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Abstract—This work introduces a methodology for cloud
accountability that assures system dependability in terms of
availability and reliability. This assurance is provided relative to
the cloud service level agreement. The presented methodology
is guided by the NIST SP800-86 digital forensic model, that
motivates the collection, examination and analysis of data from
the cloud platform, and the generated evidence including logs
and context are reported to appropriate cloud agents. As part
of this work, we present a novel approach to collecting digital
evidence to support cloud-based system dependability, using the
Virtual Machine Introspection (VMI) technique. Our VMI ap-
proach complements, as well as checks the dependability metrics
provided by the cloud service providers (CSPs) as evidence. This
methodology, including the VMI approach is particularly relevant
since it provides a means of addressing the perceived lack of frust
for cloud-based services towards cloud accountability.

Our research focuses on applying an evidence-based method-
ology - cloud accountability method - to cloud-based system
engineering for assuring cloud agents of the dependability of
cloud platforms.

I. INTRODUCTION

The cloud computing technology of today and the future
promises to bring demonstrable benefits to people’s lives [ It
is a model for enabling convenient, on-demand network access
to a shared pool of configurable computing resources that can
be rapidly provisioned and released with minimal management
effort or service provider interaction. This outsourcing model
is attractive for businesses that wish to minimize their comput-
ing and storage infrastructure cost [[1]]. Other appealing features
are the multi-user capability, flexibility, speed, scalability,
etc. Scalability is a key attribute of cloud computing and
is achieved through server virtualisation [2]. However, the
responsibility of the cloud service providers (CSPs) is often
called to question. Literature review shows that these concerns
are largely related to the assurance of security [3], [4] and
dependability [5], [6], [7] on the cloud.

With the movement of software engineering from local
computers to the cloud, software developers need to be assured
of the dependability of the engineering support deployed to
the cloud. The predefined and mutually agreed upon service
level agreement (SLA) provided by CSPs attempt to assure
developers of cloud dependability. However, due to the cloud
platform’s inherent complexity and large scale, production
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cloud computing systems are prone to various run-time prob-
lems caused by hardware and software faults, cloud run-
time management decisions and environmental factors [7],
[8]. Cloud agents such as system developers, CSPs, and
cloud regulators need to be informed about possible or actual
violations of the SLAs. A robust mechanism is needed for
violation detection, notification, logging and resolution. Once
the cause of the violation is found, each violator is regarded
as being accountable for their fault.

This however highlights the need for cloud accountability
[9, [10]]. Creating accountability in the cloud is seen as a
solution to users’ lack of trust [9]. In cloud accountability, the
cloud agents are able to check whether the cloud is running the
service as agreed. If a problem appears, they should be able
to determine which of them is responsible, and to prove the
presence of the problem to a third party, such as an arbitrator
or a judge [L1]. Such an activity should be based on evidence
from an evidence-based auditing process.

The main contribution of this work is to introduce a
methodology for cloud accountability that assures system
dependability in terms of availability and reliability. This
assurance is provided relative to the cloud SLA. The presented
methodology is guided by the NIST SP800-86 forensic model
[12]], that motivates the collection, examination and analysis of
data from the cloud infrastructure, and the generated evidence
including logs and context are reported to appropriate cloud
agents. This work also presents a novel approach for collecting
digital evidence to support cloud-based system dependability,
using the Virtual Machine Introspection (VMI) [13] technique.

This methodology aims to: (1) assure cloud agents of the
dependability of the cloud platform with reference to cloud
SLAs, (2) quantify SLA violations, and (3) serve as an
evidence-based benchmark for choosing a relatively depend-
able cloud provider.

The broad research question (RQ) that we seek to answer is
”Can a cloud accountability method be used to meaningfully
assure availability and reliability of deployed systems, relative
to the cloud platform’s service level agreement (SLA)?”. To
answer this question, we validate the hypothesis (H1): “The
cloud accountability method can be used to meaningfully
assure the availability and reliability of cloud-based systems”.



II. BACKGROUND AND RELATED WORK

In this section, we discuss some dependability attributes of
systems deployed to the cloud. The SLA provided by Amazon
Web Services (AWS) CSP is also discussed. Afterwards, an
evidence-based approach motivated by data forensic for cloud
accountability is presented. Finally, the Net Present Value
(NPV) approach, and related work are introduced.

A. Dependability Attributes of Software Systems

In order to work on dependability of cloud computing
systems, we must identify the major attributes [14] which can
quantify the dependability of system in different perspectives.
Some very important attributes for such systems include avail-
ability, reliability, performance, security and recoverability [[7]].

B. Cloud Service Level Agreement

The assessment of the Amazon Web Services’ (AWS) SLA
for their Elastic Cloud Compute (EC2) service [15] only
guarantees two things: (1) that the EC2 API will be available
to allow for the launching of new instances 99.9% of the
time, and (2) that more than 0% of user instances will be
able to access the Internet 99.9% of the time (i.e. it is an
outage if 100% of user instances cannot reach the Internet
99.9% of the time). The AWS SLA does not explicitly cover
the reliability of the AWS EC2 instances. Even with the
availability assurances for the AWS EC2 instances, they are
rather vague. That said, the AWS SLA provides some grounds
for assuring system availability.

C. Digital Forensic Approach for Cloud Accountability

Digital forensic is obtaining, preserving, analysing, and
documenting digital evidence from digital devices [16]]. This
process has been widely accepted and largely used in in-
vestigating cloud security issues [17], [18]. This activity is
called cloud forensic, which is defined broadly by [19] as
”an application of digital forensic science in cloud computing
environments”. Some evidence sources for cloud forensic are:

1) Hypervisors: Hypervisors or virtual machine monitors
(VMMs), such as Citrix’s Xen, VMWare ESXi and Microsoft
HyperV, are used to manage virtual machines (VMs) and
their various hardware resources [20]. It can provide run-
time statistics, but also information can be derived from the
hypervisor using advanced techniques like VMI[13]. VMI is
the technique of locating and accessing the digital forensic
evidence on a running VM (user-VM) from another isolated
running VM (admin-VM) which is co-located on the same
hardware and which has required privileges to access the
hypervisor layer. VMI is transparent and does not interrupt
the work-flow of the target user-VM nor can it be detected
from there. VMI is especially of interest for security-related
techniques, e.g. intrusion detection.

2) Cloud Management System (CMS): CMS is a huge
source for evidence information. It is the central controlling
component of a cloud infrastructure and provides information
about user logins, cloud service usage, access rights, config-
uration, resource provisioning, policies, location, etc. CSPs

like AWS provide the AWS CloudWatch with application
programming interface (API) for such information gathering.

D. Net Present Value

The idea of Net Present Value (NPV) encompasses the
concept of time value of money and takes into consideration
that money spent or obtained in future periods will have a
different value than money spent or obtained in the present
[21]]. For decades, NPV has been a standard method for
the financial appraisal of projects. NPV calculations can be
currently found in every project document (business case,
project plan, etc.) and project managers throughout the world
use this methodology to compare the value of different projects
against investment targets [22]. In the same light, users of
cloud resources should be able to know the value of their
cloud investments relative to their investment targets.

E. Related Work

The Cloud Broker Architecture for Dependability [5]], Phan-
tom [6]], and the A4Cloud FP7 Project [23] are very similar
conceptually to this work. The Phantom [6] is most similar
in its operations. However, DBA [5] is concerned with fault
detection, fault evaluation and taking decision for recovery
or migration as a means for assuring dependability. The
main shortcoming of DBA (i.e. poor memory management)
is inherited from the CORBA platform [24]]. This leads to ad-
hoc solutions with regards to avoiding memory leaks, which
then introduces large overhead cost. The A4Cloud FP7 Project
[23] on the other hand, is focused on cloud accountability in
terms of data security, which is a departure from our aim.

A major distinction of our work is in the use of the VMI
technique for digital evidence collection, and the Reactive
Middleware (RM) for managing dependability violations. By
moving the monitoring tool outside the focused VM and
leveraging function-call injection techniques using VMI, we
will be able to minimise operational cost for collecting and
monitoring digital evidence. Also, the RM notifies cloud
agents of violations, and afford them the option of managing
these violations. All violations, activities in response to the
violations, and responsible agents are documented as logs.
These logs can be used as (1) evidence to claim compensation,
and also to (2) serve as a source of data for predicting
dependability violations using a form of machine learning.

III. CLOUD ACCOUNTABILITY METHOD

We introduce a cloud accountability method (CAM) that is
guided by a digital forensics model. The model is based on the
well-established and widely accepted work of NIST SP800-86
[12]. The NIST SP800-86 guide shows how digital forensics
can support incident handling. The forensic process comprises
the following phases:

1) Collection: The first phase in the process is to identify,
label, record, and acquire data from the possible sources
of relevant data, while following guidelines and procedures
that preserve the integrity of the data. Collection is typically
performed in a timely manner because of the likelihood of
losing dynamic data such as current network connections.



2) Examination: It involves forensically processing large
amounts of collected data using a combination of automated
and manual methods to assess and extract data of particular
interest, while preserving the integrity of the data.

3) Analysis: The next phase of the process is to analyse
the results of the examination, using legally justifiable methods
and techniques, to derive useful information that addresses the
questions that were the impetus for performing the collection
and examination.

4) Reporting: The final phase is reporting the results of the
analysis, which may include describing the actions used, ex-
plaining how tools and procedures were selected, determining
other actions to be performed, and providing recommendations
for improvement to policies, guidelines, procedures, tools, and
other aspects of the forensic process. The formality of the
reporting step varies greatly depending on the situation.
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Fig. 1. Conceptual Model of the Cloud Accountability System

A. Cloud Accountability System

The Cloud Accountability System (CAS) (see Figure [1) is
constituted by four main components with connectors. These
components are the Evidence Collector, Auditor, Reactive
Middleware, and a Logging System. The functions of these
components are briefly introduced.
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Fig. 2. Evidence Collector

1) Evidence Collector (EC): This system collects availabil-
ity and reliability metrics from the VM hypervisor using two

main approaches; Virtual Machine Introspection (VMI) tech-
nique and the Cloud Management System (CMS). The VMI
uses a VMI library in C language, and Python scripts to collect
these metrics. Also, the CMS uses Amazon Web Services
(AWS) APIL Figure [2] provides an overview of the Evidence
Collector system. The Arbitrator sub-system reconciles metrics
to support data integrity. All activities are saved as logs.

2) Auditor: The Auditor computes the means of the set
of metrics, and then aggregates them. The aggregated metrics
are then compared to the cloud platform’s SLA and a call is
triggered to the Reactive Middleware if there are violations.
Also, the Auditor computes the Net Present Value (NPV) of
the investments that cloud agents (i.e. system developers) have
made subject to the recorded dependability violations. The
system also derives the monetary value of the dependability
violations to provide a clearer understanding to the investor
(i.e. system developers). All activities are saved as logs.

3) Reactive Middleware (RM): The RM helps to manage
notifications. The RM notifies system agents of dependability
violations, and afford them the option of managing these vio-
lations. All violations, activities in response to the violations,
and responsible agents are documented as logs. These logs
can be used as evidence to claim compensation (i.e. ”Service
Credits”), and also serve as a source of data for predicting
dependability violations using a form of machine learning.

4) Logging System (LS): In this system, all the activities of
the CAS components are documented and saved as logs. This
where all the generated evidence are stored.

The CAS components are implemented to measure in run-
time the metrics that are related to the architecture availability
and reliability. Such metrics are Mean Time to Failure (MTTF)
or Mean Time before Failure (MTBF), Mean Time to Repair
(MTTR), system operation time, number of time periods, etc.
From Figure [I] the data gathered are compared with those
from the cloud platform’s API and the SLA (i.e. see Steps 1,
2, 3, 4), and then notifications are triggered to cloud agents if
there are dependability violations (i.e. see Steps 5, 6, 7, 8, 9).

B. Steps of Methodology
The steps of the cloud accountability method are below;

1) The Evidence Collector (EC) is assigned to a set of
software Systems [Sn] deployed on virtual machines
(VMs) of the cloud.

2) The EC gathers dependability metrics (for availability,
[A] and reliability, [R]) from their respective [Sn].

3) The metrics collection is synchronised among [Sx] at a
constant time interval, t; (i is initialised to zero).

4) The gathered dependability metrics are sorted and ex-
amined for data integrity by the Arbitrator (Figure [2).

5) The set [A, R]y is sent to the Auditor using synchronous
procedure calls.

6) The Auditor classifies [An] and [Ry] for [Sn].

7) The Auditor then computes the means of [Anx] and [Ry]

respectively.
2 [Ax]

e Mean for Availability, [mA]y = N



« Mean for Reliability, [mR]y = %

8) The Auditor compares [mA]x and [mR]n to the cor-
responding data ([cA]y and [cR]y) from the cloud’s
CMS for a reasonable margin of error (i.e. acceptable
metric range, [AMR]" ), based on the SLA of the cloud
instance, and reliability benchmark.

9) If any data/metric of the two sets of data from (8)
violates the SLA’s [AMR|?, the Auditor triggers a call
to the Reactive Middleware (RM).

10) The RM then sends a notification to the cloud agents.

11) All activities and cloud agents involved are logged.

12) The RM provides options such as requesting for ”’Service
Credits” from the CSP using the log from (11).

13) The Auditor also computes the Net Present Value (NPV)
of the virtual instance with respect to the identified
means from (7), and/or violations from (9).

14) The monetary value [MVAR] of the means from (7) is
derived.

15) If there was no violation from (9), an analysis of the
comparison in (8), the net present value (NPV) from
(13), and the [MVAR] are saved as a log, In.

16) This log, Iy is sent as a notification to the cloud agents
as periodic reports (e.g. weekly, monthly).

17) The method continues in a loop at (3) for time,
t;+5000ms if none of the assigned VMs in (1) failed.

18) If there is any recorded failure, the method will continue
in a loop at (1) for time ¢;+5000ms.

The steps of the presented cloud accountability method are
briefly classified according to the forensic process phases of
the NIST SP800-86 guide:

o Collection: Steps 1, 2, 3, 5, 17 and 18

« Examination: Steps 4 and 6

o Analysis: Steps 7, 8, 9, 12, 13, and 14

+ Reporting: Steps 10, 11, 15, and 16

IV. CONCLUSION

We evaluate the cloud accountability method by designing a
scenario for a cloud-based Reactive Architecture that supports
system engineering, based on Figure |l| model. The scenario
is analysed using Continuous Time Markov Chains (CTMCs).
CTMCs are able to capture system behaviour at the virtual
machine (VM) level. At this point, we answer the research
question (RQ) by validating the hypothesis (H1). In our future
work, an implementation based on the model will be developed
to collect, examine and analyse data from cloud platforms.
Also, the analysis will be reported to cloud agents, for the
purpose of assuring the accountability of cloud services.
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