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A subordinated stochastic process model

Ana Paula Palacios, J. Miguel Marin and Michael P. Wiper

Abstract We introduce a new stochastic model for non-decreasing processes which
can be used to include stochastic variability into any deterministic growth func-
tion via subordination. This model is useful in many applications such as growth
curves (children’s height, fish length, diameter of trees, etc) and degradation pro-
cesses (crack size, wheel degradation, laser light, etc). One advantage of our ap-
proach is to be able to easily deal with data that are irregularly spaced in time or
different curves that are observed at different moments of time. With the use of
simulations and applications, we examine two approaches to Bayesian inference for
our model: the first based on a Gibbs sampler and the second based on approximate
Bayesian computation.

1 Introduction

Growth processes are usually described using discrete time models where the mean
function is deterministic and a stochastic element is introduced via an additive, ran-
dom noise component. An alternative is to consider continuous time modelling.
In the literature some stochastic growth models are proposed using stochastic dif-
ferential equations to model the variations ([1, 2]). However, the solution of these
equations are not monotonically increasing and therefore can fail to model non-
decreasing growth processes such as children’s height, fish size or crack length. In
this work, we introduce a new stochastic model for non-decreasing processes that
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overcomes this limitation. This model can be used to include stochastic variability
into any deterministic growth function via subordination. The main features of this
model are that its paths are non-decreasing everywhere and, in a particular case, the
mean function of the process is equal to the deterministic growth function used as
time change.

2 The model

The growth model that we proposed is built upon an homogeneous, continuous time
Markov process. It is commonly observed that growth in biological processes, and
also wear in degradation processes, does not occur continuously. In contrast, growth
or damage occur per intervals of time. Even more, the growth velocity can also
fluctuate. To represent this discontinuous growth we start our model with a time
homogeneous, Markov process {U; : t > 0}, where the states represent levels of
growth rate. Transitions can only occur between neighbours. That is, if at time ¢
the process is in state i, after an exponential amount of time, then it moves to ei-
ther of the neighbouring states i — i+ 1 or i — i — 1. This allows us to represent
possible fluctuations in the growth rate but without abrupt changes. The process U;
is uniquely determined by the generator matrix, Q, and the initial distribution of
the process, Vo. The transition rate matrix Q is a tri-diagonal matrix with parame-
ters o > 0, the instantaneous up-jump rate and § > 0, the instantaneous down-jump
rate. Let S = {a+ib;i = 0,...,k} be the state space, where a > 0 is the minimum
state value, b is a jump size and (k -+ 1) is the number of states.
Now we define a continuous state process, {V; : ¢ > 0}, such that

t
v, — / Uds. (1)
0

This is a non-decreasing, continuous time process which, being the integral of the
growth rate, represents the total growth. Realizations of V; are the path integrals of
a simple stochastic process and their trajectories are piece-wise linear.

Beyond the growth fluctuations described earlier, most of these process are also
characterised by growth stages. For example, many growth processes show an S-
shape curve, where an initial (almost) steady period is followed by an exponential
growth before a decelaration of the growth rate. We introduce these different stages
in the model by manipulating the time (see [3] for time change and subordination),
e.g. when the growth is slow, we want the time to slow down but when the growth
is exponential we want the time to speed up. Thus, the time velocity will be gov-
erned by a deterministic non-decreasing function. We define our stochastic growth
process, {Y; : ¢ > 0} to be the continuous time stochastic process with continuous
state space, defined as

Y = V60 ()

where G(t) is any deterministic non-decreasing function.
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(a) Several realizations (b) Replications

Fig. 1 Simulated realizations and real bacterial growth curves

We show that assuming stationary state of the Markov process, then the mean
function of the process Y; is proportional to the time change function G: E[Y;] =
WG(t), where p is the constant mean of the Markov process in stationary state. As
a particular case, if a proportion J of the function G is used as time change and
J =1/u, then E[Y;] = G(¢t). This fact suggests using a standard parametric model
as the mean function of the process. For example, for population growth a logistic
function could be used; for fish size the von Bertalanffy growth function could be
used, etc. Figure 2 shows, on the right, 20 replications of experimental bacterial
growth curves and, on the left, 20 realizations of the process Y¥; when using the
Gompertz function as time change.

The variance of the process V; is linearly increasing with time and its magnitude
depends on the instantaneous intensity rates of the Markov process. The greater the
intensity rates, the lower the variance.

3 Bayesian inference

Assume that we observe the population size, for example of bacteria, y;, < ... <y,
at a sequence of time points, 0 < #; < ... <t, say. Then in the model defined by (2),
the likelihood function is analytically unavailable which implies that frequentist ap-
proaches are infeasible. But for the case of two states (0, 1) and equal up and down
transition rates in the Markov process Uy, we can find an explicit expression for the
likelihood when conditioning on the initial state and the number of jumps in suc-
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Fig. 2 The variance as a function of time and the intensity rates

cessive time intervals. The difference y; = y,, — y;,_, is equal to the total time spent
in state 1 during the transformed time interval 7; = G(t;) — G(;_1). Conditioning
on the number of jumps, it is possible to show that the distribution of y; is equal to
the distribution of order statistics of a Uniform (0,7’) where T is the length interval.
Then, the likelihood of ¥;, f(¥;|A,s1,N;), conditional to the intensity rate of jumps
A(= a = B), the initial state of the Markov process s; and the number of jumps N;
in interval i, follows a scaled Beta distribution. This allows for the implementation
of a Gibbs sampling algorithm (see [4]). Estimating in a first step the parameters of
the time change function, and assuming them known in a second step, the condi-
tional posterior distributions of A and s; can be derived analytically. However, the
posterior distribution of N; does not have a closed form, and a Metropolis-Hasting
step is necessary.

To illustrate this approach a data set was simulated for given values of the Gom-
pertz function. Assuming A = 10, five replications were generated with 20 obser-
vations per curve. The Gibbs sampling was performed to estimate the intensity rate
and the results are shown in Figure 3. The cumulative mean has converged and
the posterior distribution of A is centred around the true value. The posterior mean
is equal to 9.791 and the median is 9.705. The 95% credible interval is equal to
(7.36,12.85).
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Fig. 3 Gibbs sampling

For the more general case, with multiple states in the Markov chain, free-
likelihood methods can be applied. We illustrate this approach with a naive example.
We apply the ABC method to the real bacterial data of 2 to estimate the parameters
of the time change function and the intensity rate (see [5]) . The simplest rejection-
ABC algorithm was implemented, assuming informative prior distributions for the
Gompertz parameters. We compared one to one the simulated data with the mean
observed data and summed all the distances for each observation in a curve. When
computing the distances |y{"™ — y§"""| we penalised more for departures at earlier
times (when less variability between curves is normally observed). Finally, we kept
the 1% best of the sampled parameter values, i.e. the ones which minimise the dis-
tance. Figure 4 illustrates the results. The posterior mean values for the Gompertz
parameter were all biologically reasonable.

4 Conclusions

The aim of our work was to propose a new stochastic model suitable for growth pro-
cesses and degradation data. Thus, the model developed shows two nice features.
First, the growth paths are non-decreasing making the model feasible for a wide
variety of phenomena such as crack size, fisheries or human growth. Second, as a
particular case of the model, the mean function of the process is equal to the para-
metric function governing the time change. Another advantage of our approach is to
be able to easily deal with data that are irregularly spaced in time or different curves
that are observed at different moments of time. Finally, we have shown with the use
of simulations and applications, two possible Bayesian approaches to fit the model,
Gibbs sampling and approximate Bayesian computation. Results were good in both
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cases, however, further work in this direction is needed. For example, it would be
very interesting to develop a full Gibbs sampling approach where all parameters are
estimated in only one step. Additionally, more efficient ABC algorithms could be
applied to allow for non-informative prior distributions.

(a) Whole set of generated curves (b) The best 1% from the ABC sampler. Thick
black lines represent the maximun, the minimun
and the mean observed curves.

Fig. 4 ABC algorithm
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