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ABSTRACT 1 

Amazonian white-sand forests occur on quartzitic sandy soils, are distributed as an archipelago 2 

of habitat islands across the rainforests of Amazonia and contain many endemic plant species. 3 

Surprisingly, we found that only 23% of plant species in western Amazon white-sand forests are 4 

white-sand specialists, while the remaining species (77%) also occur in other habitat types. 5 

Overall, our analyses revealed (i) somewhat unexpected composition similarity of white-sand 6 

forests with nearby non-white-sand forests, (ii) phytogeographical connections among distant 7 

white-sand forests, and (iii) a large proportion of western Amazon white-sand specialists 8 

occurring in floras of the western and central Guiana Shield region (7-43%). These results 9 

suggest that dispersal from both neighbouring oligotrophic non-white-sand habitats and distant 10 

white-sand forests is fundamental in shaping western Amazonian white-sand forests’ species 11 

composition and diversity. While endemism in Amazonian white-sand forests may be lower than 12 

previously estimated, conservation of this unique and fragile environment should remain a 13 

priority. Such conservation will require the maintenance of regional dispersal processes that 14 

connect these archipelagos of habitat islands and other ecologically similar oligotrophic habitats 15 

across the Amazon and the Guiana Shield. 16 

 17 

Key words: Amazon, arenosol, biogeography, campinarana, ecoregion, floristics, Guiana Shield, 18 

habitat specialization, podzol, varillales 19 
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RESUMEN 1 

Los bosques de arena blanca de la Amazonía ocurren en suelos arenosos quartzíticos, tienen 2 

muchas especies endémicas y están distribuidos como un archipiélago de hábitats, dispersos a lo 3 

largo de la Amazonía y la región del escudo Guyanés. Inesperadamente, encontramos una baja 4 

proporción de plantas restringidas a ellas (23%) mientras que la mayoría de las especies (77%) 5 

también ocurren en otros tipos de hábitat de la Amazonía y del Neotrópico. Estos bosques tienen 6 

(i) similitudes florísticas con bosques en otro tipo de suelos de áreas cercanas, (ii) conexiones 7 

fitogeográficas con otros bosques de arena blanca distantes, (iii) una alta proporción de su flora 8 

especialista habitando áreas del centro y oeste del escudo Guyanés (7-43%). Estos resultados 9 

sugieren que la dispersión, desde hábitats oligotróficos cercanos, distintos a arena blanca, así 10 

como desde bosques de arena blanca distantes es fundamental en estructurar su composición y 11 

diversidad. Aun cuando el nivel de endemismo en los bosques de arena blanca de la Amazonía 12 

occidental puede ser más bajo de lo que previamente se estimaba, la conservación de estos 13 

ecosistemas únicos y frágiles debería continuar siendo una prioridad. Enfatizamos la necesidad 14 

de implementar estrategias regionales de conservación que ayuden a conservar los distintos 15 

archipiélagos de arena blanca así como hábitats oligotróficos con condiciones ecológicas 16 

similares en la Amazonia y el escudo Guyanés. 17 

 18 

Palabras clave: Amazonía, arenosol, biogeografía, campinarana, ecoregión, especialización de 19 

hábitat, florística, Guiana Shield, podzol, varillales 20 
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QUARTZ-RICH SANDY SOILS ARE FOUND ACROSS AMAZONIA, A BIOGEOGRAPHIC UNIT 1 

encompassing the Amazon basin and the Guiana Shield region. These soils support a complex of 2 

vegetation types known as white-sand forests, which occupy relatively large extensions in the 3 

Guiana Shield region and Rio Negro basin, one of the oldest geological regions in northern South 4 

America (Hammond 2005b). Across the rest of Amazonia, white-sand forest is scattered in 5 

island-like patches within a matrix of terra firme, upland rainforests on clay and sandy-clay soils, 6 

with patches varying in size from several to hundreds of hectares (Macedo & Prance 1978, 7 

Anderson 1981, Prance 1996).  8 

 9 

There is a sharp physiognomic contrast when one crosses from a multi-layered cathedral-10 

like terra firme forest to white-sand forest: a reduction in forest stature, an increase in the density 11 

of pole-like stems, and a relatively open canopy, with a large amount of sunlight reaching into 12 

the understory (Coomes & Grubb 1998, García-Villacorta et al. 2003). Likewise, white-sand 13 

forests are substantially distinct floristically from the typical terra firme forest, with many local 14 

and regional habitat specialists as well as endemic species (Anderson 1981, Prance 1996, Gentry 15 

1986, Fine et al. 2010). Given their distinctive structure, patchy distribution and floristic 16 

composition, it is not surprising that white-sand forests across the Amazon have received distinct 17 

local designations such as varillal, chamizal (in Peru, Colombia), Amazon caatinga, campina, 18 

campinarana (Brazil), caatinga, bana (Venezuela), wallaba forest, and muri bush (Guyana, 19 

French Guiana, Surinam) (Richards 1941, Revilla 1974, Cooper 1979, Anderson 1981). 20 

 21 
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Fundamental to the existence of these forests is the presence of nutrient-poor, sandy soils. 1 

Pedological and geological evidence about the origin of these soils (García-Villacorta 2015) 2 

suggests that they may have at least four different origins: (i) the product of deep in situ 3 

weathering of quartzitic sandstones (Kubitzki 1989, Potter 1994, Hammond 2005a); (ii) 4 

deposition by eolian transport (Ab’Saber 1982, Clapperton 1993, Horbe et al. 2004); (iii) as 5 

fluvial deposits of paleo-channels (Klinge 1965, Anderson 1981, Ab’Saber 1982, Hoorn 1994, 6 

Räsänen & Linna 1998, Hermoza et al. 2005, Rossetti et al. 2012); and (iv) the final product of 7 

on-going Ferralsol/Acrisol to Podzol transformation (Lucas et al. 1984, Dubroeucq & Volkoff 8 

1998, Lucas et al. 2012, Mendonça et al. 2014). 9 

 10 

Taxonomic revisions and local floristic studies in Amazonian white-sand forests have 11 

emphasized the existence of plant species and genera disjunctly distributed between the Guiana 12 

Shield region and western Amazonian white-sand forests (e.g. Spruce 1908, Gentry & Ortiz 13 

1993, Berry et al. 1995, Cortés & Franco 1997, Silveira 2003, Arbeláez & Duivenvoorden 2004, 14 

García-Villacorta & Hammel 2004, Struwe & Albert 2004, Fine et al. 2010). To date, there has 15 

been no attempt to study species distribution and compositional patterns of these floras at pan-16 

Amazonian scales. To shed light onto the phytogeography of western Amazon white-sand 17 

forests, we addressed three main questions: (1) Are western Amazonian white-sand forests 18 

comprised primarily of white-sand specialist species?; (2) What are the phytogeographic 19 

connections of western Amazon white-sand species?; and (3) Are white-sand forests of the 20 

western Amazon floristically more similar to floras on adjacent areas of non-white-sand soils or 21 

to white-sand floras of the Guiana Shield region? 22 
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METHODS 1 

STUDY AREA AND FLORISTIC DATASETS.—The study area encompasses the Amazon and Guiana 2 

Shield region (Fig. 1). The border of the Amazon and Guiana regions was extracted from the 3 

ecoregions map of the world (Olson et al. 2001), following closely the limits of the Guiana 4 

Shield (Hammond 2005b) and HYBAM’s Amazon basin watershed limits (Seyler et al. 2009). 5 

We term this entire area “Amazonia”.  6 

 7 

White-sand forests in the western Amazon occur patchily dispersed in the southwest of 8 

the Colombian Amazon, northern Peruvian Amazon, and around the area of Cruzeiro do Sul in 9 

the state of Acre, Brazil. The white-sand flora in all these three areas has been studied intensively 10 

in the last few years, making them amenable to a floristic assessment. To assess the floristic 11 

affinities of the white-sand forests from the western Amazon we compiled a list of all vascular 12 

plant species known to occur in the white-sand forests of Peru (Loreto region: loreto.wsf.PE), 13 

Colombia (Guainía region: guainía.wsf.CO, and Caquetá region: caquetá.wsf.CO), and  the 14 

western Brazil (Acre region: acre.wsf.BR). The checklist of the white-sand forests of northern 15 

Peru were extracted from García-Villacorta et al. (2003), supplemented with a more regional 16 

study of its woody flora (Fine et al. 2010) as well as collections made by other botanists and 17 

projects in the same region as recorded in the Missouri Botanical Garden’s Tropicos database 18 

(Tropicos-Peru 2013). The following studies were used to compile the checklists of vascular 19 

white-sand floras of Colombia (guainía.wsf.CO, and caquetá.wsf.CO), and Brazil (acre.wsf.BR): 20 

Cortés & Franco (1997), Arbeláez (2003), Silveira (2003), Cárdenas-López (2007), and Ferreira 21 

(2009).  22 
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 1 

TAXONOMIC INCLUSION AND STANDARDIZATION.—To have a standardized database, all checklists 2 

and flora treatments were checked for synonyms and illegitimate names using the Taxonomic 3 

Name Resolution Service v3.0 (Boyle et al. 2013, TNRS 2013), which is an online tool that 4 

matches a plant checklist against agreed plant taxonomies. Only native vascular plants 5 

(gymnosperms, angiosperms, and ferns) were included in the database, and all cultivated, 6 

naturalized and hybrid species were excluded. The Missouri Botanical Garden’s Tropicos 7 

database was the chosen source for taxonomic matching. In very few cases, especially for 8 

recently described species that are still in the process of inclusion in taxonomic databases, 9 

resolving species names was achieved by consulting The Plant List website (The Plant List 10 

2013). Intraspecific names (sub-species, varieties, forms) were maintained as much as possible in 11 

the database because they may represent taxonomic variation confined to white-sand habitats 12 

(e.g. white-sand specialists, cryptic undescribed species), and because taxonomic revisions tend 13 

to find new species when revising taxa occurring in these habitats (e.g. Cuatrecasas 1961, Struwe 14 

& Albert 2004, Daly & Fine 2011). Therefore, including sub-specific taxa may be useful for a 15 

better understanding of floristic patterns in relation to white-sand forests. 16 

 17 

The taxonomy at the family level for angiosperms follows the Angiosperm Phylogeny 18 

Group III system (The Angiosperm Phylogeny Group 2009). Prior to the analysis, plant families 19 

or genera with strictly aquatic habit, or not well represented in forested habitats, were excluded 20 

from the database, including Elatinaceae, Nymphaeaceae, Pontederiaceae, Alismataceae, 21 

Salviniaceae, Onagraceae, Poaceae, Ceratophyllaceae, Cyperaceae, Hydrocharitaceae, 22 
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Hydroleaceae, Mayacaceae, Potamogetonaceae, Typhaceae, Lentibularaceae, Cabombaceae, 1 

Pista, Montrichardia, and Lemna (Araceae).  2 

 3 

DISTRIBUTIONAL PATTERNS IN WESTERN AMAZON WHITE-SAND FORESTS.—To study the 4 

distributional patterns of species from these four floristic checklists, we searched for specimens 5 

of each taxon in the Missouri Botanical Garden herbarium online database Tropicos 6 

(http://www.tropicos.org) and determined the ecoregions in which they occur following Olson et 7 

al. (2001). We did not count a species as being present in an ecoregion if it was only represented 8 

by one specimen or if the identification was dubious, based on visual verification of the 9 

specimens at MO. In addition, we classified each species in the white-sand dataset into one of 10 

three categories: white-sand specialist, poor-soil specialist, or habitat generalist. For this study, 11 

white-sand specialists are defined as species occurring exclusively on white-sand soils; poor-soil 12 

specialists are species that can be found in both white-sand soils as well as other oligotrophic 13 

habitats (e.g. igapó forests, sandy-clay soils); and generalist species are those occurring on white-14 

sand soils, other nutrient-poor soils and any other habitats of the Neotropical region (e.g. clay-15 

rich upland forests, flooded forests, swamp forests, montane forests, savanna, dry forests). The 16 

assignment of species to each category was based on field knowledge of species habitat 17 

preferences supplemented by review of herbarium label descriptions citing the habitat where 18 

specimens were collected (e.g. white-sand forest, varillal, campina forest, campinarana, suelo 19 

arenoso, Amazon caatinga, suelo de arenisca). Species with dubious taxonomic identification 20 

were not included in the analysis. 21 

 22 

http://www.tropicos.org/
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Distributional analyses were conducted for the three groups of species separately as well 1 

as together as one group to explore which species are shared amongst ecoregions occurring 2 

within the limits of Amazonia (Fig. 1). White-sand forests from Colombia (guainía.wsf.CO, and 3 

caquetá.wsf.CO) occur at the margin of the western Guiana Shield (Fig. 1), and previous studies 4 

have shown that they have strong phytogeographic connections (i.e. they share a large number of 5 

species) with the Guiana Shield region (Cortés & Franco 1997, Cortés et al. 1998, Arbeláez 6 

2003). Thus, in order to further evaluate the floristic relationship of western Amazon white-sand 7 

forests outside of the Guiana Shield, we conducted distributional analyses both including and 8 

excluding the Colombian white-sand datasets.  9 

 10 

FLORISTIC RELATIONSHIPS OF WESTERN AMAZON WHITE-SAND FORESTS.—To carry out an 11 

analysis of the floristic relationships of western Amazon white-sand forests, province-level plant 12 

checklists were compiled for each of the countries with territories in Amazonia as defined here: 13 

Bolivia, Brazil, Colombia, Ecuador, Peru, Venezuela, Guyana, French Guiana, and Surinam (Fig. 14 

1; Appendix 1). Political unit definitions vary depending on the country (e.g. state in Brazil, 15 

department in Peru and Colombia), and we use the name “provinces” throughout this article to 16 

refer to all such political units. Because of their relatively small extent, the four provinces 17 

located in the Ecuadorian Amazon were treated in the analysis as one unit. In total, data were 18 

collated for 26 provinces. For developing this database the following floristic treatments were 19 

used: checklist of Peru (Brako & Zarucchi 1993, Tropicos-Peru 2013), checklist of Ecuador 20 

(Jorgensen & León-Yánez 1999, Tropicos-Ecuador 2013), checklist of Bolivia (Tropicos-Bolivia 21 

2013) checklist of Brazil (Forzza et al. 2010a, b), checklist of the Colombian Amazon (SINCHI 22 

2013), and checklist of the Guiana Shield region (Funk et al. 2007). These checklists and floras 23 
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were used to create a presence-absence matrix of species with which we conducted analyses of 1 

floristic composition. White-sand specialists found in provinces in which the four white-sand 2 

checklists were embedded (CO.GN, CO.CQ, PE.LO, and BR.AC) were excluded from the 3 

province-level lists. Including white-sand species in these lists would not have been appropriate 4 

with the floristic dissimilarity metric that we used to conduct clustering analyses (see below), 5 

because we would have obtained a floristic dissimilarity of zero between the white-sand list and 6 

that of the floristic province in which it was embedded. 7 

 8 

CLUSTER ANALYSIS.—In order to evaluate the floristic distance between study units we created a 9 

dissimilarity matrix by employing the one-complement of the Simpson similarity index 10 

(Simpson 1943) , which measures the proportion of the more species-poor site that is not nested 11 

within the more species-rich site (Tuomisto 2010): 12 

 13 

𝑆𝑖𝑚𝑝𝑠𝑜𝑛𝑑𝑖𝑠𝑡 = 1 −  
𝑎

min(𝑏, 𝑐) + 𝑎
 14 

 15 

Where a is the number of species present in both sites; b is the number of species 16 

restricted to one site; and c is the number of species restricted to the other site (Koleff et al. 17 

2003). We then performed a hierarchical clustering of the floristic checklists based on this 18 

dissimilarity matrix using the function hclust in the R statistical environment (R Core Team 19 

2015).  20 
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 1 

There are multitudes of clustering algorithms for different kinds of data and applications. 2 

Yet, evaluations of the benefits of different algorithms are seldom carried out in ecology or 3 

biogeography. Assessment of dendrograms is possible by correlating the original dissimilarity 4 

matrix with a cophenetic matrix obtained from a dendrogram (Sokal & Rohlf 1962). The 5 

algorithm with the highest Pearson cophenetic correlation value will be the one that best 6 

represents the original dissimilarity matrix in the topology of the resulting dendrogram (Sokal & 7 

Sneath 1963). In order to choose which of four clustering algorithms (Ward, Average linkage 8 

(UPGMA), Single linkage, and Complete linkage) gave the best representation of floristic 9 

relationships, we calculated the correlation of distances between sites in the resulting hierarchical 10 

clusters with the dissimilarity matrix obtained with the Simpson distance index. The analysis of 11 

cophenetic correlation among the four algorithms ranged from 0.28 to 0.63 (Appendix 2), with 12 

the best performing being Average Linkage. We checked and ensured that ties in dissimilarity 13 

values among clusters were not affecting our results using algorithms in the recluster package 14 

(Dapporto et al. 2013). 15 

 16 

We assessed the statistical support for clusters using multi-scale bootstrapping, 17 

implemented with the pvclust function in the pvclust package (Suzuki & Shimodaira 2006). We 18 

used 1000 bootstrap replicates with 10 different sampling levels and focused on approximately 19 

unbiased (AU) p-values as a measure of statistical support (Suzuki & Shimodaira 2006). The 20 

pvclust algorithm also facilitates the estimation of the standard error of each cluster, which 21 

provides a measure to diagnose outliers not strongly supported by the data.  22 
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 1 

ORDINATION.—As a complement to the floristic patterns revealed by the clustering analysis we 2 

performed Non-metric Multidimensional Scaling (NMDS),which extracts a reduced number of 3 

axes from the multidimensional space where the positions of the sites are defined (Minchin 1987, 4 

Borcard et al. 2011).  5 

 6 

We used the R package vegan (Oksanen et al. 2015) to implement NMDS in the manner 7 

recommended by Minchin (1987), using the function metaMDS with different random start 8 

configurations and a final scaling of the results, with the function postMDS, along the first 9 

dimension for a better interpretation. To avoid reaching an unstable solution where only a local 10 

optimum of stress is found, we ran the analysis from different random spatial configurations up 11 

to 500 times. Convergence to the same stress value from these random spatial configurations 12 

indicated that a global optimum had been reached. The dissimilarity matrix for the NMDS 13 

analysis was constructed using the Simpson distance index. 14 

 15 

RESULTS 16 

PATTERNS IN HABITAT SPECIALIZATION.—Overall, a total of 1,180 vascular plant species 17 

comprising 133 families, and 491 genera were found to occur in the four western Amazon white-18 

sand forest sites. The species distributional dataset resulted in 69,986 unique plant records 19 

representing these species’ occurrences across the Neotropics. At the species level, 43% of the 20 

total vascular flora occurring on white-sand forests was found to be habitat generalist (i.e. 21 
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occurring in white-sands forests as well as diverse other habitat types), 34% poor-soil specialist 1 

(i.e. occurring in white-sand forests and other oligotrophic habitats), and 23% white-sand 2 

specialist (i.e. restricted to white-sand forests). Appendix 3 summarizes the richness of families, 3 

genera, and species found in the three designated habitat preference categories. Of the total plant 4 

records, 74% (51,790 records) corresponded to “habitat generalists,” 21% to “poor-soil 5 

specialists” (14,723 records), and 5% to “white-sand specialists” (3,473 records). 6 

 7 

DISTRIBUTION PATTERNS ACROSS ECOREGIONS.—A large proportion of the species of white-sand 8 

forests of the western Amazon occurred within ecoregions of the Guiana Shield when this region 9 

was analysed as a unit. When excluding the Colombian white-sand checklists from the analysis, 10 

we found that 65% of white-sand specialist species (56 out of 85 species) in Loreto, Peru and/or 11 

Acre, Brazil were distributed in the Guiana Shield while 35% are endemic to these white-sand 12 

areas (29 species) (Appendix 5). When considering white-sand specialists of the full dataset (i.e. 13 

including Colombian white-sand checklists), 88.8% of the total (248 white-sand specialist 14 

species out of 279 species, Appendix 4) occurred also within the limits of the Guiana Shield 15 

region, with the remaining white-sand specialists being endemic to the western Amazon. When 16 

analysing what were the proportions of white-sand specialist from Peru (loreto.wsf.PE), and 17 

western Brazil (acre.wsf.BR) found in the Guiana Shield region, the three ecoregions with the 18 

highest percentage of western Amazon white-sand species were the Caquetá Moist Forests 19 

(30%), Guayanan Highlands Moist Forests (33%), and Negro-Branco Moist Forests (43%) 20 

(Appendix 5). These proportions changed slightly when analysed using the full white-sand 21 

dataset: Caquetá Moist Forests (69%), Guayanan Highlands Moist Forests (51%), and Negro-22 

Branco Moist Forests (49%). Similar patterns were found when looking at the Guiana Shield 23 
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ecoregions with the lowest proportion of white-sand specialists using both datasets: Rio Negro 1 

campinarana (7-8%), and Guyanan Savanna (9-17%). These ecoregions specific locations, and 2 

their shared proportions of white-sand specialists using both datasets, are shown in Figure 2. 3 

 4 

FLORISTIC SIMILARITY ANALYSIS.—A total of 26 floristic datasets at the level of provinces were 5 

compiled and compared with four western Amazon white-sand forests. There were a total of 6 

26,887 vascular plant species in the floristic dataset from 2865 genera and 268 APG III families. 7 

Appendix 1 gives a summary of the area and number of vascular plant species found at each 8 

province. The number of species in the white-sand forest checklists ranged from 363 9 

(acre.wsf.BR) to 955 species (guainía.wsf.CO). The number of species in the province checklists 10 

ranged from 607 (Vichada, Colombia) to 8,355 (Amazonas, Brazil). 11 

 12 

The hierarchical cluster analysis indicates that the four western Amazon white-sand 13 

floras cluster first with the non-white-sand flora in which they are geographically embedded, 14 

rather than with each other (Appendix 6). The four white-sand forests are then found in a large 15 

cluster, with surrounding and neighbouring provinces (Fig. 3), rather than falling with provinces 16 

of the core Guiana Shield area (VE.DA, GF, SU, GY, VE.BO, BR.RR).  17 

 18 

Relatively high levels of unbiased bootstrap support values (AU) were found by the 19 

pvclust randomization procedure for all clusters containing white-sand forests sites (Fig. 3). In 20 

particular, the cluster grouping the four western Amazonian white-sand floras along with 21 
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neighbouring non-white-sand floras had an AU pv-value of 84 (Appendix 6). It is clear from the 1 

pvclust analysis, however, that guainía.wsf.CO is nested within two floras more representative of 2 

the western lowlands of the Guiana Shield area (CO.GN, and VE.AM (AU p-value = 76)) than to 3 

the other three western Amazonian white-sand sites. Overall, cluster topology support values 4 

estimated by pvclust (AU p-values) ranged from 59 to 100% (Appendix 6). 5 

 6 

The standard error of the majority AU bootstrap values in pvclust was close to 0 for the 7 

majority of clusters (Appendix 7), which gives confidence that the existence of these 8 

phytogeographic clusters is supported by data. Only cluster 6, which does not include white-sand 9 

forests, had a relative high standard error in the bootstrap procedure (Appendix 7). 10 

 11 

ORDINATION.—An NMDS ordination with two axes recovered similar phytogeographic 12 

patterns to cluster analysis results as interpreted by the relative distances between floras and 13 

white-sand forests portrayed in the ordination space (Fig. 3). The Shepard plot indicates that 14 

there is a good fit of the ordination distance among sites against the original dissimilarity 15 

distance (Appendix 8). Adding additional axes to the analysis did not result in any substantial 16 

reductions in the stress value. White-sand forests of Acre (acre.wsf.BR), Loreto (loreto.wsf.PE), 17 

and Caquetá (caquetá.wsf.CO) are closer to each other floristically than they are to the white-18 

sand forests of Guainía (guainía.wsf.CO).  19 

 20 

 21 
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DISCUSSION 1 

 2 

PATTERNS OF HABITAT SPECIALIZATION.—Viewed from the air and explored on the ground, 3 

Amazonian white-sand forests are no doubt distinctive in physiognomy and structure compared 4 

to neighbouring upland forests on clay or sandy-clay soils (Anderson 1981, Prance 1996, 5 

Coomes & Grubb 1996, Bongers et al. 1985, Duivenvoorden & Lips 1995, García-Villacorta et 6 

al. 2003, Fine et al. 2010, Silveira 2003, Vicentini 2004, Ferreira 2009). In terms of species 7 

composition, however, our results show that only about a quarter (23%) of the total 1183 8 

vascular plant species inhabiting western Amazonian white-sand forests are specialized to these 9 

forests while the vast majority (77%) also occur in non-white-sand habitats (Table 2). This 10 

finding shows that a large majority of the species diversity found in white-sand forest can be 11 

attributed to plants from other habitats. Previous work on white-sand floristics and 12 

phytogeography has often examined taxonomic sub-sets of floras or taken a restricted (sub-13 

regional) geographic approach, which despite showing the influence of plants also found in other 14 

habitats, may have overestimated the proportion of true white-sand soil specialists. For instance, 15 

a floristic study of the white-sand forests of the Brazilian Amazon found that the majority of the 16 

species (54.5%) occurring in the vegetation type were restricted to it, whereas 23.6% also 17 

occurred in non-white-sand terra firme forests, 20% in igapó forests, and 2.6% in varzea forests 18 

(Anderson 1978, cited in Anderson (1981)). Similarly, an analysis of tree plots in white-sand and 19 

neighbouring forests in Peru found that 52% of tree species in white sand forests were 20 

specialists, while the rest were facultative specialists (9%), or habitat generalists (39%) (Fine et 21 

al. 2010).  22 
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 1 

In contrast, we have used a relatively strict criterion to determine white-sand specialists, 2 

i.e. that they are found only in white-sand forests, and we therefore may have underestimated 3 

specialization in white-sand forests compared to a classification based on species relative 4 

abundance. For example, a previous regional study from Madre de Dios, Peru found that only 5 

15-26% of all studied species were restricted to a single forest type or habitat (Pitman et al. 6 

1999), while a subsequent study in the same region that used relative abundance information 7 

found that 76.5% of dominant tree species were habitat specialists, i.e. significantly more 8 

abundant in one habitat type (Phillips et al. 2003). In accordance with this pattern, a previous 9 

study of white-sand forests in Loreto, Peru, found that floristic differentiation between white-10 

sand and terra firme forests was greater when one considered relative abundances of species 11 

rather than just presence/absence information (Fine et al. 2010). Thus, in our study, while some 12 

species may not have been classified as white-sand specialists using our strict presence/absence 13 

criterion, they may be much more abundant in white-sand forest than other forest types, thus 14 

potentially qualifying as specialists using abundance-based criteria. In other words, while there 15 

are many species present in white-sand forests that are also found in other forest types, the forest 16 

does tend to be dominated by white-sand specialists (Fine et al. 2010) or by poor-soil specialists 17 

as defined here, i.e. species with preference for waterlogged or oligotrophic soils (Freitas 1996, 18 

García-Villacorta et al. 2003, Vicentini 2004). Similarly, a recent study of swamp forests in the 19 

Ecuadorian Amazon found that just 8.6% of tree species in swamp forest are specialists on 20 

swamp forest, but that these specialists represent 43.6% of stems in the swamp forest (Pitman et 21 

al. 2014).  22 

 23 
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Another potential caveat of our results is that the number of white-sand specialist species 1 

may increase in the future via the discovery of cryptic species. For example, based upon detailed 2 

molecular and morphological studies, populations confined to white-sand habitats and previously 3 

assigned to Protium subserratum (Burseraceae) were found to be distinct from populations of 4 

that occurred on non-white sand soils, and it was suggested that they should be recognised at 5 

species level (Daly & Fine 2011, Fine et al. 2013). Similarly, a study on reproductive biology, 6 

phenotypic differences, and ecological preferences within the Pagamea coriacea complex 7 

(Rubiaceae) identified two sympatric species exploiting different gradient combinations of light 8 

and drainage within white-sand forests (Esteves & Vicentini 2013). Elucidating the number of 9 

cryptic undescribed species, and potentially incipient species undergoing ecological adaptation 10 

into white-sands forests, will remain uncertain without more taxonomic, field, and molecular-11 

based studies. 12 

 13 

In any case, our result that just 23% of species in western Amazon white-sand forest are 14 

restricted to that habitat type is much lower than previous estimates. We suggest that the 15 

ecological conditions of other oligotrophic habitats are similar enough to white sand forests such 16 

that they function like meta-ecosystems (Loreau et al. 2003, Gravel et al. 2010), harbouring 17 

species that are able to disperse into white sand habitats, and survive there, albeit at low 18 

densities. Likewise, the dispersal of propagules via mass-effect from surrounding habitats 19 

(Shmida & Wilson 1985, Holt 1993) may be an additional factor influencing the similarity 20 

values obtained when using presence/absence data rather than abundance data (cf. Vormisto, 21 

Svenning, et al. 2004).  22 
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 1 

DISTRIBUTIONAL PATTERNS AND PHYTOGEOGRAPHICAL CONNECTIONS.—Of the total western 2 

Amazonian white-sand specialist species, 88% of them occurred in floras within the Guiana 3 

Shield region, whereas 12% are endemic to the western Amazon (i.e. restricted to the four white-4 

sand areas studied here). This pattern of phytogeographic connection was still high when only 5 

non-Guiana Shield white-sand forests (loreto.wsf.PE, and acre.wsf.BR) were considered (65% of 6 

the white-sand specialists were shared with floras within the Guiana Shield region). Among all 7 

ecoregions, Caquetá Moist Forests, Guayanan Highlands Moist Forests, and Negro-Branco Moist 8 

Forests shared the highest proportions of western Amazon white-sand specialists (Appendix 5). 9 

These ecoregions are located at the central and western part of the Guiana Shield region (Fig. 2b) 10 

which supports results from studies of Colombian white-sand forests showing strong 11 

phytogeographic links with the Guiana Shield flora (Cortés et al. 1998, Giraldo-Cañas 2001, 12 

Arbeláez & Duivenvoorden 2004). On the other hand, the ecoregions with the highest percentage 13 

of shared western Amazon white-sand specialists, when using only species from loreto.wsf.PE 14 

(Peru), and acre.wsf.BT (Brazil), are located in the western Amazon (Iquitos varzea, Napo moist 15 

forests, and Southwest Amazon moist forests) (Fig. 2a; Appendix 5). It remains unexplained to 16 

what degree the white-sand forests contained in these ecoregions is influencing the 17 

compositional similarity of the white-sand forests we studied here. 18 

 19 

DISPERSAL AND FLORISTIC RELATIONSHIPS.—All white-sand forests clustered with the flora of the 20 

province where they belong geographically (Fig. 3). Given the overall large number of non-21 

white-sand specialist species in western Amazon white-sand floras, this result suggests that the 22 
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floristic patterns are driven by the overwhelming number of non-white-sand specialist species; 1 

hinting at an important influence of regional dispersal processes (Ricklefs 1987, Cornell & 2 

Lawton 1992, Holt 1993, Latham & Ricklefs 1993, Cottenie 2005, Ricklefs 2008). Collectively, 3 

our results support the hypothesis of a flora constructed via both long-distance dispersal of 4 

white-sand specialists from distant white-sand habitats and more local dispersal of poor-soil 5 

specialists and generalist species from ecologically similar oligotrophic habitats occurring in the 6 

same areas in which white-sand forests are embedded.  7 

 8 

Certain combinations of edaphic factors that are present in white-sand habitats promote 9 

colonization by species from physiognomically distinct habitat types, such as nutrient-poor terra 10 

firme clayey or sandy-clay soils and waterlogged habitats (Freitas 1996, García-Villacorta et al. 11 

2003, Vicentini 2004). In this regard, peat-accumulating palm swamps (Tuomisto et al. 1994, 12 

Lähteenoja et al. 2009), and old terraces of terra firme forests on hilly areas (García-Villacorta et 13 

al. 2010) may represent habitats with similar high stress and/or low resource availability (i.e. 14 

poor drainage conditions or nutrient-poor soils, respectively) that may be used by poor-soil plant 15 

specialists as dispersal corridors to reach isolated white-sand forests (García-Villacorta et al. 16 

2010). Ancient hilly terraces on poor oligotrophic clay soils are found to be a common feature at 17 

certain drainage divides of the western Amazon (e.g. Stallard 2011). These hilly terraces can 18 

have high erosion rates (Stallard 1988), which accelerates the leaching of soil nutrients 19 

(Laurance et al. 2010, Vormisto, Tuomisto, et al. 2004), and they can be extensive and 20 

interconnected in some areas (García-Villacorta et al. 2010). Similarly, some non-specialist 21 

white-sand species have been found in swamp habitats of the Amazon floodplain (Tuomisto et 22 

al. 1994, Lähteenoja et al. 2009, Lähteenoja & Page 2011, García-Villacorta et al. 2011, Dávila 23 
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et al. 2013, Draper et al. 2014), which suggest that edaphic conditions in these habitats may 1 

facilitate dispersal of white-sand species. 2 

 3 

THE EFFECT OF GEOGRAPHICAL DISTANCE BETWEEN FLORAS—Geographical proximity may help 4 

to explain some part of the observed phytogeographical affinities of white-sand floras. The 5 

Amazonas provinces in Brazil and Venezuela (BR.AM, and VE.AM) as well as Colombian 6 

provinces are geographically adjacent and were found to have close links to western Amazonian 7 

white-sand forests. Geographical distance may also help to explain why acre.wsf.BR (Brazil) and 8 

loreto.wsf.PE (Peru) are more similar to each other and to caquetá.wsf.CO (Colombia) than to 9 

guainía.wsf.CO (Colombia), the latter being closer in geographic distance to the Guiana Shield 10 

region (Fig. 2). A correlation analysis of the geographic distance and floristic matrices (Mantel 11 

test) in the dataset found a significant association (Appendix 9), implying that spatially adjacent 12 

sites are floristically more similar, a pattern often driven by dispersal limitation (Nekola & White 13 

1999). In this context, several studies of plant dispersal syndromes in Amazonian white-sand 14 

forests have suggested that long-distance dispersal or stepping-stone dispersal may be an 15 

important ecological process in the maintenance of Amazonian white-sand forests (Macedo & 16 

Prance 1978, Prance & Schubart 1978).  17 

 18 

SYNTHESIS AND IMPLICATIONS FOR CONSERVATION.—Floristically, we found that western 19 

Amazon white-sand forests include a large number of plant species that are not restricted to 20 

white-sand habitats. Regardless, at the local and regional level white-sand forests possess a 21 

significant number of endemics that add to both regional and beta diversity in the Amazon and 22 
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should remain a conservation priority. It is possible that this finding may be influenced by 1 

cryptic, undescribed species –i.e., some morphologically indistinguishable populations found on 2 

white sand may actually represent different species. The high proportion of species not 3 

specialized to white-sand habitats may result from both immigration of species from other 4 

nutrient-poor/water-logged habitats and mass effect dispersal of species from neighbouring 5 

habitats with richer soils. Cluster analysis and NMDS ordination concurred that the white-sand 6 

forests of the western Amazon are floristically most similar to the non-white sand floras of the 7 

geographic regions to which they belong. More broadly, the composition of white-sand forests of 8 

the western Amazon is more similar to floras of the western and central Guiana Shield region 9 

than to other floras in Amazonia, which implies that long-distance dispersal processes may be 10 

important in shaping its species composition. There was significant distance decay in similarity 11 

of overall floristic composition, which implies that dispersal processes are playing an important 12 

role in driving current floristic assemblage patterns. Dispersal processes may have more 13 

importance than local species interactions in structuring Amazonian white-sand plant 14 

communities, perhaps via stepping-stone dispersal processes across ecologically similar habitat 15 

types like Amazon peatlands, and hilly terraces on oligotrophic soils. The long term conservation 16 

of Amazonian white-sand forests will require the maintenance of regional dispersal processes, 17 

necessitating corridors connecting these archipelagos of habitat islands across the Amazon and 18 

the Guiana Shield. 19 

 20 

 21 

 22 
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FIGURE LEGENDS 

 

FIGURE 1. The Amazon and the Guiana Shield region (dashed area) with political division 

acronyms used in the floristic analysis overlaid on an elevation map (darker areas indicate higher 

elevations). Approximate locations of studied white-sand forests: 1 = acre.wsf.BR (Acre region, 

Brazil), 2 = loreto.wsf.PE (Loreto region, Peru), 3 = caquetá.wsf.CO (Caquetá region, 

Colombia), 4 = guainía.wsf.CO (Guainía region, Colombia). Province acronyms in Appendix 1. 

 

FIGURE 2. Proportion of western Amazon white-sand specialists shared among different 

ecoregions within Amazonia constructed using (a) only loreto.wsf.PE and acre.wsf.BR, and (b) 

full white-sand dataset. non-GS WA ws = non-Guiana Shield western Amazon white-sand 

specialists. WS specialists = full list of white-sand specialists. Sites 1 and 2 = non-Guiana Shield 

western Amazon white-sand areas; 3 and 4 = Guiana Shield western Amazon white-sand sites. 

GS limit = Guiana Shield limit. Note change in the proportion and ecoregions of shared white-

sand specialists according to the dataset used. Site names as in Fig. 1. 

 

FIGURE 3. Relationships of western Amazon white-sand forests with provinces/states in the 

Amazon and Guiana regions as represented by non-metric Multidimensional Scaling (NMDS) 

ordination. Lines connecting the sites represent cluster analysis result. WSF = western Amazon 

white-sand forests. Province acronyms in Appendix 1. 
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Appendix 1. Number of vascular plant species and source used to build the database ordered by 

ascending number of species. Studied western Amazon white-sand forests in bold. 

 

Site code 

 

 

Province 

 

 

Area (km2) 

 

Country No. spp. 

 

 

Source 

acre.wsf.BR 

Acre - Brazil 

363 

(Silveira 2003, 

Ferreira 2009) 

CO.VD 

Vichada 38,734.93 Colombia 

607 

(SINCHI 

2013) 

caquetá.wsf.CO 

Caquetá - Colombia 

657 

(Cortés et al. 

1998, Arbeláez 

& 

Duivenvoorden 

2004) 

loreto.wsf.PE 

Loreto - Peru 

731 

(García-

Villacorta et 

al. 2003, Fine 

et al. 2010, 

Tropicos-Peru 

2013) 

guainía.wsf.CO Guainía - Colombia 955 (Cárdenas-
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López 2007) 

PE.UC 

Ucayali 105,078.38 Peru 

1148 

(Brako & 

Zarucchi 1993, 

Tropicos-Peru 

2013) 

CO.GN 

Guainía 68,819.14 Colombia 

1289 

(SINCHI 

2013) 

CO.VP 

Vaupés 53,242.63 Colombia 

1738 

(SINCHI 

2013) 

VE.DA 

Delta 

Amacuro 

38,230.4 Venezuela 

1765 

(Funk et al. 

2007) 

CO.GV 

Guaviare 55,570.16 Colombia 

1769 

(SINCHI 

2013) 

PE.MD 

Madre de 

Dios 

84,420.81 Peru 

2088 

(Brako & 

Zarucchi 1993, 

Tropicos-Peru 

2013) 

BR.AP 

Amapá 141,105.57 Brazil 

2523 

(Forzza et al. 

2010a, b, Flora 
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do Brasil 

2013) 

BR.RR 

Roraima 224,384.08 Brazil 

2688 

(Forzza et al. 

2010a, b, Flora 

do Brasil 

2013) 

BR.RO 

Rondonia 236,376.67 Brazil 

2882 

(Forzza et al. 

2010a, b, Flora 

do Brasil 

2013) 

CO.CQ 

Caquetá 90,029.75 Colombia 

3021 

(SINCHI 

2013) 

BR.MT 

Mato 

Grosso 

599,681.47 Brazil 

3247 

(Forzza et al. 

2010a, b, Flora 

do Brasil 

2013) 

CO.AM 

Amazonas 107,462.42 Colombia 

3431 

(SINCHI 

2013) 

BR.AC Acre 152,729.51 Brazil 4214 (Forzza et al. 
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2010a, b, Flora 

do Brasil 

2013) 

SR 

Surinam 146,011.49 Surinam 

4886 

(Funk et al. 

2007) 

GF 

French 

Guiana 

83,014.98 French 

Guiana 5166 

(Funk et al. 

2007) 

PE.LO 

Loreto 375,550.2 Perú 

5271 

(Brako & 

Zarucchi 1993, 

Tropicos-Peru 

2013) 

BO.AM 

Amazon 

region 

681,909.86 Bolivia 

5378 

(Tropicos-

Bolivia 2013) 

BR.PA 

Pará 892,481.47 Brazil 

6098 

(Forzza et al. 

2010a, b, Flora 

do Brasil 

2013) 

GY 

Guyana 209,549.47 Guyana 

6938 

(Funk et al. 

2007) 
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VE.BO 

Bolivar 193,997.81 Venezuela 

6941 

(Funk et al. 

2007) 

VE.AM 

Amazonas 179,579.86 Venezuela 

7,146 

(Funk et al. 

2007) 

ECU 

Ecuadorian 

Amazon 

105653.6 Ecuador 

7,642 

(Jorgensen & 

León-Yánez 

1999, 

Tropicos-

Ecuador 2013) 

BR.AM 

Amazonas 1’570,659.01 Brazil 

8,355 

(Forzza et al. 

2010a, b, Flora 

do Brasil 

2013) 
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Appendix 2.Cophenetic correlation results of the five assessed clustering algorithms. The highest 

cophenetic correlation (Average linkage, r = 0.629) is the one that best represent the dissimilarity 

matrix in its resulting dendrogram followed by Complete clustering (r = 0.579). 
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Appendix 3. Summary statistics and ecological preferences of 1,180 vascular plant species found 

in four western Amazonian white-sand forests. 

 

Ecological 

preference 

No. families with 

species in these 

categories 

No. genera 

with 

species in 

these 

categories 

No. species 

(%) Records 

habitat generalist 103 295 509 (43) 51,790 

poor-soil specialist 89 208 406 (34) 14,723 

white-sand 

specialist 65 160 277 (23) 3473 

Total  133 491 1180 (100) 69,986 
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Appendix 4. Species in the western Amazon white-sand specialist dataset with records found 

within the Guiana Shield region. 

 

Family/Species No. records 

Acanthaceae 1 

Aphelandra lamprantha 1 

Annonaceae 47 

Anaxagorea brachycarpa 14 

Anaxagorea manausensis 1 

Annona paludosa 5 

Bocageopsis canescens 8 

Cymbopetalum alkekengi 0 

Duguetia arenicola 2 

Guatteriopsis sessiliflora 0 

Oxandra asbeckii 4 

Oxandra leucodermis 3 

Pseudoxandra revoluta 0 

Tetrameranthus duckei 10 

Tetrameranthus pachycarpus 0 

Trigynaea lanceipetala 0 

Apocynaceae 54 

Mandevilla annulariifolia 6 

Mandevilla caurensis 4 

Mandevilla nerioides 8 

Molongum lucidum 4 

Odontadenia killipii 6 

Odontadenia kochii 7 

Parahancornia peruviana 2 

Parahancornia surrogata 17 

Aquifoliaceae 30 

Ilex divaricata 28 

Ilex spruceana 2 

Araceae 5 

Philodendron auyantepuiense 5 

Araliaceae 11 

Schefflera japurensis 11 

Arecaceae 11 

Euterpe catinga 5 

Mauritia carana 6 
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Asteraceae 26 

Calea abelioides 16 

Chromolaena tyleri 2 

Gongylolepis martiana 7 

Stenopadus colombianus 1 

Begoniaceae 1 

Begonia lutea 1 

Bignoniaceae 54 

Anemopaegma oligoneuron 9 

Digomphia densicoma 34 

Distictella obovata 11 

Bonnetiaceae 64 

Bonnetia paniculata 11 

Bonnetia sessilis 53 

Bromeliaceae 67 

Ananas parguazensis 23 

Brocchinia hechtioides 23 

Brocchinia paniculata 8 

Pitcairnia patentiflora 1 

Vriesea socialis 12 

Burmanniaceae 6 

Burmannia dasyantha 5 

Burmannia vaupesana 1 

Burseraceae 44 

Protium calanense 5 

Protium carolense 16 

Protium heptaphyllum subsp. ulei 18 

Protium leptostachyum 5 

Calophyllaceae 34 

Caraipa longipedicellata 8 

Caraipa savannarum 19 

Caraipa tereticaulis 6 

Caraipa utilis 0 

Haploclathra cordata 1 

Haploclathra paniculata var. paniculata 0 

Chrysobalanaceae 92 

Couepia amaraliae 6 

Couepia bracteosa 11 

Couepia canomensis 7 

Couepia williamsii 0 

Exellodendron coriaceum 9 

Hirtella punctillata 12 

Hirtella revillae 0 

Licania gracilipes 7 
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Licania hebantha 4 

Licania intrapetiolaris 28 

Licania stewardii 5 

Parinari montana 3 

Clusiaceae 77 

Clusia cerroana 23 

Clusia chiribiquetensis 15 

Clusia fockeana 9 

Clusia huberi 11 

Clusia opaca 8 

Clusia renggerioides 11 

Tovomita calophyllophylla 0 

Combretaceae 7 

Terminalia yapacana 7 

Connaraceae 1 

Connarus guggenheimii 1 

Droseraceae 5 

Drosera esmeraldae 5 

Ebenaceae 6 

Diospyros myrmecocarpa 3 

Diospyros tessmannii 0 

Lissocarpa kating 3 

Emmotaceae 0 

Emmotum floribundum 0 

Ericaceae 14 

Vaccinium euryanthum 14 

Eriocaulaceae 127 

Paepalanthus fasciculatus 34 

Paepalanthus formosus 4 

Rondonanthus capillaceus 27 

Syngonanthus allenii 1 

Syngonanthus reflexus 29 

Syngonanthus simplex 7 

Syngonanthus tenuis var. bulbifer 7 

Syngonanthus trichophyllus 11 

Syngonanthus umbellatus 7 

Erythroxylaceae 13 

Erythroxylum kapplerianum 13 

Euphorbiaceae 117 

Conceveiba terminalis 23 

Croton araracuarae 3 

Croton chiribiquetensis 1 

Croton mollis 10 

Croton scutatus 8 
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Croton spiraeifolius 3 

Hevea guianensis var. lutea 4 

Hevea nitida 9 

Hevea nitida var. toxicodendroides 1 

Mabea subsessilis 18 

Micrandra elata 3 

Micrandra spruceana 18 

Senefelderopsis chiribiquetensis 16 

Euphroniaceae 19 

Euphronia hirtelloides 19 

Fabaceae 145 

Abarema barbouriana var. arenaria 6 

Abarema microcalyx 9 

Aldina heterophylla 3 

Calliandra vaupesiana 7 

Dicymbe uaiparuensis 2 

Dimorphandra macrostachya subsp. glabrifolia 2 

Dimorphandra vernicosa 17 

Heterostemon mimosoides 21 

Inga gereauana 0 

Inga neblinensis 8 

Jacqueshuberia loretensis 0 

Macrolobium arenarium 1 

Macrolobium discolor var. egranulosum 3 

Macrolobium limbatum var. limbatum 3 

Macrolobium limbatum var. propinquum 0 

Macrolobium molle 8 

Macrolobium suaveolens 7 

Senna kuhlmannii 0 

Swartzia benthamiana var. benthamiana 13 

Tachigali ptychophysca 4 

Taralea oppositifolia 31 

Gentianaceae 30 

Curtia conferta 3 

Irlbachia nemorosa 12 

Tachia guianensis 15 

Tachia loretensis 0 

Humiriaceae 43 

Humiria balsamifera 13 

Humiria balsamifera var. balsamifera 9 

Humiria balsamifera var. floribunda 1 

Humiria crassifolia 11 

Humiriastrum piraparanense 9 

Vantanea spichigeri 0 
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Hymenophyllaceae 17 

Trichomanes arbuscula 8 

Trichomanes sprucei 1 

Trichomanes superbum 2 

Trichomanes vandenboschii 1 

Trichomanes vittaria 5 

Icacinaceae 28 

Emmotum acuminatum 6 

Emmotum floribundum 18 

Pleurisanthes flava 4 

Lauraceae 13 

Aniba heterotepala 0 

Endlicheria arunciflora 5 

Endlicheria chrysovelutina 0 

Endlicheria citriodora 1 

Mezilaurus opaca 0 

Mezilaurus triunca 0 

Ocotea alata 0 

Ocotea atrata 2 

Ocotea esmeraldana 4 

Ocotea immersa 1 

Sextonia pubescens 0 

Lindsaeaceae 27 

Lindsaea meifolia 6 

Lindsaea pendula 11 

Lindsaea rigidiuscula 10 

Loganiaceae 20 

Bonyunia minor 20 

Potalia coronata 0 

Lythraceae 15 

Cuphea annulata 13 

Cuphea kubeorum 2 

Malpighiaceae 29 

Blepharandra heteropetala 5 

Byrsonima amoena 8 

Diacidia galphimioides 16 

Malvaceae 18 

Pachira amazonica 5 

Pachira brevipes 5 

Pachira coriacea 5 

Pachira fuscolepidota 3 

Melastomataceae 97 

Acanthella sprucei 23 

Clidemia epibaterium 12 
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Clidemia heteroneura 12 

Clidemia pycnaster 3 

Comolia microphylla 15 

Ernestia tenella 4 

Graffenrieda fantastica 3 

Macairea theresiae 4 

Miconia crassinervia 4 

Pachyloma coriaceum 5 

Siphanthera fasciculata 1 

Tococa rotundifolia 11 

Metaxyaceae 0 

Metaxya lanosa 0 

Myrtaceae 40 

Myrcia clusiifolia 20 

Myrcia revolutifolia 20 

Nyctaginaceae 14 

Neea obovata 14 

Ochnaceae 62 

Ouratea roraimae 12 

Ouratea spruceana 21 

Sauvagesia erioclada 1 

Sauvagesia fruticosa 10 

Sauvagesia guianensis subsp. araracuarensis 1 

Wallacea insignis 17 

Olacaceae 8 

Chaunochiton angustifolium 7 

Curupira tefeensis 1 

Orchidaceae 41 

Duckeella pauciflora 2 

Encyclia leucantha 5 

Epistephium hernandii 9 

Epistephium lucidum 4 

Epistephium parviflorum 16 

Octomeria erosilabia 2 

Octomeria taracuana 1 

Stenocoryne longicornis 1 

Trichosalpinx orbicularis 1 

Orobanchaceae 4 

Buchnera rubriflora 4 

Pentaphylacaceae 27 

Ternstroemia campinicola 3 

Ternstroemia klugiana 0 

Ternstroemia punctata 5 

Ternstroemia pungens 19 
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Phyllanthaceae 4 

Phyllanthus myrsinites 4 

Piperaceae 2 

Piper fonteboanum 1 

Piper froesii 1 

Piper mituense 0 

Polypodiaceae 16 

Cochlidium tepuiense 16 

Primulaceae 7 

Cybianthus reticulatus 7 

Proteaceae 1 

Euplassa saxicola 1 

Rapateaceae 42 

Duckea junciformis 7 

Duckea squarrosa 9 

Monotrema arthrophyllum 5 

Monotrema xyridoides 15 

Rapatea elongata 4 

Schoenocephalium martianum 2 

Rhabdodendraceae 17 

Rhabdodendron amazonicum 17 

Rubiaceae 537 

Ferdinandusa guainiae 6 

Ferdinandusa hirsuta 3 

Ferdinandusa sprucei 5 

Ixora intensa 9 

Ladenbergia lambertiana 57 

Pagamea acrensis 16 

Pagamea aracaensis 5 

Pagamea coriacea 49 

Pagamea guianensis 54 

Pagamea macrophylla 4 

Pagamea montana 21 

Pagamea plicata 17 

Pagamea thyrsiflora 40 

Palicourea nitidella 64 

Platycarpum orinocense 1 

Platycarpum orinocense var. orinocense 5 

Remijia macrocnemia 9 

Remijia roraimae 13 

Retiniphyllum concolor 22 

Retiniphyllum scabrum 40 

Retiniphyllum schomburgkii 72 

Retiniphyllum truncatum 18 
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Rudgea krukovii 1 

Sipaneopsis huberi 4 

Stachyococcus adinanthus 2 

Rutaceae 17 

Adiscanthus fusciflorus 5 

Decagonocarpus cornutus 5 

Decagonocarpus oppositifolius 6 

Hortia vandelliana 1 

Leptothyrsa sprucei 0 

Ravenia biramosa var. peruviana 0 

Salicaceae 62 

Euceraea nitida 30 

Laetia coriacea 20 

Laetia cupulata 12 

Sapindaceae 1 

Paullinia splendida fo. chrysocarpa 1 

Sapotaceae 67 

Chrysophyllum bombycinum 0 

Chrysophyllum sanguinolentum subsp. spurium 7 

Elaeoluma schomburgkiana 8 

Pradosia schomburgkiana 39 

Pradosia schomburgkiana subsp. schomburgkiana 13 

Schlegeliaceae 0 

Schlegelia cauliflora 0 

Selaginellaceae 6 

Selaginella coarctata 6 

Siparunaceae 3 

Siparuna micrantha 3 

Thymelaeaceae 17 

Tepuianthus colombianus 2 

Tepuianthus savannensis 15 

Vochysiaceae 13 

Ruizterania retusa 13 

Xyridaceae 80 

Abolboda acicularis var. granularis 2 

Abolboda americana 9 

Abolboda grandis 8 

Abolboda grandis var. grandis 8 

Abolboda macrostachya var. macrostachya 8 

Abolboda pulchella 6 

Xyris araracuare 2 

Xyris esmeraldae 17 

Xyris lomatophylla 5 

Xyris spruceana 10 
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Xyris subglabrata 4 

Xyris wurdackii subsp. caquetensis 1 

Total No. Records 2503 

Total No. Species 279 
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Appendix 5. Ecoregions with at least 20% of white-sand specialists using the (a) whole white-

sand specialist dataset compared to using only the (b) non-Guiana Shield white-sand specialist 

dataset. Note changes in the proportions by ecoregions according to the dataset used. 

 

a) Full white-sand dataset: 

caquetá.wsf.CO (Colombia), 

guainía.wsf.CO (Colombia), 

acre.wsf.BR (Brazil), lore.wsf.PE 

(Peru) 

 

 

b) Non-Guiana Shield white-

sand dataset: acre.wsf.BR 

(Brazil), loreto.wsf.PE 

(Peru) 

 

Ecoregion 

No. 

species 

% 

species Ecoregion 

No. 

species 

% 

species 

Caquetá moist 

forests 191 69% Iquitos varzea 86 97% 

Guayanan 

Highlands moist 

forests 142 51% 

Napo moist 

forests 56 63% 

Negro-Branco 

moist forests 137 49% 

Southwest 

Amazon moist 

forests 43 48% 

Iquitos varzea 95 34% 

Negro-Branco 

moist forests 38 43% 
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Tepuis 93 34% 

Guayanan 

Highlands 

moist forests 29 33% 

Japurá-Solimoes-

Negro moist 

forests 64 23% 

Caquetá moist 

forests 27 30% 

Guianan moist 

forests 61 22% 

Japurá-

Solimoes-

Negro moist 

forests 25 28% 

Napo moist forests 59 21% 

Uatuma-

Trombetas 

moist forests 25 28% 

Uatuma-

Trombetas moist 

forests 56 20% 

Solimoes-

Japurá moist 

forest 22 25% 

Solimoes-Japurá 

moist forest 55 20% Tepuis 21 24% 
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Appendix 6. Cluster analysis of Amazon and Guiana Shield sites with bootstrap support values 

using Average linkage as clustering algorithm and 1000 bootstrap runs. AU bootstrap p-values at 

each node (left), standard bootstrap values (right), and cluster number (below). Western Amazon 

white-sand forests are marked with asterisks: acre.wsf.BR (Brazil), caquetá.wsf.CO (Colombia), 

guainía.wsf.CO (Colombia), and loreto.wsf.PE (Peru). 
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Appendix 7. Standard error of AU bootstrap p-values of each identified cluster by pvclust. 

Cluster 6 showed relatively high standard error (appendix 5). 

 

 

 

 

 

 

 



54 

 

Appendix 8. Shepard plot of NMDS ordination plot of Amazon-Guianan floras including four 

western Amazonian white-sand forests. Stress = 0.26. Iterations = 500. Dimensions = 2. 
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Appendix 9. Floristic similarity as a function of geographic distance between pairs of floras in 

the Andes-Guiana Shield region. Statistical significance from Mantel test. To test whether 

geographical distance between the studied floras had an influence on the floristic patterns 

recovered by the ordination and cluster analysis, we performed a Mantel test (Mantel 1967, Rossi 

1996, Dutilleul et al. 2000, Legendre & Legendre 2012). To create the distance matrix we 

extracted the geographical coordinates of each province by using its polygon centroid in a 

Geographical Information System (GIS) that were then used to calculate geographical 

(Euclidean) distances between floras.  We ran 999 permutations on the floristic dissimilarity 

matrix at a significance p-value of 0.05. We found a significant positive Mantel correlation 

between the floristic distance and geographical distance matrices (Mantel’s r = 0.4866, p = 

0.0001). Based on this result we reject the null hypothesis that these two matrices are not related 

and hence the geographical separation of sites may explain a portion of the observed floristic 

dissimilarities. A Mantel test including only the four white-sand sites against their geographical 

distances also found a marginally significant result (r= 0.5818, p=0.083). 
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