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Detection of transience in eroding 1 

landscapes 2 
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Abstract 6 

Past variations in climate and tectonics have led to spatially and temporally varying 7 

erosion rates across many landscapes. In this contribution I examine methods for 8 

detecting and quantifying the nature and timing of transience in eroding landscapes. At a 9 

single location, cosmogenic nuclides can detect the instantaneous removal of material or 10 

acceleration of erosion rates over millennial timescales using paired nuclides. Detection 11 

is possible only if one of the nuclides has a significantly shorter half-life than the other. 12 

Currently, the only practical way of doing this is to use cosmogenic in-situ 14C alongside 13 

a longer lived nuclide, such as 10Be.  Hillslope information can complement or be used in 14 

lieu of cosmogenic information: in soil mantled landscapes, increased erosion rates can 15 

be detected for millennia after the increase by comparing relief and ridgetop curvature. 16 

This technique will work as long as the final erosion rate is greater than twice the initial 17 

rate. On a landscape scale, transience may be detected based upon disequilibria in 18 

channel profiles or ridgetops, but transience can be sensitive to the nature of transient 19 

forcing. Where forcing is periodic, landscapes display differing behavior if forcing is driven 20 

by changes in base level lowering rates versus changes in the efficiency of either channel 21 

or hillslope erosion (e.g. driven by climate change). Oscillations in base level lowering 22 

lead to basin averaged erosion rates that reflect a long term average erosion rate despite 23 
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strong spatial heterogeneity in local erosion rates. This averaging is reflected in 10Be 24 

concentrations in stream sediments. Changes in hillslope sediment transport coefficients 25 

can lead to large fluctuations in basin averaged erosion rates, which again are reflected 26 

in 10Be concentrations. The variability of erosion rates in landscapes where both the 27 

sediment transport and channel erodibility coefficients vary is dominated by changes to 28 

the hillslope transport coefficient.  29 

Introduction 30 

Gone are the days when geomorphologists thought of landscapes as experiencing a 31 

period of ‘rejuvenation’ followed by a dignified, if not dull, period of gradual adjustment 32 

(c.f., Davis, 1899). We now understand the Earth’s crust to be constantly in motion, with 33 

faults rupturing and plates buckling under tectonic stresses, all leading to surface 34 

deformation (e.g., Kirby and Whipple, 2010). In addition, there is now growing recognition 35 

that the mantle also has a role to play, as large scale convection, mantle plumes and 36 

diapirs are thought to lead to vertical displacements over geologic timescales (e.g., 37 

Rohrman and van der Beek, 1996; Saunders et al., 2007; Braun, 2010; Hartley et al., 38 

2011; Moucha and Forte, 2011). In addition, plutonism can lead to density differences 39 

that drive uplift (e.g., Braun et al., 2011). Isotope records show beyond doubt that our 40 

planet’s climate varies wildly and sometimes abruptly, with ice sheets growing and 41 

shrinking (e.g., Dansgaard et al., 1993) and sea levels rising and falling by tens of meters 42 

(e.g., Lambeck and Chappell, 2001). 43 

 44 



Simon M. Mudd, Detection of transience; revised manuscript for ESPL. 

3 

 

Geodynamic and climatic activity plays a fundamental role in shaping our planet’s 45 

terrestrial surface. Geomorphologists have increasingly turned their attention to 46 

quantifying the effects of tectonic and climatic change on rivers and hillslopes. In the last 47 

few decades, new developments have led to intensified research into the nature and 48 

speed of landscape adjustment. Several provocative physical experiments have 49 

reproduced morphologies that resemble large catchments and even mountain ranges, 50 

but that displayed unexpected landscape dynamism. The tank experiments of Hasbargen 51 

and Paola (2000) and the sandboxes of Lague et al. (2003) and Bonnet et al. (2009) 52 

featured landscapes that would equilibrate to a steady sediment flux rate. The flux rate in 53 

these experiments was defined as the sediment removed from the system averaged over 54 

the time necessary to erode through the highest point on the landscape. The geometry of 55 

these experimental landscapes, however, was anything but steady. Divides moved, 56 

knickpoints migrated and the organisation of the drainage network varied vigorously 57 

through time.  58 

 59 

Numerical modelling has also stimulated interest in the transient state of landscapes. Like 60 

analogue experiments, numerical models have allowed workers to see virtual mountain 61 

ranges grow and adjust to changing climate (as approximated by changing precipitation 62 

and erodibility coefficients) and tectonics (as approximated by changing uplift rates or 63 

lateral displacement). Many early models were constructed with the aim of predicting the 64 

topographic outcome of so-called geomorphic transport laws (sensu Dietrich et al., 2003). 65 

This mirrored early analytical work by pioneers such as Culling (1960), who linked 66 

constitutive equations linking sediment transport with topographic forms. Culling famously 67 
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showed why hilltops are convex, in an elegant mathematical demonstration of Gilbert’s 68 

(1909) earlier hypothesis. Whereas the early focus of many modelling studies was to 69 

recreate digital topography that resembled natural topography, there has been a 70 

movement in recent years to use models to test, or at least falsify, hypotheses about past 71 

landscape evolution in the face of changing tectonic or environmental forcing.   72 

 73 

One feature of early models was that an established drainage network and its ridge 74 

network tended to stay in a fixed position (e.g., Howard, 1994). These results contrasted 75 

with widespread observation of landforms interpreted to result from drainage capture 76 

(e.g., Davis, 1889; Bishop, 1995), and also contrasted with experimental models. One 77 

early model that did predict evolving drainage divides was that of Smith et al. (1997), 78 

which predicted the splitting of divides, as observed in the tank experiments of Hasbargen 79 

and Paola (2000). More recent models have tried to account for changing drainage areas 80 

as hillslopes adjust to transient forcing, leading to models predicting a much more 81 

dynamic drainage and ridgetop network (Pelletier, 2004; Castelltort et al., 2012; Goren et 82 

al., 2014). Research based on recent metrics that detect disequilibrium across drainage 83 

divides supports the widespread presence of highly dynamic landscapes, even in 84 

tectonically quiescent settings such as the Appalachians (Willett et al., 2014).  85 

 86 

Within the context of changing tectonics and climate, and the potential complication of 87 

autogenic landscape variability (e.g., Jerolmack and Paola, 2010; Coulthard and Van de 88 

Wiel, 2013), one of the major challenges in geomorphology is to try to reconstruct past 89 
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changes based on current information (e.g., Wobus et al., 2010; Whittaker, 2012). 90 

Geomorphologists can rarely work with a time series of landscapes: geomorphic change 91 

may occur over thousands to millions of years and, barring the invention of time travel, 92 

we will, in most cases, need to work with current landscape properties in order to 93 

reconstruct past changes. However, there are a number of recent advances that may give 94 

us some insight into how the landscape arrived at its current configuration.  95 

 96 

Two advances that have refreshed the study of geomorphology are the measurement 97 

and interpretation of cosmogenic radionuclides (CRNs; e.g., Bierman et al., 1994) and 98 

the rapid expansion of the quality and availability of high resolution topographic data (e.g., 99 

Slatton et al., 2007).  While the application of CRNs to geomorphic research is now 100 

considered mature, improving instrument sensitivity and analytical techniques are 101 

extending the range of application (Rood et al., 2010). New measurement techniques, 102 

notably for in-situ cosmogenic 14C, are opening opportunities for querying landscapes.  103 

In-situ cosmogenic 14C has only been measured reliably in laboratories in the last 5 years 104 

(e.g., Fulop et al., 2010; Hippe et al., 2013; Goehring et al., 2014) but offers new 105 

opportunities to examine landscape transience.  106 

 107 

High resolution topography, primarily generated using airborne light detection and ranging 108 

(lidar), has allowed us to quantify topography on sub-meter scale. It is not unusual for 109 

modern airborne lidar campaigns to collect dozens, or even hundreds of square 110 

kilometres at point cloud densities of >10 pts m-2. This presents unprecedented 111 
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opportunities for geomorphologists and ecologists alike (e.g., Tarolli, 2014; Passalacqua 112 

et al., 2015): not only do these data allow sensing of the plant canopy (e.g., Dubayah and 113 

Drake, 2000; Lefsky et al., 2002), but they also allow geomorphologists to observe and 114 

quantify landscape features at the process scale, such as evidence of biotic activity (e.g., 115 

Roering et al., 2010; Gabet et al., 2014), fault scarps (e.g., Sherrod et al., 2004; 116 

Arrowsmith and Zielke, 2009), headwater channels (e.g., Passalacqua et al., 2010; 117 

Orlandini et al., 2011; Pelletier, 2013;  Clubb et al., 2014), bedrock outcrop (e.g. DiBiase 118 

et al., 2012; Milodowski et al., 2015) and other relevant features.  119 

 120 

While sedimentary archives may be used to detect landscape transience (e.g., Schaller 121 

et al., 2002; Balco and Stone, 2005; Armitage et al., 2011; Charreau et al., 2011; Marshall 122 

et al., 2015), I wish to focus here on eroding landscapes where sediment export precludes 123 

the use of such archives to detect transience. In this contribution I aim to show that 124 

landscape transience may be both detected and quantified in the absence of sedimentary 125 

deposits using topography and cosmogenic nuclides.     126 

Detection of change in a single soil profile using in-situ cosmogenic 127 

nuclides 128 

 129 

One of the most revolutionary developments in the last 30 years in geomorphology is the 130 

widespread adoption of methods based on in-situ cosmogenic radionuclides (CRNs); 131 

since the seminal work of Lal (1991), hundreds of authors have used the concentration 132 

of CRNs to infer past erosion rates. Applications of CRNs in geomorphic studies 133 

frequently use an assumption that erosion rates are constant in time (a review of the many 134 
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applications can be found in Dunai, 2010 and Granger et al., 2013), but fewer authors 135 

have sought to examine how CRN concentrations may be used in transient settings. 136 

Several authors have examined how CRN concentrations may be expected to vary in 137 

soils in the face of either periodic (e.g., Heimsath, 2006) or stochastic (Lal, 1991; Small 138 

et al., 1999; Musikar, 2009; Parker and Perg, 2005; Heimsath, 2006; Schaller and Ehlers, 139 

2006) variations in erosion rates. A key concept in these studies is that the concentration 140 

of CRNs can be inverted for an erosion rate. This erosion rate is ‘apparent’ because it 141 

depends on the assumptions used in the inversion and may not reflect the actual erosion 142 

rate. For example, an apparent erosion rate may be calculated using Lal’s (1991) 143 

equation for steady state erosion, but this equation assumes erosion rates and 144 

cosmogenic production rates that do not vary in time. This contrasts with the actual 145 

erosion rate, by which I mean the erosion rate that has actually occurred, or in other words 146 

the amount of material removed divided by the time over which this removal is averaged, 147 

and in addition the apparent erosion rate may not reflect the instantaneous erosion rate, 148 

i.e., the erosion rate that is currently occurring in the landscape.  149 

 150 

One of the key findings of studies investigating the effect of transient erosion rates on 151 

CRN concentrations is that the apparent erosion rates derived from CRN concentrations 152 

will reflect the time integrated erosion rate. In addition the lag between instantaneous and 153 

apparent erosion rates will increase with greater amplitude variations in erosion rate and 154 

shorter periods of periodic forcing or time between stochastic events. Alternatively, low 155 

frequency variations in erosion rate and low amplitude variations in erosion rate will result 156 

in apparent erosion rates that more closely reflect the instantaneous erosion rate.  157 
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 158 

The focus of most studies examining the effect of erosion transience has focused on the 159 

accuracy of inferred erosion rates in the face of erosion variability, but few have 160 

commented on using CRN concentrations to infer past changes in erosion rates. Lal 161 

(1991) famously constructed plots of the ratio between 10Be and 26Al concentration 162 

against 10Be concentration to demonstrate the existence of a ‘steady state island’ in this 163 

parameter space: samples plotting outside this steady state island had a more complex 164 

erosion and exposure history. This principle is used extensively in the dating of surfaces 165 

and burial dating (e.g., Granger 2006). In eroding landscapes, however, we can narrow 166 

the range of exposure histories since it is a reasonable assumption that on sloping 167 

ground, material is continuously eroding and unlikely to experience prolonged periods of 168 

exposure or burial. With these constraints in mind, I would like to examine the possibility 169 

of inferring past erosional changes in eroding landscapes using CRN concentrations.  170 

 171 

I begin with a general statement of conservation of a nuclide for a steadily eroding surface 172 

(e.g., Granger and Smith, 2000, Schaller et al., 2002; Vermeesch, 2007): 173 

 174 

௜ܥ = ௜,଴ܥ ݁ሺ௧−௧0ሻ�೔ +�௜,ௌ���ܵ௧௣ ∑ [ௌೕ�೔,ೕΓ೔,ೕఌ−Γ೔,ೕ�೔ ݁−ሺௗ+ఌ௧ሻ/Γ೔,ೕ(݁ሺ௧−௧0ሻఌ/Γ೔,ೕ − ݁ሺ௧−௧0ሻ�೔)]௡௝=଴ , 
(1) 

 

 175 
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where Ci is the concentration of nuclide i, Ci,0 (typically reported in atoms per gram) is the 176 

initial concentration of this nuclide, t and t0 are the current and initial time, respectively, λi 177 

is the decay coefficient (T-1, dimensions henceforth denoted in [M]ass, [L]ength, and 178 

[T]ime in square brackets), Pi,SLHL is the production rate of nuclide i at sea level and high 179 

latitude (in units atoms g-1 yr-1), Stp  is a dimensionless scaling factor due to topographic 180 

shielding, the subscript j refers to the production mechanism (this could be either 181 

nucleonic spallation or various muogenic pathways), Sj is a dimensionless scaling factor 182 

that accounts for a number of effects such as changing production rates as a function of 183 

altitude or pressure, shielding from snow and self-shielding (e.g., Vermeesch, 2007), Fi,j 184 

is a dimensionless factor that determines the proportion of nuclide production due to each 185 

mechanism, Γi,j [M L-2] is the attenuation length (typically reported in g cm-2), ε is erosion 186 

rate in mass equivalent units (typically g cm-2 yr-1) and d is a mass per unit area that is 187 

related to the depth by:  188 

 189 

݀ =  ∫ �ሺ�ሻ݀�఍
఍−ℎ , (2) 

 

           190 

where ζ [L] is the elevation of the surface, h [L] is depth below the surface, and ρ [M L-3] 191 

is the density of the rock or regolith as a function of elevation. The quantity d is called the 192 

shielding depth.  193 

 194 



Simon M. Mudd, Detection of transience; revised manuscript for ESPL. 

10 

 

Results of experiments conducted by Heisinger et al. (2002a, b) suggested that muons 195 

could contribute significantly to CRN production at depth, but measurements from field 196 

sites now suggest that production from muons is smaller than suggested by experiments 197 

(Braucher et al., 2013); for example Braucher et al. (2013) reported that muogenic 198 

production of 10Be accounted from ~0.5% of the total production, with the remainder 199 

produced by nucleonic spallation.  With only nucleonic spallation, equation (1) reduces 200 

to: 201 

 202 

௜ܥ = ௜,଴ܥ ݁ሺ௧−௧0ሻ�೔ +�௜,ௌ���ܵ௧[݁−ሺௗ+ఌ௧ሻ/Γ(݁ሺ௧−௧0ሻఌ/Γ − ݁ሺ௧−௧0ሻ�೔)], (3) 

 

 203 

where St [dimensionless] is a combined scaling term that takes into account production 204 

scaling and snow, self and topographic shielding.  205 

 206 

Equation (3) may be solved for the steady state concentration if t approaches infinity and 207 

the initial concentration is zero (e.g., Lal, 1991):  208 

  209 

௜,ௌௌܥ =  �௜,ௌ���ܵ௧Γߝ + Γ�௜ ݁−ௗΓ . (4) 

 

 210 
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Equation (4) can then be solved for the apparent erosion rate, εapp (in units g cm-2 yr-1), 211 

which one would infer from CRN concentration if the system were assumed to be in 212 

steady state: 213 

 214 

௔௣௣ߝ =  ݁−ௗΓ�௜,ௌ���ܵ௧Γ − ௜ܥ௜Γ�௜ܥ . (5) 

 

 215 

My aim is to exploit equations (3-5) to gain information about past erosion rates, focusing 216 

on two scenarios.  217 

 218 

Scenario 1: Instantaneous removal of mass 219 

 220 

The first scenario is one in which there is a constant background erosion rate but some 221 

thickness of material is removed instantaneously from the surface. This scenario mimics 222 

a landslide, or alternatively is an approximation for a period of intense soil loss such as 223 

that experienced in ancient Greece (e.g., van Andel et al., 1990) or Rome (e.g., Judson, 224 

1968), and builds on a similar analysis in Lal (1991).  225 

 226 

The initial time, t0, is set to zero and represents the moment the mass is removed (this 227 

could be either bedrock or soil or a combination of the two, as long as mass removal is 228 

instantaneous). The time t represents the time since mass removal. The initial 229 
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concentration of the nuclide will be determined by the steady state concentration 230 

(equation 4), but the depth must be adjusted to account for removal of mass, such that 231 

the adjusted depth, dadj = d + ε t + dbr, where dbr is the depth of mass removal.  This can 232 

be inserted into equation (4), which can be substituted in as the initial concentration in 233 

equation (3), and this concentration can be inserted into equation (5) to yield the apparent 234 

erosion rate after mass removal: 235 

 236 

௔௣௣,௕௥ߝ = ௗ��+௧ఌ+௧Γ�೔Γ݁ ߝ] + Γ�௜ (݁ௗ��Γ − ͳ)] [ͳ + ݁ௗ��/Γ ቀ݁௧[ఌΓ+�೔] − ͳቁ]−ଵ. (6) 

 

 237 

It is perhaps useful here to explain how equations (3-6) might be practically applied. 238 

Consider a situation in which the worker has no information about past changes in erosion 239 

rates (i.e., there is no lake sediment record downstream, no historic erosion rate data, 240 

etc.). The goal then is to use only the concentration of nuclides to determine past 241 

transience. If erosion rates are constant in time, the apparent erosion derived from 242 

equation (5) will be equal to the true erosion rate. However, if erosion rates are transient, 243 

nuclide concentrations will reflect some averaging of past erosion. I seek a way to 244 

diagnose if there has been transience by either quantifying changes in nuclide 245 

concentrations with depth or quantifying differences between concentrations of different 246 

nuclides. Equation (6) predicts an apparent erosion rate (that is, the erosion rate one 247 

calculates assuming steady erosion) if nuclide concentrations are the result of mass 248 

removal. That is, equation (6) is used to explore if nuclide concentrations at different 249 
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depths or from different nuclides report the same apparent erosion rate (in which case 250 

the hypothesis that erosion is steady cannot be rejected) or if they report different 251 

apparent erosion rates. 252 

 253 

Inspection of equation (6) yields a significant result: the apparent erosion rate is not a 254 

function of depth. This means that after mass removal, regardless of where in the soil or 255 

regolith column samples are extracted, the apparent erosion rate is the same. This is 256 

important because it means that the depth profile of a single CRN is of no use in 257 

identifying landscape transience under the mass removal scenario. 258 

 259 

If a single nuclide cannot reveal information about transience, what options are available 260 

to detect transience? I will show below that a single nuclide also fails to provide 261 

information about transience in the second scenario, featuring a step change in erosion 262 

rate. All is not lost, however. Nuclides with differing decay coefficients equilibrate to local 263 

conditions at different rates; this is the principle behind the steady state island plots of Lal 264 

(1991) and various burial dating techniques (e.g., Granger et al., 2012). For both 265 

scenarios, the differing apparent erosion rates derived from two nuclides can be used to 266 

reveal information about landscape transience.   267 

 268 

 269 

 270 
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Nuclides that decay more rapidly will adjust more quickly to changes in erosion rate (Lal, 271 

1991). Thus, if mass is instantaneously is removed from the surface, the nuclide with 272 

more rapid decay will have a greater perturbation to its apparent erosion rate. Following 273 

Lal’s (1991) lead, we may look for greater apparent erosion rates in shorter lived nuclides 274 

to detect changes in erosion rates.  I will thus compare εapp,br for two different nuclides 275 

calculated using equation (6), as a function of the background erosion rate (ε), the depth 276 

of the mass removal (dbr) and the time since mass removal (t).   277 

 278 

To be conservative, I assume that any apparent erosion rate has 10% uncertainties 279 

attached. Thus, to plausibly detect transience, the ratio between the two nuclides must 280 

be greater than 20%. Note that in some cases, production rate uncertainties exceed this 281 

value (e.g., Balco et al., 2008), but in these examples the samples will have the same 282 

production rate (since we are sampling effectively the same particle) so production 283 

uncertainties will result in absolute but not relative uncertainties. We can also consider a 284 

plausible range of background erosion rates. Erosion rates greater than 1 mm yr-1 are 285 

widely considered to be rapid; this equates to ~0.25 g cm2 yr-1 of bedrock lowering for 286 

typical rock densities (~ 2.5 g cm-3). There are landscapes with faster erosion rates but, 287 

as we will momentarily see, even background erosion rates of 1 mm yr-1 are beyond our 288 

current analytical limits for detecting transience. The lower limit of erosion is of course 289 

zero, but the vast majority of sloping terrains (even ones located on very low relief cratons) 290 

are eroding faster than 0.001 mm yr-1  (e.g., Portenga and Bierman, 2011, although bare 291 

rock surfaces tend to erode more slowly; see their Figure 2a).  292 
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 293 

First, consider two commonly measured nuclides, 10Be and 26Al. These have decay 294 

coefficients of 500*10-9 yr-1 (Chmeleff et al., 2010; Korschinek et al., 2010) and 980*10-9 295 

yr-1 (Nishiizumi, 2004), respectively, and both have a value of 160 g cm-2 (Balco et al., 296 

2008). Even in a slowly eroding landscape (0.0026 g cm-2 yr-1, equivalent to 0.01 mm yr-297 

1 in material with density 2.6 g cm-3) where 500 g cm-2 of material is removed (this is 298 

roughly equivalent to a ~2 m thick layer of bedrock) and the surface is sampled one year 299 

after block removal, the difference in the apparent erosion rates is only 2% (εapp for 10Be 300 

= 0.064 g cm-2 yr-1 versus εapp for 26Al = 0.062 g cm-2 yr-1). The difference gets yet smaller 301 

for thinner blocks and faster background erosion rates. Thus, it is virtually impossible to 302 

detect removal of a block in an eroding landscape using paired 10Be and 26Al. In addition, 303 

apparent erosion rates from stable nuclides (e.g., 21Ne) cannot be differentiated from 304 

apparent erosion rates derived from 10Be and 26Al. 305 

 306 

Now, consider 10Be and in-situ 14C (λ = 1.21 x 10-4 yr-1, Bowman, 1990). Several 307 

laboratories are now capable of measuring cosmogenic in-situ 14C (Fulop et al., 2010; 308 

Hippe et al, 2013; Goehring et al., 2014), which is a promising nuclide due to its short 309 

half-life, as I will demonstrate.   We can plot the ratio of apparent erosion rates for these 310 

two nuclides after block removal, this is shown for two different background erosion rates 311 

and two block removal depths in Figure 1.  When 50 g cm-2 is removed, it can be detected 312 

given our conservative threshold of a 20% difference for background erosion rates of 313 

0.026 g cm-2 yr-1, which is an approximate bedrock erosion rate of ~0.1 mm yr-1 (Figure 314 
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1a).  At these rates, a mass removal of 50 g cm-2 can be detected for approximately 100 315 

years after the mass removal. If the background erosion rate is slower, change can be 316 

detected for thousands of years. If a mass of 150 g cm-2 is removed, one can detect this 317 

removal for a millennium if background erosion rates are 0.026 g cm-2 yr-1 or slower 318 

(Figure 1b). If background erosion rates are too rapid, however, mass removal cannot be 319 

detected; with background erosion rates of 0.26 g cm-2 yr-1, no thickness of mass removal 320 

results in apparent erosion rates between 10Be and 14C exceeding the threshold of 20% 321 

erosion rate difference. This method can therefore mass block removal in slowly eroding 322 

landscapes, but the nuclide ratios are not unique: we should be able to tell if mass removal 323 

has occurred but we cannot know both the time and depth of removal.   324 

 325 

Scenario 2: Step change in erosion rate 326 

 327 

The second scenario that I investigate is a situation where there has been a step change 328 

in the erosion rate, from εold to εnew. The initial concentration is determined by equation 329 

(4). This concentration is then inserted into equation (2), and solved for the apparent 330 

erosion rate, resulting in: 331 

 332 
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௔௣௣,௦௖ߝ = [Γ�௜ሺߝ௢௟ௗ − ௡௘௪ሻߝ
+ ௡௘௪ ݁௧[ఌ���Γߝ +�೔]ሺߝ௢௟ௗ + Γ�௜ሻ] ௡௘௪ߝ] + ௢௟ௗߝ ቀ ݁௧[ఌ���Γ +�೔] − ͳቁ
+ Γ�௜݁௧[ఌ���Γ +�೔]]−ଵ. 

(7) 

 

 333 

Similar to equation (6), equation (7) is not a function of depth: one cannot use the depth 334 

profile of a single nuclide to distinguish between a steady state profile and one that has 335 

experienced a step change in erosion rate. Again, multiple nuclides must be used to 336 

identify a site that has experienced a change in erosion rates; I explore the sensitivity of 337 

a two-nuclide system as a function of the old and new erosion rates and the time since 338 

the change in erosion rate (t).  339 

 340 

As in the case of block removal, apparent erosion rates derived from 10Be and 26Al are 341 

not sufficiently different to allow identification of transient erosion rates. In addition, 342 

apparent erosion rates from stable nuclides (e.g., 21Ne) cannot be differentiated from 343 

apparent erosion rates derived from 10Be and 26Al. Even if erosion rates increase by a 344 

factor of 10 in a slowly eroding landscape, the difference between apparent erosion rates 345 

inferred from these two nuclides never exceeds 5%.  To gain some insight into transient 346 

processes we must use a nuclide pair with a greater difference in decay rates, so once 347 

again I turn to 10Be and in-situ 14C. 348 

 349 
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First, we can examine the effect of acceleration in erosion rate (Figure 2a). Again I invoke 350 

a conservative detection threshold of >20% difference in the apparent erosion rates 351 

inferred from in-situ 10Be and 14C concentrations. A doubling of erosion rate is detectable 352 

using the 10Be and 14C pair for an initial erosion rate of 0.0026 g cm-2 yr-1 between 500 353 

and 2000 years after the acceleration.   Doubling of the erosion rate is not detectable if 354 

the original erosion rate is 0.026 g cm-2 yr-1. This implies that a doubling of erosion rate is 355 

only detectable at very slow background erosion rates. On the other hand, a five times 356 

acceleration in erosion rate is detectable with original erosion rates at both 0.0026 g cm-357 

2 yr-1 and 0.026 g cm-2 yr-1, with the former being detectable after ~400 years and the 358 

latter being detectable after ~2000 years (Figure 2a).  359 

 360 

Similar detection limits are found if erosion rate decreases; in this case, the apparent 361 

erosion rate inferred from 14C is lower than that of 10Be (Figure 2b). The major difference 362 

between acceleration and deceleration in erosion is that if erosion rates decrease, they 363 

cannot be detected for a long time (compared to accelerated erosion); for an erosion rate 364 

of 0.0026 g cm-2 yr-1 and a reduction in the erosion rate by a factor of 5, one must wait 365 

~2000 years before transience can be detected using the 10Be and 14C pair.  366 

 367 

Unfortunately, because of the self-similarity of CRN depth profiles, one cannot 368 

differentiate between block removal and a step change with a depth profile, nor can one 369 

uniquely find both the timing of acceleration or removal, so these techniques are limited 370 

to detecting if a perturbation has occurred to the erosion rate in the past, and it can 371 
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constrain the upper limit of how long ago this perturbation occurred. CRNs, however, are 372 

not the only means of detecting transience within the geomorphologist’s toolkit.  373 

 374 

Detection of hillslope transience from topography 375 

In many cases, one might wish to look for evidence of landscape transience across 376 

multiple hillslopes. One strategy is to look for a transition between low relief and high relief 377 

surfaces, which may be interpreted as separating slowly eroding from rapidly eroding 378 

portions of the landscape (e.g., Schoenbohm et al., 2004; Gallen et al., 2011; Anderson 379 

et al., 2012; Prince and Spotila, 2013). If changes in hillslope erosion rates are driven by 380 

the propagation of knickpoints up the channel network, one might expect to find a pattern 381 

of hillslope disturbance in which the proportion of the hillslope affected by the greater 382 

erosion rate increases downstream of the channel knickpoint (e.g., Mudd and Furbish, 383 

2007; Hurst et al., 2012). Differentiating zones of rapid erosion from zones of slow erosion 384 

on a hillslope is not always trivial. In some cases a clear break in slope is visible (e.g., 385 

Rheinhardt et al., 2007), but in many cases a change along a profile is difficult to quantify 386 

since hillslopes, even at steady state, will have gradients that increase downhill (e.g., 387 

Culling, 1960). In addition, in most rapidly eroding landscapes, hillslopes tend to approach 388 

a critical slope angle (e.g., Roering et al., 2001; Binnie et al., 2007; DiBiase et al., 2010) 389 

and thus at high erosion rates, hillslope gradients become insensitive to erosion rates.  390 

 391 
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An alternative to searching for a break in slope is to use the relief structure in the 392 

landscape, in combination with information about ridgetops, to detect landscape 393 

transience. Roering et al., (1999) observed that in rapidly eroding landscapes in the 394 

Oregon Coast Range, soil-mantled hillslopes tended to become planar away from hilltops; 395 

this topography was consistent with a sediment flux law that predicted as hillslope 396 

gradients approached a critical slope, Sc [dimensionless], sediment flux (qs [L2 T-1]) would 397 

rapidly increase. This flux law mirrored one earlier proposed by Andrews and Bucknam 398 

(1987): 399 

 400 

�⃗௦ = − ͳߞ∇ ܦ − ௖ܵ|ߞ∇|) )ଶ, (8) 

 

 401 

where D [L2 T-1] is a sediment transport coefficient and the arrow indicates that sediment 402 

flux is a vector quantity (also recall ζ denotes surface elevation). Combining this flux law 403 

with a statement of mass conservation, Roering et al. (2007) noted that on ridgetops, 404 

where topographic gradients are low, erosion rates should be linearly proportional to 405 

ridgetop curvature, CHT [L-1] (that is, the second derivative of surface topography, ∇ଶߞ) in 406 

steadily eroding landscapes. In addition, Roering et al. (2007) found the steady solution 407 

of surface topography in one dimension, and were able to demonstrate that all steadily 408 

denuding hillslopes obeying equation (8) should fall on the nondimensional curve, 409 

 410 
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ܴ∗ = ͳܧ∗ [√ͳ + ሺܧ∗ሻଶ − �� (ͳʹ [ͳ + √ͳ + ሺܧ∗ሻଶ]) − ͳ], (9) 

 

 411 

where 412 

 413 

ܴ∗ = ܴܵ௖(10) ,�ܮ 

 

 414 

and 415 

 416 

∗ܧ = ʹሺ�௥/�௦ሻܵܦ�ܮ௖ = ௖ܵ�ܮ்�ܥʹ− . (11) 

 

 417 

The quantity R* is a dimensionless relief: it is the relief (R [L]) from channel to ridgetop  418 

scaled by the critical slope Sc and the hillslope length LH. The density subscripts r and s 419 

refer to rock and soil densities, respectively. It can also be interpreted as the mean 420 

topographic gradient of the hillslope divided by the critical slope. The quantity E* is a 421 

dimensionless erosion rate. Roering et al. (2007) went on to demonstrate that sites in the 422 

Oregon Coast Range and Gabilan Mesa, California, plot in E* vs R* space along the curve 423 
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predicted by equation (9). Hurst et al. (2012) showed that in a landscape in the Northern 424 

Sierra Nevada of California, ridgetop curvature was linearly proportional to erosion rate 425 

and that, across the range of erosion rates in the study area (0.01 to 0.25 mm yr-1), the 426 

E* vs R* values plotted, within error, on the curve described by equation (9). This suggests 427 

equation (8) is consistent with the topography of these landscapes, corroborating the 428 

findings of Roering et al. (1999), Roering (2008) and Grieve et al. (2016).  429 

 430 

What happens, then, if channel incision rates change? We do have some idea of how 431 

long it takes for hillslopes to adjust to changes in channel incision rates. One measure of 432 

the time it takes a hillslope to adjust to changing channel incision rates is a hillslope’s 433 

relaxation time, a concept borrowed from the physics of heat diffusion (e.g., Carslaw and 434 

Jaeger, 1959). The relaxation time measures the time a diffusion-like system (such as 435 

molecular diffusion, diffusion of thermal energy, diffusion of pore pressure within 436 

saturated groundwater systems, or the diffusion-like behavior of surface elevation on 437 

creep-dominated  hillslopes) equilibrates to a steady state after a perturbation. The formal 438 

definition of the relaxation time is the time it takes a system under steady forcing, e.g., a 439 

hillslope with a steadily eroding channel at its base, to return to within e-1 (which is 440 

approximately 0.37) of the steady condition (in the hillslope case measured by erosion 441 

rate). For example, if a hillslope was eroding at 1 mm yr-1 and the channel then began 442 

eroding at 2 mm yr-1, the relaxation time would be the time required for the average 443 

hillslope erosion rate to reach 1.63 mm yr-1.  444 

 445 
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Fernandes and Dietrich (1997) used numerical simulations to show that for hillslopes 446 

where qs = -DρsS, where S is the topographic gradient, the relaxation time is proportional 447 

to LH
2/D, although they used a threshold of 90% of the steady erosion rather than the e-448 

folding timescale to define the relaxation time. Mudd and Furbish (2007) later showed 449 

through analytical solution that the formal relaxation time is exactly 4LH
2/(Dπ2). The 450 

relaxation time can be reduced in landscapes where sediment flux is nonlinearly 451 

proportional to topographic gradient (e.g., Roering et al., 2001) or is proportional to the 452 

product of gradient and soil thickness (e.g., Mudd and Furbish, 2007) relative to 453 

landscapes where sediment flux is linearly proportional to topographic gradient. In 454 

general, the relaxation time is strongly related to hillslope length and the sediment 455 

transport coefficient.  456 

 457 

Now consider the following scenario. Imagine a wave of channel incision passes the base 458 

of a hillslope. The time it takes for a signal of channel incision to reach the hilltop is a 459 

function of the flux law: Mudd and Furbish (2007) showed that it takes 1/9 of the relaxation 460 

time for the hilltop to be affected after channel perturbation where sediment flux is linearly 461 

proportional to slope; nonlinear slopes such as those described by equation (8) can 462 

respond yet more quickly (Roering et al., 2001). In both cases, however, there is a delay 463 

between increased channel incision and any response of the hilltop. The result of this 464 

delay is that hilltop curvature will lag behind hillslope relief in a transient landscape. One 465 

can calculate an apparent E* value for a hilltop, regardless of whether it is at steady state 466 

or not: E*app = 2CHT LH /Sc. If the channel incision rate has increased, the hilltop-based 467 

apparent dimensionless erosion rate (E*app) should be less than that predicted by the 468 
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steady state curve described by equation (9) for a given dimensionless relief, R* (Figure 469 

3), since the hilltop will not yet have adjusted to the new erosion rate. If channel incision 470 

rates decrease, E*app will be greater than the E* predicted by the steady state curve. Thus, 471 

increases and decreases in channel incision rates can be detected by hillslopes lying 472 

above and below the steady state curve in E* vs R* space, respectively (Hurst et al., 473 

2013a; Figure 3).  474 

 475 

Hurst et al. (2013a) tested this hypothesis along the Dragon’s Back Pressure Ridge, a 476 

landform that lies along the San Andreas Fault (SAF) in California. It is the result of 477 

deformation and uplift caused by the fault motion advecting the local sedimentary 478 

formation (the Paso Robles formation, made of weakly consolidated sediments) over an 479 

offset in the SAF that remains stationary in relation to the North American Plate (Hilley 480 

and Arrowsmith 2008). Detailed field mapping and palinspastic reconstruction of the 481 

deformed beds by Hilley and Arrowsmith (2008) has resulted in a uniquely well-482 

constrained uplift field. Due to the motion of the fault, small catchments running 483 

perpendicular to the fault pass over and then away from this uplift field such that it is 484 

possible to quantify a space for time substitution on changing basin uplift as a function of 485 

position along the pressure ridge (Hilley and Arrowsmith 2008).  486 

 487 

Hurst et al. (2013a) found that catchments that had recently passed over the zone of 488 

maximum uplift plotted above the steady state curve described by equation (9), and as 489 

catchments moved away from the zone of uplift their hillslopes adjusted towards the 490 
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steady-state line by increasing their E*app before relief declined taking them below the 491 

steady state curve. This exposition of topographic hysteresis demonstrated the utility of 492 

comparing hillslope relief to hilltop curvature in order to identify landscapes that are 493 

growing from those that are static or waning.  494 

 495 

These results beg the question: just how much of an increase or decrease in channel 496 

incision is required for transience to be detected using the E* vs R* technique? Using the 497 

one dimensional model of Hurst et al. (2013a), I have explored both the magnitude and 498 

timing of a hillslope’s departure from the steady state E* vs R* curve for different initial 499 

and final channel erosion rates. The model starts from a steady state hillslope profile, and 500 

then channel incision undergoes a step change.  501 

 502 

Figure (4a) shows the maximum difference in dimensionless relief that is measured on 503 

the hillslope and that is predicted by equation (9) as the hillslope responds to a change in 504 

channel incision. As a point of reference, the standard errors in observed R* values from 505 

the Dragon’s Back Pressure Ridge (DBPR) reported by Hurst et al. (2013a) are plotted: 506 

these errors are due to the natural variability in relief along the DBPR ridgelines. 507 

Differences in measured and predicted R* that are less than this error cannot be resolved, 508 

so this gives some indication of how great a perturbation in incision rate is required before 509 

changes in R* can be resolved. This error is not universal: each landscape will have its 510 

own variability in ridgeline relief (e.g., Gabet et al., 2015); the DBPR errors are plotted 511 

simply as a point of reference. Figure (4a) indicates that reductions in channel incision 512 
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are more difficult to resolve than landscapes where channel incision rates have increased. 513 

In addition, it is easier to resolve landscape transience if the initial channel incision rate 514 

is greater, which is somewhat counterintuitive. The reason for this is that a doubling of 515 

erosion rate from initially low erosion does not lead to as large of an increase in R*.   516 

 517 

For relatively fast initial channel incision rates, a doubling of the channel incision rate 518 

should be resolvable from the difference between predicted and measured R*. For 519 

parameter values of ρr/ρs = 2, D = 0.01 m2 yr-1, LH = 25 m and Sc = 1 (these are values 520 

similar to DBPR), an E* of 1 equates to an incision rate of 0.4 mm yr-1, an erosion rate 521 

that is frequently achieved in tectonically active landscapes (see, for example, the erosion 522 

rate compilation of Portenga and Bierman, 2011).  523 

 524 

Figure (4b) shows the time needed to reach the maximum difference between measured 525 

and predicted R*, in units of dimensionless time, t*. Time is scaled by t* = (D/LH
2) t, where 526 

t is dimensional time. The time required to reach the maximum difference in measured 527 

and predicted R* varies between approximately t* = 0.01 and t* = 0.1 after the 528 

perturbation. This result should not come as a surprise because t* is scaled by a time 529 

similar to the relaxation time; Mudd and Furbish (2007) showed that it takes approximately 530 

1/9 of the relaxation time for a change in channel incision to reach the divide. For D = 531 

0.01 m2 yr-1 and LH = 25 m, t* = 0.1 equates to 6250 years. This suggests that in rapidly 532 

eroding landscapes, the E* vs R* method could be used to identify changes in channel 533 
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incision, perhaps brought about by changing tectonic activity, that has occurred in the last 534 

few millennia.  535 

 536 

How reliable is the assumption of constant transport coefficients in the 537 

face of varying climate? 538 

 539 

In the previous section, the models used to quantify landscape transience based on 540 

topographic data and other landscape features relied on an assumption that the sediment 541 

transport coefficient, D, could be independently quantified. A number of strategies have 542 

been used to calculate the transport coefficient. Two commonly used techniques for 543 

calculating D are: i) to compare measurements of flux against topographic gradients (e.g., 544 

McKean et al., 1993; Heimsath et al. 2005; Jungers et al., 2009) or ii) to compare long 545 

term erosion rates to topography (e.g., Roering et al., 1999; Heimsath et al. 1999; Small 546 

et al. 1999; Roering, 2008, Riggins et al., 2011; Hurst et al., 2012). Often these methods 547 

rely on fluxes or erosion rates derived from in-situ cosmogenic nuclides, which average 548 

erosion rates over thousands of years. In addition, topography also evolves over 549 

millennia. A critical question therefore is this: if the sediment transport coefficient has 550 

changed due to, for example, climate induced vegetation changes, what then does the 551 

transport coefficient inferred from today’s topography represent? 552 

 553 

I attempt to constrain the meaning of a topographically derived transport coefficient by 554 

running simulations that involve a step change in the transport coefficient, D. The 555 



Simon M. Mudd, Detection of transience; revised manuscript for ESPL. 

28 

 

analogue for this step change is the case of a landscape that experiences a vegetation 556 

shift, for example from grassland to forest (e.g., Roering et al., 2004; Hughes et al., 2009). 557 

The hillslope evolves based on the nonlinear sediment flux law described by equation (9); 558 

the numerical implementation is the same as that of Hurst et al. (2013a). In addition, the 559 

concentration of 10Be being removed from the hilltop is calculated using equation (3). This 560 

concentration is inserted into equation (5), yielding the apparent erosion rate, i.e. the 561 

erosion rate one would calculate if one assumed steady erosion. An apparent sediment 562 

transport coefficient is then calculated using the relationship (Hurst et al., 2012): 563 

 564 

௔௣௣ܦ = ்�ܥ௔௣௣ߝ− �௥�௦ . (12) 

 

 565 

The error in the transport coefficient, D, is then calculated as a function of time since the 566 

step change. These errors are plotted in Figure 5. Immediately after the step change in 567 

D, errors are large because topography reflects the old transport coefficient. As time 568 

passes, however, topography adjusts to the new transport coefficient until errors are 569 

small. 570 

 571 

We can examine Figure 5 in the context of estimating D at a field site. How much time 572 

must elapse after a change in D so that the estimate of D, calculated using CRN-derived 573 

erosion rates and topographic curvature, is a reasonable approximation for the current 574 
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value of D in the landscape? In Figure 5, the time is scaled by dimensionless time, t* (see 575 

previous section), which is calculated based on the transport coefficient after its step 576 

change. As a visual aid, I have indicated the 10% error; errors in cosmogenically derived 577 

erosion rates are on the order of 10% and given the noise of hilltop curvature (e.g., Hurst 578 

et al., 2012; Hurst et al., 2013b) we would likely only be able to estimate D to within 10% 579 

even if the landscape was in perfect steady state. It should be noted that the t* values 580 

reported here assume a fixed hillslope length, which might change if only one side of the 581 

divide is “pushed” by a pulse of incision (e.g., Mudd and Furbish, 2005). This is why Hurst 582 

et al. (2012) focussed on ridgetops with similar slopes on either side of the hilltop.  583 

 584 

Figure 5 shows that under a wide range of background erosion rates and relative changes 585 

in the transport coefficient, the time to fall within 10% error usually occurs by t* = 0.01. 586 

For D = 0.001 m2 yr-1, LH = 25 m, this means the apparent sediment transport coefficient 587 

will be within 10% of the actual value within 625 years, which by geological standards is 588 

short. Figure 6 shows the value of the hillslope relaxation time (=~0.4 t*) as a function of 589 

D and LH. Reported values of D vary over several orders of magnitude but most lie 590 

between 0.01 and 0.001 m2 yr-1 (Hurst et al., 2013b). The implication of these results is 591 

that in most cases a dramatic change in vegetation would have had to occur within the 592 

past few millennia for estimates of D based on CRN derived erosion rates and hilltop 593 

curvature to be in error by more than 10%. This is encouraging since the time to reduce 594 

the error between apparent and true D is, for most landscapes, shorter than the time 595 

elapsed since the younger Dryas period that featured widespread vegetation changes 596 

(e.g., Schuman et al., 2002).   597 
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What effect do varying styles of transience have on the concentration 598 

of in-situ cosmogenic nuclides collected in stream sediments? 599 

Thus far I have discussed the use of in-situ cosmogenic nuclides such as 10Be and 14C in 600 

single regolith profiles but in fact, many, if not most studies that constrain erosion rates, 601 

use the technique of detrital CRNs (e.g., Brown et al., 1995; Bierman et al., 1996, Granger 602 

et al., 1996). To obtain basin-wide erosion rates, sediment leaving a basin is sampled 603 

and the concentration of cosmogenic nuclides in these sediments is used to calculate 604 

erosion rates. The technique can even resolve erosion rates if they are spatially 605 

heterogeneous (see Granger et al., 1996), but one of the assumptions is that erosion 606 

rates should be constant in time in order to estimate the average erosion rate. What if 607 

erosion rates are transient? I answer this question using numerical simulations.  608 

The model solves a simple governing equation that combines the hillslope flux law of 609 

equation (8) with the stream power law that is a simple approximation of channel incision 610 

(e.g., Howard, 1994). The resulting conservation equation is: 611 

 612 

��ߞ� = −∇ ∙ [  
ͳߞ∇ ܦ  − ቀ∇ܵߞ௖ ቁଶ]  

 − ௠ܵ௡�ܭ + �. (13) 

 

 613 

where K [L-(2m-1) T-1] is an erodibility coefficient, A [L2] is the drainage area, S 614 

[dimensionless; L/L] is the topographic gradient and U [L T-1] is the tectonic uplift rate. For 615 

simplicity, I do not consider density conversion between rock and soil. The FASTSCAPE 616 



Simon M. Mudd, Detection of transience; revised manuscript for ESPL. 

31 

 

algorithm of Braun and Willett (2013) is used to solve channel incision, so S is determined 617 

along lines of steepest descent to the lowest of the eight neighboring cells (the D8 flow 618 

method). For computational efficiency, a D8 scheme is also used to calculate drainage 619 

area. Equation (8) is solved with a two dimensional version of the implicit method used in 620 

Hurst et al. (2013a). The philosophy of this simple approach is that the model should 621 

capture the essence of competition between advective (e.g., fluvial) and diffusion like 622 

(e.g., hillslope) erosion processes (c.f., Perron et al., 2009).  623 

  624 

The model has its elevation fixed on the north and south boundaries, and the east and 625 

west boundaries are periodic. The concentration of 10Be is solved within soil columns 626 

throughout the domain using equation (3). This assumes that erosion rates are constant 627 

over a model timestep (in the simulations presented here the timestep is 20 years), but 628 

erosion rates can change between timesteps. It is assumed that there is no storage of 629 

sediment within the channels: once a particle is eroded from the surface of the model it 630 

is instantaneously delivered as virtual stream sediment to be queried for the apparent 631 

erosion rate using equation (5). The contribution of each column to the collected 632 

concentration at the outlet is weighted by each column’s erosion rate: this reproduces the 633 

weighting in cosmogenic concentrations that are a consequence of greater fluxes 634 

originating from portions of the landscape that erode more quickly.   635 

 636 

The model simulations are aimed at probing the effect of changing climatic and base level 637 

forcing on apparent erosion rates, similar to studies of Godard et al. (2013) and Braun et 638 
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al. (2015), but this study differs in its attention to the effect of landscape perturbation on 639 

cosmogenic concentrations. Tectonic variations are simulated with time varying uplift. To 640 

approximate the effect of a changing climate on the landscape, I vary the fluvial erodibility 641 

coefficient, K, and the hillslope sediment transport coefficient, D. The model was tested 642 

with both 40 kyr and 100 kyr cycles. These were to mimic the dominant climate cycles 643 

over the past few million years (e.g., Lisiecki and Raymo, 2005). There is no obvious 644 

reason to suspect tectonic activity will vary over the same timescale as climate, but uplift 645 

is varied over the same period in order to make comparisons between forcings with the 646 

same period of variation.  647 

 648 

Two initial landscapes, formed under constant forcing, were used; these were small 649 

basins of 5 km2. The landscapes have an average uplift rate of 0.2 mm yr-1; each 650 

simulation begins with a topography adjusted to this erosion rate, with cosmogenic 651 

nuclide concentrations set to the steady state concentration (i.e., both the apparent and 652 

the actual erosion rates are 0.2 mm yr-1 at the beginning of the simulations). All 653 

simulations are run with m = 0.5, n = 1, Sc = 1, and all have a mean D = 0.005 m2 yr-1. 654 

The first set of simulations have a mean K = 0.00001 yr-1. The second set of simulations 655 

are run with higher K values (0.00005 yr-1); these are heavily dissected but the high fluvial 656 

erodibility coefficient allows tectonic signals to propagate farther into the model domain 657 

over an erosion cycle. Relief for the simulations with lower and higher K values begins at 658 

~200 and ~27 meters, respectively (Figure 7).  659 

 660 
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The apparent and actual erosion rates for different scenarios are shown in Figure 8. To 661 

interpret these plots, it is useful to step back to findings from point models of erosion rates. 662 

Several authors have investigated the effect of time varying erosion rates on CRN 663 

concentrations (Bierman and Stieg, 1996; Small et al., 1997, Heimsath 2006; Schaller 664 

and Ehlers 2006), and their results are useful in understanding CRN concentrations in the 665 

context of basin-wide changes in concentrations.   666 

 667 

Schaller and Ehlers (2006) explored periodic forcing of erosion rates and found that the 668 

time series of apparent erosion rates was damped compared to the time series of erosion 669 

rates. This damping was a function of the mean erosion rate: slower erosion rates 670 

featured more damping. In addition, the time series of apparent erosion rates lagged 671 

behind that of the actual erosion rates, and the phase shift was a function of the periodicity 672 

of the erosion rate variation, with longer period changes in erosion rates resulting in 673 

greater phase shift between the apparent and actual erosion rate.  674 

 675 

Another important feature of CRN concentrations in the face of time varying erosion rates 676 

was identified by Heimsath (2006): when erosion rates slow significantly, but then speed 677 

up once again, there is not enough time to accumulate the nuclides necessary for the 678 

apparent erosion rate to reflect the short period of slow erosion rates. This effect can lead 679 

to asymmetric damping where the fastest erosion rates are reflected in cosmogenic 680 

concentrations but the slowest erosion rates are not (Heimsath, 2006). With these results 681 

in mind, we can now examine how apparent erosion rates determined from basin-wide 682 
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CRNs are affected by variations in forcing factors such as climate and tectonics. I consider 683 

only the simplified case of landscapes without significant erosion from mass wasting 684 

processes, which can further cloud interpretation of basin averaged CRN concentrations 685 

(e.g., Niemi et al., 2005; Yanites et al., 2009; West et al., 2014) 686 

 687 

Top-down and bottom-up transience 688 

Arguably the most striking feature of the time series of apparent erosion rates is the 689 

difference between simulations featuring transient uplift rates and those featuring 690 

transient K and D (Figures 8 and 9). Panels a,b, g and j in Figure 8 depict landscapes in 691 

which the uplift rate varies in time, whereas in the other panels uplift is held constant while 692 

K and D vary. Where uplift rates vary, the erosion rates and the apparent erosion rates 693 

determined from 10Be concentrations are significantly damped relative to changes in uplift 694 

rates. Changes in K and D can result in large variations in erosion compared to changes 695 

in uplift: in Figure 8 uplift has an amplitude of 100% of the mean uplift, whereas K and D 696 

only vary with an amplitude that is 30% of their mean values, yet the variations in erosion 697 

rates are much greater for K and D.  698 

 699 

In landscapes with changing erosion rates at base level, signals propagate upstream and 700 

upslope (e.g., Whipple and Tucker, 1999). These signals then move up the channel 701 

network at a rate controlled by drainage area and the fluvial erodibility coefficient (e.g., 702 

Whipple and Tucker, 1999; Royden and Perron, 2013) and then spread to hillslopes (e.g., 703 

Mudd and Furbish, 2007; Reinhardt et al., 2007; Prince and Spotila, 2013). Because 704 
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these signals propagate upslope, they can be thought of as “bottom-up” drivers of 705 

landscape transience (e.g., Bishop, 2007).  706 

 707 

On the other hand, if erodibility coefficients or sediment transport coefficients change, we 708 

might reasonably expect the entire landscape to act in concert. For example, both theory 709 

(e.g., Whipple and Tucker, 1999) and field studies (e.g., Moon et al., 2011; Ferrier et al., 710 

2013) suggest that precipitation plays a role in determining the erodibility coefficient (K) 711 

of bedrock channels. As a result of climate change, precipitation may change over an 712 

entire landscape. Similarly, the hillslope sediment transport coefficient is thought to be a 713 

function of landscape properties, such as vegetation cover, that respond to climate (e.g., 714 

Hanks, 2000; Anderson 2002; Dunne et al., 2010; Hurst et al., 2013b; Pelletier et al., 715 

2013; Schlunegger and Norton, 2013; Acosta et al., 2015; Andersen et al., 2015). Such 716 

changes may be widespread: for example an entire landscape may shift from forest to 717 

grassland (e.g., Roering et al., 2004; Hughes et al., 2009) or diffusive processes may 718 

transition from highly efficient frost-related processes to less efficient bioturbation-driven 719 

processes (e.g., Hales and Roering, 2009); fluvial processes may then be affected by top 720 

down controls on sediment flux (e.g., Wobus et al., 2010). Because such changes act 721 

over an entire landscape, these landscapes can be considered to have a “top-down” 722 

control on transient erosion. This top down forcing is distributed over the entire catchment, 723 

and thus the erosion rate closely follows the changes in sediment transport or erodibility 724 

coefficients, mirroring the results presented by Braun et al. (2015).  725 

 726 
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Bottom up forcing 727 

Consider the bottom-up scenario (that with varying uplift, U). If uplift forcing is periodic, 728 

one finds some parts of the landscape responding to rapid erosion forcing and others 729 

responding to slow erosion forcing (Figure 9a-d). For example, in Figure 9b, a period of 730 

rapid uplift introduces a wave of fast erosion (as seen in the red area near the boundaries) 731 

that has propagated upslope in Figure 9c. The remnant of a previous cycle of fast erosion 732 

in Figure 9c exists along the ridgeline. Because the landscape contains both rapidly 733 

eroding and slowly eroding areas the erosion rate averaged over the entire landscape is 734 

averaged to a value that is very close to the mean uplift rate (Figure 8a,d,g, and j). This 735 

averaging is reflected in the apparent erosion rates calculated from basin averaged CRN 736 

concentrations. It is important to note that this spatial averaging is reliant on the fact that 737 

uplift is periodic: rapid erosion rates from one cycle are counterbalanced by slow erosion 738 

rates from another. This is not the case if there is a step change or monotonic change in 739 

the rate of base level fall (e.g., Rheinhardt et al., 2007; Willenbring et al., 2014).  740 

 741 

Top down forcing 742 

Now consider landscapes with top down control on varying erosion. The simulations are 743 

set so that the amplitude is 30 % of the mean value, so for example if the mean value of 744 

D is 0.005 m2 yr-1, then D varies between 0.0035 and 0.0065 m2 yr-1.In these landscapes 745 

there still is some spatial variation in erosion rates but the dominant behavior is that when 746 

transport coefficients are at their maximum values the erosion rate across the landscape 747 

is higher than the time-averaged mean erosion rate (Figure 9f), and conversely low values 748 

of the K and D coefficients lead to low erosion rates across the landscape (Figure 9h).  749 
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 750 

Between peaks or and troughs in K and D, one can see spatial variations in the erosion 751 

rate (Figures 9e, g). This is because these landscapes are more sensitive to changes in 752 

D than K (compare, for example, Figure 8b and c, where only small variability in erosion 753 

rates from variations in K are apparent).  Because hillslope adjust rapidly, their slopes 754 

adjacent to channels adjust more quickly to changing D, but the channels must 755 

accommodate these changing side slopes (e.g., in Equation 13 the erosion rate in the 756 

channel depends on all adjacent pixels). At positions in the landscape with large drainage 757 

areas, hillslopes have almost no role because erosion is controlled by channel incision. 758 

In contrast, near the tips of the drainage network the effect of side slopes is more 759 

substantial since the drainage area along the channel is low and hillslope sediment fluxes 760 

are of a similar magnitude to removal of mass by the channel. This could potentially be 761 

an artefact of the relative values of K and D in the simulations; higher values of K would 762 

reduce this effect. However preliminary simulations featuring K values high enough for 763 

channels and hillslopes to respond on similar timescales resulted in unrealistic drainage 764 

densities. Landscape dissection is a function of the relative magnitude of K and D (Tucker 765 

and Bras, 1998; Perron et al., 2009) and to arrive at landscapes with qualitatively 766 

reasonable hillslope lengths (i.e. on the order of tens of meters) I was unable to generate 767 

landscapes with channels that responded faster than hillslopes. Relatively fast hillslope 768 

response has been documented in natural landscapes (Reinhardt et al., 2007; Hurst et 769 

al., 2012) but an exhaustive exploration of K and D to see if this is an expected feature of 770 

landscapes is beyond the scope of this study.  771 

 772 
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Because erosion rates respond to changing K and D values across the landscape, the 773 

erosion rate and the concentration of basin averaged CRNs reflects closely the variation 774 

in these parameters (Figures 8b, e, h and k). As predicted in one dimensional simulations, 775 

there is greater lag between the basin averaged erosion rate and the apparent erosion 776 

rate calculated from CRN concentrations in landscape forced with higher frequency 777 

oscillations (compare figures 8b and e).  778 

 779 

In summary, bottom up changes tend to lead to strong spatial variations in erosion rates, 780 

but the average erosion rates from basins affected by bottom up forcing remain relatively 781 

constant. This is reflected in CRN concentrations. On the other hand, top down forcing 782 

results in a more spatially heterogeneous erosion pattern that features strong temporal 783 

variation.  784 

Basin-scale topographic indicators of transience 785 

Having examined techniques for determining landscape transience on a hillslope scale, 786 

following on from CRN tracing of landscape transience, I now briefly discuss basin and 787 

regional scale tracing of landscape transience. Perhaps the most widespread method for 788 

looking for differing erosion rates of wide areas is to quantify how steep channels are. 789 

Over a century ago, G.K. Gilbert (1877) recognized that topographic gradients drive 790 

erosion; in his seminal 1877 report on the geology of the Henry Mountains, he said “we 791 

have already seen that erosion is favoured by declivity. If declivity is great the agents of 792 

erosion are powerful; where it is small they are weak; where there is no declivity they are 793 

powerless.” Topographic gradient is still considered one of the driving factors of erosion 794 
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in channels, along with substrate composition, sediment supply and discharge. The latter 795 

varies systematically with drainage area so even if substrate and sediment supply are 796 

equal the channel gradient must be normalized for discharge if one is to compare the 797 

erosive potential of one channel to another.   798 

 799 

It has been suggested that in eroding landscapes featuring bedrock rivers, channel 800 

erosion can be described by the stream power law E = KAmSn (e.g., Howard and Kerby, 801 

1983; Whipple and Tucker 1999). The equation can be rearranged as S = (E/K)1/n A-m/n.  802 

The term (E/K)1/n is frequently recast as the steepness index, ks (which is equal to SAm/n 803 

according to the equation), or the normalised steepness index ksn if the ratio m/n  is set 804 

to a fixed reference value (Wobus et al., 2006).  The steepness index can be calculated 805 

by plotting the logarithm of drainage area against the logarithm of slope (both of these 806 

quantities are easily extracted from digital elevation models): if slope-area data is plotted 807 

in log-log space, the gradient of a regression line will be –m/n and the intercept where 808 

log(A) = 0 will be ks . Normalized steepness index can be calculated numerically as ksn = 809 

SAm/n for a fixed value of m/n, frequently set to 0.45 (Wobus et al., 2006). Even if the 810 

stream power law is an imperfect description of channel incision (c.f., Lague, 2014), one 811 

can still calculate ksn to compare the relative steepness of channels from a purely 812 

geometric perspective. The channel steepness index has been used widely to detect 813 

regions of anomalously steep channels; these channels can indicate, for example, areas 814 

with relatively high tectonic uplift rates (for reviews, see Wobus et al., 2006 and Kirby and 815 

Whipple, 2012).  816 
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 817 

Another method to investigate the relative steepness of a channel is to use the channel 818 

elevations themselves, rescaled either by integrating drainage area as a function of flow 819 

distance (e.g., Royden et al., 2000; Perron and Royden, 2013), or by rescaling flow 820 

distance by the m/n ratio (e.g., Smith et al., 2000; Pritchard et al., 2009). A number of 821 

authors have used transformed river profiles to calculate erosion histories using inverse 822 

modelling (e.g., Roberts and White, 2010; Fox et al., 2014; Goren et al., 2014; Fox et al., 823 

2015; Glotzbach, 2015; Rudge et al., 2015), and these authors have provided valuable 824 

constraints on the transient uplift histories of Southern Africa, Australia, Taiwan, the 825 

Andes and individual mountain ranges in California.   826 

 827 

One potential pitfall of inversion studies is that if the slope exponent, n, does not equal 828 

unity, then dynamic information about changing uplift or erosion rates are not entirely 829 

preserved by channels (Royden and Perron, 2013). Royden and Perron (2013) 830 

demonstrated that for n > 1, channel segments generated by periods of faster uplift will 831 

consume those generated by slower uplift, whereas for n < 1 channel segments 832 

generated by slow uplift will consume those generated by rapid uplift; in both cases 833 

information about the past is lost. There is evidence that the slope exponent, however, is 834 

often not unity (e.g., Snyder et al., 2003; Ouimet et al., 2009; DiBiase et al., 2010; 835 

Whittaker and Boulton 2012; Lague 2013; Croissant and Braun, 2014). Even if information 836 

is lost, however, one may use statistical methods to look for channel reaches with varying 837 
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channel steepness, in order to identify reaches that may be eroding at different rates to 838 

their neighbors without assuming a historical forcing (e.g., Mudd et al., 2014).  839 

 840 

Another method of looking for landscape transience is to compare a flow length 841 

coordinate, normalized for drainage area, across drainage divides. Royden et al. (2000) 842 

suggested a coordinate transformation: 843 

 844 

� = ∫ ( �଴�ሺ�ሻ)௠/௡ ݀�௫
௫� , (14) 

 

 845 

where A0 [L2] is a reference drainage area, introduced to ensure the integrand in equation 846 

(14) is dimensionless, x [L] is the distance along the channel and xb [L] is the location of 847 

local base level. The transformed coordinate, , has dimensions of length. If channel 848 

erosion can be described by the stream power law, then channel elevation can be related 849 

to  with (Perron and Royden, 2013; Royden and Perron, 2013): 850 

 851 

ሺ�ሻߞ = ሺ�௕ሻߞ + ( ଴௠)ଵ/௡�ܭܧ �, (15) 
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Here the gradient of the  profile, M, that is the channel profile cast as elevation, ζ, plotted 852 

as a function of , will be indicative of the erosion (or uplift rate if balanced by erosion, 853 

i.e., tectonic steady state): 854 

 855 

�ܯ = (  ଴௠)ଵ/௡, (16)�ܭܧ

 

  

 856 

where the chi gradient,  M, is related to the channel steepness index by M = A0
-m/n ks.  857 

 858 

Based on equation (15), Willett et al. (2014) reasoned that  is therefore a metric for the 859 

steady state elevation of a channel, and therefore in a steady state landscape  must be 860 

balanced across divides. If it is not, then the side of the divide with lower  will push the 861 

divide until equilibrium is restored, a process equivalent to the pushing of divides away 862 

from more rapidly eroding channels described by Mudd and Furbish (2005). Figure 10 863 

shows an example of the chi coordinate across divides near Sorbas, Spain, the site of a 864 

well-documented river capture (e.g., Harvey and Wells, 1987; Stokes et al., 2003). Willett 865 

et al. (2014) and Yang et al. (2015) have used this method to identify potentially 866 

widespread areas of stream piracy and drainage reorganisation in the Appalachians of 867 

the United States and the Three Rivers region of China. Due to the ease of calculating  868 
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from topographic data, this method promises to help identify regions of transient 869 

landscape evolution, as long as author are careful to account for changes in discharge 870 

and bedrock erodibility that may complicate comparisons of the  across adjacent basins.  871 

 872 

Conclusions:  strategies for detecting landscape transience in eroding 873 

landscapes 874 

In upland, eroding landscapes, detection of transience can be challenging because there 875 

are limited depositional archives from which to infer past changes in erosion rates (c.f., 876 

Whittaker et al., 2010). However, with judicious use of both topographic and isotopic 877 

information, we can gain insight into a landscape’s past. Cosmogenic nuclides are a 878 

powerful tool for quantifying erosion rates and soil production from the scale of individual 879 

soil profiles to entire basins, yet they have been less frequently used to test hypotheses 880 

about the past evolution of land surfaces. I have demonstrated that it is possible to use 881 

paired cosmogenic nuclides to detect changes in past erosion rates resulting from block 882 

removal or acceleration of erosion rates. However, the two nuclides used in the pair must 883 

have significantly different decay rates; the only practical way to detect changing erosion 884 

rates is by combining the relatively short half-life of cosmogenic in-situ 14C with a longer 885 

lived nuclide such as 10Be. Changes in erosion rates or removal of mass is unlikely to be 886 

detected if background erosion rates are faster than ~0.1 mm yr-1. When background 887 

erosion rates are slower, however, detection is possible. If background erosion rates are 888 

~0.01 mm yr-1, block removal can be detected for up to ~10 kyr after the event. 889 

Accelerations in erosion rate can be detected between ~500 years up to ~50 kyr after the 890 
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event. Decelerations can be detected after ~2 kyr up to, in extreme cases, 500 kyr after 891 

the event.  892 

 893 

When we move to the basin or landscape scale, it becomes extremely difficult, if not 894 

impossible, to detect landscape transience from basin-wide CRN concentration 895 

measurements, and the interpretation of these concentrations is fraught with danger 896 

because the response of apparent erosion rates, determined by inverting CRN 897 

concentrations, exhibits markedly different behavior depending on how landscape 898 

transience is forced. If oscillating landscape transience is forced by changing base level 899 

(e.g., through changing sea level or tectonic uplift where differential motion occurs along 900 

a fault), then apparent erosion rates will reflect a mean erosion rate averaged over several 901 

uplift cycles rather than the current uplift rate. These apparent erosion rates will reflect 902 

the actual, basin averaged, erosion rates, but will bear little resemblance to local erosion 903 

rates. On the other hand, if erosion rates are transiently forced by climate that affects 904 

either channel erodibility or the hillslope sediment transport coefficient, then apparent 905 

erosion rates will track the forcing closely over the entire basin. Thus if one is to identify 906 

whether apparent erosion rates reflect recent erosion rates or a long term mean, and are 907 

consistent with local erosion rates, one must have some constraint on the nature of the 908 

transient forcing.  909 

 910 

Topography can complement, or be used in lieu of, CRN data to detect landscape 911 

transience. In soil mantled landscapes, the relationship between ridgetop curvature and 912 
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hillslope relief can be a powerful indicator of landscape transience. Roering et al. (2007) 913 

demonstrated that normalized forms of relief (R*) and hilltop curvature (E*) should lie on 914 

a single curve if a hillslope is in steady state. Deviations from this curve, therefore, should 915 

indicate landscape transience, as demonstrated by Hurst et al. (2013a). In this 916 

contribution I show that one should be able to resolve a doubling of erosion rate using 917 

this technique, and that the signal should persist for hundreds to thousands of years in 918 

most landscapes.  919 

 920 

Moving to the scale of basins, both channel steepness, as measured by the normalised 921 

steepness index, ksn, or the chi gradient, Mχ, can be indicative of changing erosion rates 922 

and landscape transience where other factors, such as sediment supply, or channel 923 

substrate, do not vary substantially. The chi coordinate, a coordinate derived by 924 

integrating drainage area over channel length, can also be used to identify landscape 925 

disequilibrium by looking for variation across drainage divides. Thanks to both 926 

geochronologic and topographic tools, geomorphologists now have a variety of tools for 927 

examining landscape disequilibrium at scales ranging from single points on the landscape 928 

to entire basins.  These tools may be used to reconstruct past erosion rates occurring 929 

over hundreds to hundreds of thousands of years.  930 

 931 
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 1378 

Figure Captions 1379 

Figure 1. Ratio of the apparent erosion rate calculated from 14C to the apparent erosion 1380 

rate calculated from 10Be if a block is removed at some time in the past. The depth of 1381 

block removal (dbr) is listed in each panel. The dashed and solid lines in each panel 1382 

represent different background erosion rates. An erosion rate of 0.0026 g cm2 yr-1 is 1383 

equivalent to an erosion rate of 0.01 mm yr-1 if the rock density is 2.6 g cm-3. The shaded 1384 

area denotes a 20% difference between erosion rates predicted by in-situ 14C and 10Be; 1385 

differences below this are likely undetectable.  1386 

 1387 
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Figure 2. Ratio of the apparent erosion rate calculated from 14C to the apparent erosion 1388 

rate calculated from 10Be if there is a step change in erosion rate at some time in the past. 1389 

Panel a. shows scenarios in which erosion rates increase, whereas panel b. shows 1390 

scenarios in which erosion rates decrease. The shaded area denotes a 20% difference 1391 

between erosion rates predicted by in-situ 14C and 10Be; differences below this are likely 1392 

undetectable.  1393 

 1394 

Figure 3. Responses of hillslopes to transient perturbation. Panel a. shows in black the 1395 

curve of dimensionless relief vs dimensionless erosion rate predicted by Roering et al., 1396 

(2008). The red and green curves show the effect of an increase of erosion rate of two 1397 

and one orders of magnitude, respectively; stars represent starting and ending positions 1398 

on the steady state curve. Increased erosion rates result in hillslopes that plot above the 1399 

steady state curve. Panel b. shows a dimensionless hillslope profile. The blue profile is 1400 

the initial condition, the green curve shows the profile after a dimensionless time (t*) of 1401 

0.05 (that is, after 0.05 times LH
2/D) following an order of magnitude increase in erosion 1402 

rate. The dashed grey curve shows a steady state hillslope with the same ridgetop 1403 

curvature as the green profile, demonstrating that the steady profile has lower relief than 1404 

the transient profile and illustrating why hillslopes that have increased erosion rates plot 1405 

above the steady profile in dimensionless relief vs. apparent erosion rate plots.  1406 

 1407 

Figure 4. Detection and duration of transience in hillslope profiles in the case of a step 1408 

change in erosion rate. Panel a. shows maximum differences between predicted and 1409 
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measured dimensionless relief (R*) as a function of both initial erosion rate and the ratio 1410 

between initial and final erosion rates. Perturbations within the shaded area are unlikely 1411 

to be detected using E* vs R*. The size of the shaded region will depend on the landscape 1412 

and is determined by the standard error in R*. Panel b. shows the time to the maximum 1413 

difference in R*; steeper landscapes (higher E*) have shorter response times because 1414 

more of the landscape is at critical slope (i.e., topographic gradients approaching Sc) and 1415 

therefore responds very quickly to changes in channel incision rates, consistent with the 1416 

predictions of Mudd and Furbish (2007). Note the noise at slower erosion rates is an 1417 

artefact of the adaptive time step of the numerical model.  1418 

 1419 

Figure 5. Model predictions of error in estimated transport coefficient (D) given a step 1420 

change in this coefficient. The initial and final values of D are denoted by Di and Df, 1421 

respectively.  Panels a. and b. show two different background erosion rates. The actual 1422 

transport coefficient is set within the model. The apparent D is calculated by dividing the 1423 

apparent erosion rate, as determined by 10Be in the soil column, by the ridgetop curvature. 1424 

Shaded areas represent errors of 10% or less. The noise in the data comes from two 1425 

sources: i) curvature is a numerical approximation and ii) apparent erosion rates are 1426 

calculated from particles advected toward the surface of the model; the topmost particle 1427 

is used to calculate apparent erosion rates using equation (5) but slight errors occur 1428 

because the particle is not always located exactly at the surface of the model.  1429 

 1430 
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Figure 6. Hillslope relaxation time (4D/(πLH)2; Mudd and Furbish, 2007) plotted as a 1431 

function of the transport coefficient (D) and hillslope length (LH). 1432 

 1433 

Figure 7. Initial landscapes for the transient landscape simulations. Note the difference 1434 

in color scale between the two figures. 1435 

 1436 

Figure 8. Apparent and actual erosion rates under different transient scenarios. Actual 1437 

erosion rates are the landscape averaged erosion rates from the previous timestep, 1438 

whereas the apparent erosion rates are calculated based on simulated concentrations of 1439 

10Be emerging from the landscape. The entire landscape is eroding, there is no storage 1440 

of particles once they are eroded.  Variation of forcing parameters has either a 100 kyr 1441 

period (a-c; g-i) or 40 kyr period (d-f; j-l). For varying K and D, the parameters are varied 1442 

with amplitude of 0.3 times the mean value.   1443 

 1444 

Figure 9. Examples of the spatial distribution of erosion rates for different landscape 1445 

evolution scenarios. All simulations have a period of 100 kyr and a K value of 0.00005 yr-1446 

1.  Color scale is the same for all panels. Small plots show the erosion and uplift time 1447 

series, and the times of the panels are indicated with vertical dashed black lines. Panels 1448 

a-d show the simulation that is depicted in Figure 8g, and panels e-h show the simulation 1449 

depicted in Figure 8f.  1450 
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 1451 

Figure 10. An example of disequilibrium χ coordinates across drainage divides near a 1452 

channel capture location. The capture point was identified by Harvey and Wells (1987) 1453 

near Sorbas, Spain. Catchments with lower χ values are predicted to be ‘pushing’ the 1454 

divides toward catchments with higher χ values.  1455 
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lated from 10Be if a block is removed at some time in the past. The depth of block removal (dbr) is

listed in each panel. The dashed and solid lines in each panel represent different background erosion

rates. An erosion rate of 0.0026 g cm2 yr-1 is equivalent to an erosion rate of 0.01 mm yr-1 if the rock

density is 2.6 g cm-1. The shaded area denotes a 20% difference between erosion rates predicted by

in-situ 14C and 10Be; differences below this are likely undetectable.
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Figure 2: Ratio of the apparent erosion rate calculated from 14C to the apparent erosion rate cal-

culated from 10Be if there is a step change in erosion rate at some time in the past. Panel a. shows

scenarios in which erosion rates increase, whereas panel b. shows scenarios in which erosion rates

decrease. The shaded area denotes a 20% difference between erosion rates predicted by in-situ 14C

and 10Be; differences below this are likely undetectable.
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Figure 3: Responses of hillslopes to transient perturbation. Panel a. shows in black the curve of

dimensionless relief vs dimensionless erosion rate predicted by Roering et al., (2008). The red and green

curves show the effect of an increase of erosion rate of two and one orders of magnitude, respectively;

stars represent starting and ending positions on the steady state curve. Increased erosion rates result

in hillslopes that plot above the steady state curve. Panel b. shows a dimensionless hillslope profile.

The blue profile is the initial condition, the green curve shows the profile after a dimensionless time

(t* ) of 0.05 (that is, after 0.05 times L2

H/D) following an order of magnitude increase in erosion rate.

The dashed grey curve shows a steady state hillslope with the same ridgetop curvature as the green

profile, demonstrating that the steady profile has lower relief than the transient profile and illustrating

why hillslopes that have increased erosion rates plot above the steady profile in dimensionless relief vs.

apparent erosion rate plots.
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Figure 4: Detection and duration of transience in hillslope profiles in the case of a step change in

erosion rate. Panel a. shows maximum differences between predicted and measured dimensionless

relief (R* ) as a function of both initial erosion rate and the ratio between initial and final erosion

rates. Perturbations within the shaded area are unlikely to be detected using E* vs R*. The size of

the shaded area will depend on the landscape and is determined by the standard error in R*. Panel b.

shows the time to the maximum difference in R* ; steeper landscapes (higher E* ) have shorter response

times because more of the landscape is at critical slope (i.e., topographic gradients approaching Sc)

and therefore responds very quickly to changes in channel incision rates, consistent with the predictions

of Mudd and Furbish (2007). Note the noise at slower erosion rates is an artefact of the adaptive time

step of the numerical model.
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Figure 5: Model predictions of error in estimated transport coefficient (D) given a step change in

this coefficient. The initial and final values of D are denoted by Di and Df , respectively. Panels a.

and b. show two different background erosion rates. The actual transport coefficient is set within the

model. The apparent D is calculated by dividing the apparent erosion rate, as determined by 10Be in

the soil column, by the ridgetop curvature. Shaded areas represent errors of 10% or less. The noise in

the data comes from two sources: i) curvature is a numerical approximation and ii) apparent erosion

rates are calculated from particles advected toward the surface of the model; the topmost particle is

used to calculate apparent erosion rates using equation (5) but slight errors occur because the particle

is not always located exactly at the surface of the model.
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Figure 7: Initial landscapes for the transient landscape simulations. Note the difference in color scale

between the two figures.
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Figure 8: Apparent and actual erosion rates under different transient scenarios. Actual erosion rates

are the landscape averaged erosion rates from the previous timestep, whereas the apparent erosion

rates are calculated based on simulated concentrations of 10Be emerging from the landscape. The

entire landscape is eroding, there is no storage of particles once they are eroded. Variation of forcing

parameters has either a 100 kyr period (a-c; g-i) or 40 kyr period (d-f ; j-l). For varying K and D,

the parameters are varied with amplitude of 0.3 times the mean value.
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Figure 9: Examples of the spatial distribution of erosion rates for different landscape evolution

scenarios. All simulations have a period of 100 kyr and a K value of 0.00005 yr-1. Color scale is the

same for all panels. Small plots show the erosion and uplift time series, and the times of the panels are

indicated with vertical dashed black lines. Panels a-d show the simulation that is depicted in Figure

8g, and panels e-h show the simulation depicted in Figure 8f.
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Figure 10: An example of disequilibrium χ coordinates across drainage divides near a channel capture

location. The capture point was identified by Harvey and Wells (1987) near Sorbas, Spain. Catchments

with lower χ values are predicted to be pushing the divides toward catchments with higher χ values.
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