results, in IEEE Ultrasonic Symposium Proceedings , pp. 1647–1652.686

Peselnick, L. & Nicolas, A., 1978. Seismic anisotropy in an ophiolite peridotite: Application to687

oceanic upper mantle, Journal of Geophysical Research: Solid Earth, 83(B3), pp. 12271235.688

Plessix, R., Cao, Q., 2011. A parametrization study for surface seismic full waveform inversion in689

an acoustic vertical transversely isotropic medium, Geophysical Journal International , 185(1),690

pp. 539–556.691

Poppeliers, C., Punos̆evac, P., & Bell, T., 2013. Three-dimensional seismic-wave gradiometry for692

scalar waves, Bulletin of the Seismological Society of America, 103(4), pp. 2151–2160.693

Rost, S. & Thomas, C., 2002. Array seismology: Methods and applications, Reviews of Geophysics,694

40(3), p. 2–1–2–27.695

Sieminski, A., Liu, Q., Trampert, J., Tromp, J., 2007. Finite-frequency sensitivity of surface waves696

to anisotropy based upon adjoint methods, Geophysical Journal International , 168(3), pp.697

1153–1174.698

Smith, M. L. & Dahlen, F. A., 1973. The azimuthal dependence of Love and Rayleigh wave699

propagation in a slightly anisotropic medium, Journal of Geophysical Research, 78(17), pp.700

3321–3333.701

Sollberger, D., Schmelzbach, C., Robertsson, J. O. A., Greenhalgh, S. A, Nakamura, Y., Khan,702

A., 2016. The shallow elastic structure of the lunar crust: New insights from seismic wavefield703

gradient analysis, Geophysical Research Letters, 43(19), pp. 10,078–10,087.704

Tanimoto T., Anderson, D. L., 1984. Mapping convection in the Mantle, Geophysical Research705

Lettyers, 11(4), pp. 287–290.706

Teanby, N., Kendall, J.-M., Jones, R. H., & Barkved, O., 2004. Stress-induced temporal variations707

in seismic anisotropy observed in microseismic data, Geophysical Journal International , 156(3),708

pp. 459–466.709



Anisotropic Seismic Gradiometry 31

Tsvankin, I. D., 2011. 1. normal-moveout (nmo) ellipse and generalized dix equation, in Seismology710

of Azimuthally Anisotropic Media and Seismic Fracture Characterization, chap. 1, pp. 1–43,711

eds Tsvankin, I. & Grechka, V., Society of Exploration Geophysicists.712

van den Bark, E. & Thomas, O. D., 1979. Ekofisk: First of the giant oilfields in western eu-713

rope, in Giant Oil and Gas Fields of the Decade, pp. 195–224, ed. Halbouty, M. T., American714

Association of Petroleum Geologists.715

Van Dok, R., Gaiser, J., & Byerley, G., 2003. Near-surface shear-wave birefringence in the North716

Sea: Ekofisk 2D/4C test, The Leading Edge, 22, pp. 1236–1242.717

Vinnik, L. P., Farra, V., & Romanowicz, B. , 1989. Azimuthal anisotropy in the earth from obser-718

vations of SKS at GEOSCOPE and NARS broadband stations, Bulletin of the Seismological719

Society of America, 191(2), pp. 1542–1558.720

Wielandt, E., 1993. Propagation and structural interpretation of non-plane waves, Geophysical721

Journal International , 113(1), pp. 45–53.722
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We conducted a series of synthetic experiments to map the underestimation of isotropic

and anisotropic velocity anomalies. First, we created a series of synthetic datasets with a

checkerboard pattern as for the example in Fig.5. We measure the magnitude of the re-

covered positive and negative anomalies versus the magnitude used to create the synthetic

dataset. We systematically underestimate the positive and negative anomalies, and the un-

derestimation is not a linear function of anomaly magnitude as it increases with larger

input anomaly magnitude (coarse and fine dashes in Fig. S1). Second, we created a series of

synthetic datasets with anisotropy as in the example in Fig.4. We measured the recovered

anisotropy magnitude, versus the anisotropy magnitude used to create the synthetic dataset.

We systematically underestimate the anisotropy magnitude, and the underestimation is not

a linear function of anisotropy magnitude (solid curve in Fig. S1).
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Figure S1. Recovered minimum (coarse dashes) and maximum (fine dashes) anomaly in mag-

nitudes versus input anomaly magnitude determined by repeated checkerboard tests recovering

isotropic velocities. Recovered anisotropy magnitude (solid curve) defined as the di↵erence be-

tween the maximum and minimum wave speeds, versus input anisotropy magnitudes in repeated

tests recovering anisotropic velocities.


