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On the Asymptotic Performance of Receive Space

Modulation in the Shadowing Broadcast Channel
Athanasios Stavridis, Marco Di Renzo, Senior Member, IEEE, Peter M. Grant Fellow, IEEE, and

Harald Haas, Member, IEEE

Abstract—In this paper, the diversity order and coding gain of
Receive Space Modulation (RSM) in the Multiple-Input Multiple-
Output (MIMO) broadcast channel are derived by taking into
account both small and large scale fading. The considered
linear precoding method is Zero Forcing (ZF). Note that the
proposed framework is directly applicable to the conventional
spatially multiplexed broadcast channel. Based on the derived
mathematical framework, a theoretical criterion is provided
which determines the superiority between the deployment of
RSM and Spatial MultipleXing (SMX) in the shadowing MIMO
broadcast channel. Finally, the provided theoretical results are
validated via Monte Carlo simulation results.

Index Terms—MIMO, broadcast channel, spatial modulation,
ZF precoding, large and small scale fading.

I. INTRODUCTION

Spatial Modulation (SM) is a multi-antenna communication

technique which aims to minimize complexity and enhance

Energy Efficiency (EE) [1–3]. Due to its potential, SM has

been studied and incorporated in a wide range of commu-

nication scenarios [4–9]. Such an example is Receive Space

Modulation (RSM) [10]. In RSM, instead of spatially modulat-

ing binary information on the transmit antennas, one or more

symbol streams are spatially modulated to the indices of the

receive antennas. This is undertaken by using linear precoding

with Channel State Information at the Transmitter (CSIT) and

the appropriate signal formation [10, 11].

In this paper, we provide the diversity order and coding gain

of RSM in the Multiple-Input Multiple-Output (MIMO) broad-

cast channel when Zero Forcing (ZF) precoding is deployed

and both small and large scale fading are explicitly taken

into account. Compared to [12], in this paper, we consider

and analytically illustrate the effect of random shadowing

on the performance of the MIMO broadcast channel, for

practical system setups. To the authors’ best knowledge, such

a study is not available in the published research. In particular,

a Rayleigh distribution is assumed for small scale fading

while for large scale fading both shadowing and pathloss

are considered. Due to the mathematical intractability of the

lognormal model of shadowing, a gamma distribution is used
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to model shadowing [13, 14]. The combination of Rayleigh

distributed small scale fading with gamma or lognormal dis-

tributed large scale fading provides two special cases of the

general composite fading channel model [15]. In addition,

using mathematical arguments, the performance of RSM is

compared against the corresponding performance of Spatial

MultipleXing (SMX) in the broadcast channel. It is shown

that, in some scenarios, RSM performs better than SMX in

terms of Bit Error Rate (BER).

II. SYSTEM MODEL

In this paper, the focus is on a system where a Base

Station (BS) with Nt antennas serves Nu geographically

distributed users. Each user is equipped with Nr antennas.

The baseband representation for such a system is expressed

as, y = Ξ
1

2HPDx + w, in a matrix form. Here, the

NuNr × 1 collective received vector of all users is given as,

y =
[

yT
1 , . . . ,y

T
Nu

]T
, where yi, i = 1, . . . , Nu, corresponds

to the Nr × 1 received signal vector of the i-th user. The

NrNu × Nt wireless channel is expressed as H̄ = Ξ
1

2H,

where Ξ = diag (Ξ1, . . . ,ΞNu
) and H =

[

HH
1 , . . . ,HH

Nu

]H

represent the large and small scale fading, respectively. Here,

diag (·, . . . , ·) is a block diagonal matrix. Also, Ξi and Hi

denote the matrices of large and small scale fading of the i-th
user, respectively.

The diagonal large scale fading matrix of the i-th user is

given as, Ξi = ξiINr ,Nr
, where ξi = Xi/r

α
i denotes the

composite effect of pathloss and shadowing. Here, ri = r̄i/r0
denotes the normalized distance between the i-th user and

the transmitting BS. Also, r̄i and r0 are the actual and

the reference distance, respectively. The pathloss exponent is

denoted by α, with 2 ≤ α ≤ 6. In this paper, the effect of

random shadowing is modeled by a Random Variable (RV) Xi

which follows a gamma distribution. Therefore, the Probability

Density Function (PDF) of Xi ∼ Gamma (ki,Ωi) is given as:

fXi
(x) =

xki−1

Γ (ki)Ω
ki

i

e
− x

Ωi H0(x), ki,Ωi > 0 (1)

where, ki and Ωi = EXi
[Xi]/ki are the shape and scale

parameters of the gamma distribution. Also, the variance

of shadowing represented by Xi is given as σ2
Xi

= kiΩ
2
i .

Furthermore, H0(x) is the Heaviside step function defined as,

H0(x) = 0 for x < 0 and H0(x) = 1 for x ≥ 0. Note that this

type of modeling of shadowing has been extensively used in

the published research in order to simplify the mathematical

difficulty imposed by the log-normal shadowing model [14,
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16]. Furthermore, the small scale fading matrices Hi distribute

as, Hi ∼ CN (0, I).
Provided that perfect CSIT is available, the ZF precoder

is given as, P̆ = HH
(

HHH
)−1

Ξ− 1

2 . In this case, the

NuNr × NuNr block diagonal normalization matrix D can

be expressed as, D = Ξ
1

2diag (D1, . . . ,DNu
), where Di are

diagonal matrices. In [12], it is shown that the j-th element,

j = 1, . . . , Nr , of Di is expressed as:

dj =

√

√

√

√

1
[

(HHH)
−1

]

ij,ij

. (2)

The NuNt × 1 collective signal vector x is expressed

as x =
[

xT
1 , . . . ,x

T
Nu

]T
. Here, xi ∈ Bi, i = 1, . . . , Nu,

denotes the Nr × 1 information carrying signal vector

for the i-th user. The deployed transmission alphabet for

the i-th user is denoted as Bi. The NuNr × 1 vector

w =
[

wT
1 , . . . ,w

T
Nu

]T ∼ CN (0, σ2
w
I) is the collective repre-

sentation of the white Gaussian noise experienced by all users.

Finally, wi is the white Gaussian noise of the i-th user.

By incorporating the ZF precoder into the system baseband

equation and focusing on the received signal of the i-th user,

the following expression is obtained:

yi = Ξ
1

2

i Dixi +wi. (3)

The observation of (3) shows that the selection of the elements

of the alphabet Bi, xi, determines the way that binary informa-

tion is conveyed to each user. In RSM, 1 ≤ Ns < Nr parallel

symbol steams are spatially modulated at the receive antennas

of each user. In more detail, the alphabet of RSM has the

following form, xi =
[

01l1 , s1,01li , . . . ,01li , sNs
,01lNs−1

]T
.

In RSM, due to the structure of xi , every symbol period,

k1 = Ns log2 (M) bits are conveyed by Ns symbols drawn

from a conventional constellation M. The order of M is

denoted as M . In addition, given that Ns < Nr, the Ns

symbols can be placed into
(

Nr

Ns

)

possible combinations in

xi. Here,
(·
·
)

denotes the binomial coefficient. Therefore,

k2 = ⌊log2
(

(

Nr

Ns

)

)

⌋ bits can be encoded on the positions of sl,

l = 1, . . . , Ns, in xi. In fact, (3) shows that the received signal

of the i-th user is a scaled version of xi degraded by noise.

Hence, the positions of the non zero elements of xi correspond

to the antennas which receive a non zero signal, while, the rest

of the antennas experience only noise. The spectral efficiency

of RSM is kRSM = k1 + k2 bits per channel use (bpcu).

SMX transmission can be considered as a special case of

RSM. In SMX, it holds that Ns = Nr and binary information

is solely conveyed by the Nr symbols drawn from M. Thus,

the spectral efficiency of SMX is kSMX = Nr log2 (M).
In this paper, the transmitted bits to the i-th user are

recovered by deploying the following Maximum Likelihood

(ML) detector, (x̃i) = argminxi
‖yi −

√
ξiDixi‖22. Here, x̃i

is the detected symbol vector at the i-th user.

III. ANALYSIS OF DIVERSITY ORDER AND CODING GAIN

The derivation of the diversity order and coding gain of

the i-th user can be obtained by expressing the high Signal-

to-Noise Ratio (SNR) approximation of its Symbol Error Rate

(SER) in the appropriate form [17]. Based on the union bound

method, a high SNR approximation of the SER of the i-th user

is given as [18]:

SER+∞
i /

1

|Bi|
∑

xi

∑

x̂i

x̂i 6=xi

P+∞
i (xi → x̂i, γ). (4)

Here, P+∞
i (xi → x̂i, γ) is the high SNR approximation of the

Pairwise Error Probability (PEP) of transmitting the symbol

vector xi to the i-th user, while, its detector erroneously

decides in favor of the symbol vector x̂i. Also, γ = 1/σ2
w

is the transmit SNR. Here, it is assumed that Ex

[

‖x‖22
]

= 1.

As shown in [12, Section V], the high SNR approximation

of the PEP of the i-th user conditioned on the RV Xi, which

represents the effect of large scale fading, is expressed as:

P+∞
i (xi → x̂i, γ|Xi) / [ϑiXiγ]

−NiL + o
(

γ−NiL
)

. (5)

In (5), it holds that ϑi = λ (xi, x̂i)
NiL
√
2/4rai , where, L =

Nt − NuNr + 1 and Ni is the number of different elements

between xi and x̂i. Also, λ (xi, x̂i) is the smallest eigenvalue

of the matrix, A = BR, for a given pair of xi and x̂i Here,

B = diag (b1, . . . , bNi
) is a diagonal matrix with its l-th diag-

onal element, l = 1, . . . , Ni, defined as bl = |xk−x̂k|2, where,

xk and x̂k are the k-th element of xi and x̂i, respectively, for

which it holds that xk 6= x̂k. In addition, the Ni×Ni matrix R

is defined as, R =
√
ρc1Ni,Ni

+
(

1−√
ρc
)

INi,Ni
, where, ρc

is the Pearson product-moment correlation coefficient between

any pair of the RVs Yj = d2j . Note that the structure of dj is

given in (2). Also, 1Ni,Ni
denotes a Ni×Ni matrix with all of

its elements equal to one. Finally, o (·) is the little-o notation.

Note that (5) is valid since the effects of small and large scale

fading are statistically independent [14].

The observation of (4) shows that the computation of

the SER+∞
i of the i-th user requires the evaluation of the

expectation of (5) over all possible realization of the RV Xi.

Hence, by considering that the PDF of Xi given in (1) and

neglecting the non dominant term of o
(

γ−NiL
)

, it holds that:

P+∞
i (xi → x̂i, γ) = EXi

[

P+∞
i (xi → x̂i, γ|Xi)

]

/

∫ +∞

−∞
(ϑixγ)

−NiL fXi
(x)dx

=
(ϑiγ)

−NiL

Γ(ki)Ωi

∫ +∞

0

xki−NiL−1e
− x

Ωi dx,

(6)

where, Γ(·) is the incomplete gamma function defined in [19,

p. 899]. By using the following integration formula [19, p.346,

3.381, 4],
∫ +∞
0

xν−1e−µxdx = µ−νΓ(ν), ν > 0, Re{µ} > 0,

and the fact that, ϑi = λ (xi, x̂i)
NiL
√
2/4rai , we have that:

P+∞
i (xi → x̂i, γ) /

Γ(ki −NiL)

Γ(ki)

×
[

λ (xi, x̂i)Ωi
NiL
√
2

4rai
γ

]−NiL

, (7)

for, ki−NiL > 0. Due to the fact that, 0 < Ni ≤ Nr, (7) can

be incorporated in (4) only when ki −NrL > 0.

Since (4) is a scaled version of the summation of addends
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of the form of (7), when the value of SNR approaches infinity

(γ → +∞), only the addends with the smallest exponent of γ,

which is NiL, need to be considered. The smallest exponent

of γ takes place when Ni = 1. In this way, (4) is further

approximated as:

SER+∞
i /

1

|Bi|
∑

xi

∑

x̂i∈A(xi)

P+∞
i (xi → x̂i, γ), (8)

where, A (xi) is the set of symbols x̂i for which it holds that:

i) x̂i 6= xi and ii) there is only one different element between

xi and x̂i (Ni = 1).

Since in (8) the summations are undertaken by using only

the PEPs, P+∞
i (xi → x̂i, γ), for which it holds that Ni =

1, (8) and the analysis provided below are valid as long as

ki−L > 0. This happens because, in this case, the PEP of (6)

is expressed as in (7). Note that, based on the measured data

and the analysis of [13], the previous condition is expected to

be satisfied by a practical system implementation.

Based on the previous simplifications and with the aid of

some algebraic manipulations, (8) can be further approximated

as:

SER+∞
i /

∑

xi

∑

x̂i∈A(xi)
Γ(ki−L)
Γ(ki)

[

λ(xi,x̂i)Ωi
L
√
2

4ra
i

γ
]−L

|Bi|

=

[

L

√

2|Bi|Γ(ki)
Γ(ki − L)δi

Ωi

4rai
γ

]−L

, (9)

where, δi =
∑

xi

∑

x̂i∈A(xi)
[λ (xi, x̂i)]

−L
. From (9) and

based on the definition of the diversity order and coding

gain of [17], it can be concluded that the diversity order

and coding gain of the i-th user is equal to Di = L and

Ci =
L

√

2|Bi|Γ(ki)
Γ(ki−L)δi

Ωi

4ra
i

, respectively.

The system diversity order and coding gain is obtained, sim-

ilarly, by using (9) and expressing the high SNR approximation

of the system SER as, SER+∞
system = 1

Nu

∑Nu

i=1 SER
+∞
i . Thus,

by using (9), it can be shown that:

SER+∞
system /







L

√

√

√

√

1

∑Nu

i=1

[

L

√

2Nu|Bi|Γ(ki)
Γ(ki−L)δi

Ωi

4ra
i

]−L
γ







−L

.

(10)

Hence, the system diversity order is equal to Dsystem =
L and the system coding gain is equal to Csystem =

1/
L

√

∑Nu

i=1

[

L

√

2Nu|Bi|Γ(ki)
Γ(ki−L)δi

Ωi

4ra
i

]−L

.

Furthermore, the observation of (9) and (10) shows that,

for ki > L, the diversity order is not affected by shadowing,

both for the users’ and system’s performance. In contrast,

the coding gain of each user and the system coding gain are

affected by shadowing through the values of ki and Ωi.

As shown in Section II, SMX can be interpreted as a special

case of RSM. Therefore, the analysis presented here is directly

applicable to SMX by simply setting Ns = Nr. Since the

diversity order of the i-th user does not depend on the value

of Ns, the comparison of RSM and SMX in the high SNR

TABLE I
PERFORMANCE DIFFERENCE BETWEEN RSM AND SMX IN HIGH SNR

AND BASED ON THE RATIO ∆i , i = 1.

System Configuration Ns kuser (bpcu) ∆1 (dB) ∆
Sim
1

(dB)

Nt = 10, Nr = 2, Nu = 4 1 4 -1.11 -1.3

Nt = 20, Nr = 4, Nu = 4 1 8 -6.49 -6.1

Nt = 20, Nr = 4, Nu = 4 2 8 -1.35 -1.25

Nt = 20, Nr = 4, Nu = 4 3 8 1.49 1.25

Nt = 20, Nr = 5, Nu = 4 4 10 1.93 1.25

can be directly obtained by evaluating the following ratio:

∆i =
CRSM

i

CSMX
i

= L

√

√

√

√

∑

xi∈BSMX
i

∑

x̂i∈A(xi)
[λ (xi, x̂i)]

−L

∑

xi∈BRSM
i

∑

x̂i∈A(xi)
[λ (xi, x̂i)]

−L
.

(11)

Here, CRSM
i and CRSM

i are the coding gains of the i-th user

when RSM and SMX are deployed, respectively. Also, BRSM
i

and BSMX
i are the considered transmission alphabets of RSM

and SMX, respectively. For ∆i > 1 and in high SNR, RSM

outperforms SMX, otherwise SMX performs better. In fact, in

high SNR, the quantity ∆i in dB is the performance difference

between RSM and SMX. Note that, from (11), it can be

concluded that the performance difference between the two

transmission methods is only determined by the deployed

transmission alphabets, and shadowing has no affect. The same

approach can be followed to compare the system performance.

IV. RESULTS AND DISCUSSION

In this section, the theoretical framework developed in this

paper is validated by using Monte Carlo simulation results.

For all studied scenarios, the considered simulation setups are

given in the captions of the corresponding figures.

In Fig. 1, the theoretical results of (9) and (10) are validated

by being compared against the corresponding simulation re-

sults. The computation of the high SNR approximation of the

SER of the i-th user is conducted by using (9). Also, the high

SNR approximation of the system SER is conducted by using

(10). As shown in Fig. 1, the derived diversity order follows

perfectly the slope of the simulated SER curves. Furthermore,

the derived coding gain is shown to be a relatively good

approximation (upper bound) of the actual coding gain. The

difference between the coding gain obtained via the analysis

of Section III and the actual coding gain is due to the: i) use

of the union bound method in (4); ii) approximated form of

(5); and iii) additional approximations during the derivation

between (4), (9) and (10).

Figure 2 presents the performance comparison between

RSM and SMX (benchmark system) in the broadcast channel.

As shown in the left sub-figure of Fig. 2, SMX performs better

than RSM due to higher coding gain. However, in the right

sub-figure of Fig. 2, for practical values of BER less than

10−2, RSM outperforms SMX by about 1 dB due to higher

coding gain. This highlights that the selection of the most

efficient transmission technique depends on a specific system

setup. The most efficient scheme can be determined by means

of simulation results or by comparing the achievable coding

gains (i.e. evaluating ∆i). In order to demonstrate the accuracy

of ∆i in (11), the Table I presents the coding gain difference

between RSM and SMX in high SNR for the user 1 using the
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(a) Setup: Nt = 16, Nr = 4, Nu = 4, Ns = {1, 2}, kuser =

{4, 6} bpcu; Ωi = 2, ki = 5, σ2

Xi
= 20 and Ωi = 2, ki = 14,

σ2

Xi
= 56, for i = 1, . . . , 4; r1 = 1, r2 = 1.5, r3 = 1.75, and

r4 = 2; and α = 5.
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Xi
= 22 and Ωi = 2, ki = 14,

σ2

Xi
= 56, for i = 1, . . . , 4; r1 = 1, r2 = 1.5, r3 = 1.75, and
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Fig. 1. High SNR performance analysis of RSM: simulation results vs. the
bounds in Section III.

SNR/dB
0 10 20 30

B
E

R

10 -4

10 -2

Nt = 10, Nr = 2, Nu = 4

SNR/dB
0 10 20 30

B
E

R

10 -6

10 -4

10 -2

Nt = 20, Nr = 4, Nu = 4

RSM
Benchmark System

User 4

System

User 1
User 1

System

User 4

RSM: Ns = 1
kuser=4 bpcu

RSM: Ns = 3
kuser=8 bpcu

Fig. 2. Performance comparison between RSM and SMX in the MIMO
broadcast channel. Setup: Nt = 10, Nr = 2, Nu = 4, kuser = 4 bpcu and
Nt = 20, Nr = 4, Nu = 4, kuser = 8 bpcu ; Ωi = 2, ki = 7, σ2

Xi
= 28,

for i = 1, . . . , 4; r1 = 1, r2 = 1.5, r3 = 1.75, and r4 = 2; and α = 5.

framework of (11) and the actual difference ∆Sim
1 as obtained

via numerical results. Note that the channel parameters for the

scenarios of Table I are the same as the ones given in Fig. 2.

From Table I, it can be concluded that ∆i (in dB) provides

a close approximation of the performance difference between

the two schemes.

V. CONCLUSIONS

In this paper, the performance of RSM in the shadowing

MIMO broadcast channel was characterized in terms of its

diversity order and coding gain. A theoretical criterion that

determines the superiority between RSM and SMX in the

shadowing MIMO broadcast channel was established. It was

shown that RSM performs better than SMX in some scenarios.
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