
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Theoretical Derivation of a Brie-like Fluid Mixing Law

Citation for published version:
Papageorgiou, G, Amalokwu, K & Chapman, M 2016, 'Theoretical Derivation of a Brie-like Fluid Mixing Law'
Geophysical Prospecting, vol. 64, no. 4, pp. 1048–1053. DOI: 10.1111/1365-2478.12380

Digital Object Identifier (DOI):
10.1111/1365-2478.12380

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Geophysical Prospecting

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/82961645?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1111/1365-2478.12380
https://www.research.ed.ac.uk/portal/en/publications/theoretical-derivation-of-a-brielike-fluid-mixing-law(c16fbc6f-1ce0-4662-b6f8-c266dc463b6a).html


Theoretical Derivation of a Brie-like Fluid

Mixing Law

Giorgos Papageorgiou∗1, Kelvin Amalokwu†2, and Mark

Chapman‡1

1 School of Geosciences, Grant Institute, West Mains Road,

Edinburgh, EH9 3JW, UK

2 National Oceanography Centre, University of Southampton

Waterfront campus, Southampton, SO14 3ZH, UK

February 17, 2016

∗giorgos.papageorgiou@ed.ac.uk
†kelvin.amalokwu@noc.soton.ac.uk
‡mark.chapman@ed.ac.uk

1



Abstract

Prediction of the velocity of acoustic waves in partially saturated

rocks is very important in geophysical applications. The need to accu-

rately predict acoustic velocities has resulted in a widespread popular-

ity of Brie’s effective fluid mixing law. This empirical model together

with Gassmann’s formula are used routinely in fluid substitution prob-

lems in petroleum geophysics and seismic monitoring of carbon cap-

ture and storage. Most attempts to justify Brie’s model have been

focused on interpretation in terms of patchy saturation models and

attaching meaning to the Brie parameter in terms of the patch size.

In this paper, using a microstructural description of the rock and

a parameter relating to capillary pressure, we calculate an effective

fluid modulus that is very similar to Brie’s law. The fluid mixing law

we propose is independent of frequency and has a solid theoretical

foundation. This proposed law produces analytically harmonic and

arithmetic averaging at the endpoints. Our results indicate Brie-like

behaviour may not necessarily be related to frequency and patch-size

dependent phenomena.
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1 Introduction

In rock physics, it is both theoretically and experimentally shown that bulk

elastic properties are strongly affected by partial gas saturation. Practical

approaches to the problem of calculating partially saturated bulk moduli are

easy to implement hence very useful for practical purposes. Almost exclu-

sively the Gassmann (1951) formula is used in these approaches and often

several of its input parameters are adjusted to match experimental measure-

ments of S- and P-wave velocities from logs (see Simm, 2007).

From a physics perspective, the impact of partial saturation on the bulk

modulus can be attributed to an effective fluid modulus. Accurately describ-

ing this effective fluid modulus as a function of the saturating moduli is a

key component of fluid substitution. In Domenico (1974) it is argued that

the weighted harmonic average of the two saturating fluid moduli describes

this effective fluid in a pore space uniformly saturated by two or more fluids.

The harmonic average of Domenico (1974) predicts that a small amount

of gas would result in a radical decrease of the effective fluid modulus. This

effect was observed in seismic but not sonic frequencies in Murphy et al.

(1993). Therefore, it became accepted that the description of the effective

modulus of Domenico (1974) would have to be amended to account for a

behaviour closer to an arithmetic averaging law as observed in Murphy et al.

(1993).

A practical description of the effective fluid modulus was missing from

the literature and in Brie et al. (1995) an empirical model was suggested.
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Despite the lack of a theoretical foundation, this model has been used with

success in both exploration (e.g. Lee, 2004) and carbon capture and storage

applications (e.g. Queißer and Singh, 2013; Carcione et al., 2006; Grude et al.,

2014).

In its original form, Brie et al. (1995) calculate this effective fluid modulus

experimentally for a variety of water saturations in three unconsolidated

shaly sands and fit it to an empirical model:

Kf = (Kw −Kg)Sew +Kg, 1 < e . 40 (1)

where Kw,Kg are the water and gas fluid moduli respectively whereas Sw

is the water saturation. Its lower bound of 1 corresponds to an arithmetic

averaging law and the upper bound of about 40 approximates harmonic aver-

aging. In the well data fitted the dimensionless parameter e lies in the range

2 < e < 5. This effective fluid modulus is plotted in Figure 1 for various

values of its free parameter e.

This effect is commonly attributed to mesoscopic dispersion owing to wave

induced fluid flow in a patchy saturated rock and there is direct experimental

evidence (see Lebedev et al., 2009) to suggest this may be the case. The

extent to which saturation can be considered uniform, determines the exact

form of the effective fluid modulus (see Murphy et al., 1993; Mavko and

Mukerji, 1998; Toms-Stewart et al., 2009). This is the main idea behind Hill

(1963), White (1975) but see also Smith et al. (2003) and Carcione et al.
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(2011) for an overview. Central to these models is the concept of the fluid

patch size which is somewhat elusive and a difficult parameter to determine

(for a discussion see Castagna, 2001).

In Amalokwu et al. (2015b) and Amalokwu et al. (2015a), measurements

of a partially saturated bulk modulus are fitted to two dispersive models: one

to account for the patchiness of the saturation, and one to account for the

dispersive nature of squirt flow effects in full saturation. These two mecha-

nisms are considered independently of each other so it would be appealing to

fit both of them under a unified description which is the motivation behind

this work.

2 Theory

In recent work, Papageorgiou and Chapman (2015) argued that the spatial

fluid distribution in the pore space is not merely of patchy or uniform type.

Their justification was that the characteristic patch size is not an applicable

quantity when the pore space consists of narrow cracks and wider pores and

using a model that is suited to describe such a pore space, they showed how

the seismic properties of the saturated matrix are affected by different fluid

distributions across different inclusion types.

In Papageorgiou and Chapman (2015) one of the fundamental assump-

tions is that the saturating fluids – water and gas – are held at equal pressures

in the pore space and the seismic properties of the matrix are affected by

variations in water distribution along cracks and pores. Strictly speaking,

5



spatially inhomogeneous saturation and the assumption for equal pressure

are inconsistent with each other. A difference in crack and pore saturation

can only be driven by capillary forces. Capillary forces exist exactly because

of the imbalance in surface energy between different fluids which results in

a pressure difference between the two fluids if the matrix is assumed to be

wetted by one of them.

In this work we use an Eshelby-based inclusion model where the inclu-

sions are saturated by multiple fluids. The relationship of such models to

Gassmann’s theory is discussed in Chapman et al. (2002). Taking capillary

pressure into account, we show that this theory admits an effective fluid

modulus resembling the Brie et al. (1995) mixing law. The corresponding

free parameter has a straightforward interpretation in terms of the capillary

pressure.

We use the same notation as Papageorgiou and Chapman (2015) to ex-

press a pore network comprised of coin-like ellipsoids and spherical pores.

Quantities referring to cracks are denoted by 	 and to pores by �. At the

low frequency limit there is no dynamic fluid exchange between cracks and

pores. As a consequence, even though the saturating fluids may have dif-

ferent pressures, there is no pressure imbalance between inclusions for either

fluid and there is no dispersion due to fluid flow between pores:

P	w = P�w (= Pw) P	g = P�g (= Pg). (2)
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Note that dispersion occurs when the pressure difference in neighbouring

pores induces fluid mass exchange as noted in (Papageorgiou and Chapman,

2015).

As shown in Papageorgiou and Chapman (2015), a choice of equivalent

fluid pressure P̃ needs to be made in order to balance externally applied

stress σ in each inclusion.This stems from considerations in Zatsepin and

Crampin (1997) where the specific compliance of the inclusions is calculated.

Specifically the stress σ induces an infinitesimal volume change in each type

of inclusion given by:

φ	 =φ	0

(
1− σn

σc
+
P̃

σc

)

φ� =φ�0

(
1− 3

4µ

(1− ν)

(1 + ν)
σll +

3

4µ
P̃

)
.

(3)

where φ�0 , φ
	
0 are the unstressed porosities of each inclusion type. Here the

symbols σn, σll denote respectively the normal and the trace of the tensor

σ and µ, ν are the shear modulus and Poisson ratio of the mineral grains.

The parameter σc denotes a compressibility relating to the ellipsoid geometry

defined in Chapman et al. (2002) as

σc =
πµr

2(1− ν)
(4)

where r is the aspect ratio of the ellipsoid.

Here, we assume that the effective pressure P̃ balancing the stress at the
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inclusion level is the volumetric average of the water and gas fluid pressures.

This choice is arbitrary but educated (see Santos et al., 1990b):

P̃ = SwPw + (1− Sw)Pg, (5)

where we have written Sw for the volume fraction of the water in the pore

space. Note that this volumetric average refers to the effective fluid pressure

in each inclusion. As the pore space consists solely of these inclusions this

assumption translates to uniform fluid distribution within the pore space.

The expression for the pore-space volume from eq. (3) can also be written

as a sum over fluid volumes:

φ = φ0

(
1 +

Sw

Kw

Pw +
(1− Sw)

Kg

Pg

)
. (6)

We note that for a water-wet medium, a capillary equation relates the

wetting to non-wetting fluid pressure. A convenient way to parametrise this

capillary pressure is by scaling it to the ratio of gas/water fluid moduli:

Pg = α
Kg

Kw

Pw, 1 ≤ α ≤ Kw

Kg

. (7)

The dependence of the coefficient α from fluid saturation may itself be com-

plicated if flow is driven by capillary forces in the rock. We favour a quasi-

static description in which the coefficient α is assumed constant and there

is no capillary flow taking place. In Santos et al. (1990b) such ideas are
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extensively discussed and the bounds for the coefficient α are derived using

a model of capillary pressure Pcap. = Pcap.(Sw). The relation of α from this

model is then calculated:

α =
Kw − Sw(1− Sw)P ′cap.(Sw)

Kg − Sw(1− Sw)P ′cap.(Sw)
. (8)

In this work we postpone the discussion of a pore scale model for capillary

pressure Pcap.(Sw) and instead we will let α be a free parameter. Since α

depends on the change of capillary pressure from equilibrium which in turn

depends on the specific fluid distribution in the pores, we feel justified in not

fixing this parameter.

To calculate the bulk modulus in the context of the inclusion model (3),

we use the Eshelby (1957) prescription where the elasticity of the bulk is

calculated by a sum over inclusions. This summation involves the effective

pressure in the inclusions:

Keff = Kd +

φ	0

(
Km
σc

+ 1

)
P̃

σ
+ φ�0

(
3Km
4µ

+ 1

)
P̃

σ

(9)

where Kd is the dry and Km the grain modulus. It was shown in Chapman

et al. (2002) that the above is equivalent to Gassmann’s formula in the zero

frequency limit. But in order to calculate the ratio P̃
σ

one needs to write eq.
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(6) in terms of the effective pressure

P̃ = Pw

(
Sw + α(1− Sw)

Kg

Kw

)
(10)

where we have expressed the effective pressure in terms of the definition in

eq. (7). So, this theory reduces to Gassmann’s theory with an effective fluid

modulus K̃f given by

Sw

Kw

Pw +
(1− Sw)

Kg

Pg =
P̃

K̃f

. (11)

With the aid of the definition of capillary pressure in eq. (7) and having

chosen an effective pressure in eq. (10), we arrive at an expression for the

effective fluid modulus that is independent of water pressure. This expression

is the central result of our paper:

K̃f =
SwKw + α(1− Sw)Kg

Sw + α(1− Sw)
, 1 ≤ α ≤ Kw

Kg

(12)

and it provides a fluid mixing law involving the free parameter α that is

related to the capillary pressure via eq. (7). The effective modulus obtained

in this way is depicted in Figure 2.

3 Equivalence to Brie’s model and Discussion

For the limiting values of the parameter α, eq. (12) reduces analytically to

an arithmetic (α = 1) or harmonic (α = Kw

Kg
) mixing law much like Brie’s
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empirical eq. (1). This means that the parameter α – a measure of capillary

pressure – can be matched to the Brie parameter e by combining eq. (1) with

eq. (12). The two parameters can be related by the saturation-dependent

relationship:

e =
log
(

Sw

Sw+α(1−Sw)

)
log(Sw)

. (13)

Taking Brie’s law at face value eq. (13) shows how the Brie parameter

relates to water saturation and the capillary pressure parameter. It should

be noted that Brie’s law does not analytically reduce to a harmonic averaging

law for e = 40 but only approximates it. It may therefore be preferable to

use eq. (12) over eq. (1) as it is based on a more solid theoretical foundation.

In practice the simple relation α = e3/2 provides a good agreement between

the two theories as can be seen in Figure 3. The comparison reveals that the

effective modulus of eq. (12) is stiffer than that of eq. (1) at smaller water

saturation and softer at greater water saturation. It remains to be seen if eq.

(12) can be correlated to data relating to capillary pressure or even different

fluid mixtures since the scaling can be appropriated to any wetting/non-

wetting fluid mixture. In Monsen and Johnstad (2005) for instance, the

saturating fluids are oil and nitrogen and the observed Brie exponent is larger

than normally reported in the literature for brine/gas mixtures.

Since eq. (12) was derived as a static equations, and given its similarity

to Brie’s law, new interpretations of the Brie relation arise. The ad-hoc

character of the Brie parameter was recognised in Dvorkin et al. (1999) and
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later in Johnson (2001). Resorting to the Hill average, where the saturation

of the rock occurs in patches, is not the only plausible foundation for the

stiffening of the effective fluid mixture.

Although the phenomenon of mesoscopic dispersion occurring in patchy-

saturated rock is not refuted here, we shown that the low frequency limit

of the inclusion theory of Chapman et al. (2002), leads to a similar type of

fluid stiffening if the saturating fluids have different pressures. Furthermore,

the mixing law of eq. (12) is independent of seismic frequency although

frequency-dependent effects arising in such inclusion models have been de-

scribed in Jakobsen and Chapman (2009).

In future work we intend to show that the characteristic frequency where

squirt flow becomes important depends on this capillary pressure parame-

ter. But at its low frequency limit, the theory presented here is essentially

Gassmann’s theory with the modified fluid modulus of eq. (12). This is

important as the most popular interpretations of Brie’s law have been to tie

the parameter e to the characteristic patch size of White (1975) which is

tuned to a characteristic frequency associated to the patch size. See Mavko

et al. (1998), Pham et al. (2002), Carcione et al. (2003a) and Carcione et al.

(2003b) for examples.

Of course, there is no need to exclude the dispersion due to patchy sat-

uration as an explanation for the effective fluid stiffening, or indeed both

phenomena combined. Some progress towards this work has been done in

Qi et al. (2014) where the capillary stiffening occurs at the boundaries of
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the patches. But attributing this effect exclusively to the patchy dispersion

mechanism is not necessary as demonstrated by this work.

4 Conclusions

We have derived from first principles a simple model describing an effective

fluid mixing law similar to the empirical law described in Brie et al. (1995).

Our model’s contains a parameter with a straightforward interpretation in

terms of the capillary pressure at the microscopic scale. Furthermore the

model exactly produces both a serial and a parallel law. We have identi-

fied a matching condition between our parameter and the free parameter in

Brie’s model pointing out the difference between the two across the saturation

range.

In the theoretical construction of this effective fluid mixing law, the stiffer

effective fluid is not due to dispersive effects but it is a consequence of cap-

illary pressure at the pore scale. Our work presents an alternative point of

view in which Brie-like effects are not related to dispersion or patch size.
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Figure 1: Brie’s model for different values of the free parameter e. The
relative scaling of the two moduli is Kw

Kg
= 100.
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Figure 2: The model of eq. (12) for various values of the parameter α. The
relative scaling of the two moduli is Kw

Kg
= 100.
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Figure 3: Comparison between Brie’s effective fluid modulus of eq. (1) and

the effective modulus presented in this paper in (12) for α = e
3
2 . The relative

scaling of the two moduli is Kw

Kg
= 100.

20


