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Abstract 137	

Background – The burden of subclinical atherosclerosis in asymptomatic individuals is heritable 138	

and associated with elevated risk of developing clinical coronary heart disease (CHD). We 139	

sought to identify genetic variants in protein-coding regions associated with subclinical 140	

atherosclerosis and the risk of subsequent CHD. 141	

Methods and Results – We studied a total of 25,109 European ancestry and African-American 142	

participants with coronary artery calcification (CAC) measured by cardiac computed tomography 143	

and 52,869 with common carotid intima media thickness (CIMT) measured by ultrasonography 144	

within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) 145	

Consortium. Participants were genotyped for 247,870 DNA sequence variants (231,539 in exons) 146	

across the genome. A meta-analysis of exome-wide association studies was performed across 147	

cohorts for CAC and CIMT. APOB p.Arg3527Gln was associated with four-fold excess CAC (P 148	

= 3x10-10). The APOE ε2 allele (p.Arg176Cys) was associated with both 22.3% reduced CAC (P 149	

= 1x10-12) and 1.4% reduced CIMT (P = 4x10-14) in carriers compared with non-carriers. In 150	

secondary analyses conditioning on LDL cholesterol concentration, the ε2 protective association 151	

with CAC, although attenuated, remained strongly significant. Additionally, the presence of ε2 152	

was associated with reduced risk for CHD (OR 0.77; P = 1x10-11).  153	

Conclusions – Exome-wide association meta-analysis demonstrates that protein-coding variants 154	

in APOB and APOE associate with subclinical atherosclerosis. APOE ε2 represents the first 155	

significant association for multiple subclinical atherosclerosis traits across multiple ethnicities as 156	

well as clinical CHD. 157	

Key Words: Genome Wide Association Study; exome; coronary artery calcification; carotid 158	

intima-media thickness; genomics  159	
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Background 160	

 Coronary heart disease (CHD) remains the leading cause of death and infirmity in 161	

developed countries.1 Atherosclerosis is the underlying pathology of CHD.2 The presence of 162	

atherosclerosis in individuals without clinical CHD, termed “subclinical atherosclerosis,” is 163	

associated with increased risk of developing clinical CHD independent of traditional risk factors 164	

prior to the onset of symptoms.3-6 Subclinical atherosclerosis is a heritable7-9 clinical phenotype 165	

that can be ascertained non-invasively as coronary artery calcification (CAC) by cardiac 166	

computed tomography (CT) and common carotid intima media thickness (CIMT) by carotid 167	

ultrasound.10 168	

 Genome-wide association studies (GWAS) within the Cohorts for Heart and Aging 169	

Research in Genomic Epidemiology (CHARGE) Consortium have discovered sites of common 170	

non-coding genetic variation associated with both CAC11, 12 and CIMT7, 11 among those of 171	

European ancestry. Non-coding single nucleotide polymorphisms (SNPs) at the 9p21 and 6p24 172	

regions, near the CDKN2A and PHACTR1 genes, respectively, are strongly associated with both 173	

CAC burden and myocardial infarction (MI).12 The 8q24 (ZHX2), 19q13 (APOC1), and 8q23 174	

(PINX1) loci are strongly associated with CIMT.7 Observed associations for subclinical 175	

atherosclerosis among individuals of European ancestry, however, have not been replicated in 176	

those of African ancestry.13, 14 Furthermore, since the biologic implications of non-coding 177	

variation are not as readily interpreted as with coding variation, the roles of such variants in 178	

human atherosclerosis remain unclear.15 Protein-coding variation tends to be infrequently 179	

observed and is often inadequately catalogued on earlier GWAS arrays.16 Rare genomic variation 180	

is not well-imputed and exome sequencing to detect such uncommon variation across large 181	

populations remains a costly endeavor. Here, we leverage the Illumina HumanExome BeadChip 182	
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array, enriched for protein-coding variation.17 We investigated whether there is evidence for 183	

associations of protein-coding variation with two measures of subclinical atherosclerosis across 184	

individuals of European and of African ancestry. And we further determine whether such DNA 185	

sequence variations may influence CHD risk. 186	

 187	

Methods 188	

 189	

Study Populations 190	

 191	

The Illumina HumanExome Beadchip v1.0 or v1.1 (also known as the “exome chip”) was used 192	

to genotype participants across 19 cohorts of the CHARGE Consortium (Supplement).18 193	

Participants with a diagnosis of CHD at the time of CAC phenotyping were excluded from CAC 194	

analysis. Participants who underwent carotid endarterectomy prior to CIMT phenotyping were 195	

excluded from CIMT analysis. 25,109 participants had CAC measured and 52,869 participants 196	

had CIMT measured. Each study received institutional review board approval, participants 197	

provided written informed consent, and respective governing ethics committees approved each 198	

study. 199	

 200	

Measures 201	

 202	

CAC Measurement 203	

 204	
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Cohorts used different CT scanners to ascertain CAC scoring (Table S1). CAC scoring by 205	

multidetector CT and by electron beam CT have been previously described to be highly 206	

concordant and are both recognized as valid tools to estimate CAC score.19-21 Total CAC score 207	

was quantified by the sum of CAC area weighted by density within individual coronary arteries 208	

by the Agatston method and the continuous score was used for analysis.22 209	

 210	

CIMT Measurement 211	

 212	

Common carotid intima media thickness was derived by bilateral longitudinal common carotid 213	

artery analysis (imaging and measurement methods are described in the Table S2). The mean of 214	

the maximum thickness for each common carotid artery was the analytical variable. 215	

 216	

Statistical Analyses 217	

 218	

According to prespecified analysis plans, association analyses and meta-analyses were 219	

performed using the seqMeta package (http://cran.r-220	

project.org/web/packages/seqMeta/index.html) in the R statistical software as has previously 221	

been performed for exome chip-based analyses.23 To reduce skewness, CAC was natural log 222	

transformed after adding 1 and CIMT was natural log transformed. Each cohort performed an 223	

analysis for each genomic variant with the trait of interest independently and separately for 224	

individuals of European and African ancestry to minimize population biases. Covariates in the 225	

models included age, sex, and principal components of ancestry derived using EIGENSTRAT.24 226	

For studies with related samples, the pairwise kinship matrix was computed and accounted for in 227	



CIRCCVG/2016/001572-T	

	 8	

the regression model. Score statistics and genotypic covariance matrices were computed for each 228	

cohort and used for additive single variant and gene-based analyses, respectively.  229	

 230	

For our primary analyses, we tested the association of each genomic variant with CAC and with 231	

CIMT across all samples by meta-analysis that included all cohorts, irrespective of ancestry. We 232	

performed single variant analyses on variants that had a minor allele count of at least 20 and 233	

gene-based analyses for genes with combined minor allele frequency (MAF) of nonsynonymous 234	

variants at least 0.2% to reduce the likelihood of false positive results. We also performed two 235	

gene-based tests: 1) T1, where nonsynonymous variants with minor allele frequency (MAF) <1% 236	

were collapsed into a gene-based statistic, and 2) sequence kernel association test (SKAT) with 237	

MAF <5% for nonsynonymous variants to better account for collapsed variants with 238	

bidirectional phenotypic consequences. Regional association plots were generated using 239	

LocusZoom.25 For our secondary analyses, we tested the association of each genomic variant 240	

with CAC and CIMT by meta-analysis separately among cohorts of European and African 241	

ancestry. 242	

 243	

Given the 238,065 variants on the array that passed quality control, the Bonferroni-adjusted level 244	

of significance for single variant tests was 0.05/238,065 = 2.10x10-7. Given the 17,574 genes 245	

with nonsynonymous variants on the array, the Bonferroni-adjusted level of significance for 246	

gene-based tests was 0.05/17,574 = 2.85x10-6. For CAC, we had >90% power to detect a variant 247	

(MAF <1%) with effect size 0.31 standard deviations, or a gene (combined MAF <1%) with 248	

effect size 0.28 standard deviations at a sample size of 25,000. For CIMT, we had >90% power 249	

to detect a variant (MAF <1%) with effect size 0.21 standard deviations or a gene (combined 250	
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MAF <1%) with effect size 0.20 standard deviations with a sample size of 52,000. Power 251	

calculations were performed using the Genetic Power Calculator.26  252	

 253	

Methods for the secondary analyses are presented in the Supplement. 254	

 255	

Results 256	

 257	

Study Participants 258	

 259	

19 cohorts participated in the meta-analyses of these two subclinical atherosclerotic traits and the 260	

clinical characteristics are summarized in Table S1 and Table S2. A total of 25,109 participants 261	

were genotyped with the array and had CAC assessed; of these participants, 19,980 were of 262	

European ancestry and 5,129 were of African ancestry. 52,869 participants were genotyped and 263	

had CIMT assessed; 44,963 were of European ancestry and 7,906 were of African ancestry. 264	

222,701 (93.5%) of the 238,065 variants were polymorphic in the CAC meta-analysis; of 265	

polymorphic variants, 193,373 (97.1%) were annotated as nonsynonymous or splice-site 266	

variants. Similarly, 227,344 (95.5%) of array variants were polymorphic in the CIMT meta-267	

analysis and, of these, 217,235 (95.6%) were nonsynonymous or splice-site variants. 268	

 269	

Coronary Artery Calcification Association 270	

 271	

Figure 1 plots the meta-analysis CAC association P-value by genomic locus for each variant. 272	

The top loci with lead variants associated with CAC among all participants are listed in Table 1. 273	



CIRCCVG/2016/001572-T	

	 10	

No systematic association inflation was observed across the set of statistical tests performed 274	

(Figure S1). 275	

 276	

We identified previously-described common non-coding variant associations at the 9p21 and 277	

6p24 loci. A 9p21 haplotype marked by lead SNP rs10757278-G (MAF 43%), an intergenic 278	

variant, was replicated and associated with increased CAC quantity (23.4%; 95% CI: 18.6, 279	

28.3%; P = 2x10-24). Similarly, rs9349379-G (MAF 34%), an intronic variant within PHACTR1, 280	

was associated with increased CAC quantity (20.9%; 95% CI: 16.3, 25.8 %; P = 5x10-20). While 281	

these associations were robust for those of European ancestry, there was no apparent evidence 282	

for association in those of African ancestry (Figure S2, Figure S3). Both loci display locus 283	

heterogeneity, or multiple independent associations, for CAC in those of European ancestry 284	

(Table 1). We did not discover non-coding variants at other loci on the exome chip that met our 285	

stringent Bonferroni alpha threshold. Previously, rs3809346, an intronic variant of COL4A2, had 286	

a suggestive association with CAC,12 but now in our European ancestry sample size that is twice 287	

as large, genome-wide significant association was not observed (P = 2x10-3). 288	

 289	

Among functional variants, a nonsynonymous APOB (rs5742904-T; MAF 0.2%; 290	

NM_000384.2:c.10580G>A; NP_000375.2:p.Arg3527Gln) variant was significantly associated 291	

with CAC quantity. Carriers of the rare APOB missense variant had markedly increased CAC 292	

(4.1-fold; 95% CI: 2.6-, 6.4-fold; P = 3x10-10). In our meta-analysis, the Old Order Amish cohort 293	

primarily accounted for the strong association, and the variant was extremely rarely observed 294	

within other cohorts. Furthermore, the variant was not seen among individuals of African 295	

ancestry (Figure S4). We also discovered a distinct rare APOB missense variant (rs1801696-T; 296	
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MAF 0.6% European ancestry; NM_000384.2:c.7696G>A; NP_000375.2:p.Glu2566Lys), 297	

detected in individuals of European ancestry in most cohorts, that was moderately associated 298	

with increased CAC (1.9-fold; 95% CI: 1.6-, 2.1-fold; P = 9x10-6). This variant was not observed 299	

in individuals of African ancestry.  300	

 301	

Additionally, a missense 19q13 variant within the APOE gene (rs7412-T; MAF 7.4% European 302	

ancestry, 10.8% African ancestry; NM_000041.2:c.526C>T; NP_000032.1:p.Arg176Cys) was 303	

associated with diminished CAC quantity (-22.3%; 95% CI, -27.6- -16.7%; P = 1x10-12) (Figure 304	

S5). This association was consistent in those of both European ancestry (-17.3%; 95% CI: -23.7, 305	

-10.3%; P = 4x10-6) and African ancestry (-35.2%; 95% CI: -43.6, -25.7%; P = 5x10-10) without 306	

significant heterogeneity (P = 0.53) (Figure 2). Additionally, an independent variant (rs769449-307	

A; MAF 11% European ancestry, 2.4% African ancestry) within an intron of APOE also had 308	

nominal evidence of association with increased CAC quantity only in individuals of European 309	

ancestry (+15.0%; 95% CI: 7.9, 22.6%; P = 2x10-5). 310	

 311	

To improve power of discovery for rare protein-coding variants, we conducted gene-based 312	

analyses by aggregating such variants within a gene into a single statistical unit to increase the 313	

exposure rate. However, collapsing nonsynonymous variants on the exome chip within a gene 314	

did not yield genome-wide significant results (Figure S6). 315	

 316	

Carotid Intima Media Thickness Association 317	

 318	
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There was no systematic inflation of CIMT associations with any variant (Figure S7). The top 319	

meta-analysis association findings are listed in Table 2 and a Manhattan plot of all associations 320	

is presented in Figure 3. 321	

 322	

We noted that, in addition to diminished CAC, the rs7412-T APOE ε2 allele was associated with 323	

diminished CIMT (-1.4%; 95% CI: -1.8, -1.0%; P = 4x10-14). There was consistency of 324	

association across European and African ancestry cohorts (Figure 4 and Figure S8). There was 325	

no significant heterogeneity among the cohorts for this association (P heterogeneity = 0.23) 326	

 327	

There were two additional independent suggestive associations at 19q13 at non-coding variants. 328	

A variant 5kb upstream of LDLR (rs11668477) was associated with diminished CIMT (P = 5x10-329	

7) primarily among those of European ancestry. This variant has previously been associated with 330	

reduced LDL cholesterol.27 The nearby rs7188-G variant (MAF 33% European ancestry, 7.9% 331	

African ancestry) within the 3’UTR region of KANK2 was associated with CIMT in those of 332	

European ancestry (P = 1x10-6). Additionally, a rare missense variant (rs143873045-A; MAF 333	

0.5% African ancestry; NM_001136191.2:c.1274C>T; NP_001129663.1:p.Ser425Leu) in 334	

KANK2 only observed in individuals of African ancestry showed suggestive association with 335	

increased CIMT (P = 4x10-4). Lastly, in gene-based analyses, collapsing nonsynonymous 336	

variants within a gene did not yield significant associations (Figure S9). 337	

 338	

APOE ε2’s Effect Conditional on LDL Cholesterol 339	

 340	
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We sought to determine whether LDL cholesterol concentration accounted for the observed ε2 341	

association with CAC. First, when restricting the original analysis only to participants with LDL 342	

cholesterol measurements (n = 20,527), ε2 remained significantly associated with reduced CAC 343	

quantity (-22.3%; 95% CI: -25.1, -19.3%; P = 2x10-11) (Table S3). When further adjusting for 344	

medication-adjusted LDL cholesterol, the effect estimate was diminished yet the association 345	

remained genome-wide significant (-17.0%; 95% CI: -19.7, -14.2%; P = 2x10-8). 346	

 347	

APOE ε2’s Effect Conditional on ε3 and ε4 348	

 349	

Given the absence of ε4 from the array, we sought to determine whether ε2’s apparent effect on 350	

reduced CAC quantity was due to a referent that includes a previously described risk allele (ε3 + 351	

ε4). 5,872 participants had CAC and the major APOE genotypes assessed by PCR. Each APOE 352	

genotype’s association with CAC (to the ε3/ε3 referent) was performed by cohort and ethnicity 353	

and subsequently meta-analyzed with fixed effects. ε2/ε3 was associated with 10.8% reduced 354	

CAC (95% CI: -19.6, -0.01%; P = 0.03) and ε2/ε2 with 27.4 % reduced CAC (95% CI: -45.2, -355	

0.04%; P = 0.03) (Figure S10). 356	

 357	

Concordance of CHD Variants with Subclinical Atherosclerosis Associations 358	

 359	

Of the 57 loci previously associated with CHD mainly in individuals of European or South Asian 360	

descent, 40 published variants were on the array and available for analysis. 32 of the 40 variants 361	

have the same effect direction for CAC and CHD (P = 1.8x10-4) whereas only 23 variants were 362	

concordant for CIMT (P = 0.43) in European ancestry participants (Table S4). When restricting 363	
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the analysis to variants with at least nominal association (P < 0.05) with CAC, all 17 had 364	

concordant effect directions (P = 4.8x10-7). A similar analysis with variants at least nominally 365	

associated with CIMT showed that 6 of 11 had concordant effect directions for CHD (P = 0.56).   366	

 367	

Replication of Convergent Subclinical Atherosclerosis Finding with CHD 368	

 369	

21,182 individuals of European ancestry, independent of the sample for subclinical 370	

atherosclerosis investigations, were genotyped by the Illumina HumanExome BeadChip array, of 371	

whom 9,472 had CHD.28 In cross-sectional analyses, meta-analysis of rs7412-T confirmed a 372	

significantly lower odds of CHD (odds ratio 0.77; 95% CI: 0.71, 0.84; P = 1.47x10-10). 373	

 374	

Discussion 375	

 376	

In our exome-wide association analysis for subclinical atherosclerosis in two distinct ethnicities, 377	

we find that protein-coding mutations in APOB and APOE are associated with subclinical 378	

atherosclerosis. While the association for APOB was driven by a founder mutation in the Amish, 379	

a missense mutation in APOE (ε2) was associated with both reduced CAC and CIMT in 380	

individuals of European ancestry and African ancestry, even when adjusting for LDL cholesterol 381	

concentration. Furthermore, carriers of the ε2 allele had a reduced risk of coronary heart disease. 382	

Here, we provide evidence for the first exome-wide association across multiple subclinical 383	

atherosclerosis traits and multiple ethnicities for APOE ε2. 384	

 385	
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Both CAC and CIMT have been proposed as proximal clinical phenotypes of atherosclerosis that 386	

may identify individuals at high risk for developing clinical CHD. However, we see that alleles 387	

that associate with increased CHD risk also appear to largely result in increased CAC, which is 388	

less consistently observed with CIMT. This is concordant with the prior observation that CAC 389	

outperforms CIMT in predicting cardiovascular events.5, 29 Recently, post hoc analyses in statin 390	

trials to prevent cardiovascular disease observed that those with a higher burden of CHD-391	

predisposing alleles are more likely to derive clinical benefit from preventive statin therapy.30  392	

 393	

The APOB p.Arg3527Gln (also known as p.Arg3500Gln) has been previously been shown to 394	

lead to increased concentrations of LDL cholesterol and premature CHD.31 Our association 395	

signal for this variant was nearly exclusively driven by the Old Order Amish, where it is known 396	

to be a founder mutation (MAF 12%) predisposing to increased LDL cholesterol concentrations 397	

and CAC quantity through disruption of the LDL receptor binding domain.32 We also observed a 398	

distinct APOB missense mutation, p.Glu2566Lys, with borderline association with increased 399	

CAC quantity. Unlike p.Arg3527Gln, p.Glu2566Lys does not occur within the LDL receptor 400	

binding domain but occurs within a conserved amphipathic motif of the β2 domain predicted to 401	

influence the conversion of VLDL to LDL.33  402	

 403	

Furthermore, we demonstrated that APOE p.Arg176Cys (ε2 allele) was associated with reduced 404	

CAC and reduced CIMT in both individuals of European and African ancestry. APOE is an 405	

essential mediator of the catabolism and clearance of triglyceride-rich and cholesterol-rich 406	

lipoproteins. The major alleles, ε2, ε3, and ε4, have been previously linked to cardiovascular 407	

disease, from the candidate gene era, and ε2 is the least common allele.34, 35 Previously, CHD 408	
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risk predisposition from ε4 was primarily thought to be mediated by LDL cholesterol raising 409	

effects but observations with ε2 have been mixed.35 Similarly, ε4, unlike ε2, has been generally 410	

linked to ischemic stroke risk.36 Major reasons for the lack of association of the major APOE 411	

alleles with cardiovascular traits in prior genome-wide association studies include the notable 412	

absence of rs7412 and rs429358 on population-based genotyping arrays as well as poor 413	

imputation of these variants. Similarly, rs429358 is not included on the array used for this study.  414	

 415	

ApoE is a major ligand of LDL receptor and a key mediator of remnant lipoprotein particle 416	

clearance.37, 38 The ε2 allele is believed to result in less efficient LDL receptor binding by 417	

altering the positive potential.39 Using publicly available data, ε2 does not impact expression of 418	

nearby genes in GTEx nor does it demonstrate enhancer or promoter chromatin marks in 419	

ENCODE HepG2 liver cells supporting ε2’s direct impact on ApoE itself. ApoE ε2 can 420	

alternatively clear lipoproteins via cell-surface heparan sulfate proteoglycan and LDL receptor-421	

related protein.40-42 ApoE ε2 transgenic mice crossbred with ApoB transgenic mice have lower 422	

LDL cholesterol.42 Furthermore, ApoE ε2 transgenic mice lacking LDL receptor still had lower 423	

LDL cholesterol suggesting that hypocholesterolemia appears independent of ε2’s effects on 424	

LDL receptor.35, 43 ApoE ε2 impairs lipoprotein lipase-mediated metabolism of VLDL to LDL 425	

potentially through the displacement of ApoCII, an activator of lipoprotein lipase.43 The 426	

consequent diminished hepatic cholesterol may subsequently increase LDL receptors for ApoB-427	

containing lipoproteins like LDL. 428	

 429	

Interestingly, despite accounting for LDL cholesterol or serum triglycerides, we observe that ε2 430	

still is highly associated with reduced CAC quantity. It is likely that single cross-sectional 431	
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measure of lipoproteins, while correlates with, does not fully account for lifelong lipoprotein 432	

exposures. ApoE ε2 homozygotes who develop type III hyperlipoproteinemia have a marked 433	

increase in remnant lipoprotein particles unlike heterozygotes. Analogously, ApoE ε2-434	

overexpressing mice have increased hepatic VLDL production.42 Thus, while ApoE ε2 435	

heterozygotes may have an increase in VLDL production and decreased triglyceride catabolism 436	

via lipoprotein lipase, the observation of similar triglyceride levels compared to non-carriers 437	

suggests preservation of, or enhanced, clearance of remnant lipoprotein particles. We 438	

hypothesize that ApoE ε2’s association with reduced subclinical atherosclerosis may be due to 439	

increased clearance of both atherogenic LDL and remnant lipoprotein particles through LDL 440	

receptor-dependent and -independent pathways. Further work is needed to test this hypothesis. 441	

 442	

Our study has several strengths. First, we perform a genetic association meta-analysis across the 443	

largest set of individuals to-date for subclinical atherosclerosis in two distinct ancestries. Second, 444	

we characterize the association of protein-coding genomic variation, which has not been well 445	

studied at the population level, with subclinical atherosclerosis. Third, we explore mechanisms 446	

of association through lipoprotein-mediation analyses. Fourth, we provide novel insights with 447	

both cross-ethnicity and cross-atherosclerosis trait observations. Fifth, we relate the associations 448	

of these subclinical atherosclerosis genetic variants on risk for CHD. 449	

 450	

While our study has several strengths, we note some key limitations. First, not all protein-coding 451	

variation is catalogued on the exome chip. Due to purifying selection, disruptive protein-coding 452	

variation is rare.44 By potentially not accounting for the totality of disruptive variation not on the 453	

array, variance is increased and power is not optimized for gene-based analyses. Whole exome 454	
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sequencing can better address this limitation as such technologies continue to become more cost-455	

effective for large-scale experiments. Second, our analyses of prior associations at non-coding 456	

sites are restricted to sites on the exome chip. We were able to robustly replicate prior non-457	

coding association analyses for CAC at 9p21 and 6p24.12 A prior meta-analysis for CIMT 458	

genome-wide association discovered one genome-wide association, an intergenic common 459	

variant (rs11781551-A) 385kb from ZHX2 at 8q24.7 No variant with modest linkage 460	

disequilibrium with this variant was present on the exome chip thereby limiting ability for 461	

replication. An intronic variant in PINX1 at 8q23 and intergenic variant 2.3kb from APOC1 at 462	

19q13 previously had suggestive association but no suitable proxies to replicate association were 463	

available on the exome chip. Third, our analysis still demonstrates a paucity of genome-wide 464	

associations for these quantitative atherosclerotic traits and highlights an important challenge to 465	

ongoing CAC association analyses.  466	

 467	

Genetic determinants of CHD have been characterized among individuals of European ancestry 468	

but the strongest association signals have not replicated in those of African ancestry which may 469	

be due to smaller sample sizes hindering statistical power or different key genetic drivers. But 470	

now we demonstrate a cardioprotective genetic mechanism in those of European ancestry and 471	

African ancestry through the reduction of subclinical atherosclerosis. We propose potential 472	

mechanisms and call for renewed attention to APOE ε2 in the genesis of atherosclerosis 473	

underlying clinical cardiovascular disease. Lastly, given the strong concordance of subclinical 474	

atherosclerosis measures and clinical CHD, our findings support a future study of genotypes, 475	

subclinical atherosclerosis, and incident CHD. 476	

  477	
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Tables 

Table 1. Top meta-analysis variant associations for coronary artery calcification quantity 

     All EA AA 

Variant Consequence Nearest 

Gene* 

Chrom:Pos† Minor 

Allele 

MAF Beta‡ SE P MAF P MAF P 

rs10757278	§ intergenic (CDKN2B) 9:22124477 G 0.43 0.21 0.020 3.14x10-24 0.48 2.9x10-25 0.21 0.20 

rs9349379|| intronic PHACTR1 6:12903957 G 0.34 0.19 0.020 4.93x10-20 0.39 1.28x10-19 0.094 0.088 

rs7412# missense APOE 19:45412079 T 0.081 -0.25 0.036 1.19x10-12 0.074 4.43x10-6 0.11 5.36x10-10 

rs1412829§ intronic CDKN2B 9:22043926 C 0.34 -0.14 0.021 1.56x10-11 0.41 5.58x10-12 0.072 0.84 

rs5742904** missense APOB 2:21229160 T 2.1x10-3 1.41 0.22 2.93x10-10 2.7x10-3 2.93x10-10 0 NA 

rs9369640|| intronic PHACTR1 6:12901441 A 0.43 -0.11 0.019 4.91x10-8 0.38 5.04x10-9 0.36 0.71 

rs769449# intronic APOE 19:45410002 A 0.10 0.14 0.032 7.93x10-6 0.11 1.86x10-6 0.024 0.19 

rs1801696** missense APOB 2:21232044 T 4.6x10-3 0.63 0.14 1.44x10-5 5.7x10-3 9.77x10-6 0 NA 

 

* Genes for SNPs that are outside the transcript boundary of the protein-coding gene are shown in parentheses [eg, (CDKN2B)]. 

† Genomic positions correspond to GRCh37.p13 reference, forward strand.	

‡ β-Coefficients are estimated for natural log transformation of total Agatston CAC score+1. 

§ CDKN2B lead variants show modest correlation among EA (r2=0.24) and no correlation among AA. 
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|| PHACTR1 lead variants show modest correlation among EA (r2=0.36) and AA (r2=0.05) 

# APOE lead variants show minimal correlation among EA (r2=0.01) and no correlation among AA. 

** APOB lead variants are not observed to be correlated. 

Abbreviations: AA=African ancestry; AF=minor allele frequency; Chrom:Pos=hg19 build chromosome:position; EA=European ancestry; 
SE=standard error  
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Table 2. Top meta-analysis variant associations for carotid intima media thickness 

     All EA AA 

Variant Consequence Nearest 

Gene* 

Chrom:Pos† Minor 

Allele 

MAF Beta‡ SE P MAF P MAF P 

rs7412 missense APOE 19:	45412079 T 0.083 -0.014 0.0022 3.79x10-14 0.079 1.97x10-10 0.11 1.43x10-5 

rs11668477 intergenic (LDLR) 19:11195030 G 0.27 -0.0064 0.0016 4.69x10-7 0.20 5.26x10-6 0.34 0.030 

rs7188 3’UTR (KANK2) 19:11275139 G 0.29 0.0054 0.0011 2.23x10-6 0.33 1.36x10-6 0.079 0.98 

rs1712790 intergenic (FAM55B) 11:114621469 C 0.47 -0.0048 0.0011 5.93x10-6 0.48 1.89x10-6 0.21 0.89 

rs2298375 missense C22orf15 22:24106448 A 0.086 0.0082 0.0019 9.51x10-6 0.085 5.64x10-6 0.091 0.061 

rs174547 intronic (FADS1) 11:61570783 C 0.30 -0.0049 0.0011 1.07x10-5 0.34 3.84x10-5 0.082 0.062 

* Genes for SNPs that are outside the transcript boundary of the protein-coding gene are shown in parentheses [eg, (LDLR)]. 

† Genomic positions correspond to GRCh37.p13 reference, forward strand.	

‡ β-Coefficients are estimated for natural log transformation of CIMT. 

Abbreviations: AA=African ancestry; AF=minor allele frequency; Chrom:Pos=hg19 build chromosome:position; EA=European ancestry; 
SE=standard error; UTR=untranslated region 
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Figures 

Figure 1. Association of each genotyped variant with CAC quantity 

 

Plot of -log10(P) for association of genotyped variants by chromosomal position for all autosomal 

polymorphisms analyzed in the age-, sex-, and principal components- adjusted model of 

coronary artery calcification quantity in the meta-analysis. The genes associated with the top 

associated variants are displayed. 
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Figure 2. Forest plot of relative CAC quantity for APOE ε2 carriers 

 

CAC quantity for APOE ε2 carriers relative to non-carriers is displayed for all cohorts stratified 

by European and African ancestries to demonstrate consistency across diverse cohorts and 

ethnicities.   
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Figure 3. Association of each genotyped variant with CIMT 

 
Plot of -log10(P) for association of genotyped variants by chromosomal position for all autosomal 

polymorphisms analyzed in the age-, sex-, and principal components- adjusted model of carotid 

intima media thickness in the meta-analysis. The genes associated with the top associated 

variants are displayed. 
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Figure 4. Forest plot of relative CIMT for APOE ε2 carriers 

 

CIMT for APOE ε2 carriers relative to non-carriers is displayed for all cohorts stratified by 

European and African ancestries to demonstrate consistency across diverse cohorts and 

ethnicities. 


