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The efficiency of self-phoretic propulsion mechanisms with surface
reaction heterogeneity

Patrick Kreissl, Christian Holm, and Joost de Graafa)

Institute for Computational Physics (ICP), University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany

(Received 4 February 2016; accepted 10 May 2016; published online 27 May 2016)

We consider the efficiency of self-phoretic colloidal particles (swimmers) as a function of the
heterogeneity in the surface reaction rate. The set of fluid, species, and electrostatic continuity
equations is solved analytically using a linearization and numerically using a finite-element method.
To compare spherical swimmers of different size and with heterogeneous catalytic conversion rates,
a “swimmer efficiency” functional η is introduced. It is proven that in order to obtain maximum
swimmer efficiency, the reactivity has to be localized at the pole(s). Our results also shed light on the
sensitivity of the propulsion speed to details of the surface reactivity, a property that is notoriously
hard to measure. This insight can be utilized in the design of new self-phoretic swimmers. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4951699]

I. INTRODUCTION

In recent years, there has been a surge of interest in
the study of active matter,1,2 in particular, concerning self-
propelled colloidal particles (swimmers).3–7 These systems
have been connected to a number of potential applications,
including cancer treatment,8,9 drug delivery,10–13 soil remedi-
ation,14 and microfluidic mixing.15–18 In addition, swimmers
show promise as model systems for out-of-equilibrium
phenomena,19,20 which cannot be described by the laws of
classic thermodynamics. It is hoped that studying such model
systems will give insights that may lead to the extension of
classical thermodynamics to include non-equilibrium effects.

A particular class of active colloids is often connected
with these potential applications, namely, artificial self-
phoretic colloids.21–29 This is because their fabrication can
be well controlled and they appear to be simpler than
biological organisms. Self-phoretic colloids are propelled
by means of self-generated fields of solute molecules that
interact with the colloid. These gradients are typically caused
by chemical decomposition reactions that take place on the
surface of the particle. The most common systems that exploit
self-phoresis are Au–Pt nanoparticles25,26,29 and Pt-coated
Janus spheres21–24,27,28 that decompose hydrogen peroxide
into water and oxygen. The former are considered self-
electrophoretic,26,30,31 while for the latter the nature of the
phoretic mechanism is still hotly debated.21,23,32

It was recently shown theoretically by Brown et al.32

that bulk association-dissociation reactions of the solutes
involved in the surface reactions—the surface reactions
drive the system out-of-equilibrium—strongly impact the
speed of these particles. That is, in an aqueous system,
water and many neutral solutes can dissociate into ions
(e.g., H2O
 H+ + OH− and H2O2
 H+ + HO−2), which
means that gradients of neutral solutes lead to gradients

a)jgraaf@icp.uni-stuttgart.de

of ionic species. Such gradients can then drive the motion of
a (charged) swimmer by so-called “self-electrophoresis,” via
the electric potential that they set up. Thus, it is necessary
to always consider the possibility of an electrophoretic
component in the self-propulsion of water-based (almost all)
experimental systems. Moreover, Ref. 32 underpins the poor
understanding of the surface reactions that take place in
experimental systems, which makes the current modelling of
swimmers rather tentative.

The main issue is that the local surface fluxes of the
various species (including reaction intermediates) cannot be
straightforwardly measured. Only the total surface reaction
rate has been established.21 However, it has been shown that
there is a dependence of the reactivity on the thickness of the
Pt-coating.23 The vapor-deposition procedure, by which most
Janus particles are created, causes a nonuniform thickness of
platinum from the equator to the pole of the Janus swimmer.23

Therefore, it is likely that there is a heterogeneous reactivity on
the particle’s surface. A systematic study of the effect of such
a reaction heterogeneity has not yet been performed. However,
the recent investigation into the effect of shadowing a Au-
coated Janus swimmer with a Pt-patch33 provides insights in
how to carry out such a study experimentally.

In this paper, we therefore theoretically consider the
effect of surface-reaction heterogeneity on the properties
of a self-phoretic swimmer. We consider the “swimming
efficiency,” which is the hydrodynamic power output over
the total enthalpy produced by the reaction, in order to
compare different systems on an equal footing. This definition
was first introduced by Paxton et al. in the footnotes to
Ref. 34. The concept of the efficiency of swimming has since
been investigated by Sabass and Seifert, who showed that
nanoparticles are far more efficient at self-propulsion than
micron-sized colloids35 and examined this quantity in the
context of self-electrophoresis.36 More recently, Wang et al.37

performed an analysis of the efficiency of various types of
swimmers. Finally, Nourhani and Lammert38 have generalized
the efficiency to various self-propulsion mechanisms and
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considered the effect of swimmer geometry, showing that
within their framework the experimental results of Ref. 39 are
well captured by geometric considerations and a single fitting
parameter only.

We use our swimming efficiency to demonstrate that
there is a strong dependence of the swimming speed on the
specifics of the surface-reaction heterogeneity, given a total
overall reaction rate. This is unsurprising in light of the work
of Popescu et al.40 in which the speed of partially catalytic self-
diffusiophoretic ellipsoids was considered, but our swimming
efficiency allows us to compare these different distributions
on an equal footing. We can show that the most favorable way
to propel a particle is by localizing the chemical reactions on
tiny (isolated) spots on the surface, that is, on a single spot
in the case of self-diffusiophoresis and on two diametrically
opposing (absorbing and emitting) spots (or poles) in the
case of self-electrophoresis. This maximizes the prefactor
in the first Legendre mode of the solute distribution that
determines the swimming speed. Such polar configurations
have been considered before,40,41 but have not been connected
to efficiency or been systematically compared. Popescu et al.40

demonstrate that the polar distributions result in a zero
swimming speed. However, in their work, the total reaction
rate is proportional to the catalytic surface area, whereas our
swimmers have a finite total reaction rate independent of the
catalytic distribution. This is an idealization, but a necessary
one to ensure “fair” comparison; there are indications that
such distributions can be approximated experimentally, as we
will discuss.

Our result is of interest for the fabrication of colloidal
swimmers, as it implies that significant swimming speeds
may be achieved by using a minimal amount of reactive
material. The reduced surface area of a “point-like” particle
at the pole does not necessarily imply a strongly reduced
chemical decomposition rate, as it was recently hypothesized
that the fast swimming of nanoparticles might be explained by
a relatively large catalytic rate compared to that of a micron-
sized colloid.32 This is unsurprising, as nonlinear feedbacks
may in general increase activity of catalytic materials when the
catalyst becomes nanoscopic in size.42 It is particularly true
in the diffusion-limited regime,22 where the overall reaction
rate is determined by the rate at which the fuel molecules
can diffuse in from the bulk. Another advantage of the polar
distribution is that metal surfaces, such as the Pt coating,
lead to strong van der Waals interactions between swimmers
that can cause the swimmers to aggregate.43 By localizing the
metallic reactive site, such aggregation may be suppressed.
In addition, for the polar swimmers, most of the surface
is available for chemical modification that is not related
to generating self-propulsion, e.g., for binding with cancer
cells or chemically decomposing pollutants. Finally, the flow
field around the particle is strongly modified with respect to
that of a hemispherically coated object, which could lead to
enhanced microfluidic mixing. The experimental realization of
such particles, however, remains an open problem. There are
indications that such a localized reactivity can be achieved,
as dimer swimmers with a small (polar) Pt component44

have recently been fabricated,28 but obtaining localized high
reaction rates could prove challenging.

The remainder of this paper is structured as follows. In
Section II, we introduce the self-diffusiophoretic and self-
electrophoretic model and discuss their numerical solution
using a finite-element method (FEM); details of the theoretical
analysis may be found in Appendices A and B, respectively.
Next, we introduce the swimming efficiency in Section III.
This is followed by a presentation of our results in Section IV.
Finally, we give a conclusion and present an outlook in
Section V.

II. MODELING OF CATALYTIC SWIMMERS

In this manuscript, we consider both self-diffusiophoretic
and self-electrophoretic swimmers. For convenience, we
restrict ourselves to spherical swimmers of radius a that are
axisymmetric in the z-axis, see Fig. 1. Here, we limit ourselves
to a minimal description of both types of swimmers in an
aqueous environment. Both swimmers decompose hydrogen
peroxide catalytically on their surface, which drives the system
out-of-equilibrium. This is modelled using a flux boundary
condition f (θ) = cJ fJ(θ), which only depends on the polar
angle θ. The dimensionful constant cJ > 0 bears all the units
while the dimensionless function fJ(θ) gives the magnitude
of the local production rate. If the production rate is negative,
the species is instead consumed by the surface reaction. The
motion of the swimmer can be determined by solving the
coupled system of linear differential equations consisting of
the Stokes, Nernst-Planck, and Poisson equation. Full details
of the two models are provided in Appendices A and B,
respectively.

FIG. 1. Schematic of the finite-element simulation setup for a swimmer of
radius a. (Left) The diffusiophoretic case, (right) the electrophoretic case.
The setups are rotationally symmetric around the z-axis. On the edge of the
simulation domain of radius R, the concentrations of all species are set to the
bulk concentration and the fluid flow field has to fulfill the no-stress boundary
condition. For diffusiophoresis, a slip-velocity is used on the swimmer’s
surface. For electrophoresis, a no-slip boundary condition is applied. The
surface charge density σ leads to formation of a screening layer of Debye
length κ−1.
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For the purposes of computing swimming efficiency, the
following information is required: (i) self-diffusiophoresis
can be described using a single solute species, namely, the
oxygen,40 which has zero bulk concentration. The swimmer
moves due to short-ranged (non-electrostatic) interactions
between the oxygen and the swimmer surface, which may be
captured within the slip-layer approximation.23,40,41,45–50 Since
oxygen is nowhere consumed on the particle, we can choose
fJ(θ) ≥ 0. (ii) For the self-electrophoretic swimmers, we
consider the standard Au–Pt model of Refs. 26 and 30–32 in
which the reactions at the surface produce and reduce an ionic
species. This sets up a current of charged solutes and an electric
field which induces motion of the swimmer which has a surface
charge σ. A minimal model considers only a flux of hydrogen
ions H+, which are created on one end of the swimmer and
reduced on the other and must have a finite bulk concentration
c∞a (the subscript “a” stands for active) to produce a finite
swimming speed. Simultaneously, a current of electrons flows
through the swimmer to ensure charge conservation. Since H+

is both formed and reduced, there is no restriction on the sign of
fJ(θ). However, charge conservation requires

 1
−1 f̃J(b)db = 0,

where we have introduced b = cos θ the unit arc length and
f̃J(b) ≡ fJ(θ). In the self-electrophoretic model, there are
also two ionic species that induce electrostatic screening with
Debye length κ−1, with bulk concentrations c∞± , but which are
not involved in the reaction, the so-called spectator species.

Appendices A and B derive the analytic expressions
for the velocity of the two types of swimmer in the
linearized regime (for small solute flux and low surface
charge). In addition to our analytic work, we solve the full
(nonlinear) equations using the finite-element method (FEM);
here we limit ourselves to the linear regime to verify our
calculations. Using the COMSOL Multiphysics Modeling
software, we obtain numerical solutions to the respective
system of equations via the procedures outlined in Refs. 32
and 49. A schematic of the simulation setup is shown in
Fig. 1. The rotational symmetry of the problem makes it
possible to work on a quasi-two-dimensional axisymmetric
domain. In our numerical calculations, we also neglect the
advective coupling Nernst-Planck equation, which allows us
to treat the diffusion/electrostatics part and the hydrodynamics
part of the overall problem separately.32 This is reasonable
since for relevant experimental systems, the Péclet number, a
dimensionless quantity is defined as the ratio of the rate of
advection and the rate of diffusion for transport processes in
hydrodynamic systems, Pe ≤ 10−2 ≪ 1.

A major difference to the theoretical calculation is that
for the flow field, we apply a no-stress boundary condition at
the edge of the simulation domain,

�
µ
�
∇u + (∇u)T� − pI

�
· n̂ = 0, (1)

where u is the fluid flow velocity, p the pressure, µ the
dynamic viscosity, and n̂ the unit normal to the boundary. In
addition, · indicates the inner product, ∇ the gradient, T the
transposition, and I the identity matrix. This choice allows us
to directly determine the swimmer velocity by averaging the
fluid velocity over the edge of our simulation domain, rather
than solving the problem for this quantity.

Finally, in order to use FEM explicit choices for the
parameters, such as particle radius and viscosity, need to
be made. These parameters are listed in Appendix C, since
the specific choices made are not particularly relevant for our
efficiency calculations. Most physical parameters are absorbed
into a prefactor, which acts as a scaling, as we will see in
Sec. III. One caveat is that the relevant dimensionless numbers
(Péclet, etc.) have to be small, which we have ensured.

III. SWIMMER EFFICIENCY

To have a dimensionless measure for the efficiency of
spherical swimmers with different heterogeneous surface
reactivities and radii a, we define the swimmer efficiency
functional

η =
6πµaU2

F diff/elϵch
, (2)

with U the propulsion speed and ϵch the Gibbs-free-energy
change on production of a single solute molecule. Here, we
have followed the motivation given in Refs. 34, 36, and 37 in
choosing the form of the efficiency. The energy dissipation by
the active particle is calculated by considering an equivalent
passive particle that is dragged by an external force through
the fluid at the same speed U as the swimmer self-propels. This
energy dissipation is then equivalent to the power output by the
active particle. The power input is determined by examining
the reactions occurring on the surface of the swimmer. It is
given by the total reaction rate multiplied by the Gibbs free
energy required to achieve the reaction. Specifically, the total
reaction rate F in Eq. (2) is given by

F diff ≡ 2πa2
 1

−1
f̃J(b)db, (3)

F el ≡ πa2
 1

−1
| f̃J(b)|db. (4)

For the electrophoretic case, a factor of a half is introduced,
since for each outgoing (production; f̃J(b) > 0) and incoming
(consumption; f̃J(b) < 0) active solute, only one electron
travels through the swimmer. That is, both steps are required
to complete the reaction and liberate only one ϵch together.

We now insert the swimming speeds that we theoretically
obtained (Eqs. (A11) and (B16), respectively) into the
efficiency functional. This allows us to write

cdiff
η ≡

3
4

µcJξ2

aD2
0ϵch

, (5)

cel
η ≡

3
2

cJ
aµϵch

(
σeza

Daκ3ε
H(κa)

)2

, (6)

where H(κa) is the generalized Henry function32 (for the FEM
parameters H(κa) = 0.83), also see Appendix B. In addition,
D0 and Da are the diffusion coefficients of the respective
active species, za is the valency of charged active species
causing self-electrophoresis, e is the elementary charge, ε is
the solvent permittivity, and ξ is the slip-layer parameter, see
Appendices A and B for further details. We can then express
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the swimmer efficiency as

η = cdiff/el
η

( 1
−1 b f̃J(b)db

)2

 1
−1 | f̃J(b)|db

, (7)

where it should be remembered that f̃J has different constraints
for the two mechanisms of self-phoresis that we consider.

To determine the maximum possible swimmer efficiency,
we assume f̃J(b) to be normalized, that is, 1

−1
| f̃J(b)|db = 1. (8)

This can be done without loss of generality, since the definition
of the production function (Eq. (A5)) allows any normalization
constant to be absorbed into the choice of cJ. Using

�����

 1

−1
b f̃J(b)db

�����
≤
 1

−1
|b| � f̃J(b)� db ≤

 1

−1

�
f̃J(b)� db, (9)

it is easily shown that an upper limit on the swimmer efficiency
is given by

ηmax = cdiff/el
η . (10)

In addition, since the hydrodynamic dissipation cannot exceed
the power input due to the reaction, we have that cdiff/el

η < 1
always, which ensures the efficiency to be well-defined.

IV. RESULTS

Interpreting the factor b in the integral of the numerator
in Eq. (7) as a weighting factor for the production function f̃J
suggests that the maximum swimmer efficiency can only be
obtained for delta-distribution-like production functions at the
pole(s) of the swimmer. That is, the production function’s
value is reduced by the factor |b| < 1 for all polar angles,
except for θ ∈ {0, π}. It is therefore impossible to reach

maximum efficiency if there are contributions to the flux away
from the poles.

To verify this for the self-diffusiophoretic case, we assume
a production function

f̃J(b) = ±δ(b − α), (11)

where α ∈ [−1,1]. Then, the corresponding efficiency
functional yields

η =
���±αcdiff

η
��� ≤

���c
diff
η

��� = ηmax. (12)

As expected, maximum swimmer efficiency is obtained, if all
the solute productions or consumptions happen at an isolated
point on the swimmer surface. For the self-electrophoretic
case, we impose the production function

f̃J(b) = δ(b − α) − δ(b + α), (13)

which leads to the efficiency functional

η =
���αcel

η
��� ≤

���c
el
η
��� = ηmax. (14)

Maximum swimmer efficiency is obtained if all the solute
production occurs at an isolated point on the swimmer
surface, while all the consumption happens at an isolated
point on the opposite side of the colloid. Here it is worth
noting that Popescu et al.40 found the polar distribution
for self-diffusiophoresis to give zero swimming speed for
self-diffusiophoresis. However, their total reaction rate is
proportional to the surface area, whereas ours is constant.

To support our findings, we performed both analytical
and numerical calculations for different classes of surface
production profiles, of which we show a sample here in Fig. 2.
This figure shows various step-function-types fJ and the
resulting efficiency for both the self-diffusiophoretic and self-
electrophoretic models. The step functions are characterized
by a cutoff angle θ0 = acos(b0). Up to this angle, we assume the
production function to be fJ(θ < θ0) = 0. For larger angles,
the production function has a constant value. The production

FIG. 2. The swimming efficiency for a step-function-type flux profile in the diffusiophoretic ((a) and (b)) and the electrophoretic model ((c) and (d)). The
left-hand side shows example surface flux profiles fJ as a function of the polar angle θ. The right-hand side gives the normalized efficiency η/|cη | as a function
of b0≡ cos(θ0) obtained from theory (blue curve) and FEM simulations (circles). The value of b0 indicates the angle θ0 on the swimmers’ surface where the
step in reactivity occurs. The colored squares indicate the points that correspond to the profiles shown on the left.



204902-5 Kreissl, Holm, and de Graaf J. Chem. Phys. 144, 204902 (2016)

profiles for the electrophoretic model were chosen to be
antisymmetric; however, non-antisymmetric profiles are in
principle allowed, provided the net flux is zero.

We find excellent agreement between the analytic and
FEM solutions, indicating that our results are trustworthy.
For both the self-diffusio- and the self-electrophoretic models,
we observe the expected behavior, that is, the normalized
efficiency functional converges to 1 when the production
functions approach the delta-like form described above. Our
results also show the sensitive dependence of a swimmer’s
speed on its production function. In Appendix D, we consider
several other choices for the surface production profiles in
the diffusiophoretic case, as shown in Fig. 4. These results
emphasize the strong dependence of the efficiency on the
flux-profile choice and that in all cases the polar profile is the
most efficient.

The typical half-coated diffusiophoretic Janus swimmer
(θ0 = π/2, profile #2 in Fig. 2(a)) has an efficiency of
η = 0.25ηmax and achieves |U/Umax| = 0.50, with Umax the
speed of the polar swimmer, for the parameters of Appendix C.
A ramp or inverse-ramp swimmer (θ0 = π/2) achieves
|U/Umax| = 0.69 (η = 0.47ηmax) and 0.39 (η = 0.15ηmax),
respectively, see Appendix D, Fig. 4. The swimming efficiency
of the ramp case is clearly the largest, but the speed is
still less than half of the theoretical maximum. This simple
example shows that the speed of swimming (and efficiency)
can be substantially improved by modifying (localizing) the
reactivity, under the condition of constant F diff/el.

Next, we consider the differences in the concentration
field and the fluid flow field between the delta-type and half-
coated (Heaviside) swimmers, see Figure 3. The first thing to
note is that the flow field for the delta-type self-diffusiophoretic
colloid has the shape of a (slightly perturbed) Stokes dipole,
whereas the Heaviside swimmer has a source-dipole flow

FIG. 3. Normalized concentration field (left) and normalized fluid flow field
(right) in the lab frame for self-diffusiophoretic swimmers ((a) and (b))
and self-electrophoretic swimmers ((c) and (d)). Figures ((a) and (c)) show
simulation results for half-coated swimmers with a Heaviside (θ0= π/2) flux
production profile and ((b) and (d)) show swimmers with delta-distribution-
like production profiles. The white lines are stream lines, the normalized red
arrows depict the flow field, but not its amplitude.

field with a strong perturbation near the equator. This is
because the Heaviside swimmer is completely antisymmetric
with respect to the equator, so it does not have pusher/puller
components in the flow field, whereas the delta-type swimmer
is not antisymmetric. The flow field of the delta-type self-
electrophoretic swimmer is strongly quadrupolar in nature.

The way the flow field around the particle is modified for
the delta-type flux profiles can have advantages. In particular,
the interaction between particles is strongly influenced by
these flow fields. The fact that the diffusiophoretic swimmer
(puller, in this case) has only a tiny metallic spot and is pushing
the fluid away from this spot, makes it difficult for particles
to irreversibly aggregate due to van der Waals forces between
the metal surfaces. Analysis of the decay of the flow field
shows that the delta-type swimmers have much longer ranged
hydrodynamic flow fields. This can be easily understood, as
the Heaviside swimmer’s flow field has larger contributions
of the higher-order modes due to the asymmetry, which
exhibit stronger decay. Therefore, the energy that is available
is dissipated over a smaller range, which can significantly
impact the ability of the swimmer to mix its environment.
This is relevant in a microfluidic context, where laminarity
of the fluid flow limits mixing to diffusive processes, and
the use of swimmers to “stir” the liquid has attracted great
interest.18,51,52 In addition, the strongly quadrupolar flow field
of the self-electrophoretic delta-type swimmer could also lead
to enhanced stirring of the fluid.53

V. DISCUSSION AND OUTLOOK

Summarizing, we have considered the influence of the
surface reactivity of an active colloid on the speed and
efficiency of phoretic self-propulsion. In order to do so,
we used the so-called swimmer efficiency,34,36,37 which is the
swimmer’s hydrodynamic power output over the total enthalpy
produced by the reaction. We find that the most efficient way
to self-propel is to have the surface reactions take place in an
isolated spot on the surface of the pole in self-diffusiophoresis.
In self-electrophoresis, the most efficient form is achieved by
two diametrically opposite spots (poles) that put out and
absorb charged species, respectively.

The efficiency of the polar distribution is verified theoret-
ically and numerically (using finite elements) by considering
various reactivity profiles. Assuming reaction heterogeneity is
realistic, as was recently evidenced experimentally in Ref. 23.
That is, in Ref. 23 it was shown that the thicker platinum
coatings have a higher catalytic activity and that the Pt coating
on the swimmer deposited by vapor deposition is thicker
towards the “top” of the colloid. This would correspond more
to the ramp-like profile for the reactivity that we considered
than the traditionally used Heaviside step function. However,
a homogeneous reactivity on the coated part of the particle
may be more realistic for recently developed micromotors and
pumps that use enzymes to catalyze reactants.54,55 Finally, we
have hinted at the possibility of synthesizing polar reactivity
distributions by employing the approaches of Ref. 28.
Considering that in experimental systems only the total surface
flux and speed are measured, our study underscores the need
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for further measurements to characterize this distribution,
as the swimming speed and swimmer interactions depend
sensitively on it.

The polar distributions of reactivity have several advan-
tages over the typical hemispherical surface distributions, on
top of being highly efficient. However, it should be recognized
that such a distribution requires potentially impossible reaction
rates per unit area. First, this distribution makes optimal use
of the chemical reactions, while at the same time requiring
a minimal amount of reactive material. Second, more of the
surface is available for functionalization that is not related
to achieving self-propulsion. Third, the limited surface that
is covered by metallic catalysts would facilitate suppression
of microswimmer aggregation. Finally, the flow fields for
polar distributions are strongly dipolar and quadrupolar for
the self-diffusiophoretic and self-electrophoretic swimmers,
respectively. This may be beneficial for their interaction with
surfaces and their ability to stir the surrounding fluid.

Future work will focus on the important question of
properly defining the efficiency of active colloids in a
wider system aspecific context. The efficiency of the current
artificial self-propulsion mechanisms is widely considered
to be low for micron-size particles.34–37 Understanding
where the conversion bottleneck lies and how biological
swimmers manage to be more efficient is instrumental in
achieving real-world applications. However, this necessitates
a formalism that allows for comparison between the vastly
different mechanisms utilized in biology and man-made
applications, the specific form of which is unclear at this point.
The experimental realization of our suggested polar-reactive
particles is another open problem, as achieving high reaction
rates on a small site is likely experimentally challenging.
Nevertheless, the possibility of more efficient use of fuel, as
well as a host of other potential benefits, makes polar-driven
colloids an avenue worth pursuing.
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APPENDIX A: THE SELF-DIFFUSIOPHORETIC MODEL

To study self-diffusiophoresis, we consider a spherical
microswimmer of radius a surrounded by a fluid which
contains only one solute indicated using the subscript 0;
we will come back to this choice shortly. We use the
standard model of self-diffusiophoresis, which we will briefly
summarize here. Given the concentration field of the solute c0
and its diffusivity D0, the solute flux j0 is

j0 = uc0 − D0∇c0 −
D0c0

kBT
∇Ψdiff, (A1)

with u the fluid velocity, kB the Boltzmann’s constant, T the
temperature, and Ψdiff the interaction potential between solute
molecules and the swimmer’s surface. The fluid flow field
satisfies the Stokes equation, as well as the incompressibility
condition

µ∇2u = ∇p + f, (A2)
∇ · u = 0, (A3)

with fluid dynamic viscosity µ, hydrostatic pressure p,
and force density f = c0∇Ψdiff. We only consider the time-
independent case in the low-Reynolds number regime. The
dimensionless Reynolds number is defined as Re = ρfvL/µ,
with ρf the mass density of the fluid, v the maximum velocity
of the swimmer relative to the fluid, and L the size of the
swimmer. A low Reynolds number indicates that inertial forces
in the system are small compared to viscous forces. Also of
relevance is the Péclet number, a dimensionless quantity that
is defined as the ratio of the rate of advection and the rate
of diffusion for transport processes in hydrodynamic systems,
that is, Pe = uL/D, with u the velocity given by the fluid flow
field and D the diffusivity. Assuming a low Péclet number,
typically Pe ≤ 10−2 ≪ 1 for swimmers, the advective term in
Eq. (A1) can be neglected, giving

j0 = −D0∇c0 −
D0c0

kBT
∇Ψdiff. (A4)

We model the catalytic decomposition of hydrogen
peroxide on the swimmer’s surface, as a production of
a single species of solute molecules. This is permitted
for low Dahmköhler numbers (Da = RL/D0, with R the
reaction rate).40 The production rate, which corresponds to
the distribution of the reactivity of the catalyst on an actual
microswimmer, is assumed to be axisymmetric in the z-axis.
This is a reasonable reduction for particles created using
vapor deposition.56,57 Thus, in spherical polar coordinates, the
production rate can be described by a function

f (θ) = cJ fJ(θ), (A5)

which only depends on the polar angle θ. Here, the
dimensionful constant cJ > 0 bears all the units while the
dimensionless function fJ(θ) gives the magnitude of the local
production rate. The single species that we model is nowhere
consumed on the particle; therefore, we can choose fJ(θ) ≥ 0.
Thus, we have the following boundary condition for the
normal solute flux through the swimmer’s surface:

j0 · n̂|s = cJ fJ(θ), (A6)

where n̂ is the unit normal out of the particle surface and |s
indicates the evaluation at the surface. In the bulk, no reactions
take place, that is,

∇ · j0 = 0. (A7)

The fluid is assumed to have infinite extent with uniform
solute concentration c∞0 = 0 far from the swimmer. There, we
also set p → p∞, the atmospheric pressure; the fluid velocity
approaches u → −U with U the velocity of the swimmer. That
is to say, we consider the problem in the frame co-moving
with the swimmer, for which u|s = 0.
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Theoretical analysis shows that when the interaction
potential Ψdiff decays to zero on a length scale δ ≪ a, the
force terms in the fluid velocity can be replaced by an
effective slip boundary condition, which replaces the condition
u|s = 0.23,40,41,45–50 The surface slip is given by

u(s) · n̂ = 0, (A8)

u(s) · t̂ = −ξ(s)t̂ · ∇c0(s), (A9)

with t̂ representing the tangent vector to the surface (there are
two, but only the θ̂ component contributes due to axisymmetry)
and

ξ(s) = 1
µ

 ∞

0
t

exp

(
− 1

kBT
Ψ

diff(s + tn̂(s))
)
− 1


dt, (A10)

a parameter that takes into account the surface–molecule
interaction. The slip-velocity convention is used throughout
this manuscript for the self-diffusiophoretic model.

Here, we assume ξ constant over the surface. We use ξ
as a parameter rather than concern ourselves with its relation
to the interaction potential. However, the exact nature of ξ
will turn out not to be relevant for the swimming efficiency as
long as it is homogeneous over the surface. This homogeneity
allows one to consider only the first Legendre mode of the
solute flux to obtain the swimming speed. The propulsion
speed of a self-diffusiophoretic particle is given by (see a.o.49)

Udiff =
cJξ
2D0

 1

−1
b f̃J(b)db, (A11)

where we used the substitution b = cos θ and we use the
tilde to indicate the substitution f̃J(b) ≡ fJ(acos(b)) to ease
notation. The integral in Eq. (A11) is the projection of the
surface flux onto the first Legendre mode (save a factor of
3/2).

APPENDIX B: THE SELF-ELECTROPHORETIC MODEL

A self-electrophoretic swimmer is similar to the self-
diffusiophoretic swimmer of Appendix A. However, the solute
species have long-ranged electrostatic interactions, which
necessitates the introduction of the Poisson equation. The
slip-layer approximation can still be made, but only for high
salt concentrations.23,31 A solution for low salt concentrations
can also be found.32 Here, we follow32 by assuming the linear
regime; however, we ignore bulk reactions, as these are not
crucial for our purposes. The speed is still only determined by
the first Legendre mode of the solute flux, and other properties
(such as bulk reactivity) can be absorbed into prefactors for
the efficiency.

We assume a spherical swimmer of radius a, suspended
in a fluid which contains three different solutes, indicated by
the use of an index i ∈ {a,+,−}. The index “a” stands for
“active,” i.e., the species which is produced or consumed,
which also carries a charge. We write ci for the concentration
field and Di for the diffusivity. Each solute bears an electric
charge qi = ezi, with e the fundamental charge and valency
zi = ±1. The flux ji of species i is now given by

ji = uci − Di∇ci −
Dizieci

kBT
∇φel, (B1)

with the electrostatic potential φel, which satisfies the Poisson
equation

∇2φel = − ρe

ε
, (B2)

with charge density

ρe = e

i

zici, (B3)

and the solvent permittivity ε, which we assume constant.
Equation (B1) is closed by

∇ · ji = 0. (B4)

This means that solute molecules can be produced or
consumed only at the swimmer surface. The fluid flow field
satisfies Stokes equation (Eq. (A2)) and the incompressibility
condition (Eq. (A3)).

The linearized version of Eqs. (B1) and (B2) is obtained
by introducing y0 = eφel/(kBT) and yi = (ci − c∞i )/c∞i , with
c∞i the constant, uniform value of the concentration far from
the swimmer. We may then write32

∇2yi =




− e2

εkBT


k

zkc∞k yk i = 0,

−zi∇2y0 i ∈ {a,+,−},
(B5)

for the linearized electrostatic and concentration equations.
A no-slip condition

u|s = 0 (B6)

is applied on the colloid’s surface. In the bulk, the charge
density is

ρ∞e = e

i

zic∞i = 0. (B7)

We set φel → 0 and again p → p∞, the atmospheric pressure,
far away. In the co-moving frame, the velocity of the fluid
u → −U, where U is the swimming speed in the laboratory
frame.

Assuming axisymmetry, we express the production rate of
species “a”—our active species—by a function f̃ (b) ≡ cJ f̃J(b)
(Eq. (A5)). In the steady state, an electric current flows
through the microswimmer to ensure charge conservation.
This requires not only production but also consumption
of active solute molecules at the swimmer surface. Thus,
f̃J(b) ∈ R and we require the net normal flux of active species
through the surface to be zero (charge conservation) leading
to  1

−1
f̃J(b)db = 0. (B8)

The production rates of the positively charged (index +) and
negatively charged inert species (index −) are zero. However,
the presence of these inactive species leads to electrostatic
screening, the strength of which is characterized by the Debye
length κ−1, where the inverse Debye length κ is given by

κ =


e2 

i z2
i ci

εkBT
. (B9)
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We have the following boundary condition for the normal
fluxes through the particle surface:

n̂ · ji |s =



cJ f̃J(b), i = a
0, i ∈ {+,−} . (B10)

For the electrostatic potential, we apply a von Neumann
boundary condition

n̂ · ∇φel�
s
= −σ

ε
, (B11)

which can be applied to a swimmer of vanishing dielectric
constant and surface charge density σ. In the linear regime,
this yields the same swimming speed as applying the following
Dirichlet (conducting) boundary condition:

φel�
s
=

σa
ε (1 + κa) , (B12)

as demonstrated in Ref. 32. The linearized versions of the flux
and electrostatic Neumann boundary condition read

n̂ · (∇ya + za∇y0)|s = − cJ
Dac∞a

f̃J(b), (B13)

n̂ · (∇y± + z±∇y0)|s = 0, (B14)

n̂ · ∇ y0|s = − σe
kBTε

. (B15)

Our self-electrophoretic model is solved for the velocity
of the swimmer following the approach of Brown et al.32

We do not assume bulk reactions; therefore, only regular
self-electrophoresis (of the Au–Pt colloid type) is permitted.
The swimming speed is then given by

Uel = − σcJeza

2µDaκ3ε
H(κa)

 1

−1
b f̃J(b)db, (B16)

where

H(x) = x3

6(x + 1) ex
 ∞

1

(t − 1)2(2t + 1)
t5 (1 + xt)e−t xdt (B17)

is the generalized Henry function.32 Again the projection of
the flux onto the first Legendre mode can be recognized in
Eq. (B16). For the cases that we consider in this manuscript
H(κa) = 0.83.

APPENDIX C: PARAMETERS
FOR THE FINITE-ELEMENT SIMULATIONS

Unless otherwise specified, we use the following
parameters in our FEM-based numerical verification. We

FIG. 4. The swimming efficiency for a range of surface flux profiles for the self-diffusiophoretic model. The left-hand side shows example surface flux profiles
fJ as a function of the polar angle θ: (a) ramps, (c) inverse ramps, (e) a box-like profile, and (g) a shifted Gaussian distribution (Eq. (D2); logarithmic scale).
The right-hand side gives the normalized efficiency η/|cη | as a function of b0 obtained from theory (blue curve) and FEM simulations (circles). The value of b0
indicates the angle θ0 on the swimmers’ surface where the transition in reactivity occurs ((a)-(d)) or the angle around which the profile is centered ((e)-(h)). The
colored squares indicate the points that correspond to the profiles shown on the left. In (h) and (j), two different widths are considered, q = 0.05 (solid blue) and
q = 0.80 (red dashed).



204902-9 Kreissl, Holm, and de Graaf J. Chem. Phys. 144, 204902 (2016)

simulate a (colloidal) swimmer of radius a = 0.5 µm in a
simulation domain of radius R = 5.5 µm, which is larger
than 10a + 25κ−1 ≈ 5.2 µm; the size of the domain is
found to be adequate in Ref. 32. This ensures that the
electrostatic potential at the boundary of the simulation
domain has decayed sufficiently. We use a temperature
of T = 298.15 K (room temperature). The fluid (water)
surrounding the swimmer has density ρf = 1.0 × 103 kg m−3,
viscosity µ = 1.0 × 10−3 kg m−1 s−1, and relative permittivity
ϵ r = 78.36.

In the diffusiophoretic model, the net flux of solute
molecules through the surface of the swimmer is F
= 5.0 × 10−13 mol s−1, to ensure that we are in the linear
regime. The diffusivity of the active solute is D0 = 1.9
× 10−9 m2 s−1 for oxygen.58,59 The interaction between solute
molecules and the swimmer surface is given by the slip-layer
parameter ξ = −1.0 × 10−15 m5 mol−1 s−1, see Eq. (A10) in
Appendix A for its definition. Our choice for a small value of
ξ implies a small swimmer-solute interaction. These last two
parameters are choices that enable us to compute the speed
in the simulation and are based on the values in Ref. 49, but
otherwise do not affect our results for the swimming efficiency.

For the self-electrophoretic swimmers, we use parameters
from Ref. 32 in order to model a Au–Pt swimmer in H2O2
with added NaCl. The active charge carrying species is
H+ in this case. The concentrations of spectator ions are
c∞+ = 1.0 × 10−3 mol l−1 and c∞− = 1.001 × 10−3 mol l−1. The
bulk concentration of the active species is c∞a = 1.0 µmol l−1,
which has to be nonzero to ensure a finite swimming
velocity. The diffusivities of the three species are Da
= 9.3 × 10−9 m2 s−1 (H+60), D+ = 1.3 × 10−9 m2 s−1 (Na+), and
D− = 2.0 × 10−9 m2 s−1 (Cl−). The net flux of active species
through the swimmers’ surface is F = 1.5 × 10−18 mol s−1, to
ensure that the system is in the linear regime. The swimmer has
a surface charge σ = 1.0 × 10−4 e nm−2, with e the elementary
charge. For these choices, the Deybe length has a value given
by κ−1 = 9.6 nm.

APPENDIX D: SENSITIVITY TO THE PRODUCTION
PROFILE

In addition to the step function results shown in the main
text, we considered ramps and inverse ramps, as well as two
slightly more complicated production function profiles, see
Fig. 4. The first of which is a box-like shape

B(θ) = 1
qπ
Θ(θ − θ0 + qπ/2)Θ(−θ + θ0 + qπ/2), (D1)

withΘ the Heaviside step function. The second is a shifted and
truncated Gaussian distribution that is smooth. It is non-zero
over a width of 4σ, where σ2 is the variance of the distribution,

G(θ) =



0, θ⟨θ0 −
qπ
2

or θ⟩θ0 +
qπ
2

1
√

2πσ


exp

(
− (θ − θ0)2

2σ2

)
− 1

e2


, else

. (D2)

These two profile functions are symmetric around θ0. The
width over which the profiles are non-zero is given by πqa,
with 0 ≤ q < 1.
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