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Abstract 

Breast and ovarian cancer patients harboring BRCA1/2 germline mutations have clinically 

benefitted from therapy with PARP inhibitor (PARPi) or platinum compounds, but 

acquired resistance limits clinical impact. In this study, we investigated the impact of 

mutations on BRCA1 isoform expression and therapeutic response. Cancer cell lines and 

tumors harboring mutations in exon 11 of BRCA1 express a BRCA1-Δ11q splice variant 

lacking the majority of exon 11. The introduction of frameshift mutations to exon 11 

resulted in nonsense-mediated mRNA decay of full-length, but not the BRCA1-Δ11q 

isoform. CRISPR/Cas9 gene editing as well as overexpression experiments revealed that 

the BRCA1-Δ11q protein was capable of promoting partial PARPi and cisplatin 

resistance relative to full-length BRCA1, both in vitro and in vivo. Furthermore, 

spliceosome inhibitors reduced BRCA1-Δ11q levels and sensitized cells carrying exon 11 

mutations to PARPi treatment. Taken together, our results provided evidence that cancer 

cells employ a strategy to remove deleterious germline BRCA1 mutations through 

alternative mRNA splicing, giving rise to isoforms that retain residual activity and 

contribute to therapeutic resistance. 
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Introduction 

Germline mutations in the BRCA1 gene are associated with an increased risk of 

developing breast and ovarian cancer (1, 2). Mutations often result in reading frameshifts 

and nonsense-mediated mRNA decay (NMD) (3). The BRCA1 protein is essential for 

efficient homologous recombination (HR) mediated repair of double stranded DNA 

breaks (4, 5). Inhibitors of poly(ADP-ribose) polymerase (PARP), as well as platinum 

agents, induce double stranded DNA breaks that are can be repaired by the HR DNA 

repair pathway (6, 7). Consequently, cells that have defective HR DNA repair, such as 

those with dysfunctional BRCA1 or BRCA2 proteins are highly sensitive to PARP 

inhibitor (PARPi) or platinum treatments (8-11).  

 

Although PARP inhibitors have been shown to provide survival improvements, many 

patients that harbor germline BRCA1 or BRCA2 mutations do not gain benefit from 

PARPi therapy (12-14). Additionally, many patients that first benefit from either PARPi 

or platinum therapy develop disease progression and resistance (15). PARPi or platinum 

resistance has been demonstrated to arise by a variety of mechanisms, including reversion 

mutations (16, 17), loss of 53BP1 pathway activity(18, 19), expression of hypomorphic 

BRCA1 proteins (20, 21), and drug efflux (22). 

 

BRCA1 mRNA isoforms generated by alternative splicing lack specific exons and have 

been show to be expressed in cells and tissues (23-25). In particular, the relative levels of 

BRCA1 exon 11 splice isoforms differ between normal and cancer tissues and in discrete 

phases of the cell cycle (26-29). These isoforms include BRCA1 full-length (inclusion of 
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all coding exons), Δ11 (skipping of exon 11) and Δ11q (partial skipping of exon 11). The 

BRCA1-Δ11q isoform derives from use of an alternative exon 11 splice donor site, 

resulting in the exclusion of most exon 11 nucleotides (c.788-4096) (Supplementary Fig. 

S1) (27, 28). In human cells and tissues, the BRCA1- Δ11q isoform expression is more 

readily detectable than the BRCA1-Δ11 isoform (26, 29, 30).  

 

The BRCA1-Δ11 isoform has previously been implicated in both cell death and 

proliferation in mouse studies. Both Brca1-null and Brca1Δ11/ Δ11 mice that exclusively 

express Brca1-Δ11 undergo embryonic lethality, but Brca1Δ11/ Δ11 embryos die at a later 

stage, suggesting that Brca1-Δ11 isoform can partially compensate for the lack of other 

Brca1 isoforms during embryogenesis (31-33). BRCA1 mutations located in exon 11 

represent approximately 30% of the overall number of mutation carriers that develop 

breast and ovarian cancer in the US (34-37). Here, we examined the impact of exon 11 

mutations on BRCA1 isoform expression and therapy response.  

 

 

Methods 

Cell lines and reagents 

Cells were purchased from Asterand or ATCC. Cycloheximide, actinomycin D, 

puromycin, blastcitidine, DMSO were purchased from Sigma-Aldrich, cisplatin was from 

APP/Fresenius Kabai USA LLC and placlitaxel from Sagent Pharmaceuticals. 

Pladienolide B (Pl-B) was purchased from Calbiochem. Clovis provided rucaparib (CO-

338) and olaparib (AZD2281) was purchased from Selleckchem. BRCA1 mutated cell 
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lines were validated through DNA sequencing and the identification of specific BRCA1 

mutations that are uniquely present in individual cell lines as well as DNA fingerprinting. 

Cell lines tested negative for mycoplasma. 

 

Colony formation assays  

Depending on colony forming potential, cells were seeded at a density ranging from 500 

– 4000 cells per well in 6 well plates in the presence of increasing concentrations of 

either rucaparib or olaparib. For cisplatin and taxol treatments, exponentially growing 

cells were cultured in 24 well plates, treated with increasing concentrations of cisplatin 

and taxol for 24 hours and replated in 6 well plates for colony formation. For shRNA or 

cDNA add back colony formation experiments, cells were treated as for above, but with 

the addition of either puromycin or blastcitidine in the media. For siRNA treatments, 

exponentially growing cells were reverse transfected in 24 well plates, 2 days post 

transfection cells were treated with rucaparib for 72 hours and then replated in 6 well 

plates for colony formation. For Pladienolide B colony assays, cells were treated with 

Pladienolide B (1.25 nM) and rucaparib (100 nM) for 72 hours and then replated into 6 

well plates for colony formation. Colony formation was assessed 2 weeks post plating 

with crystal violet staining. Mean colony formation from three experiments was 

expressed as percentage of colonies ± S.E. relative to vehicle-treated cells.  

 

Gene sequencing RT-PCR analysis  

Genomic DNA was isolated from cells using the DNeasy tissue kit (Qiagen). To 

determine if gene rearrangements had taken place that would have excluded the exon 11q 
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region from genomic DNA of cell lines and PDX tumors, we carried out PCR using 

OneTaq Hot Start 2X Master Mix (NEB) and gDNA as templates. Primers were located 

in exon 10 (Forward) and 12 (Reverse): F:aatcacccctcaaggaacca; 

R:ctcacacccagatgctgcttc. Total RNA was isolated from cell lines using RNAeasy kit 

(Qiagen). For Quantitative RT-PCR, RNA was tested for quality on a Bioanalyzer 

(Agilent). RNA concentrations were determined with a spectrophotometer (NanoDrop; 

Thermo Fisher Scientific).  RNA was reverse transcribed using Moloney murine 

leukemia virus reverse transcriptase (Ambion) and a mixture of anchored oligo-dT and 

random decamers.  Two reverse-transcription reactions were performed for each sample 

using either 100 or 25 ng of input RNA. Assays were used in combination with Taqman 

Universal Master mix or Power SybrGreen master mix and run on a 7900 HT sequence 

detection system (Applied Biosystems). Cycling conditions were 95°C, 15 min, followed 

by 40 (two-step) cycles (95°C, 15 s; 60°C, 60 s). Ct (cycle threshold) values were 

converted to quantities (in arbitrary units) using a standard curve (four points, four fold 

dilutions) established with a calibrator sample.  For each sample, the values are averaged 

and S.D. of data derived from two independent PCRs. For the BRCA1 splice variants, 

amplicons quantified by on-chip electrophoresis on an Agilent 2100 Bioanalyzer were 

used for absolute quantification assays. Primers that specifically recognize the following 

BRCA1 mRNA isoforms were used: exon +11 containing: F:tagcaaggagccaacataacagat; 

R:cttattccattcttttctctcacacag; Δ11q: F:gattctgcaaaaaaggctgct; R:cagatgctgcttcaccctga 

For RBFOX2 F:aagcccagtagttggagctgt, R:ttgcctagggacacatctgctt; and POLR2F: 

F:tgccatgaaggaactcaagg  R: tcatagctcccatctggcag. BRCA1 expression values were 

routinely normalized to a POL2RF house keeping gene (HKG) control and expressed as a 



 8

percentage of the values calculated for MDA-MB-231 cells or to a relevant control 

sample. 

 

BRCA1-minigene generation and analysis  

Genomic DNA derived from blood lymphocytes of healthy individuals was tested for the 

absence of mutations by BROCA sequencing. The entire genomic region of BRCA1 from 

exon 8 to exon 12 was amplified with the following 5 PCR reactions and primer sets: 

1F: ccgctcgagAACCTTGGAACTGTGAGAACTCTG 

1R: ccggatatCAATTTGAGAGCCCAGTTTGAAT 

2F: ccgctcgagAACCTGGGTGACAGAGCAAGA 

2R: ccggatatcAGGGAAAAGACAGAGTCCTAATAAGA 

3F: ccgctcgagAGAGCTAAAATGTTTGATCTTGGTC 

3R: ccggatatcTCTTGATAAAATCCTCAGGATGAAG 

4F: ccgctcgagATTTGGGAAAACCTATCGGAAG 

4R: ccggatatcTAATACTGGAGCCCACTTCATTAGT 

5F: ccgctcgagCCAGCTCAAGCAATATTAATGAAGT 

5R: ccggatatcGTTAAAATGTCACTCTGAGAGGATAGC 

HA-tag was cloned into pENTRA vector using SalI and XhoI sites. Each BRCA1 

fragment was first cloned into pENTRA-HA vector using XhoI (shown in lowercase 

forward primers above) and EcoRV (shown in lowercase reverse primers above) sites. 

The 5 cloned fragments were assembled into a minigene using the following restriction 

sites that corresponded with cut sites in each fragment: EcoRI, SpeI, StuI and ScaI sites. 

An eGFP fragment was cloned into the 3’end of the exon 12 fragment using EcoRV site. 
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The minigene was then shuttled into pcDNA6.2 Destination vector using the LR Clonase 

system (Invitrogen). We confirmed by Sanger sequencing that mutations were not 

introduced into exons or introns within 500 bp flanking each exon. The indicated 

mutations (see Supplementary Fig. 3a) were introduced using site directed mutagenesis 

(Agilent) using the following primers: 

2288delT F: ccagtgaacttaaagaatttgtcaacctagccttccaaga 

2288delT R: tcttggaaggctaggttgacaaattctttaagttcactgg 

2529C>T F: caaatgctgcacactaactcacacatttatttggttctgtttttg 

2529C>T R: caaaaacagaaccaaataaatgtgtgagttagtgtgcagcatttg 

3960C>T F：ctaaggtgatgttcctaagatgcctttgccaatattacc 

3960C>T R：ggtaatattggcaaaggcatcttaggaacatcaccttag 

1stFOXMut F: tcagggtagttctgtttcaaacttacacgtggagccatgtg 

1stFOXMut R: cacatggctccacgtgtaagtttgaaacagaactaccctga 

2ndFOXMut F:gagtaataaactgctgttctcgtgttgtaatgagctggcatgagta 

2ndFOXMut R: tactcatgccagctcattacaacacgagaacagcagtttattactc 

Ex11qsplice F: tgcaagtttgaaacagaactcccctgatacttttctggatg 

Ex11qsplice R: catccagaaaagtatcaggggagttctgtttcaaacttgca  

To measure BRCA1-Δ11q-reporter expression total RNA was isolated from transfected 

using RNAeasy kit (Qiagen). cDNA was synthesized using High-Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems). PCR was performed using OneTaq Hot 

Start 2X Master Mix (NEB). Primers that specifically recognize BRCA1-Δ11q-reporter 

mRNA: F: gattctgcaaaaaaggctgct; R: agtcgtgctgcttcatgtggt; and BSD: F: 
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gcctttgtctcaagaagaatcca; R: tagccctcccacacataacca. Additionally, Western blots using HA 

antibody detected BRCA1-Δ11q-reporter protein expression. 

 
 

Western blotting 

Western blotting was carried out as previously described and proteins detected using the 

following antibodies: BRCA1: N-terminal: (MS110, EMD), C-terminal: (D9, Santa Cruz 

Biotechnology), BRCA1 (9010, Cell Signaling), Tubulin (2148, Cell Signaling), HA 

(23675, Cell Signaling), RAD51 (H-92, Santa Cruz Biotechnology), Pol II (C-18, (Santa 

Cruz Biotechnology), CtIP (A300-438-A, Bethyl Labs), PALB2 (A301-247A1, Bethyl 

Labs), BARD1 (A300-263A, Bethyl Labs), BRCA2 (OP-95, EMD). HA (23675, Cell 

Signaling) antibody was used for immunoprecipitation of HA-BRCA1 complexes from 2 

mg of nuclear extract using Pierce Classic IP Kit (Thermo Scientific) according to the 

manufacturer’s instructions. Nuclear extracts were derived using NE-PER Nuclear and 

Cytoplasmic Extraction Reagents (Thermo Scientific) according to the manufacturer’s 

instructions. Densitometric analyses were carried out using Image J.   
Immunofluorescence and microscopy  
For immunofluorescence HA (HA.11, Covance), BRCA1 (MS110, EMD), γ-H2AX 

[pS139] (N1-4131, EMD) and RAD51 (H-92, Santa Cruz Biotechnology), geminin 

(10802-1-AP, ProteinTech Group) and geminin (Abnova, E7071-1A8) antibodies were 

followed by secondary antibodies conjugated to FITC or Texas Red (Jackson 

ImmunoResearch Laboratories).  We acquired immunofluorescence images using Nikon 
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NIU Upright Fluorescent Microscope and generated images using Nikon NIS Elements 

software.  For IR experiments, we routinely fixed cells 8 hours after treatment with 10 

Gy. For analyses, we counted a minimum of 200 cells per condition or cell line. Foci 

positive cells were expressed as a percentage of geminin positive cells to account for any 

differences in S/G2/M populations between cell lines. Each experiment was carried out 

three times with biological replicates. γ-H2AX IRIF was present equally in all cell lines 

and routinely measured as a positive control for IRIF.  
 

Immunofluorescence and immunohistochemical analyses of tumors 

For BRCA1 focus formation analysis, tissue sections were deparaffinized with xylene 

and hydrated with decreasing concentrations of ethanol. For target antigen retrieval, 

sections were microwaved in DAKO Antigen Retrieval Buffer pH 9.0 for 4 minutes at 

110ºC (a T/T MEGA multifunctional Microwave Histoprocessor (Milestone)). Sections 

were cooled down in distilled water for 5 minutes, then permeabilized with DAKO Wash 

Buffer containing Tween 20 for 5 minutes, followed by incubation in blocking buffer 

(DAKO Wash Buffer with 1% BSA) for 5 minutes. Primary antibodies were diluted in 

DAKO Antibody Diluent and incubated at room temperature for 1 hour (anti-BRCA1 

Abcam MS110 diluted 1:200; anti-Geminin (ProteinTech Group, 10802-1-AP, diluted 

1:400).  Sections were washed for 5 minutes in DAKO Wash Buffer followed by 5 

minutes in blocking buffer. Secondary antibodies (Alexa Fluor 488 or 568) were diluted 

1:500 in blocking buffer and incubated for 30 minutes at room temperature. The 2-step 

washing was repeated followed by 5 minutes incubation in distilled water. Dehydration 

was performed with increasing concentrations of ethanol. Sections were mounted with 
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DAPI ProLong Gold antifade reagent and stored at -20°C.  For analyses tumors from 2 

mice per treatment group were analyzed and counted. For each tumor a minimum of 100 

geminin-positive cells were identified and counted for those that had at least 5 BRCA1 

foci. BRCA1 foci positive cells were calculated as a percentage of geminin-positive cells. 

 

For assessment of Ki-67 and γ-H2AX by IHC, slides were deparaffinized and hydrated. 

Antigen retrieval was performed using pH 9 EDTA buffer (DAKO, S2368). Endogenous 

peroxidases were quenched by immersion of slides in 3% hydrogen peroxide solution 

(30% H2O2, Fisher BP2633-500, diluted in methanol). Primary antibody Ki-67 (Clone 

EP5), Epitomics, (1:1500) or γ-H2AX [pS139] (N1-4131, EMD) (1,20,000) were diluted 

with DaVinci Green Diluant (Biocare Medical, PD900) and incubated on slides overnight 

at 4 degrees in a humidified slide chamber. Slides were then washed 3x in TBST and 

incubated with Envision+ System  HRP Labelled Polymer Anti-Rabbit (Dako, K4003) 

for 1 hour at room temperature. Specimens were washed 3x in TBST and then developed 

with DAB solution (DAKO, K3468) and counterstained in Meyer’s Hematoxylin (Dako, 

S3309). For analyses of Ki67 and γ-H2AX expression, a minimum of 2 tumors derived 

from 2 separate mice we used. Mice were treated with rucaparib 150 mg/kg two times per 

day for 4 continuous days. For cisplatin, mice were treated with a single dose of 6 mg/kg. 

Tumors were resected and formalin fixed 4 days from the first dose. A minimum of 2 

tumors and 3 images per tumor were used to calculate staining intensities. Image staining 

intensities were measured using Image J analyses software. 
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PDX tumor derivation, xenograft treatments and analyses  

For patient-derived xenografts, patient consent for tumor use in animals was completed 

under a protocol approved by the Vall d’Hebron Hospital Clinical Investigation Ethical 

Committee and Animal Use Committee. Mice were maintained and treated in accordance 

with institutional guidelines of Vall d’Hebron University Hospital Care and Use 

Committee. Tumors were subcutaneously implanted in 6 week old female 

HsdCpb:NMRI-Foxn1nu mice (Harlan Laboratories, Italy). Animals were supplemented 

with 1μM estradiol (Sigma) in the drinking water. Upon xenograft growth, tumor tissue 

was re-implanted into recipient mice, which were randomized upon implant growth. Mice 

were allocated in control/treated groups to deliver similar mean and standard error when 

tumor volume reached between 150-300 mm3 without any blinding. Vehicle or olaparib 

was administered at 50mg/kg per oral gavage six days per week. Tumor xenografts were 

measured with calipers and tumor volumes were determined using the formula: (length x 

width2) Å~(π/6). At the end of the experiment, animals were killed by CO2 inhalation. 

Tumor volumes are plotted as mean ± S.E.M. RTV for vehicle treated mice, and 

individual relative tumor volumes are shown for olaparib treated mice. For xenograft 

studies, MDA-MB-436 cells were subcutaneously implanted in 6 week old female NSG 

mice (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ). When tumors reached approximately 300 mm3 

tumors were harvested and cut up into smaller pieces followed by subcutaneous re-

implantation. Treatment was initiated when tumors reached between 150-180 mm3. 

Rucaparib was administered at 150 mg/kg twice daily for 10 continuous days with a 2-

day break after the first 5 days.  Cisplatin was administered at a single dose of 6 mg/kg. 

Tumors were measured with calipers and tumor volumes calculated as described above. 
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Measurements were carried out every 2 days and mice were euthanized when tumors 

reached 1500 mm3 in accordance with institutional guidelines of Fox Chase Cancer 

Center. 

 

 

Statistical analyses 

Mean and standard error values were compared using unpaired t-tests (GraphPad 

Software). P < 0.05 was considered statistically significant. *’s indicate statistically 

significant P values. There were similar variances between statistical groups compared. 

All statistical tests were unpaired t-tests unless otherwise stated next to the P value. 

 

 

Results 

Cell lines with exon 11 mutations express BRCA1-Δ11q.  To examine the impact of 

BRCA1 exon 11 mutations on the expression of BRCA1 proteins, we employed a panel of 

human cancer cell lines that were either BRCA1 wild-type or harbored known deleterious 

BRCA1 mutations (Supplementary Fig. S2A). Full-length BRCA1 protein was detectable 

in MDA-MB-231, MCF7 and MDA-MB-468 wild-type BRCA1 cell lines, but was absent 

in all BRCA1 mutation containing cell lines. A band corresponding with the predicted 

molecular weight (~89 kDa) of the BRCA1-Δ11q isoform was present in BRCA1 wild-

type cell lines, as well as L56Br-C1, SUM149PT and UWB1.289 cell lines that harbored 

BRCA1 exon 11 frameshift mutations (Fig. 1A).  
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To establish the identity of the isoform detected below the 100-kDa mark, we transfected 

cells with an siRNA designed to specifically target BRCA1-Δ11q and measured protein 

expression. BRCA1-Δ11q siRNA did not impact the levels of the full-length, but 

dramatically reduced the expression of the predicted BRCA1-Δ11q isoform (Fig. 1B). 

Furthermore, we confirmed that cells did not harbor secondary BRCA1 reversion 

mutations or genomic rearrangements (Supplementary Fig. S2).  

 

Next we investigated the levels of BRCA1 mRNA containing exon 11 (+11) as well as the 

BRCA1-Δ11q (Δ11q) isoform expression. L56Br-C1, SUM149PT and UWB1.289 exon 

11 mutant cell lines exhibited 3- (P < 0.001), 3- (P < 0.001) and 2.9-fold (P < 0.001) 

lower expression of +11 transcripts, respectively, relative to MDA-MB-231 cells (Fig. 

1C). In contrast, relative Δ11q expression was 1.46- (P = 0.0148), 1.55- (P < 0.001) and 

1.58-fold (P = 0.0136) higher in L56Br-C1, SUM149PT and UWB1.289, respectively, 

relative to MDA-MB-231 cells expression levels (Fig. 1C).  

 

Robust BRCA1 gene transcription promotes BRCA1-Δ11q expression.  To investigate the 

impact of germline mutations on exon 11 splicing, we introduced a series of exon 11 

frameshift mutations into a BRCA1-minigene system (Supplementary Fig. S3). Mutation 

of the exon 11q splice junction disrupted Δ11q-reporter mRNA and protein expression. 

However, three different frameshift mutations at various locations throughout exon 11 

had no effect on Δ11q-reporter expression (Fig. 1D). Moreover, RNA-seq analyses of 

mRNA splice junctions did not indicate that higher levels of BRCA1-Δ11q expression in 
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cell lines with exon 11 mutations were due to increased global alterations in splicing 

(Supplementary Table S1).  

 

To further investigate the effects of exon 11 mutations on BRCA1-Δ11q levels, we used 

CRISPR/Cas9 technology to generate SUM149PT cells that either had additional out of 

frame mutations, or reversion mutations that restored the reading frame (Supplementary 

Fig. S4). In line with minigene data, the introduction of additional out of frame or frame 

restoring mutations in exon 11 did not affect BRCA1-Δ11q expression (Fig. 1E). 

However, clones 3 and 4 that had restored BRCA1 reading frames, expressing the 

BRCA1-long-form protein product, had 2.5- (P < 0.0001) and 2.47-fold (P < 0.0001) 

increased levels of +11 expression, respectively, relative to sg_GFP control cells (Fig. 

1E); likely resulting from premature translation termination codon (PTC) removal, 

enabling +11 containing transcripts to avoid NMD (3).  

 

We confirmed that NMD contributed to the low levels of +11 mRNA detected in exon 11 

mutation containing cell lines by treating cells with cycloheximide (CHX), an inhibitor of 

NMD (38) (Fig. 1F). CHX treatment for five hours resulted in a 2.8- (P = 0.0007), 3.2- (P 

= 0.023) and 2.9-fold (P = 0.0024) increase in +11 levels in L56Br-C1, SUM149PT and 

UWB1.289 exon 11 mutant cell lines, respectively, but did not affect +11 levels in wild-

type MDA-MB-231 cells, or Δ11q mRNA levels in any of the cell lines (Fig. 1F).  

 

The increase in +11 mRNA resulting from inhibition of NMD led us to predict that exon 

11 mutant cell lines have robust BRCA1 gene transcription. To test this possibility, we 
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treated cells with the transcription inhibitor actinomycin D (ACT) and measured BRCA1 

mRNA levels. MDA-MB-231 cells treated with ACT had a 1.4-fold (P = 0.0002) 

reduction in +11 mRNA levels compared to vehicle treated cells. However, ACT 

treatment reduced +11 levels 3-fold (P = 0.0133) in SUM149PT cells compared to 

vehicle treated cells, and completely abrogated the CHX-mediated increase in +11 

mRNA (Fig. 1G). ACT also reduced Δ11q levels 1.6-fold (P = 0.002) and 2-fold (P = 

0.021) in MDA-MB-231 and SUM149PT cells, respectively, compared to vehicle 

treatments (Fig. 1H).  

 

Exon 11 mutant cells demonstrate partial PARPi and cisplatin resistance.  We next 

measured the ability of exon 11 mutant cells to form BRCA1 and RAD51 foci. BRCA1 

wild-type as well as exon 11 mutant cell lines formed robust BRCA1 and RAD51 γ-

irradiation-induced foci (IRIF). In contrast, BRCA1 and RAD51 IRIF were low or 

undetectable in cells that harbored BRCA1 mutations outside of exon 11 (Fig. 2A).  

SUM1315MO2, HCC1395 and MDA-MB-436 cell lines were highly sensitive to 

treatment with the PARP inhibitors rucaparib and olaparib. In contrast, exon 11 mutation 

containing L56Br-C1, SUM149PT and UWB1.289 cells displayed intermediate PARPi 

sensitivity. SUM1315MO2, HCC1395 and MDA-MB-436 cell lines were also more 

sensitive to cisplatin treatment compared to L56Br-C1, SUM149PT and UWB1.289 cells. 

The presence of BRCA1 exon 11 mutations did not impact taxol sensitivity (Fig. 2B and 

Supplementary Table S2).  
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In cell growth experiments, BRCA1 wild-type cells continuously cultured in the presence 

of PARPi or cisplatin proliferated at the same rate as vehicle treated cells (Fig. 2C). Exon 

11 mutant cell lines proliferated at a reduced rate in the presence of PARPi or cisplatin 

(Fig. 2C). MDA-MB-436 and HCC1395 cell lines harbor BRCT domain mutations and 

lost viability in the presence of PARPi or cisplatin. PARPi and cisplatin initially had a 

greater impact on the proliferation rate of UWB1.289 cells, but over time proliferation 

gradually increased, and corresponded with increased expression of BRCA1-Δ11q (Fig. 

2D). Importantly, depletion of the BRCA1-Δ11q using 2 BRCA1 shRNAs reduced 

RAD51 IRIF 6.8- (P = 0.0021) and 5.7-fold (P = 0.0027) in SUM149PT, as well as 6- (P 

= 0.0014) and 4.7-fold (P = 0.0016) in UWB1.289 cells, compared to non-target (NT) 

shRNA cells (Fig. 2E). Furthermore, BRCA1 shRNA sensitized SUM149PT and 

UWB1.289 cells to both PARPi and cisplatin treatments (Fig. 2F and Supplementary 

Table S2). 

 

BRCA1-Δ11q is functional but inferior to BRCA1-full-length.  To more finely assess the 

ability of BRCA1-Δ11q to provide resistance to therapy, we used CRISPR/Cas9-

mediated gene editing to modify BRCA1 in SUM149PT cells (Supplementary Fig. S4). 

SUM149PT cells were subject to an sg_GFP control, or sg_exon11 targeting the 

mutation-containing region of exon 11. Mutations introduced by sg_exon11 were either 

out of frame (out-frame) or restored the BRCA1 reading frame (in-frame). Moreover, cell 

lines that expressed sg_exon22 demonstrated frameshift mutations in exons 22, resulting 

in loss of BRCA1-Δ11q expression (Fig. 3A and Supplementary Fig. S4). BRCA1-Δ11q 

expression in sg_exon11 treated clones with unrestored reading frames was identical to 
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sg_GFP control cells and there were no differences in PARPi and cisplatin sensitivity in 

colony formation assays. However, sg_exon11 in-frame clone 3 was 226- (P = 0.0174) 

and 3.7-fold (P = 0.0009) more resistant to PARPi and cisplatin, respectively, and clone 4 

was 207- (P < 0.0001) and 3.6-fold (P = 0.0058) more resistant to PARPi and cisplatin, 

respectively, compared to sg_GFP cells. In contrast, sg_exon22 cells were 31.4- (P = 

0.0183) and 2.3-fold (P = 0.0059) more sensitive to PARPi and cisplatin, respectively, 

compared to sg_GFP cells (Fig. 3B). 

 

We also compared the ability of ectopic BRCA1 full-length and BRCA1-Δ11q to rescue 

PARPi and cisplatin sensitivity (Fig. 3C). MDA-MB-436 cells harbor a BRCA15396+1G>A  

mutation that results in protein misfolding, undetectable BRCA1 protein and RAD51 

IRIF, as well as exquisite PARPi and cisplatin sensitivity (20, 39, 40). MDA-MB-436 

cells expressing BRCA1-full-length demonstrated robust rescue and were 179- (P = 

0.0063) and 4.6-fold (P = 0.0002) more resistant to PARPi and cisplatin, respectively, 

compared to mCherry control cells. BRCA1-Δ11q was less effective at rescue, and cells 

were 19- (P = 0.0493) and 2.8-fold (P = 0.0004) more resistant to PARPi and cisplatin, 

respectively, compared to mCherry control cells (Fig. 3D). Moreover, when we 

introduced an L304P mutation (equivalent to L1407P in full-length BRCA1) that blocks 

the BRCA1-PALB2 interaction (41), BRCA1-Δ11q mediated-PARPi and cisplatin rescue 

was abolished (Fig. 3D).  

 

Both BRCA1-full-length and BRCA1-Δ11q expressing cells formed BRCA1 and RAD51 

IRIF. However, BRCA1-Δ11q expressing cells exhibited 1.9- (P = 0.0053) and 1.9-fold 
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(P = 0.0141) lower levels of BRCA1 and RAD51 IRIF, respectively, than full-length 

BRCA1 expressing cells, while BRCA1-Δ11q+ L304P expressing cells had undetectable 

BRCA1 and RAD51 IRIF (Fig. 3E). Immunoprecipitation of ectopic BRCA1 from 

MDA-MB-436 cells suggested that BRCA1-Δ11q interacted, although less efficiently, 

with functional protein partners for full-length BRCA1 (Fig. 3F). We also demonstrated 

ectopic BRCA1-Δ11q provided therapy resistance in HCC1395 cells and in a mouse 

embryonic stem cell system (42) (Supplementary Fig. S5). 

 

BRCA1-Δ11q promotes resistance in vivo.  To examine the significance of BRCA1-Δ11q 

expression in tumors, we first measured PARPi responsiveness and BRCA1 isoform 

expression in two individual BRCA1 exon 11 mutant patient-derived xenograft (PDX) 

models. Despite both PDX models harboring the same BRCA1-exon 11 2080delA 

mutation (Supplementary Fig. S2), PDX124 tumors were sensitive and PDX196 tumors 

were resistant to olaparib treatment (Fig. 4A). We confirmed that tumors did not have 

reversion mutations or gene rearrangements (Supplementary Fig. S2). Similar to exon 11 

mutant cell lines, both PDX124 and PDX196 expressed higher levels of Δ11q compared 

to +11 mRNA, relative to MDA-MB-231 control cells. However, BRCA1 mRNA levels 

were significantly greater in PDX196 tumors than in PDX124 tumors, with 26- (P = 

0.0001) and 23-fold (P < 0.0001) higher levels of both +11 and Δ11q, respectively (Fig. 

4B). BRCA1-Δ11q protein expression was detectable in olaparib resistant PDX196 

tumors, as well as PDX124 tumors that eventually grew through olaparib treatment (Fig. 

4C). BRCA1 foci formation was also readily detectable in PDX196 tumors (Fig. 4D). 
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To further assess the impact of BRCA1-Δ11q on therapy resistance in vivo, we utilized 

the MDA-MB-436 isogenic cell line panel for xenograft experiments. At 30 days post 

tumor implantation, rucaparib or cisplatin treatment delayed mean tumor growth 6.8- (P 

< 0.0001) and 12.9-fold (P < 0.0001), respectively, compared to vehicle treated mice 

with mCherry overexpressing MDA-MB-436 tumors. In contrast, rucaparib and cisplatin 

treatment delayed mean tumor growth 1.1-fold (P = 0.4455) and 1.28-fold (P = 0.2537) 

in BRCA1-wild-type and 1.4-fold (P = 0.0872) and 2.3-fold (P = 0.019) in BRCA1-Δ11q 

overexpressing tumors, respectively, compared to vehicle treated mice (Fig. 4 E,F).  

 

Kaplan-Meier analyses indicated that the median overall survival (OS) of mice harboring 

mCherry expressing tumors that were treated with rucaparib or cisplatin increased 1.7-

fold (P = 0.0016, log-rank test) and 2-fold (P = 0.0016, log-rank test), respectively, 

compared to vehicle treated mice. In contrast, in mice harboring BRCA1 wild-type 

tumors that were treated with rucaparib or cisplatin, median OS increased 1.3-fold (P = 

0.0071, log-rank test) and 1.4-fold (P = 0.0048, log-rank test), respectively, and in mice 

harboring BRCA1-Δ11q tumors treated with rucaparib or cisplatin median OS increased 

1.2-fold (P = 0.1536, log-rank test) and 1.5-fold (P = 0.0333, log-rank test), respectively, 

compared to vehicle treated mice (Fig. 4G).  

 

Short-term assessment of pharmacodynamics markers showed that rucaparib increased γ-

H2AX positivity similarly in all tumors, but wild-type and BRCA1-Δ11q tumors had 4.5- 

(P < 0.0001) and 2.2-fold (P = 0.005) lower γ-H2AX positivity, respectively, after 

cisplatin treatment compared to mCherry expressing tumors. Additionally, wild-type and 
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BRCA1-Δ11q tumors treated with rucaparib had 2.2- (P = 0.0007) and 2.5-fold (P = 

0.0059) higher Ki67 positivity, respectively; and tumors treated with cisplatin had  

2.6- (P < 0.0001) and 3.7-fold (P = 0.0003) higher Ki67 positivity, respectively, 

compared to mCherry expressing tumors (Fig. 4G). In contrast to in vitro data, the degree 

of PARPi or cisplatin rescue afforded by BRCA1-Δ11q overexpression was more similar 

to BRCA1 full-length in vivo. 

 

Assessment of BRCA1 exon 11 mutations and patient survival.  Because exon 11 mutant 

tumors were capable of expressing BRCA1-Δ11q, we assessed survival outcomes of 

patients with frameshift mutations located inside (IE11) versus outside (OE11) of exon 

11. We analyzed 5-year overall survival data from the time of initial diagnosis in patients 

with serous ovarian carcinoma from a previously reported study (43). Here, participants 

with BRCA1 frameshift mutations OE11 (n = 231, 43%; 95% CI, 36%-49%) presented 

better OS than noncarriers (n = 1333, 33%; 95% CI, 30%-36%) (P = 0.002, Log rank 

test) as well as participants with frameshift mutations IE11 (n = 148, 31%; 95% CI, 23%-

39%) (P = 0.02, Log rank test) at 5 years of follow up. Moreover, participants with 

frameshift mutations IE11 presented with 5-year OS similar to noncarriers (P = 0.84, Log 

rank test) (Fig. 5A, Supplementary Tables S3 and S4). 

 

Although patients with exon 11 mutations demonstrated worse 5-year survival, we 

hypothesized that, similar to our PDX data, BRCA1-Δ11q might only be highly expressed 

in a fraction of exon 11 mutant tumors, and so not all exon 11 mutant patients would 

necessarily be resistant to therapy. Analyses of primary tumors (unrelated to the above 
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studies) with mutations IE11 showed variable levels of BRCA1-Δ11q expression. Tumor 

#317 expressed 2.7- (P = 0.0227) and 4-fold (P = 0.0117) greater levels of Δ11q 

compared to tumor #325 and tumor #411, respectively, despite all tumors harboring 

deleterious exon 11 mutations (Fig. 5A).  

 

 

Inhibition of splicing increases PARPi sensitivity.  Because high levels of BRCA1-Δ11q 

expression were required for residual function, we hypothesized that limiting splicing-

dependent excision of exon 11q might provide an opportunity to enhance PARPi 

sensitivity. We first identified two binding elements for the FOX2 splicing site selection 

factor at position +18 and +63 downstream from the cryptic splice site location 

(Supplementary Fig. S6) (44, 45). Depletion of FOX2 using 2 individual siRNAs did not 

impact +11 expression levels, but reduced Δ11q expression 1.7- (P = 0.0043) and 1.6-

fold (P = 0.0179) in MDA-MB-231, 1.5- (P = 0.048) and 1.6-fold (P = 0.0301) in 

UWB1.289, 2.2- (P = 0.0056) and 3.1-fold (P = 0.0017) in SUM149PT cells, compared 

to scrambled siRNA treated cells, respectively (Fig. 6A). At the protein level, 

densitometric analyses of Western blots indicated FOX2 siRNA did not impact full-

length BRCA1 protein expression, but BRCA1-Δ11q levels were reduced 2.9- and 2.2-

fold in MDA-MB-231, 2- and 2.8-fold in UWB1.289, 1.9- and 1.8-fold in SUM149PT 

cells, compared to scrambled siRNA treated cells (Fig. 6B). FOX2 siRNA had no impact 

on MDA-MB-231 cells PARPi sensitivity, but reduced the LC50 value of rucaparib 3.8- 

(P = 0.0063) and 27.4-fold (P = 0.0017) in UWB1.289 cells, as well as 1.9- (P = 0.0237) 

and 5-fold (P = 0.0002) in SUM149PT cells, compared to scrambled siRNA treated cells 
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(Fig. 6C). Furthermore, BRCA1-minigene analyses demonstrated that mutation of FOX2 

binding motifs also partially decreased Δ11q-reporter mRNA and protein levels (Fig. 

6D). 

 

We next investigated the ability of pladienolide B (Pl-B), a small molecule inhibitor of 

the U2 snRNP spliceosome machinery(46), to disrupt BRCA1-Δ11q production. Pl-B 

treatment reduced both +11 and Δ11q mRNA expression, however the relative reduction 

in Δ11q levels was 7.7- (P = 0.002) and 7-fold (P = 0.016) greater compared to the 

reduction in +11 levels in MDA-MB-231 and UWB1.289 cells, respectively (Fig. 6E). 

Furthermore, full-length BRCA1 protein levels were reduced but remained readily 

detectable after treatment with up to 10 nM Pl-B in MDA-MB-231 cells. However, 

BRCA1-Δ11q protein levels were barely detectable at 1.25 nM Pl-B in both MDA-MB-

231 and UWB1.289 cells (Fig. 6F). Simultaneous incubation with both Pl-B and 

rucaparib did not significantly impact MDA-MB-231 cells, but resulted in a 2.8- (P = 

0.0296) and 2.1-fold (P = 0.0426) reduction in colony formation compared to cells 

treated with rucaparib only in UWB1.289 and SUM149PT cells, respectively (Fig. 6G). 

Furthermore, ectopic overexpression of a BRCA1-Δ11q cDNA that did not depend on 

exon 11q splicing, resulted in a 1.9-fold (P = 0.001) rescue in colony formation in cells 

treated with the Pl-B and rucaparib combination, compared to GFP expressing control 

cells (Fig. 6H); suggesting that Pl-B-induced PARPi sensitization was mediated, in part, 

through the reduction in BRCA1-Δ11q levels.   
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Discussion  

In the current study, we provide evidence that BRCA1 splice isoforms lacking exon 11 

are capable of producing truncated but hypomorphic proteins. It was previously shown 

that the exon 11 deficient Brca1-Δ11 isoform partially compensates for the lack of other 

Brca1 isoforms during embryogenesis (31-33, 47). Here, we show that BRCA1-Δ11q can 

also partially compensate for full-length BRCA1 in response to homologous 

recombination targeting therapeutics. BRCA1-Δ11q retains, although less efficiently, 

many of the protein-protein interactions carried out by full-length BRCA1. We identified 

the BRCA1-Δ11q-PALB2 interaction as critical for BRCA1-Δ11q-mediated RAD51 

IRIF and resistance.  

 

BRCA1-Δ11q was expressed in BRCA1 wild-type as well as exon 11 mutant cell lines. 

Although frameshift mutations in exon 11 resulted in the NMD of exon 11 containing-

transcripts, they did not impact the rate of alternative splicing or directly affect BRCA1-

Δ11q levels. In support of this, PDX124 and PDX196 tumors both harbored identical 

2080delA exon 11 mutations; however, both +11 and Δ11q transcript levels were 

significantly higher in PDX196 relative to PDX124 tumors, suggesting that overall 

BRCA1 gene transcription, rather than the rate of alternative exon splicing, was elevated. 

Both patients whose tumors were used to derive PDX124 and PDX196 initially 

demonstrated clinical responsiveness to olaparib therapy; while PDX124 was derived 

prior to the patient starting olaparib therapy, PDX196 was derived at the time of clinical 

tumor progression on olaparib. We anticipate that high levels of BRCA1-Δ11q expression 

may be selected for in response to chemotherapy. Primary patient tumors harboring exon 
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11 mutations also demonstrated variable BRCA1-Δ11q levels, and this isoform might 

only be overexpressed in a subset of exon 11 mutation carriers. Additional resistance 

mechanisms such as secondary reversion mutations have also been shown to occur in 

tumors with exon 11 mutations (48, 49). 

 

Intriguingly, our analyses indicated that exon 11 mutation carriers with ovarian cancer 

had a worse 5-year overall survival compared to non-exon 11 mutation carriers (Fig. 5A). 

Another recent study of mutation-specific cancer risks identified the exon 11 region of 

BRCA1 as an ovarian cancer cluster region, where mutation carriers had a relative 

decrease in breast relative to ovarian cancer risk (50). Further work is required to 

determine if BRCA1-Δ11q has any impact on long-term survival outcomes or breast 

versus ovarian tissue specific phenotypes.  

 

Currently, an understanding of PARPi and platinum resistance is incomplete. Our 

findings provide evidence for a role of the BRCA1-Δ11q alternative splice isoform in 

promoting resistance. Moreover, we show that inhibition of the spliceosome reduced 

BRCA1-Δ11q levels and sensitized exon 11 mutant cell lines to PARPi, potentially 

offering a strategy to re-sensitize tumors that express high levels of BRCA1-Δ11q. 

 

 

 

 

 



 27

Acknowledgments 

This work was supported by US National Institutes of Health (NIH) Grants P50 

CA083638 [Fox Chase Cancer Center (FCCC) Specialized Program of Research 

Excellence (SPORE) in Ovarian Cancer and R21CA191690, 5P30 CA006927 (FCCC 

Developmental New Investigator funds), Susan G. Komen Career Catalyst Award 

CCR12226280, and OC130212 Department of Defense Ovarian Academy Award, Basser 

Center for BRCA pilot project award (N.J.), P50 CA83636 (Pacific Ovarian Cancer 

Research Consortium SPORE in Ovarian Cancer), the Wendy Feuer Ovarian Cancer 

Research Fund (E.M.S.). M.H.G. was supported by the Intramural Research Program of 

the US National Cancer Institute. Rucaparib was supplied by Clovis Oncology. We thank 

the FCCC Biostatistics and bioinformatics, Biorepository and Genomics facilities.  J.B. is 

recipient of an Instituto de Salut Carlos III (ISCIII) grant PI12/02606. This work was also 

supported by a GHD/FERO grant (V.S.). The authors thank Yasir H. Ibrahim, Pilar 

Antón, Ana Vivancos, Orland Diaz, Michael Slifker, Yusheng Li for helpful 

experimental support and data analysis. 

 

 

 

 

 

 

 

 



 28

References 

1. Szabo, C.I., and King, M.C. 1995. Inherited breast and ovarian cancer. Hum Mol 

Genet 4 Spec No:1811-1817. 

2. Friedman, L.S., Ostermeyer, E.A., Szabo, C.I., Dowd, P., Lynch, E.D., Rowell, 

S.E., and King, M.C. 1994. Confirmation of BRCA1 by analysis of germline 

mutations linked to breast and ovarian cancer in ten families. Nat Genet 8:399-

404. 

3. Perrin-Vidoz, L., Sinilnikova, O.M., Stoppa-Lyonnet, D., Lenoir, G.M., and 

Mazoyer, S. 2002. The nonsense-mediated mRNA decay pathway triggers 

degradation of most BRCA1 mRNAs bearing premature termination codons. Hum 

Mol Genet 11:2805-2814. 

4. Moynahan, M.E., Cui, T.Y., and Jasin, M. 2001. Homology-directed dna repair, 

mitomycin-c resistance, and chromosome stability is restored with correction of a 

Brca1 mutation. Cancer Res 61:4842-4850. 

5. Scully, R., Chen, J., Ochs, R.L., Keegan, K., Hoekstra, M., Feunteun, J., and 

Livingston, D.M. 1997. Dynamic changes of BRCA1 subnuclear location and 

phosphorylation state are initiated by DNA damage. Cell 90:425-435. 

6. Lord, C.J., Tutt, A.N., and Ashworth, A. 2015. Synthetic lethality and cancer 

therapy: lessons learned from the development of PARP inhibitors. Annu Rev Med 

66:455-470. 

7. Lord, C.J., and Ashworth, A. 2013. Mechanisms of resistance to therapies 

targeting BRCA-mutant cancers. Nat Med 19:1381-1388. 



 29

8. Bryant, H.E., Schultz, N., Thomas, H.D., Parker, K.M., Flower, D., Lopez, E., 

Kyle, S., Meuth, M., Curtin, N.J., and Helleday, T. 2005. Specific killing of 

BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. 

Nature 434:913-917. 

9. Farmer, H., McCabe, N., Lord, C.J., Tutt, A.N., Johnson, D.A., Richardson, T.B., 

Santarosa, M., Dillon, K.J., Hickson, I., Knights, C., et al. 2005. Targeting the 

DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 

434:917-921. 

10. Kennedy, R.D., Quinn, J.E., Mullan, P.B., Johnston, P.G., and Harkin, D.P. 2004. 

The role of BRCA1 in the cellular response to chemotherapy. J Natl Cancer Inst 

96:1659-1668. 

11. Quinn, J.E., Kennedy, R.D., Mullan, P.B., Gilmore, P.M., Carty, M., Johnston, 

P.G., and Harkin, D.P. 2003. BRCA1 functions as a differential modulator of 

chemotherapy-induced apoptosis. Cancer Res 63:6221-6228. 

12. Gelmon, K.A., Tischkowitz, M., Mackay, H., Swenerton, K., Robidoux, A., 

Tonkin, K., Hirte, H., Huntsman, D., Clemons, M., Gilks, B., et al. 2011. Olaparib 

in patients with recurrent high-grade serous or poorly differentiated ovarian 

carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, 

non-randomised study. Lancet Oncol 12:852-861. 

13. Sandhu, S.K., Schelman, W.R., Wilding, G., Moreno, V., Baird, R.D., Miranda, 

S., Hylands, L., Riisnaes, R., Forster, M., Omlin, A., et al. 2013. The poly(ADP-

ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and 



 30

patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet Oncol 

14:882-892. 

14. Ang, J.E., Gourley, C., Powell, B., High, H., Shapira-Frommer, R., Castonguay, 

V., De Greve, J., Atkinson, T., Yap, T.A., Sandhu, S., et al. 2013. Efficacy of 

chemotherapy in BRCA1/2 mutation carrier ovarian cancer in the setting of 

poly(ADP-ribose) polymerase inhibitor resistance: a multi-institutional study. 

Clin Cancer Res. 

15. Ledermann, J., Harter, P., Gourley, C., Friedlander, M., Vergote, I., Rustin, G., 

Scott, C.L., Meier, W., Shapira-Frommer, R., Safra, T., et al. 2014. Olaparib 

maintenance therapy in patients with platinum-sensitive relapsed serous ovarian 

cancer: a preplanned retrospective analysis of outcomes by BRCA status in a 

randomised phase 2 trial. Lancet Oncol 15:852-861. 

16. Edwards, S.L., Brough, R., Lord, C.J., Natrajan, R., Vatcheva, R., Levine, D.A., 

Boyd, J., Reis-Filho, J.S., and Ashworth, A. 2008. Resistance to therapy caused 

by intragenic deletion in BRCA2. Nature 451:1111-1115. 

17. Sakai, W., Swisher, E.M., Karlan, B.Y., Agarwal, M.K., Higgins, J., Friedman, 

C., Villegas, E., Jacquemont, C., Farrugia, D.J., Couch, F.J., et al. 2008. 

Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated 

cancers. Nature 451:1116-1120. 

18. Bouwman, P., Aly, A., Escandell, J.M., Pieterse, M., Bartkova, J., van der 

Gulden, H., Hiddingh, S., Thanasoula, M., Kulkarni, A., Yang, Q., et al. 2010. 

53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and 

BRCA-mutated breast cancers. Nat Struct Mol Biol 17:688-695. 



 31

19. Bunting, S.F., Callen, E., Wong, N., Chen, H.T., Polato, F., Gunn, A., Bothmer, 

A., Feldhahn, N., Fernandez-Capetillo, O., Cao, L., et al. 2010. 53BP1 inhibits 

homologous recombination in Brca1-deficient cells by blocking resection of DNA 

breaks. Cell 141:243-254. 

20. Johnson, N., Johnson, S.F., Yao, W., Li, Y.C., Choi, Y.E., Bernhardy, A.J., 

Wang, Y., Capelletti, M., Sarosiek, K.A., Moreau, L.A., et al. 2013. Stabilization 

of mutant BRCA1 protein confers PARP inhibitor and platinum resistance. Proc 

Natl Acad Sci U S A 110:17041-17046. 

21. Drost, R., Bouwman, P., Rottenberg, S., Boon, U., Schut, E., Klarenbeek, S., 

Klijn, C., van der Heijden, I., van der Gulden, H., Wientjens, E., et al. 2011. 

BRCA1 RING function is essential for tumor suppression but dispensable for 

therapy resistance. Cancer Cell 20:797-809. 

22. Rottenberg, S., Jaspers, J.E., Kersbergen, A., van der Burg, E., Nygren, A.O., 

Zander, S.A., Derksen, P.W., de Bruin, M., Zevenhoven, J., Lau, A., et al. 2008. 

High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor 

AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci U S 

A 105:17079-17084. 

23. Colombo, M., Blok, M.J., Whiley, P., Santamarina, M., Gutierrez-Enriquez, S., 

Romero, A., Garre, P., Becker, A., Smith, L.D., De Vecchi, G., et al. 2014. 

Comprehensive annotation of splice junctions supports pervasive alternative 

splicing at the BRCA1 locus: a report from the ENIGMA consortium. Hum Mol 

Genet 23:3666-3680. 



 32

24. Thomassen, M., Blanco, A., Montagna, M., Hansen, T.V., Pedersen, I.S., 

Gutierrez-Enriquez, S., Menendez, M., Fachal, L., Santamarina, M., Steffensen, 

A.Y., et al. 2012. Characterization of BRCA1 and BRCA2 splicing variants: a 

collaborative report by ENIGMA consortium members. Breast Cancer Res Treat 

132:1009-1023. 

25. Romero, A., Garcia-Garcia, F., Lopez-Perolio, I., Ruiz de Garibay, G., Garcia-

Saenz, J.A., Garre, P., Ayllon, P., Benito, E., Dopazo, J., Diaz-Rubio, E., et al. 

2015. BRCA1 Alternative splicing landscape in breast tissue samples. BMC 

Cancer 15:219. 

26. Orban, T.I., and Olah, E. 2001. Expression profiles of BRCA1 splice variants in 

asynchronous and in G1/S synchronized tumor cell lines. Biochem Biophys Res 

Commun 280:32-38. 

27. Tammaro, C., Raponi, M., Wilson, D.I., and Baralle, D. 2012. BRCA1 exon 11 

alternative splicing, multiple functions and the association with cancer. Biochem 

Soc Trans 40:768-772. 

28. Raponi, M., Smith, L.D., Silipo, M., Stuani, C., Buratti, E., and Baralle, D. 2014. 

BRCA1 exon 11 a model of long exon splicing regulation. RNA Biol 11:351-359. 

29. Orban, T.I., and Olah, E. 2003. Emerging roles of BRCA1 alternative splicing. 

Mol Pathol 56:191-197. 

30. Wilson, C.A., Payton, M.N., Elliott, G.S., Buaas, F.W., Cajulis, E.E., Grosshans, 

D., Ramos, L., Reese, D.M., Slamon, D.J., and Calzone, F.J. 1997. Differential 

subcellular localization, expression and biological toxicity of BRCA1 and the 

splice variant BRCA1-delta11b. Oncogene 14:1-16. 



 33

31. Ludwig, T., Chapman, D.L., Papaioannou, V.E., and Efstratiadis, A. 1997. 

Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal 

phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous 

embryos. Genes Dev 11:1226-1241. 

32. Xu, X., Qiao, W., Linke, S.P., Cao, L., Li, W.M., Furth, P.A., Harris, C.C., and 

Deng, C.X. 2001. Genetic interactions between tumor suppressors Brca1 and p53 

in apoptosis, cell cycle and tumorigenesis. Nat Genet 28:266-271. 

33. Xu, X., Wagner, K.U., Larson, D., Weaver, Z., Li, C., Ried, T., Hennighausen, L., 

Wynshaw-Boris, A., and Deng, C.X. 1999. Conditional mutation of Brca1 in 

mammary epithelial cells results in blunted ductal morphogenesis and tumour 

formation. Nat Genet 22:37-43. 

34. Breast Cancer Information Core 

(https://research.nhgri.nih.gov/projects/bic/index.shtml). 

35. Thompson, D., Easton, D., and Breast Cancer Linkage, C. 2002. Variation in 

BRCA1 cancer risks by mutation position. Cancer Epidemiol Biomarkers Prev 

11:329-336. 

36. Risch, H.A., McLaughlin, J.R., Cole, D.E., Rosen, B., Bradley, L., Fan, I., Tang, 

J., Li, S., Zhang, S., Shaw, P.A., et al. 2006. Population BRCA1 and BRCA2 

mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, 

Canada. J Natl Cancer Inst 98:1694-1706. 

37. Risch, H.A., McLaughlin, J.R., Cole, D.E., Rosen, B., Bradley, L., Kwan, E., 

Jack, E., Vesprini, D.J., Kuperstein, G., Abrahamson, J.L., et al. 2001. Prevalence 



 34

and penetrance of germline BRCA1 and BRCA2 mutations in a population series 

of 649 women with ovarian cancer. Am J Hum Genet 68:700-710. 

38. Barbier, J., Dutertre, M., Bittencourt, D., Sanchez, G., Gratadou, L., de la Grange, 

P., and Auboeuf, D. 2007. Regulation of H-ras splice variant expression by cross 

talk between the p53 and nonsense-mediated mRNA decay pathways. Mol Cell 

Biol 27:7315-7333. 

39. Williams, R.S., Chasman, D.I., Hau, D.D., Hui, B., Lau, A.Y., and Glover, J.N. 

2003. Detection of protein folding defects caused by BRCA1-BRCT truncation 

and missense mutations. J Biol Chem 278:53007-53016. 

40. Williams, R.S., and Glover, J.N. 2003. Structural consequences of a cancer-

causing BRCA1-BRCT missense mutation. J Biol Chem 278:2630-2635. 

41. Sy, S.M., Huen, M.S., and Chen, J. 2009. PALB2 is an integral component of the 

BRCA complex required for homologous recombination repair. Proc Natl Acad 

Sci U S A 106:7155-7160. 

42. Bouwman, P., van der Gulden, H., van der Heijden, I., Drost, R., Klijn, C.N., 

Prasetyanti, P., Pieterse, M., Wientjens, E., Seibler, J., Hogervorst, F.B., et al. 

2013. A high-throughput functional complementation assay for classification of 

BRCA1 missense variants. Cancer Discov 3:1142-1155. 

43. Bolton, K.L., Chenevix-Trench, G., Goh, C., Sadetzki, S., Ramus, S.J., Karlan, 

B.Y., Lambrechts, D., Despierre, E., Barrowdale, D., McGuffog, L., et al. 2012. 

Association between BRCA1 and BRCA2 mutations and survival in women with 

invasive epithelial ovarian cancer. JAMA 307:382-390. 



 35

44. Venables, J.P., Klinck, R., Koh, C., Gervais-Bird, J., Bramard, A., Inkel, L., 

Durand, M., Couture, S., Froehlich, U., Lapointe, E., et al. 2009. Cancer-

associated regulation of alternative splicing. Nat Struct Mol Biol 16:670-676. 

45. Huang, S.C., Ou, A.C., Park, J., Yu, F., Yu, B., Lee, A., Yang, G., Zhou, A., and 

Benz, E.J., Jr. 2012. RBFOX2 promotes protein 4.1R exon 16 selection via U1 

snRNP recruitment. Mol Cell Biol 32:513-526. 

46. Kotake, Y., Sagane, K., Owa, T., Mimori-Kiyosue, Y., Shimizu, H., Uesugi, M., 

Ishihama, Y., Iwata, M., and Mizui, Y. 2007. Splicing factor SF3b as a target of 

the antitumor natural product pladienolide. Nat Chem Biol 3:570-575. 

47. Huber, L.J., Yang, T.W., Sarkisian, C.J., Master, S.R., Deng, C.X., and Chodosh, 

L.A. 2001. Impaired DNA damage response in cells expressing an exon 11-

deleted murine Brca1 variant that localizes to nuclear foci. Mol Cell Biol 21:4005-

4015. 

48. Norquist, B., Wurz, K.A., Pennil, C.C., Garcia, R., Gross, J., Sakai, W., Karlan, 

B.Y., Taniguchi, T., and Swisher, E.M. 2011. Secondary somatic mutations 

restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian 

carcinomas. J Clin Oncol 29:3008-3015. 

49. Patch, A.M., Christie, E.L., Etemadmoghadam, D., Garsed, D.W., George, J., 

Fereday, S., Nones, K., Cowin, P., Alsop, K., Bailey, P.J., et al. 2015. Whole-

genome characterization of chemoresistant ovarian cancer. Nature 521:489-494. 

50. Rebbeck, T.R., Mitra, N., Wan, F., Sinilnikova, O.M., Healey, S., McGuffog, L., 

Mazoyer, S., Chenevix-Trench, G., Easton, D.F., Antoniou, A.C., et al. 2015. 



 36

Association of type and location of BRCA1 and BRCA2 mutations with risk of 

breast and ovarian cancer. JAMA 313:1347-1361. 

 

 

Figure legends  

Figure 1. BRCA1 exon 11 mutant cell lines express BRCA1-Δ11q. 

(A) Cell lines were analyzed for BRCA1 and tubulin levels by Western blot. *Predicted 

BRCA1 locations, molecular weights are indicated. 

(B) Cells were treated with scrambled (Sc) or BRCA1-Δ11q (11q) siRNA and analyzed 

by Western blot. 

(C) Exon 11 containing (+11) BRCA1 transcripts and the BRCA1-Δ11q (Δ11q) isoform 

were detected using qRT-PCR. Values were normalized to a HKG, expressed as a 

percentage of MDA-MB-231 cells. 

(D) 293T cells were transfected with either GFP-control or BRCA1-minigene reporter 

constructs that were WT or carrying mutations that disrupted the cryptic 11q splice site 

(11q), or with frameshift mutations (M1:2288delT; M2:2529C>T; M3:3960C>T). 

BRCA1-Δ11q-reporter mRNA and protein expression was measured by RT-PCR (above) 

and Western blot (below), see Supplementary Fig. S3.  

(E) CRISPR/Cas9 targeting the mutation-containing region of exon 11 (sg_exon11) 

generated SUM149PT clones (C) 1-4, see Supplementary Fig. S4. +11 and Δ11q mRNA 

was measured using qRT-PCR (left), values were normalized to a HKG and expressed as 

a percentage of sg_GFP control cells. BRCA1 protein was detected by Western blot 

(right).  
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(F) The indicated cell lines were treated with vehicle or 10 μg/ml CHX for 5 hours 

followed by assessment of +11 (left) and Δ11q (right) levels by qRT-PCR.  

(G) Cells were treated with either vehicle (V), 10 μg/ml CHX (C), 5 μg/ml ACT (A) or A 

and C simultaneously for 5 hours and assessed for +11 expression by qRT-PCR.  

(H) Cells were treated with either vehicle (V), or 5 μg/ml ACT (A) for 5-hours and 

assessed for Δ11q expression by qRT-PCR. *P < 0.05. 

 

Figure 2. Exon 11 mutant cells are less sensitive to PARPi and cisplatin treatment. 

(A) Cells were untreated (no Rx) or treated with IR (10 Gy) and subject to 

immunofluorescence to detect BRCA1, RAD51 and γ-H2AX foci, representative images 

of IR treated cells. Mean ± S.E.M foci-positive cells are expressed as a percentage of 

total geminin positive cells.  

(B) Cell lines were treated with rucaparib, olaparib, cisplatin or taxol and colony 

formation assessed; graphs represent three independent experiments, mean ± S.E.M 

LC50 values; see Supplementary Table S2 for fold changes and P values. 

(C) Cells were maintained in the presence of vehicle, 100 nM rucaparib (left) or 20 ng/ml 

cisplatin (right) and counted every 4 days. Cell line growth was expressed as a 

percentage of vehicle treated cell numbers counted on the same day. Mean ± S.E.M from 

three technical replicates. 

(D) UWB1.289 vehicle, rucaparib (R) and cisplatin (C) treated cell lysates were collected 

at days 25 and 50 for Western blot analysis. 

(E) Assessment of BRCA1, RAD51 and γ-H2AX foci by immunofluorescence as for (A). 

Western blot (above) shows BRCA1-Δ11q was depleted using 2 individual BRCA1 
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targeting shRNAs. Representative images (below) of IR treated cells and Mean ± S.E.M 

foci-positive cells are expressed as a percentage of total geminin positive cells (right).  

(F) Cells described in (E) were treated with rucaparib or cisplatin and colony formation 

assessed; three independent experiments, mean ± S.E.M LC50 concentrations are shown, 

see Supplementary Table S2. *P < 0.05. 

 

Figure 3. BRCA1-Δ11q provides partial resistance to therapy in vitro. 

(A) CRISPR/Cas9 gene targeting the SUM149PT BRCA1 mutation-containing region of 

exon 11 (sg_exon11) did not affect the reading frame (OF) in clones 1, 2, or restored the 

reading frame (IF) in clones 3, 4. Targeting of exon 22 (sg_exon22) resulted in frameshift 

mutations and loss of BRCA1 expression. Cells treated with sg_GFP were used as a 

control. BRCA1 protein was detected by Western blot. See Supplementary Fig. S4 for 

more details. 

(B) Cells described in (A) were treated with rucaparib or cisplatin and colony formation 

assessed. 

(C) MDA-MB-436 cells expressing mCherry, BRCA1-full-length, BRCA1-Δ11q or 

BRCA1-Δ11q+L304P were assessed for BRCA1 protein expression by Western blot. 

(D) Cells described in (C) were treated with rucaparib or cisplatin and colony formation 

assessed. 

(E) Cells described in (C) were treated with IR (10 Gy) and subject to 

immunofluorescence to detect BRCA1, RAD51 and γ-H2AX foci, as well as geminin and 

DAPI staining, representative images of IR treated cells. Double geminin and BRCA1 or 

RAD51 positive cells were counted and expressed as a percentage of total geminin 
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positive cells, bars show mean ± S.E.M. geminin+BRCA1 or RAD51 foci-positive cells 

from three independent experiments. 

(F) Cells described in (C) were subject to immunoprecipitation using an anti-HA 

antibody and Western blotting with the indicated antibodies.  *P < 0.05. 

 

Figure 4. BRCA1-Δ11q promotes resistance in vivo. 

(A) PDX124 (n ≥ 8 mice) (left) and PDX196 (n ≥ 3 mice) (right) tumors were treated 

with vehicle (black lines) or olaparib (green lines) and tumor volume measured.  

(B) PDX tumors were harvested from three individual untreated mice and assessed for 

+11 and Δ11q expression by qRT-PCR. Values were normalized to the POL2RF HKG 

control and expressed as a percentage of the values calculated for MDA-MB-231 cells. 

(C) MDA-MB-231 cells were prepared for whole cell extract (WCE) as well as tumor 

xenografts and used as positive controls, and compared to PDX127 (BRCA1185delAG 

mutant control, n = 1), PDX196 (n = 2), PDX124 OS (growth inhibition with olaparib, n 

= 1) and OR (growth slowed with olaparib, n = 2) tumors for Western blotting. 

(D) Mice harboring PDX196 tumors were treated with vehicle or olaparib and tumors 

assessed for BRCA1 foci formation as well as geminin staining, representative images 

(left) and quantification of BRCA1 mean ± S.E.M. foci geminin-positive cells.  

(E) MDA-MB-436 tumor xenografts expressing mCherry, BRCA1 wild-type and 

BRCA1-Δ11q were treated with vehicle (black lines), rucaparib (green lines) or cisplatin 

(red lines) and tumor growth measured, lines represent individual tumors and mice (n = 

5). 

(F) Individual tumor volumes at day 30 are shown. 
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(G) Kaplan-Meier survival analyses for mice described in (E). 

(H) Mice were treated as in (E) for 4 days, tumors were assessed for γ-H2AX and Ki67 

staining by IHC. Representative images, scale bars show 50 μM. Mean ± S.E.M 

quantification of staining intensities. *P < 0.05. 

 

Figure 5. BRCA1 exon 11 mutations and patient survival. 

(A) Kaplan-Meier estimates of cumulative survival according to BRCA1 mutation group 

of serous ovarian cancer patients (see Supplementary Tables S3 and S4).  

(B) Primary breast and ovarian cancer patient tumors (unrelated to studies described in 

(A) were subject to qRT-PCR analysis for +11 and Δ11q expression. Values were 

normalized to a HKG control and expressed as a percentage of the values calculated for 

MDA-MB-231 cells. *P < 0.05. 

 

Figure 6. Splicing inhibition sensitizes exon 11 mutant cells to PARPi. 

(A) MDA-MB-231, UWB1.289 and SUM149PT cells were transfected with scrambled 

(Sc) or FOX2#1 and FOX2#2 siRNA and FOX2, POLR2F, +11 and Δ11q BRCA1 

isoform mRNA levels measured by qRT-PCR. Values were normalized to POLR2F HKG 

expression and expressed as a percentage of MDA-MB-231 cells.  

(B) Cells treated as in (A) were subject to Western blotting. 

(C) Cells treated as in (A) were subject to 3 day rucaparib and cisplatin exposure and 

reseeded for colony formation. Mean±S.E.M. LC50 values are shown.  

(D) 293T cells were transfected with BRCA1 minigene reporter constructs as in Fig. 1D 

and Supplementary Fig. S3, with FOX2 binding sites mutated (FOX). BRCA1-Δ11q-
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reporter construct mRNA and protein expression was measured by RT-PCR (left) and 

Western blot (right), respectively. 

(E) MDA-MB-231 and UWB1.289 cells incubated with Pl-B (10 nM) and mRNA levels 

measured by qRT-PCR. Values were expressed as a percentage of vehicle treated MDA-

MB-231 cells or UWB1.289 cells.  

(F) Cells were treated with increasing concentrations of Pl-B and subject to Western 

blotting.  

(G) Cells were treated with vehicle (-) or Pl-B (+) (1.25 nM) and either vehicle or 

rucaparib (100 nM) for 72 hours and reseeded for colony formation assay; mean ± S.E.M. 

colony formation of rucaparib treated cells calculated as a percentage of vehicle treated 

cells. 

(H) SUM149PT cells engineered to ectopically express GFP or BRCA1-Δ11q were 

treated as in (G) and assessed for colony formation. Western blot (left) and mean±S.E.M. 

colony formation of rucaparib treated cells, calculated as a percentage of vehicle treated 

cells (right).  *P < 0.05. 
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