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Abstract This paper focuses on probabilistic matching systems where two classes of
users arrive at the system to match with users from the other class. The users are selec-
tive and the matchings occur probabilistically. Recently, Markov chain models were
proposed to analyze these systems; however, an exact analysis of these models to com-
pletely characterize the performance is not possible due to the probabilistic matching
structure. In thiswork,we propose approximationmethods based onfluid and diffusion
limits using different scalings.We analyze the basic properties of these approximations
and show that some performance measures are insensitive to the matching probability,
agreeing with the existing results. We also perform numerical experiments with our
approximations to gain insight into probabilistic matching systems.

Keywords Matching systems · Fluid approximations · Diffusion approximations

Mathematics Subject Classification 60B10 · 60K25 · 90B22

1 Introduction

The Internet has provided society a new medium to carry out business and personal
transactions. In this work, our goal is to provide tractable methods to analyze proba-
bilisticmatching systems introduced inBüke andChen [3] to study theweb portals that
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serve as a meeting point for suppliers and customers of a specific product or service.
The examples of such systems include employment and rental portals, matrimonial
and dating Web sites and general purpose classified advertisement Web sites.

The users of a probabilistic matching system can be classified into two groups as
customers (for example, employers) and suppliers (for example, employees). Cus-
tomers arrive at the system according to a stochastic process. When a customer arrives
at the system, she searches the list of suppliers to see whether there is anybody selling
the product (or the service) she demands. If she finds suppliers with suitable prod-
ucts, she buys a product, choosing one uniformly at random, and both the customer
and the supplier leave the system together. If there are no suitable products available,
then she posts an advertisement on the system indicating her demand and waits until
a supplier with a suitable product arrives at the system. The suppliers also exhibit a
similar behavior.

The double-ended queue introduced in Kashyap [12] is a precursor for thematching
system and considers the queueing process of taxis and customers at a taxi stop. Taxis
and customers arrive at the stop according to independent Poisson processes and if a
taxi (customer) arrives when there are no customers (taxis) waiting at the stop, she
waits until a customer (taxi) arrives. Recently, there has been a growing interest to
study matching systems which can be perceived as generalizations of double-ended
queues. For these systems, each class of users has several subclasses, which we refer
to as types, and these types determine whether users from different classes can match
or not. Drawing an analogy between these matching systems and the taxi problem
of Kashyap [12], in these systems there are different types of taxis, each of which
serves a set of neighborhoods, and a taxi accepts a customer, in other words matches
with the customer, if and only if she is going to a neighborhood served by the type
that the taxi belongs to. For these models, once the types of users are known, the
matchings occur deterministically and the main goal is to devise policies to decide
on which users should be matched with each other. Caldentey et al. [5] introduce a
matching system with two classes of users, namely customers and servers, where each
class has several types. The types of servers with which a customer of a given type
can match are determined using a bipartite graph. The model can be thought of as a
discrete-time process where exactly one customer and one server arrive at each time
period. The types of the arriving customer and server are independent and follow a
given probability measure. If there are users who can match after arrivals occur, they
are matched on a first-come-first-served basis. The authors conjecture necessary and
sufficient conditions on the probability measure for the stability of these systems, and
they prove that if a given system is stable thematching rates of different types converge
to a limit. They also study stability of some simple systems. Adan andWeiss [1] prove
that the conditions conjectured in [5] are necessary and sufficient and they prove that
the stationary probabilities have a product form. Bušić et al. [4] generalize this model
by dropping the independence of arriving types. They consider matching policies
other than first-come-first-served. Using the fact that the conditions conjectured in [5]
are necessary for stability, they show that matching the longest queue has a maximal
stability region, i.e., the system is stable for any probability measure that satisfies the
necessary conditions. They also show that matching the shortest and some priority
policies does not have a maximal stability region and prove some sufficient conditions
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for the stability of these matching systems. Mairesse and Moyal [15] generalize the
bipartite matching model and develop necessary conditions for matching networks
with general topology.

In a recent work, Gurvich and Ward [10] study a system where the matchings do
not need to be pairwise, but more than two users can match based on their classes. The
arrivals to each class occur according to a continuous-time stochastic process, and the
system controller decides whowill matchwithwhom.Gurvich andWard [10] consider
the objective of minimizing the finite horizon inventory holding cost and suggest a
periodic review policy which relies on solving a linear program. They show that as
arrival rates increase to infinity, the suggested periodic review policy is asymptotically
optimal.

The key feature which differentiates probabilistic matching systems from the con-
ventional matching systems in the literature is the probabilistic nature of the matching
process. When a customer arrives at the system, she checks the products of all the
suppliers and may find each product suitable with a given probability independent of
the others. Hence, with positive probability shemay not find any suitable product, even
if there are several suppliers offering a product in the system. To make this argument
more concrete, consider an employment portal as an example. An employer arriving
at the employment portal first scans through the resumés of all the employees in the
system, and she may hire each potential employee with a given probability. There is
a positive probability that she may not find any of the existing candidates suitable,
in which case she posts a job advert and waits in the system until a suitable candi-
date arrives. Hence, unlike the double-ended queues, users from different classes can
coexist in the systemwhen the matchings are probabilistic, which makes it essential to
model the queueing system as a two-dimensional stochastic process. Büke and Chen
[3] study the effects of the matching probability on the performance of these systems
using an exact analysis and show that if uncontrolled these systems are unstable. Büke
and Chen [3] also suggest stabilizing admission control policies to decide when to
accept an arriving user into the system based on the system size and analyze some
performance measures (for example, throughput and average queue length) under the
suggested policies.

As indicated by the employment portal example, probabilistic matching systems
are especially useful when the operator does not have any control over the match-
ing behavior. For example, in an employment portal, employers have the full list of
employees and can decide to hire one of the candidates irrespective of their queue-
ing behavior, for example, the operator cannot force an employer to hire employees
based on the their arrival time. Dating and matrimonial Web sites, rental or auto trade
portals are examples of other systems where the matching cannot be controlled by
the operator. The probabilistic matching behavior complicates the analysis of these
systems and renders a complete exact analysis intractable. Hence, in this work we
propose approximation methods based on fluid and diffusion limits under two dif-
ferent scalings. Under our first scaling, we only scale time and space and keep the
matching probability constant to obtain the limiting processes. We show that under
this scaling both fluid and diffusion limits do not depend on the matching probability,
which implies that the users from at most one class accumulate in the system and the
probability of a user finding a match upon arrival approaches either zero or one.
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In many applications, it is crucial to study the effect of the matching probability
on the system performance. To provide tools which address the matching probabil-
ity explicitly, we propose a second scaling that also handles the abandonment of
impatient users and scales the matching probability and the abandonment rate along
with the time and space. The resulting fluid and diffusion limits under this scaling
involve differential equations which are not tractable analytically in the general case,
although we can derive an analytical formula for the fluid limit when there are no
abandonments. Büke and Chen [3] show that some performance measures, such as
the difference between the average queue lengths of different classes, are insensitive
to the matching probability under certain control policies. Despite not imposing any
control policy, similar to the results in [3] we show that the difference between queue
lengths for different classes is also insensitive to the matching probability in the fluid
limit.

In addition, we analyze the asymptotic behavior of the fluid limits. We first com-
pare the fluid limits under both scalings, i.e., limits with and without scaling the
matching probability, and show that when the abandonment rate is zero, the fluid
limits in both scaling regimes agree with each other as time goes to infinity. Fur-
ther, we show that for nonzero abandonment rates, the fluid limits converge to a
unique fixed point, which is representative of the long-run average number of users
in the system. We prove that as the abandonment rate increases, the fixed point com-
ponent for the class with lower arrival rate first experiences an increase and then
decrease, while for the class with higher arrival rate it decreases monotonically.
Finally, we present numerical results to understand the approximation quality of
probabilistic matching systems by the fluid limits. We also analyze the properties
of fluid and diffusion limits in the second scaling regime using numerical meth-
ods.

There exists an extensive literature on fluid and diffusion approximations for
Markovian systems with abandonments. Ward and Glynn [18] suggest diffusion
approximations for the M/M/1 queue with exponential abandonments. They gener-
alize these results to arrival, service and abandonment times with general distributions
in [19]. Garnett et al. [9] consider the M/M/N queue with exponential abandon-
ments and suggest diffusion approximations under the Halfin–Whitt regime (see
Halfin and Whitt [11]). Generalizing these results, Dai and He [7] and Mandelbaum
and Momčilović [16] suggest diffusion approximations for many-server queues with
general arrival, service and abandonment times. A recent work by Liu et al. [14] sug-
gests diffusion approximations for the double-ended queue where arrivals are renewal
processes and customers abandon the system if they cannot find a match after an expo-
nential time. This paper is closest to our work in nature and the scaling they consider
has similarities with both scalings presented here. In [14], the matching probabil-
ity is not considered explicitly and is fixed to one, which is similar to the scaling
we present in Sect. 3, whereas the abandonment rate is scaled to go to zero, simi-
larly to our second scaling in Sect. 4. Even though we restrict ourselves to Poisson
arrival processes, our work extends [14] by assuming probabilistic matching struc-
ture.
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1.1 Notation

Weassume that all stochastic processes used in this paper are defined on the probability
space (Ω,F ,P). The sample paths of the stochastic processes are assumed to take
values inD[0,∞), i.e., the space of right continuous functions with left limits. X (ω, t)
denotes the value of stochastic process X at time t for sample point ω. We suppress
the ω in the notation if we do not need to refer to the sample point explicitly. In this
work, our goal is to develop approximations for probabilistic matching systems using

convergence of probability measures. We use
a.s.−→,

P−→ and ⇒ to denote almost sure
convergence, convergence in probability and convergence in measure, respectively.
We also occasionally need to use the indicator function Iρ which takes the value 1
if the proposition ρ is true and 0 otherwise. We use N and R≥0 to denote the sets of
nonnegative integers and nonnegative real numbers, respectively.

2 The probabilistic matching model

In this work, we study probabilistic matching systems introduced in Büke and Chen
[3], where two classes of users, indexed by i = 1, 2, arrive at the system to be matched
with users of the other class.We assume that class-i users arrive according to a Poisson
process with rate λi . Any given pair of class-1 and class-2 users can match with each
other with probability q independent of other users. Let Xi (t) be the number of class-i
users in the system at time t . When a class-1 user arrives at time t , she checks the
class-2 queue to see whether there exist any suitable users that she can match with. If
she can find one or more suitable class-2 users to match with, she chooses one of them
uniformly at random and they leave the system together. Otherwise, she joins the class-
1 queue and waits in the system until she is picked by an arriving class-2 user. Due to
the independence of matchings, a class-1 user finds a suitable class-2 user to match
upon arrival with probability 1 − (1 − q)X2(t) and is not able to match with anyone
with probability (1 − q)X2(t). The same rules also apply when class-2 users arrive.
For the analysis in Sect. 4, we also assume that the users are impatient and each user
abandons the system without being matched after waiting an exponential time with
rate γ ≥ 0. For notational convenience, in the remainder of this paper we also assume
that the system under consideration is initially empty, i.e., (X1(0), X2(0)) = (0, 0)
with probability one.

Under the assumption of Poisson arrivals, the number of users in a probabilis-
tic matching system, {(X1(t), X2(t)), t ≥ 0}, can be modeled as a continuous-time
Markov chain (CTMC) on a probability space (Ω,F ,P) with the generator matrix

Q(i, j)(l,k) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λ1(1 − q) j , if l = i + 1 and k = j,
λ2(1 − q)i , if l = i and k = j + 1,
λ1
(
1 − (1 − q) j

)+ γ j, if l = i and k = j − 1 ≥ 0,
λ2
(
1 − (1 − q)i

)+ γ i, if l = i − 1 ≥ 0 and k = j,
−(λ1 + λ2 + γ (i + j)), if l = i and k = j,
0, otherwise.

123



Queueing Syst

The above model reduces to the one introduced in [3] if users do not abandon the
system (γ = 0).

It is sometimes useful in our analysis to express the queue length processes, Xi (t),
as the difference of counting processes. We define Ai (t) and Ri (t) to be the number of
arrivals and the number of user abandonments from class-i up to time t , respectively.
Similarly, defining M(t) to be the number of matched pairs up to time t , we have the
basic relation

Xi (t) = Ai (t) − M(t) − Ri (t) for all t ≥ 0 and i = 1, 2.

The essential element distinguishing a probabilistic matching system from a con-
ventional queuing system is the matching probability q. To see this, consider a
probabilistic matching system with no abandonments (γ = 0). For systems with
matching probability q = 1, class-1 and class-2 users cannot coexist in the sys-
tem at any time. Hence, the probabilistic matching system can be modeled as a
continuous-time random walk on the integers {X (t), t ≥ 0}, where X (t) = k if
(X1(t), X2(t)) = (0, k) and X (t) = −k if (X1(t), X2(t)) = (0, k). Also when q = 1,
the number of matched pairs up to time t is equal to the minimum of class-1 and
class-2 arrivals. Hence,

Xi (t) = Ai (t) − M(t) = Ai (t)−min{A1(t), A2(t)}, for all t ≥ 0 and i = 1, 2.

However, when 0 < q < 1, analyzing the matching process M(t) is far more difficult.
The one-dimensional distribution of the matching process, P(M(t) = k) for a given
t ≥ 0 and k ∈ N is provided in [3], and its complicated nature indicates the difficulty in
fully characterizing the law of the matching process. Hence, in this paper we propose
fluid and diffusion approximations for probabilistic matching systems.

3 Fluid and diffusion approximations with constant matching
probability

In this section, we focus on fluid and diffusion approximations for probabilistic match-
ing systems obtained by only scaling time (or equivalently the arrival rates) and space
while keeping the matching probability constant. For scalings with a constant match-
ing probability, we assume that the users do not abandon the system without being
matched, i.e., γ = 0. Both fluid and diffusion limits under this scaling fail to rep-
resent the matching probability explicitly, indicating the need to scale the matching
probability as studied in Sect. 4.

3.1 Fluid limits

We start by defining the scaled process {(X̄n
1 (t), X̄

n
2 (t)), t ≥ 0} as

X̄n
i (t) = Xi (nt)

n
, i = 1, 2, ∀t ≥ 0.
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We derive the limiting process of {X̄n
i (t), t ≥ 0} as n → ∞. For any ω ∈ Ω ,

we say that X̄n
i (ω, ·) converges uniformly on compact sets (u.o.c.) to X̄i (ω, ·) if

sup0≤t≤T |X̄n
i (ω, t) − X̄i (ω, t)| converges to 0 for all T > 0 as n → ∞. A direct

application of the functional strong law of large numbers (see, for example, [2,6,20])
to Poisson arrival processes yields

Ān
i (t) := Ai (nt)

n
a.s.−→ λi t u.o.c. as n → ∞, i = 1, 2. (1)

As users of a class accumulate in the system, the users of the other class are more
likely tomatchupon their arrival. This implies that class-1 and class-2users are unlikely
to accumulate in the system at the same time. Lemma 1 formalizes this argument.

Lemma 1 For any fixed k > 0,min{ X1(nt)
nk

,
X2(nt)
nk

} a.s.−→ 0 u.o.c. as n → ∞.

Proof If q = 1, since class-1 and class-2 do not coexist in the system, for any t ≥
0,min{Xn

1 (t), X
n
2 (t)} = 0, and hence the desired conclusion follows trivially. If 0 <

q < 1, to simplify the notation, define I n,k(t) := min( X1(nt)
nk

,
X2(nt)
nk

). The Borel–

Cantelli lemma implies that I n,k a.s.−→ 0 u.o.c. if for any T > 0 and ε > 0

∞∑

n=1

P

(

sup
0≤t≤T

I n,k(t) ≥ ε

)

< ∞.

Choosing a ∈ (0, k) and N ≥ 2 such that N−a < ε, we have

∞∑

n=1

P

(

sup
0≤t≤T

I n,k(t) > ε

)

≤
N−1∑

n=1

P

(

sup
0≤t≤T

I n,k(t) > ε

)

+
∞∑

n=N

P

(

sup
0≤t≤T

I n,k(t) ≥ n−a

)

. (2)

We will now prove that the right-hand side of (2) converges. We take λ = λ1 + λ2,
and for any m ∈ N, we have

P

⎛

⎝ sup
0≤t≤m+1

n2

I n,k(t) ≥ n−a

∣
∣
∣
∣
∣
∣

sup
0≤t≤ m

n2

I n,k(t) < n−a

⎞

⎠

= P

⎛

⎝ sup
m
n2

≤t≤m+1
n2

I n,k(t) ≥ n−a

∣
∣
∣
∣
∣
∣

sup
0≤t≤ m

n2

I n,k(t) < n−a

⎞

⎠

= P

⎛

⎝ sup
m
n2

≤t≤m+1
n2

min(X1(nt), X2(nt)) ≥ nk−a

∣
∣
∣
∣
∣
∣

sup
0≤t≤ m

n2

min(X1(nt), X2(nt)) < nk−a

⎞

⎠
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≤
∞∑

j=0

e− λ
n ( λ

n ) j

j ! j (1 − q)n
k−a

= λ

n
(1 − q)n

k−a
. (3)

We see that the inequality in (3) holds using the following argument. For both X1(nt)
and X2(nt) to reach a level above nk−a at some point during [ m

n2
, m+1

n2
], at least one of

the arrivals occurring during [ m
n2

, m+1
n2

] should fail tomatch and stay in the systemupon

arrival when facing at least 	nk−a
 users from the other user queue (where 	x
 is the
smallest integer no smaller then x). If we observe j arrivals during this time interval,
the probability of this event is bounded by j (1 − q)n

k−a
. Then, for any fixed T > 0,

P

(

sup
0≤t≤T

I n,k(t) ≥ n−a

)

= P

(

sup
0≤t≤T

I n,k(t) ≥ n−a

∣
∣
∣
∣
∣

sup
0≤t≤T− 1

n2

I n,k(t) < n−a

⎞

⎠P

⎛

⎝ sup
0≤t≤T− 1

n2

I n,k(t) < n−a

⎞

⎠

+P

(

sup
0≤t≤T

I n,k(t) ≥ n−a

∣
∣
∣
∣
∣

sup
0≤t≤T− 1

n2

I n,k(t) ≥ n−a

⎞

⎠P

⎛

⎝ sup
0≤t≤T− 1

n2

I n,k(t) ≥ n−a

⎞

⎠

≤ P

(

sup
0≤t≤T

I n,k(t) ≥ n−a

∣
∣
∣
∣
∣

sup
0≤t≤T− 1

n2

I n,k(t) < n−a

⎞

⎠

+ P

⎛

⎝ sup
0≤t≤T− 1

n2

I n,k(t) ≥ n−a

⎞

⎠

≤
Tn2∑

m=0

P

⎛

⎝ sup
0≤t≤m+1

n2

I n,k(t) ≥ n−a

∣
∣
∣
∣
∣
∣

sup
0≤t≤ m

n2

I n,k(t) < n−a

⎞

⎠ .

Hence, using (3), we conclude

P

(

sup
0≤t≤T

I n,k(t) ≥ n−a

)

≤
Tn2∑

m=0

λ

n
(1 − q)n

k−a = Tλn(1 − q)n
k−a

.

Using simple calculus, we can show that there exists an Na such that for all n > Na

we have (1 − q)n
k−a

< n−3, which implies

∞∑

n=1

P

(

sup
0≤t≤T

I n,k(t) ≥ n−a

)

≤ Tλ

∞∑

n=0

n(1 − q)n
k−a

< ∞.

Hence, the left-hand side of (2) converges and the result follows. ��
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Theorem 2 X̄n
i

a.s.−→ X̄i u.o.c. as n → ∞, where

X̄i (t) = λi t − min{λ1, λ2}t, i = 1, 2. (4)

Proof Equation (1) and Lemma 1 imply that there exists a Ω ′ ⊂ Ω with P(Ω ′) = 1
where, for every ω ∈ Ω ′,

Ai (ω, nt)

n
→ λi t u.o.c. for i = 1, 2, (5)

min

{
X1(ω, nt)

n
,
X2(ω, nt)

n

}

→ 0 u.o.c. (6)

Our first goal is to show

M̄n(ω, t) := M(ω, nt)

n
→ min{λ1t, λ2t} u.o.c. as n → ∞ for all ω ∈ Ω ′. (7)

Without loss of generality, assume λ1 ≥ λ2 and suppose that there exists an ω′ ∈ Ω ′
for which (7) does not hold, i.e., we can find T > 0, δ > 0 and a sequence n j such
that

lim
j→∞ sup

0≤t≤T

∣
∣
∣
∣
∣

M
(
ω′, n j t

)

n j
− λ2t

∣
∣
∣
∣
∣
> δ.

Using (5) and the fact that M(ω′, t) ≤ min{A1(ω
′, t), A2(ω

′, t)} for all t ≥ 0, this
implies that there exists a sequence t j such that 0 ≤ t j ≤ T and

lim
j→∞ λ2t j − M(ω′, n j t j )

n j
> δ.

Boundedness of t j and M(ω′, 0) = 0 also imply that there exists a convergent subse-
quence t jk → t ′ > 0. For any ε > 0, we can choose Nε such that for every k > Nε

we have | Ai (ω
′,n jk t jk )

n jk
−λi t jk | < ε

2 for i = 1, 2 and |t jk − t ′| < ε
2(λ1−λ2)

, which in turn

imply

A1
(
ω′, n jk t jk

)

n jk
− M(ω′, n jk t jk )

n jk
= A1

(
ω′, n jk t jk

)

n jk
− M

(
ω′, n jk t jk

)

n jk

− (λ1 − λ2)
(
t jk − t ′

)+ (λ1 − λ2)
(
t jk − t ′

)

> λ2t jk − M
(
ω′, n jk t jk

)

n jk
+ (λ1 − λ2)t

′ − ε

> δ − ε + (λ1 − λ2)t
′.
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Similarly, we also get

A2
(
ω′, n jk t jk

)

n jk
− M

(
ω′, n jk t jk

)

n jk
> δ − ε.

Letting ε → 0, we get

min

{
X1
(
ω′, n jk t jk

)

n jk
,
X2
(
ω′, n jk t jk

)

n jk

}

≥ δ,

which contradicts Lemma 1 and proves (7). This implies

X̄n
i (ω, t) = Ai (ω, nt)

n
− M(ω, nt)

n
→ λi t − min{λ1, λ2}t u.o.c.

for i = 1, 2 and every ω ∈ Ω ′, which concludes the proof. ��
The fluid limit (4) does not depend on the matching probability q. This indicates

that the users with the lower arrival rate do not accumulate in the system and the system
behaves similar to the taxi problem studied in Kashyap [12].

3.2 Diffusion limits

Fluid limits provide useful approximations to determine howqueue lengths grow; how-
ever, they fail to represent the stochastic fluctuations. To understand the fluctuations
of sample paths around the fluid limit, we now focus on diffusion approximations. A
direct application of the functional central limit theorem (see, for example, Theorem
5.7 in [6]) on Poisson arrival streams gives

Ân
i (t) := Ai (nt) − n Āi (t)√

n
⇒ Âi (t), i = 1, 2, (8)

where Âi = √
λi Bi , and Bi (t), i = 1, 2, are independent one-dimensional standard

Brownian motions. We define the process

X̂n
i (t) := Xi (nt) − X̄i (nt)√

n
, ∀t > 0, n ∈ N.

Nowwe are ready to state the diffusion limits for probabilistic matching systems when
the matching probability is kept constant.

Theorem 3 As n → ∞, X̂n
i ⇒ X̂i , i = 1, 2, where X̂i is defined as:

1. If λ1 = λ2, X̂i = Âi − min( Â1, Â2), i = 1, 2.
2. If λ1 > λ2, X̂1 = Â1 − Â2, X̂2 = 0.
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Proof We first consider the case when λ1 = λ2 = λ. Define M̂n(t) := M(nt)−λnt√
n

.

Using the Skorohod representation theorem (Theorem 5.1 in [6]), there exist versions
of Ai (t), Âi (t) and Bi (t), i = 1, 2, which we denote A◦

i (t), Â
◦
i (t) and B◦

i (t), i = 1, 2,

and matching and scaled processes M̂◦n(t) and Â◦n
i (t), i = 1, 2 associated with

these versions such that Â◦n
i (t)

a.s.−→ Â◦
i (t) = √

λB◦
i (t), i = 1, 2. Lemma 1 implies

min( Â◦n
1 (t)− M̂◦n(t), Â◦n

2 (t)− M̂◦n(t)) a.s.−→ 0 u.o.c. Proceeding in the same manner

as in the proof of Theorem 2, we get M̂◦n a.s.−→ min( Â◦
1, Â

◦
2). Applying the continuous

mapping theorem (Theorem 5.2 in [6]), the result follows for λ1 = λ2 = λ.
When λ1 > λ2, let τn = inf{t ≥ 0 : A2(t) ≥ n} and define a sequence of random

variables {ξn}n≥1 such that

ξn =
{
1, if the nth arriving user-2 successfully finds a match upon arrival,

0, otherwise.

We have τn → ∞ a.s. as n → ∞, and for any n ≥ 1,
∑A2(t)

n=1 ξn ≤ M(t). Consider a
sequence of independent uniform(0,1) random variables {Un}n≥1. Assuming 00 = 1,
we have

P(ξn = 0) = P

(
Un < (1 − q)X1(τn)

)

≤ P

(
Un < (1 − q)A1(τn)−A2(τn)

)

= P

(
Un < (1 − q)A1(τn)−n

)

= E

[
E

[
I{Un<(1−q)A1(τn )−n

}
∣
∣
∣ A1(τn)

]]

= E

[(
(1 − q)A1(τn)−n

)
∧ 1
]
.

Next we show that there exist an N > 0 and c > 0 such that for any n ≥ N ,

E

[
(1 − q)A1(τn)−n

]
< (1 − q)cn .

For any c1 such that 1 < c1 < λ1
λ2

we have

A1(t)

t
− c1

A2(t)

t
a.s.−→ λ1 − c1λ2

as t → ∞, i.e., there exists a T > 0, such that for t > T, A1(t)−c1A2(t) >
(λ1−c1λ2)t

2
a.s. Since τn → ∞, there exists an N > 0 such that for any n ≥ N , we have τn > T
and

A1(τn) − c1A2(τn) = A1(τn) − c1n >
(λ1 − c1λ2)

2
τn > 0 a.s.
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Choosing c = c1 − 1 we have E[(1 − q)A1(τn)−n] < (1 − q)cn and

∞∑

n=0

P(ξn = 0) =
∞∑

n=0

P

(
Un < (1 − q)X1(T2(n))

)
=

∞∑

n=0

(1 − q)cn < ∞.

Using theBorel–Cantelli lemma,P(ξn = 0 infinitely often) = 0,which in turn implies

X̂n
2 (t) = A2(nt) − M(nt)√

n
a.s.−→ 0.

Finally, we have

X̂n
1 (t) = A1(nt) − M(nt)√

n
− (λ1 − λ2)nt√

n

= A1(nt) − λ1nt√
n

− A2(nt) − λ2nt√
n

− A2(nt) − M(nt)√
n

.

Hence, the result follows from the continuous mapping theorem. ��
We conclude that when the matching probability q is kept as a constant in the

scaling, it is absent in both the fluid limits and the diffusion limits. Moreover, we
can compare our results with those for an M/M/1 queue. When the arrival rates in
probabilistic matching systems are not equal, the fluid and diffusion limits of the queue
length process i behave in accordance with that in an M/M/1 queue with arrival rate
λi and service rate λ j (see Chen and Yao [6] for more details). When the arrival rates
are identical, the diffusion limits are distinct from those of an M/M/1 queue, due
to the fact that in a probabilistic matching system the next arriving user i is possibly
matched immediately upon arrival, which indicates that the accumulation of user j
when no user i is present would not be a “waste,” unlike the service time generated in
an empty M/M/1 queue. As a result, rather than having the one-sided regular function
of the net-input process, we only have the positive sign of the difference between the
arrival processes. We suggest that this diffusion approximation would fit a system
which has a relatively high matching probability for each pair of users and thus the
probability of an arriving user getting matched increases significantly as the number
of users from the other queue grows. However, the underlying assumption above does
not hold in those systems which have a very small matching probability for each pair
of users, because if q very close to 0, a user is not so likely to find a match upon arrival
even when there are many users in the other queue.

4 Fluid and diffusion limits for systems with small matching probability

The matching probability disappears in the fluid and diffusion limits presented in
Sect. 3, and this indicates that at most one class of users accumulates in the system
and the systems with matching probability 0 < q < 1 behave very similar to the sys-
temswithmatching probability 1.However, inmany real-world problems thematching
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probability q is very small and we need tools that explicitly address the probabilistic
nature of the matchings. In this section, we suggest a second type of diffusion approx-
imation which scales q together with the space and time to get a better description of
the dynamics of those systems with small matching probabilities.

We often observe that users are impatient and may leave the system without being
matched if they cannot match after waiting for some time.We include this factor in the
discussion of the queue length process in the newasymptotic regime, adopting a similar
approach to that ofWard andGlynn [18], inwhich the diffusion limit of anM/M/1+M
queue with small abandonment rate is provided. We assume that each user has an
exponentially distributed abandonment time with rate γ, 0 ≤ γ < ∞, independent of
others, where γ is of the order of the matching probability and γ � λi , i = 1, 2. If the
abandonment rate γ is significantly greater than the matching probability, as we scale
the system the number of matched pairs is negligible compared to the number of users
who abandon the system, and the system starts behaving similarly to two independent
M/M/∞ queues. Hence, as we scale space, time and the matching probability, we
also let the abandonment rate approach zero.

4.1 Fluid limits

Let Xn
i (t) to be the number of class-i users in a probabilistic matching system where

class-i users arrive according to a Poisson process with rates λi , users abandon the
system if they do not match after waiting an exponential time with rate γ (n) = γ

n , (0 ≤
γ < ∞), and the matching probability is q(n) = q

n , 0 < q < 1. Then, we define

X̄ s,n(t) := Xn
i (nt)

n
, ∀t ≥ 0,

to be the scaled system in this regime. Now our goal is to show that as n → ∞,
the scaled system approaches the fluid limit X̄ s , which is the unique solution to the
following ordinary differential equations (ODEs):

X̄ s
1(0) = X̄ s

2(0) = 0, (9)

dX̄ s
1(t)

dt
= λ1e

−q X̄s
2(t) − λ2

(
1 − e−q X̄s

1(t)
)

− γ X̄ s
1(t), (10)

dX̄ s
2(t)

dt
= λ2e

−q X̄s
1(t) − λ1

(
1 − e−q X̄s

2(t)
)

− γ X̄ s
2(t). (11)

Define

F(x) =
(

λ1e−qx2 − λ2
(
1 − e−qx1

)− γ x1
λ2e−qx1 − λ1

(
1 − e−qx2

)− γ x1

)

. (12)

Equations (10) and (11) are in the form dx
dt = F(x) = (F1(x), F2(x))′, where F(·) is

Lipschitz on the positive quadrant (its component has bounded derivatives), and hence
the initial value problem admits a unique solution. We first show that the solution X̄ s

is bounded when γ > 0.
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Lemma 4 Let X̄ s = (X̄ s
1, X̄

s
2) be the unique solution to (9)–(11) and γ > 0, then

sup
0≤t<∞

X̄ s
i (t) < λi/γ, i = 1, 2.

Proof For any (x1, x2) such that x1 ≥ λ1/γ , we have

F1(x1, x2) = λ1e
−qx2 − λ2

(
1 − e−qx1

)− γ x1 < λ1 − γ x1 ≤ 0.

Using (9), this implies that X̄ s
1(t) ≤ λ1/γ for all t . A similar argument also holds for

X̄ s
2(t). ��
When thematching probability is scaled in such away that q(n) → 0, the techniques

we use to derive fluid and diffusion limits differ from the ones used in Sect. 3. In
particular, we appeal to Laplace transform methods where a limiting kernel with the
corresponding Laplace transform is identified (see, for example, [8] for a brief review
of these methods). For this purpose, we need the Lévy kernel for the Markov process.
In this paper, we are dealing with continuous-time pure-jumpMarkov processes which
are time homogeneous. Recall that the Lévy kernel of a pure-jump time-homogeneous
Markov process X is defined as

P(X (t + dt) − X (t) ∈ [x + dy]|X (t) = x) = K (x, dy)dt.

Specifically, the Lévy kernel of X̄ s,n is given by

Kn(x, dy) := λ1n
(
1 − q

n

)nx2
δ

(

(y − x) −
(
1

n
, 0

))

dy

+ λ2n
(
1 − q

n

)nx1
δ

(

(y − x) −
(

0,
1

n

))

dy

+
(
λ1n

(
1 −

(
1 − q

n

)nx2)+ γ nx2
)

δ

(

(y − x) +
(

0,
1

n

))

dy

+
(
λ2

(
1 −

(
1 − q

n

)nx1)+ γ nx1
)

δ

(

(y − x) +
(
1,

n
, 0

))

dy,

where δ(y) is the Dirac delta function. Then, we can define the Laplace transform of
the operator Kn(x, dy) as

mn(x, θ) :=
∫

(0,∞)×(0,∞)

e〈θ,y〉Kn(x, dy)

= λ1n
(
1 − q

n

)nx2
e

θ1
n + λ2n

(
1 − q

n

)nx1
e

θ2
n

+
(
λ1n

(
1 −

(
1 − q

n

)nx2)+ γ nx2
)
e− θ2

n

+
(
λ2n

(
1 −

(
1 − q

n

)nx1)+ γ nx1
)
e− θ1

n . (13)

Now, we are ready to state our result for convergence to the fluid limit.
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Theorem 5 For any δ > 0 and T > 0,

lim sup
n→∞

n−1 logP

(

sup
0≤t≤T

∣
∣X̄ s,n

i (t) − X̄ s
i (t)
∣
∣ > δ

)

< 0, (14)

and as n → ∞,

X̄ s,n
i

a.s.−→ X̄ s
i u.o.c.,

where X̄ s
i , i = 1, 2 is the unique solution to the system of ODEs given by (9)–(11).

Proof If γ = 0, set S = R≥0 × R≥0 and T n = T , otherwise choose Ci > λi/γ for
i = 1, 2, and set S = [0,C1]× [0,C2] and T n = inf{t ≥ 0 : X̄ s,n(t) /∈ S} ∧ T . Then,
Proposition 5.1 in [8] implies

lim sup
n→∞

n−1 logP

(

sup
0≤t≤T n

∣
∣X̄ s,n

i (t) − X̄ s
i (t)
∣
∣ > δ

)

< 0 (15)

if we can show that the following three conditions hold:

(i) There exists a η0 > 0 such that

sup
n

sup
x∈S

sup
|θ |≤η0

mn(x, nθ)

n
< ∞.

(ii) supx∈S | ∂mn(x,θ)
∂θ

|θ=0 − F(x)| → 0.
(ii) lim supn→∞ n−1 logP(|X̄ s,n

i (0) − X̄ s
i (0)| > δ) < 0.

The third condition is trivially satisfied as we assume that the probabilistic matching
system is initially empty and we have X̄ s,n(0) = 0 for all n. When γ > 0, the first
condition follows as when x ∈ S for any η0 > 0 and θ ≤ η0 we have

mn(x, nθ)

n
=
(
λ1

(
1 −

(
1 − q

n

)nx2)+ γ x2
)
e−θ2

+
(
λ2

(
1 −

(
1 − q

n

)nx1)+ γ x1
)
e−θ1

+ λ1

(
1 − q

n

)nx2
eθ1 + λ2

(
1 − q

n

)nx1
eθ2

≤ (λ1 + λ2)e
η0 + λ1 + λ2 + γ (C1 + C2).

Similarly, when γ = 0, the supremum can be bounded by (λ1 + λ2)eη0 + λ1 + λ2. To
prove the second condition, we write
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∂mn(x, θ)

∂θ1

∣
∣
∣
∣
θ1=0

= λ1

(
1 − q

n

)nx2 −
(
λ2

(
1 −

(
1 − q

n

)nx1)+ γ x1
)

,

∂mn(x, θ)

∂θ2

∣
∣
∣
∣
θ2=0

= λ2

(
1 − q

n

)nx1 −
(
λ1

(
1 −

(
1 − q

n

)nx1)+ γ x2
)

.

Then it is easy to see pointwise convergence ∂mn(x,θ)
∂θ

|θ=0 → F(x) and when γ > 0
the uniform convergence follows from continuity of the functions and the compactness
of the underlying set. When γ = 0, to prove the uniform convergence we directly use
the definition. In particular, we need to show that for any ε > 0 there exists N such
that when n > N , we have for any x ∈ R≥0, |(1 − q

n )nx − e−qx | < ε. First we show
that for any ε > 0 there exists N1 and c such that when n > N1 and x > c, we
have |(1 − q

n )nx − e−qx | < ε. We know that ln(1 − q
n )n → −q as n → ∞. For

any δ1 such that 0 < δ1 < q, we can find an N1 such that for n > N1, we have

x ln(1 − q
n )n < x(−q + δ1). As a result, letting c1 = ln ε

2−q+δ1
, when x > c1, we have

ln(1− q
n )nx < x(−q+δ1) < ln ε

2 , or equivalently, (1− q
n )nx < ε

2 .Moreover, we know
that as x → ∞, e−qx → 0.We can find a c2 such that when x > c2, e−qx < ε

2 . Letting
c = max(c1, c2), the statement follows. Next, due to compactness and pointwise
convergence, we know that for x ∈ [0, c], there exists an N2 such that for n > N2, we
have |(1 − q

n )nx − e−qx | < ε. Therefore, choosing N = max(N1, N2) we have the
uniform convergence for any x ∈ R≥0. As a result, the uniform convergence result for
our system when γ = 0 follows. Therefore, (15) follows from Proposition 5.1 in [8].
When γ = 0, T n = T a.s. When γ > 0, Eq. (15) implies that there is a η > 0 such
that for large enough n

P

(

sup
0≤t≤T n

∣
∣X̄ s,n

i (t) − X̄ s
i (t)
∣
∣ > δ

)

∼ e−n,

i.e., for any given δ > 0 the probability scales in the order of e−n . Using the Borel–
Cantelli lemma, for any δ > 0,

P

(

sup
0≤t≤T n

∣
∣X̄ s,n

i (t) − X̄ s
i (t)
∣
∣ > δ i.o.

)

= 0,

i.e., there exists an Ω ′ with P(Ω ′) = 1 such that for ω ∈ Ω ′ and n > Nδ(ω)

sup
0≤t≤T n(ω)

∣
∣X̄ s,n

i (ω, t) − X̄ s
i (ω, t)

∣
∣ ≤ δ. (16)

Choose δ < (Ci − λ/γ )/2 for ω ∈ Ω ′ and n > Nδ(ω), suppose that T n(ω) < T and
we can reach a contradiction, as T n(ω) < T implies that there exists a t ′ < T n such

that X̄ s,n
i (ω, t ′) > Ci − δ. This implies that T n a.s.→ T . ��

When there are abandonments (γ > 0), the right-hand sides of (10) and (11)
involve both e−qx and x terms, whichmakes it difficult to obtain an analytical solution.
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However, when the customers do not abandon the system, the ODEs can be solved
analytically. Corollary 6 presents this special case.

Corollary 6 When γ = 0, as n → ∞,

X̄ s,n
i

a.s.−→ 1

q
ln
(
eλ1qt + eλ2qt − 1

)− I{i=2}λ1t − I{i=1}λ2t u.o.c., i = 1, 2. (17)

Proof Setting γ = 0 and taking the integral of (10) and (11), we see that

X̄ s
1(t) + λ2t = X̄ s

2(t) + λ1t =: y(t).

Then, we have

dy(t)

dt
= e−qy(t) (λ1e

λ1qt + λ2e
λ2qt
)

and y(0) = 0, which has the unique solution y(t) = 1
q ln(eλ1qt + eλ2qt − 1) and the

result follows. ��
In [3], certain performance measures are proven to be independent of the matching

probability q under some control policies. Specifically, [3] considers admission control
policies which accept users from class-1 only when X1(t) ≤ X2(t) + d (similarly
accept class-2 users only when X2(t) ≤ X1(t) + d), where d is a constant, and prove
that the difference between long-run average queue lengths of class-1 and class-2 users
does not depend on the matching probability q under this admission control policy in
Theorem 14. Investigating the proof of this theorem, we see that the global balance
equations do not change in a way affecting the result when there are abandonments,
and a similar result can be proven. Then letting d → ∞ one might expect the same
property for the uncontrolled system. The following corollary confirms this result
in the fluid limit and indicates a similar property even under the presence of user
abandonments.

Corollary 7 When γ > 0, as n → ∞,

X̄ s,n
1 − X̄ s,n

2
a.s.−→ λ2 − λ1

γ
e−γ t + λ1 − λ2

γ
, u.o.c.

Proof Applying Theorem 5, X̄ s,n
1 (t) − X̄ s,n

2 (t) converges to the unique solution of

dx(t)

dt
= λ1 − λ2 − γ x(t) (18)

with initial condition x(0) = 0. Using integrating factors, the solution of this first
order ODE can be obtained as X̄ s

1(t) − X̄ s
2(t) = λ2−λ1

γ
e−γ t + λ1−λ2

γ
. ��

Corollary 7 implies that when γ > 0, the matching probability q does not affect
the difference between the numbers of class-1 and class-2 users in the system. As
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t → ∞, this difference converges to λ1−λ2
γ

, which coincides with the results of [18]
for the M/M/1+ M queue with has arrival rate λ1, service rate λ2 and abandonment
rate γ > 0.

Next, we analyze the asymptotic behavior of the fluid limits as time goes to infinity.
Corollary 6 assumes γ to be 0 and allows us to compare X̄ s(t) with the fluid limits
X̄(t), given in Theorem 2. Different from X̄(t), which does not carry any information
on the matching probability q, the fluid limits in Corollary 6 depend on q. When t is
small, X̄ s

i (t) grows for both i = 1 and 2 as q increases. However, as t becomes larger,
the influence of the matching probability becomes weaker. Proposition 8 shows that
the fluid limits X̄ s(t) converge to X̄(t) as t → ∞.

Proposition 8 Suppose γ = 0, then as t → ∞,

∣
∣X̄i (t) − X̄ s

i (t)
∣
∣→ 0, i = 1, 2.

Proof Without loss of generality, we assume that λ1 ≥ λ2. Then using Corollary 6
and Theorem 2, we have

X̄ s
1(t) − X̄1(t) = 1

q
ln
(
eλ1qt + eλ2qt − 1

)− λ1t

= ln
(
eλ1qt + eλ2qt − 1

) 1
q − λ1t

= ln
q
√
eλ1qt + eλ2qt − 1

q
√
eλ1qt

.

Since λ1 > λ2, we can see that as t → ∞, | q
√
eλ1qt+eλ2qt−1

q√eλ1qt
| → 1 and this implies

that |X̄ s
1(t) − X̄1(t)| → 0. ��

In other words, we can explain the dynamics of a probabilistic matching system
in the following way: Without considering the effect of user abandonments, if each
pair of users gets harder to match with each other, we observe more users waiting
in the system. However, if we run the system long enough, the average numbers of
users in the system only depend on the arrival rates. Next we show that for general
abandonment rate γ ≥ 0, the fluid limits of the queue length processes converge to a
fixed point as t → ∞.

Proposition 9 If γ > 0, the fluid limit X̄ s
i (t) → x∗

i , i = 1, 2, as t → ∞, where
x∗
i ∈ R satisfies the following set of equations:

λ1e
−qx∗

2 − λ2

(
1 − e−qx∗

1

)
− γ x∗

1 = 0, (19)

λ2e
−qx∗

1 − λ1

(
1 − e−qx∗

2

)
− γ x∗

2 = 0. (20)

Proof First, we prove that Eqs. (19) and (20) have a unique solution. Subtracting the
second equation from the first one x∗

2 = x∗
1 + λ2−λ1

γ
, and replacing this into (19), we

get
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λ1e
− q(λ2−λ1)

γ e−qx∗
1 − λ2

(
1 − e−qx∗

1

)
− γ x∗

1 = 0.

The left-hand side of the equation is decreasing in x∗
1 , equals λ1e

− q(λ2−λ1)

γ > 0 if
x∗
1 = 0 and goes to −∞ as x∗

1 → ∞. Hence, using the intermediate value theorem
we conclude that (19) and (20) have a unique solution and x∗ = (x∗

1 , x
∗
2 ) is the unique

fixed point of the system of equations (9)–(11).
When λ1 �= λ2, X̄ s(t) solving (9)–(11) converges to x∗ as t → ∞, if we can

find a Lyapunov function V (x) with the following properties (see, for example, Stro-
gatz [17]):

1. V (x) > 0 for all x �= x∗ and V (x∗) = 0.

2. dV (X̄ s (t))
dt < 0 for all x �= x∗.

Without loss of generality, we assume that λ1 > λ2 and define V (x) = λ1 − λ2 +
γ (x2 − x1). Writing V (x) as V (x) = λ1e−qx2 − λ2(1− e−qx1) − γ x1 − (λ2e−qx1 −
λ1(1 − e−qx2) − γ x2), we have V (x∗) = 0 and V (x) �= 0 for all x �= x∗. Applying
Corollary 7 we have x1 − x2 < λ1−λ2

γ
and hence V (x) > 0. The second condition

follows as

dV
(
X̄ s(t)

)

dt
= γ

(
dX̄ s

2(t)

dt
− dX̄ s

2(t)

dt

)

= λ2 − λ1 + γ
(
X̄ s
1(t) − X̄ s

2(t)
)

= −V
(
X̄ s(t)

)
,

which is negative. Therefore, x∗ is globally asymptotically stable: For all initial con-
ditions, X̄ s(t) → x∗ as t → ∞.

When λ1 = λ2 = λ, Corollary 7 implies that X̄ s
1(t) = X̄ s

2(t). Denoting X̃(t) =
X̄ s
1(t) = X̄ s

2(t) and x̃∗ = x∗
1 = x∗

2 we need to show that X̃(t) → x̃∗, t → ∞, where
X̃(t) and x̃∗ satisfy the following equations:

dX̃(t)

dt
= 2λe−q X̃(t) − λ − γ X̃(t), (21)

0 = 2λe−qx̃∗ − λ − γ x̃∗. (22)

The right-hand side of (22) is a decreasing and (22) is easily seen to have a unique
solution. Equation (21) defines a gradient system with potential function U (x) =
λx + 1

2γ x
2 + 2λ

q e−qx , i.e., it can be written as dX̃(t)
dt = −∇U (X̃(t)), where U (x)

is a continuously differentiable, single-valued scalar function. Hence, using Theorem
7.2.1 in Strogatz [17] X̃(t) → x̃∗, t → ∞. ��

The fixed point x∗ in Proposition 9 can be thought of as the long-run average of the
respective numbers of users of two classes. Hence, the customer abandonment rates in
the steady state can be estimated as γ x∗. Using the input–output balance, the matching
rate, i.e., the average number of usersmatched in unit time, can also be estimated asλi−
γ x∗

i Now, we analyze how x∗ behaves for different values of the abandonment rate γ .
It is reasonable to expect that x∗ should decrease as abandonment rate increases, which
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always holds for the user class with the higher arrival rate. However, Proposition 10
shows that for the class with lower arrival rate x∗ first increases and then decreases as
γ increases.

Proposition 10 Suppose λ1 ≥ λ2. Then the long-run average number of class-1
users, x∗

1 , decreases as the abandonment rate γ increases, while the long-run average
number of class-2 users, x∗

2 , increases when

λ1 − λ2

γ
>

γ x∗
1

qλ1

(
1 − e−qx∗

2

)
+ qγ x∗

2

and decreases when the inequality is reversed.

Proof Manipulating Eq. (19) to obtain x∗
2 , substituting in Eq. (20) and doing cancel-

lations, we get

ln
(
λ2

(
1 − e−qx∗

1

)
+ γ x∗

1

)
= −qx∗

1 − q(λ2 − λ1)

γ
+ ln λ1. (23)

Taking the implicit derivative of x∗
1 with respect to γ , we obtain

x∗
1 + γ

dx∗
1

dγ
+ γ

q

d

dγ

[
ln
(
λ2

(
1 − e−qx∗

1

)
+ γ x∗

1

)]
+

ln
(
λ2

(
1 − e−qx∗

1

)
+ γ x∗

1

)

q

− ln λ1

q
= 0. (24)

Letting D1 = λ2(1−e−qx∗
1 )+γ x∗

1 , D2 = γ λ2+γ 2x∗
1 + γ 2

q and substituting Eq. (23)
into Eq. (24) to get rid of the logarithm terms, we get

dx∗
1

dγ
= D1

D2

(
λ2 − λ1

γ
− γ x∗

1

qD1

)

. (25)

Since D1 and D2 are always positive, when λ1 ≥ λ2, the right-hand side of Eq. (25) is
always negative, and hence as γ increases x∗

1 increases. Interchanging x∗
1 and λ1 with

x∗
2 and λ2, the right-hand side of Eq. (25) is positive when

λ1−λ2
γ

>
γ x∗

2

qλ1(1−e−qx∗2 )+qγ x∗
2

and negative when λ1−λ2
γ

<
γ x∗

2

qλ1(1−e−qx∗2 )+qγ x∗
2

. Hence, the conclusion for x∗
2 follows.

��
Proposition 10 shows that as γ increases, the limiting number of users for the class

with lower arrival rate first increases and then decreases, and the limiting number
of users for the class with higher arrival rate decreases monotonically, which agrees
with the observations in Fig. 3. This behavior can be explained as follows. As the
abandonment rate increases, users from both classes tend to abandon the system a lot
faster and hence the arriving users from the class with lower arrival rate are less likely
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find a match. The decrease in the number of matches is higher than the increase in the
abandonments, and as a result, we observe a certain level of accumulation in the limit
for users from the class with lower arrival rates.

4.2 Diffusion limits

Now, we move to the discussion of the diffusion limits when the matching probability
and the abandonment rate are both scaled to study the fluctuations of the queue lengths
around the fluid limit X̄ s(t). We define

X̂ s,n
i (t) = Xs,n

i (nt) − X̄ s
i (nt)√

n
, ∀t ≥ 0.

To prove weak convergence, we again use convergence of generators techniques in
[8].

Theorem 11 Suppose X̄ s = (X̄ s
1, X̄

s
2) is the unique solution to the system of ODEs

given by (9)–(11). Denote

a1(t) = qλ2e
−q X̄s

1(t),

a2(t) = qλ1e
−q X̄s

2(t),

σ1(t) =
√

λ1e−q X̄s
2(t) + λ2

(
1 − e−q X̄s

1(t)
)

+ γ X̄ s
1(t),

σ2(t) =
√

λ2e−q X̄s
1(t) + λ1

(
1 − e−q X̄s

2(t)
)

+ γ X̄ s
2(t),

and further define

z(t) =
∫ t

0
eγ sσ2(s)dB2(s) −

∫

eγ sσ1(s)dB1(s),

z3(t) = e
∫ t
0 a1(s)+a2(s)ds,

z1(t) = e− ∫ t0 a1(s)+a2(s)ds
(

−
∫ t

0
z3(s)a2(s)z(s)ds +

∫ t

0
z3(s)e

γ sσ1(s)dB1(s)

)

.

Then we have X̂ s,n ⇒ X̂ s , where X̂ s = (X̂ s
1, X̂

s
2),

X̂ s
1(t) = e−γ t z1(t), (26)

X̂ s
2(t) = e−γ t (z1(t) + z(t)). (27)

Proof Let ∇F(x) =
(

∂F1
∂x1

∂F1
∂x2

∂F2
∂x1

∂F2
∂x2

)

=
(−qλ2e−qx1 − γ −qλ1e−qx2

−qλ2e−qx1 −qλ1e−qx2 − γ

)

,
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σ(x) =
⎛

⎝

√

λ1e−qx2 + λ2
(
1 − e−qx1

)+ γ x1 0

0
√

λ2e−qx1 + λ1
(
1 − e−qx2

)+ γ x2

⎞

⎠,

and X̄ s(t) = (X̄ s
1(t), X̄

s
2(t))

′ be the unique solution to system of ODEs given by (9)–
(11). We first show that X̂ s,n(t) ⇒ X̂ s(t), where X̂ s(t) is treated as a column vector
and is the unique solution to the stochastic differential equation

dX̂ s(t) = σ
(
X̄ s(t)

)
dBt + ∇F

(
X̄ s(t)

)
X̂ s(t)dt, (28)

starting from X̂ s(0) = (0, 0)′, where B = (B1, B2)
′ is a two-dimensional standard

Brownian motion. Defining S as in the proof of Theorem 5 and F(x) as in Eq. (12), the
weak convergence follows from Lemma 5.5 in [8], if we can show that the conditions
below hold:

(a) F(x) is continuously differentiable on S,
(b) supx∈S

√
n| ∂mn(x,θ)

∂θ
|θ=0 − F(x)| → 0,

(c) ∂2m(x,θ)

∂θ2
|θ=0 is Lipschitz continuous in x on S, where m(x, θ) is defined by

m(x, θ) = (λ1
(
1 − e−qx2

)+ γ x2
)
e−θ2 + (λ2

(
1 − e−qx1

)+ γ x1
)
e−θ1

+ λ1e
−qx2eθ1 + λ2e

−qx1eθ2 .

Condition (a) is trivial and condition (b) reduces to showing

√
n
((

1 − q

n

)nx − e−qx
)

→ 0,

which is elementary calculus, and hence (b) holds as well. Finally

∂2m(x, θ)

∂θ2

∣
∣
∣
∣
θ=0

=
(

λ1e−qx2 + λ2
(
1−e−qx1

)+ γ x1 0
0 λ2e−qx1 + λ1

(
1−e−qx2

)+ γ x2

)

,

which is Lipschitz on R
2≥0. Using Lemma 5.5 in [8], X̂n ⇒ X̂ s as n → ∞, where

X̂ s(t) is the unique solution to the stochastic differential equation (28). Next we show
that (26) and (27) together is the unique solution to (28), which can be expressed as

dX̂ s
1(t) = (−a1(t) − γ )X̂ s

1(t)dt − a2(t)X̂
s
2(t)dt + σ1(t)dB1(t),

dX̂ s
2(t) = −a1(t)X̂

s
1(t)dt − (a2(t) + γ )X̂ s

2(t)dt + σ2(t)dB2(t).

Defining zi (t) = eγ t X̂ s
i (t), i = 1, 2, and using integration-by-parts, we obtain

dz1(t) = eγ tdX̂ s
1(t) + γ eγ t X̂ s

1(t)dt

= (−a1(t) − γ )eγ t X̂ s
1(t)dt − eγ t a2(t)X̂

s
2(t)dt

+ γ eγ t X̂ s
1(t)dt + eγ tσ1(t)dB1(t)
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= −a1(t)z1(t)dt − a2z2(t)dt + eγ tσ1(t)dB1(t), (29)

and similarly dz2(t) = −a1(t)z1dt − a2(t)z2(t)dt + eγ tσ2(t)dB2(t). Furthermore,
letting z(t) = z2(t) − z1(t), we have

dz(t) = eγ t (σ2(t)dB2(t) − σ1(t)dB1(t)). (30)

Solving Eq. (30) directly, we obtain that

z(t) =
∫ t

0
eγ sσ2(s)dB2(s) −

∫

eγ sσ1(s)dB1(s).

Substituting that z2(t) = z(t) + z1(t) into Eq. (29) and moving z1(t) to the left-hand
side, we have

dz1(t) + (a1(t) + a2(t))z1(t)dt = −a2(t)z(t)dt + eγ tσ1(t)dB1(t).

Now, multiplying both sides by the integrating factor z3(t) = e
∫ t
0 a1(s)+a2(s)ds , we get

d
(
z1(t)e

∫ t
0 a1(s)+a2(s)ds

)
= z3(t)

(−a2(t)z(t)dt + eγ tσ1(t)dB1(t)
)
.

As a result,

z1(t) = e− ∫ t0 a1(s)+a2(s)ds
(

−
∫ t

0
z3(s)a2(s)z(s)ds +

∫ t

0
z3(s)e

γ sσ1(s)dB1(s)

)

,

Xs
1(t) = e−γ t z1(t) and Xs

2(t) = e−γ t (z1(t) + z(t)) follow. ��

Theorem 11 indicates that if the fluid limit X̄ s(t) is given the diffusion limit can
be fully characterized analytically. However, as we have seen in Sect. 4.1, it is not
possible to analytically solve the ODEs for the fluid limit when γ > 0. In the next
section, we present numerical experiments to study fluid and diffusion limits presented
in this section.

5 Numerical experiments

We now present a numerical analysis of the properties of the fluid and diffusion
limits and investigate their performance as approximations to the matching systems.
In Sect. 5.1, we use discrete-event simulation to compare the fluid limit presented
in Sect. 4.1 with the original matching systems. In Sect. 5.2, we resort to numerical
methods for solving ODEs and SDEs to study the fluid and diffusion limits.
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5.1 Fluid limits as approximations to the probabilistic matching systems

In Sect. 4.1, we prove that if the matching probability and the abandonment rate goes
to zero as we scale time and space, the matching process converges to a fluid limit
which can be expressed as the solution of the ordinary differential equations (9)–(11)
and these fluid limits converge to the fixed points which solves (19) and (20). This
suggests that for “small” matching probabilities and abandonment rates, fluid limits
approximate the probabilistic matching systems and the fixed point can be used as
an approximation of the average queue lengths of matching queues. Defining Li to
be the long-run average number of class-i users in the system, we now investigate
the performance of these approximations and present our results in Tables 1 and 2.
The performance measures presented for probabilistic matching systems are obtained
using discrete-event simulation.

Table 1 presents a comparison between fluid limits and actual probabilistic match-
ing systems when the arrival rates for both classes are equal. Due to symmetry, the
coordinates for the fixed point are equal, i.e., x∗

1 = x∗
2 = x∗, and this value is presented

in the third column. In a similar manner, the fourth column presents the average queue
length for each class (L = L1 = L2) as observed in our simulations. The approxima-
tion error is given in the fifth column as a proportion of the average queue length. The
last two columns correspond to the matching and abandonment rates, respectively. We
see that when the matching probability is at most in the order of the abandonment
rate normalized by the arrival rate (γ /λ1), then the fluid approximation provides a
good approximation. On the other hand, when the matching probability is signifi-
cantly greater than the normalized rate, the fluid limit approximation starts to deviate
from the real values.

Table 2 presents the performance of fluid limits when λ2 = 2λ1. Similar to our
results with equal arrival rates, we see that when the abandonment rate normalized by
the lower arrival rate (γ /λ1) is an order ofmagnitude less than thematching probability,
the long-run average number of class-1 users in the system is close to zero and there
is significant accumulation of the class-2 users, so that arriving class-1 users find a
match upon their arrival. This is an indicator that when the normalized abandonment
rate is significantly less than the matching probability, the system behaves similar to
the case where the matching probability is equal to one as in the scaling we present in
Sect. 3. However, when the matching probability is at most of the order of normalized
abandonment rate, then significant numbers of class-1 users wait in the system and
the second scaling in Sect. 4 performs well.

5.2 Numerical analysis of properties of fluid and diffusion limits

In Sect. 4, we show that when the matching probability and abandonment rate are
scaled to go to zero along with the time and space, the fluid and diffusion limits can
be expressed as the unique solutions to some systems of ODEs and SDEs which do
not have explicit solutions in general. To gain some insight into the solutions, we
study numerical approximations in this section. We use Euler and Euler–Maruyama
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Table 1 Comparison of fluid limits and simulation results when λ1 = 1 and λ2 = 1

γ q x∗ L |x∗−L|
L M. rate A. rate

10−4 10−4 3748.2 3743.8 1.19 × 10−3 125.0 149.796

10−3 631.88 632.9 1.58×10−3 187.4 25.326

10−2 68.631 79.6 1.38×10−1 198.4 3.1882

0.1 6.9245 40.3 8.28×10−1 199.2 1.61286

0.2 3.464 40.4 9.14×10−1 199.2 1.61724

0.4 1.7324 40.3 9.57×10−1 199.2 1.61114

10−3 10−4 839.0 838.5 6.62×10−4 32.2 335.5

10−3 374.8 375.0 3.60×10−4 125.1 149.9

10−2 63.2 64.2 1.56×10−2 187.2 25.7

0.1 6.9 14.3 5.19×10−1 197.1 5.7

0.2 3.4 13.0 7.35×10−1 197.4 5.2

0.4 1.7 12.8 8.65×10−1 197.4 5.1

10−2 10−4 98.0 98.0 3.62×10−4 3.9 392.2

10−3 83.9 83.9 3.10×10−4 32.2 335.8

10−2 37.5 37.5 6.13×10−4 124.9 150.1

0.1 6.3 7.3 1.29×10−1 185.5 29.0

0.2 3.3 5.0 3.42×10−1 190.0 20.1

0.4 1.7 4.2 6.00×10−1 191.5 16.9

10−1 10−4 10.0 10.0 5.01×10−4 0.394 399.1

10−3 9.8 9.8 2.55×10−4 3.9 392.1

10−2 8.4 8.4 9.96×10−4 32.2 335.3

0.1 3.7 3.8 8.78×10−3 124.4 151.3

0.2 2.4 2.5 4.48×10−2 149.9 100.1

0.4 1.4 1.7 1.71×10−1 166.1 67.7

2 × 10−1 10−4 5.0 5.0 3.91×10−4 1.99×10−1 399.5

10−3 5.0 5.0 6.96×10−4 2.0 396.2

10−2 4.6 4.6 7.68×10−5 17.8 364.4

0.1 2.7 2.7 3.16×10−3 93.3 213.6

0.2 1.9 1.9 1.71×10−2 123.6 152.6

0.4 1.2 1.3 8.50×10−2 147.7 104.6

2 × 10−1 10−4 2.5 2.5 2.60×10−4 9.79×10−2 399.7

10−3 2.5 2.5 4.02×10−5 1.0 398.0

10−2 2.4 2.4 2.10×10−5 9.4 381.2

0.1 1.7 1.7 5.83×10−4 62.9 274.2

0.2 1.3 1.3 5.57×10−3 92.9 214.2

0.4 9.37×10−1 9.70×10−1 3.43×10−2 122.4 155.3
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Table 2 Comparison of fluid limits and simulation results when λ1 = 1 and λ2 = 2

γ q x∗
1 x∗

2 L1 L2 M. rate A. rate

10−4 10−4 1136 11,136 1139.4 11,121 177.1 245.2

10−3 2.2×10−2 10,000 0.125 9993.6 200.0 200.0

10−2 1.2×10−9 10,000 1.2×10−3 9987.2 200.0 200.0

0.1 1.2×10−10 10,000 1.2×10−5 9981.5 200.0 200.0

0.2 5.9×10−11 10,000 4.0×10−6 9975.1 200.0 200.0

0.4 2.9×10−11 10,000 2.7×10−7 9992.7 200.0 200.0

10−3 10−4 706.6 1706.7 706.7 1704.9 7.7 584.3

10−3 113.6 1113.6 113.5 1114.1 58.7 482.3

10−2 2.16×10−3 1000 3.43×10−3 1000.4 177.3 245.4

0.1 1.26×10−9 1000 6.72×10−6 1000.1 200 .0 200.0

0.2 6.28×10−10 1000 5.61×10−7 999.78 200.0 200.0

0.4 3.14×10−10 1000 1.48×10−7 1000.4 200.0 200.0

10−2 10−4 96.1 196.1 96.1 196.2 7.7 584.6

10−3 70.7 170.7 70.7 170.6 58.7 482.5

10−2 11.4 111.4 11.4 111.3 177.1 245.6

0.1 2.16×10−4 100 4.03×10−4 100.0 200.0 200.0

0.2 1.15×10−8 100 6.90×10−6 100.0 200.0 200.0

0.4 3.16×10−9 100 0 100.0 200.0 200.0

10−1 10−4 10.0 20.0 9.9 20.0 7.92×10−1 598.2

10−3 9.6 19.6 9.6 19.6 7.7 584.6

10−2 7.1 17.1 7.1 17.1 58.7 482.8

0.1 1.1 11.136 1.8 11.2 176.7 246.6

0.2 2.6 ×10−1 10.3 3.11×10−1 10.3 193.4 212.7

0.4 2.03×10−2 10.0 4.97×10−2 10.0 198.9 202.1

2 × 10−1 10−4 5.0 10.0 5.0 10.0 3.97×10−1 599.3

10−3 4.9 9.9 4.9 9.9 3.9 592.0

10−2 4.1 9.2 4.2 9.2 33.8 532.3

0.1 1.4 6.4 1.4 6.4 144.9 310.3

0.2 5.68×10−1 5.6 6.03×10−1 5.6 176.0 248.3

0.4 1.31×10−1 5.1 1.86×10−1 5.1 192.5 214.8

4 × 10−1 10−4 2.5 5.0 2.5 5.0 2.02×10−1 599.7

10−3 2.5 5.0 2.5 5.0 2.0 596.9

10−2 2.2 4.8 2.3 4.8 18.3 563.3

0.1 1.2 3.7 1.8 3.7 105.7 388.6

0.2 6.84×10−1 3.2 6.96×10−1 3.2 144.2 311.2

0.4 2.84×10−1 2.8 3.20×10−1 2.8 174.5 251.2
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Fig. 1 Fluid limits when λ1 < λ2 for various q. a Fluid limit of user 1 for different q. b Fluid limit of user
2 for different q

methods to obtain numerical solutions of ODEs (9)–(11) and SDEs (28), respectively.
(See Kloeden and Platen [13] for more details.)

To study the fluid limit which is the unique solution to the system of ODEs (9)–(11),
we apply the Euler method with step size h = 10−6. First, we test the effect of the
matching probability q on the fluid limits. First we consider the case λ1 < λ2 by setting
λ1 = 200, λ2 = 400, γ = 0.5 and compute the fluid limits for q = 0.01, 0.02, 0.03.
The results are given in Fig. 1. We observe that for the class with lower arrival rate,
the number of users in the system demonstrates a very sharp increase at the beginning
and then decreases approaching a limit as t goes to infinity. We see that there is a con-
siderable difference between the number of users corresponding to different matching
probabilities for this class. On the other hand, the number of users for the class with
higher arrival rate grows monotonically, converging to its supremum as t goes to infin-
ity. Surprisingly, the matching probability does not play a significant role for this class
and the fluid limits corresponding to different matching probabilities are very close.

To test the case where λ1 = λ2, we performed the same experiment by taking
λ1 = λ2 = 200. Figure 2a demonstrates that the number of users for both classes
increases monotonically as t goes to infinity approaching to the supremum, which is
very similar to the behavior of the class with higher arrival rate when the rates are not
equal. However, in this case the matching probability has a major effect on the limiting
number of users and as q increases the number of users in the system decreases. Also
as q gets larger, we see that the number of users increases to its supremum faster and
the fluid limit is steeper.

Next we study the effect of the abandonment rate γ on the number of users in the
system. In this set of experiments, we set the arrival rates λ1 = 200, λ2 = 400 and
the matching probability q = 0.01 and vary the abandonment rate. Figure 3 shows
that the shape of fluid limits is not affected by the changes in the abandonment rate,
i.e., the number of users for the class with lower arrival rate first increases and then
decreases and the number of users for the class with higher arrival rate decreases
monotonically. We also see that when there are abandonments the number of users
for the class with lower arrival rate does not converge to 0 as t goes to infinity. In
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Fig. 2 Fluid limits when λ1 = λ2 for various q. a Fluid limit of user 1 and 2 for different q. b Fluid limit
of user 1 and 2 for different q

Fig. 3 Fluid limits when λ1 < λ2 for various γ . a Fluid limit of user 1 for various γ . b Fluid limit of user
2 for various γ

agreement with Proposition 10, we see that the limiting number of users for the class
with lower arrival rate increases in our experiments as the abandonment rate increases.

Now, we discuss numerical approximation to diffusion limit, which is the unique
solution to the systemof SDEs (28). In our experiments,we apply theEuler–Maruyama
method with the step size h = 10−6. We again start with the case when the arrival
rates are not equal and set λ1 = 200, λ2 = 400. Figures 4 and 5 demonstrate some
sample paths. We see that there are always significant fluctuations for the class with
higher arrival rate. When q is fixed, we see that the changes in γ do not have a major
effect on fluctuations. We also see that the fluctuations for the class with lower arrival
rate diminish as t increases. However, as q increases, the fluctuations tend to diminish
after some time. This is due to the fluid limit approaching zero. Finally, we observe in
Fig. 6 that when the arrival rates are equal and set to be λ1 = λ2 = 200, both queue
length processes keep fluctuating as usual.

123



Queueing Syst

Fig. 4 Diffusion limits when λ1 < λ2 for various γ . a Diffusion limit of user 1 for various γ . b Diffusion
limit of user 2 for various γ
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Fig. 5 Diffusion limits when λ1 < λ2 for various q. a Diffusion limit of user 1 for various q. b Diffusion
limit of user 2 for various q
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Fig. 6 Diffusion limits when λ1 = λ2 for various q and γ . a Diffusion limit of user 1 for various q.
b Diffusion limit of user 1 for various q
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6 Conclusion and future work

In this work, we proposed two different scalings to obtain fluid and diffusion approx-
imations to the queue length processes of probabilistic matching systems. For the
first approach, the space and time were scaled while the matching probability is kept
fixed. Under this scaling, the matching probability q does not play any role in the fluid
limit and the minimum of the queue lengths converges to zero. We suggested that this
scaling is used when the matching probability is considerably high.

In the second scaling,we addressed the systems inwhich the probability tomatch for
each pair of users is small. The effect of abandonmentswas also taken into account, and
the matching probability and the departure rate were scaled along with time and space
in this regime. The limiting processes enabled us to address the matching probability
explicitly.Unfortunately, the resulting systemofODEs cannot be solved analytically in
general, although when there are no abandonments it is possible to obtain an analytical
solution. In [3], some performance measures were shown to be insensitive to the
matching probability under certain admission control policies. Using fluid limits, we
showed that the difference between the average queue lengths of different classes of
users is also independent of the matching probability.We also analyzed the asymptotic
behavior of the fluid limits in this scaling. First, we showed that when the abandonment
rate is zero, the two fluid limits, obtained with and without scaling the matching
probability, converge to each other with time. We further showed that when there are
abandonments, the fluid limits converge to a unique fixed point, which represents the
long-run average number of users in the system. Conducting analysis on the fixed
point, we revealed that as the abandonment rate increases, the number of users for the
class with lower arrival rate first experiences an increase and then decrease, while the
number of users for the class with higher arrival rate decreases monotonically.

We also provided extensive numerical results to understand the quality of approxi-
mations provided by fluid limits.We saw that if thematching probability is comparable
to the normalized abandonment rate or lower our second scaling provides a very good
approximation to the real system. However, when the matching probability is signifi-
cantly higher than the normalized arrival rate, users accumulate in the system and the
probability that an arriving lower rate user finds a match approaches one, similarly to
what we observe in the first scaling. As analytical expressions are not available for
fluid and diffusion limits, we resorted to numerical methods to study the correspond-
ing ODEs and SDEs. We saw that for the class with higher arrival rate, the number
of users in the system increases monotonically. On the other hand, the users from the
class with lower arrival rate first tend to accumulate in the system and then decrease
to a limit as time goes to infinity. This limit is different from zero and increases as
the abandonment rate increases, agreeing with our theoretical analysis. This indicates
that there are always a significant number of users waiting in the system from both
classes.

Probabilistic matching systems exhibit many interesting properties, and we believe
the fluid and diffusion limits introduced in this work will be helpful in many direc-
tions. First, the approximations introduced here can be used to study the performance
of admission control policies which are intractable using exact methods. Another
promising research direction is to identify optimal and asymptotically optimal poli-
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cies to maximize profit generated by charging users admission fees. The probabilistic
matching systems studied in this work can also be extended to include different types
of users within each class where each type has a different probability to match with
users of other classes. Another possible extension is to consider the situation where
each arriving user considers only a subset of users from the other class.
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