
Citation: Anthony, Catherine and Cheung, Wai Ming (2017) Cost Evaluation in Design for 
End-of-Life of Automotive Components. Journal of Remanufacturing, 7 (1). pp. 97-111. ISSN 
2210-464X 

Published by: Springer

URL:  http://dx.doi.org/10.1007/s13243-017-0035-5  <http://dx.doi.org/10.1007/s13243-017-
0035-5>

This  version  was  downloaded  from  Northumbria  Research  Link: 
http://nrl.northumbria.ac.uk/30934/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to 
access the University’s research output. Copyright © and moral rights for items on NRL are 
retained by the individual author(s) and/or other copyright owners.  Single copies of full items 
can be reproduced,  displayed or  performed,  and given to third parties in  any format  or 
medium for personal research or study, educational, or not-for-profit purposes without prior 
permission or charge, provided the authors, title and full bibliographic details are given, as 
well  as a hyperlink and/or URL to the original metadata page.  The content must  not  be 
changed in any way. Full  items must not be sold commercially in any format or medium 
without  formal  permission  of  the  copyright  holder.   The  full  policy  is  available  online: 
http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been 
made available online in accordance with publisher policies. To read and/or cite from the 
published version of the research, please visit the publisher’s website (a subscription may be 
required.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Northumbria Research Link

https://core.ac.uk/display/82961374?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nrl.northumbria.ac.uk/policies.html


Cost Evaluation in Design for End-of-Life of Automotive Components 

 

Catherine Anthony, Wai M Cheung* 

Faculty of Engineering and Environment, 

 Department of Mechanical and Construction Engineering,  

University of Northumbria,  

Newcastle Upon Tyne, NE1 8ST, UK. 

 

Abstract 

The European Union implemented the End-of-Life Vehicle directive to deal with an 

estimated 6 million end-of-life vehicles each year. Existing literature describe the 

processes to deal with the waste at end-of-life of different products but there is a 

lack of information on the costing of these options. These costs remain a concern 

to automotive manufacturers. This paper therefore reports the end-of-life costs of 

vehicle components and also demonstrates how these costs can be predicted at 

the design stage. The proposed approach should help to decide whether the 

automotive parts are viable for remanufacture, refurbishment, recycling, or 

disposal from an economic perspective. Two different automotive parts have been 

selected as case studies to validate the approach. Assumptions were made during 

the development of the technique and based on the results, the proposed 

approach could potentially provide vehicle manufacturers a method of estimating 

the cost of end-of-life recovery processes of vehicle components.  
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EoL Costs. 

* Corresponding author 

 wai.m.cheung@northumbria.ac.uk 

+44(0)191 243 7584 

1 
 

                                                      



1. Introduction 

This paper reports the investigation of automotive manufacturers and suppliers 

have to face by meeting the requirements of End-of-Life Vehicle (ELV) legislation; 

[9, 15]. ELV is the term when a vehicle comes to the end of its useful life, whether 

this is naturally due to wear and tear or prematurely (such as an accident) [26]. 

Mass production of cars is accountable for more than a million ELVs each year in 

the UK [13].  Production of cars has grown steadily over the past 30 years to the 

point where in 2016 around 95 million were produced worldwide [28]. It had 

become necessary for legislation to put in place to ensure that automotive 

producers make their vehicles more sustainable [13]. The European Directive 

2000/53/EC “ELV Directive” seeks to make dismantling and recycling of ELVs 

more environmentally friendly [9]. It is also used to regulate recycling procedure 

and the ratio of how much material should be recycled [5].  

With automotive components, it is generally believed that costs occur throughout 

production and the product's life cycle. While manufacturers of course consider 

the costs of production, it is equally important that they consider the costs 

associated at End of Life (EoL), owing to ELV directive putting responsibility on 

the producer. Therefore, it is becoming increasingly important to consider the cost 

of disposal from the design stage to improve the efficiency in EoL.  Xu et al [38]; 

Cheung and Pachisia [4] state that a factor in the accomplishment of production 

and delivery of function need is cost. To be more competitive, manufacturers will 

need to consider many factors whilst also reducing costs.  

Disregarding EoL costs would make it easier to meet requirements specified by 

legislation, as it is possible to recycle virtually 100% of an ELV. Economically this 

would be unreasonable, as it could be unprofitable to the Original Equipment 

manufacturers (OEMs). EoL costs consist of creating, operating, maintaining, 

replacing, and then disposing of a product. The costs required to meet the ELV 

legislation will help the OEM to decide if a product is viable. The components of 

the ELV’s are usually recycled, reused, remanufactured, disposed or a 

combination of these attributes. Each of these methods has a cost associated with 

them, therefore these costs will need to be factored into new vehicles as the 
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manufactures are required to be directly responsible for the environmental impacts 

of their products. 

Manufacturers have to take a more ethical approach to ensure components have 

been designed with the ability to be reused, recycled, recovered, and 

remanufactured.  As part of this process it is essential to ensure that all vehicles 

can be easily de-polluted. The ELV legislation also requires that at the design 

stage, preventive measures are in place to reduce the use of hazardous 

substances to facilitate recycling [15]. Car manufacturers are under increasing 

pressure to accept responsibility for the complete life cycle of the vehicles they 

produced due to the implementation of government legislation. This requires a set 

of targets to be met for recycling, re-use and recovery. To confront with these 

targets, manufacturers have to prepare for EoL scenarios by considering them at 

the design stage. EoL is an important factor to be considered from the design 

stage as environmental impacts can be locked-in at this early stage.  Therefore, 

this paper aims to demonstrate an approach to automotive manufacturers to 

estimate the end of life cost of a vehicle’s components. Two automotive parts are 

used to validate the approach and the method could allow OEM to select the most 

cost effective way of dealing with ELV. The remainder of this paper is organised 

as follows: Section 2 describes the background literature; Section 3 presents the 

proposed method; Section 4 discusses the relevant case studies and finally the 

conclusion and future work are presented in Section 5. 

 
2. Literature Review 
The finding of the industrial survey by Cheung et al [3] identified that about half of 

the cost for the life cycle of a product is usually associated with the manufacturing 

and in-service stages. They concluded that the EoL cost of a product is the least 

concerned to OEMs.  However, according to EU’s legislations [12] the 

consideration of end-of-life of a product is becoming very critical for OEMs in order 

to meet the target of reducing the amount of waste.  

Legislation for waste disposal was introduced due to an increased environmental 

awareness and the ever-decreasing lack of landfill space [9].  Anderson et al [1] 

predict that growth of ELVs from 2005 to 2030 will have a significant increase of 

3 
 



nearly 50%. Vermeulen et al [36] describe how most developed countries have 

introduced legislation to make re-use, recovery, and recycling mandatory and that 

member states must establish a collection system for ELV's.  They state that the 

EU Directive aims to prevent vehicle waste by reducing hazardous substances, 

designing with disassembly, re-use and recycling in mind, and increasing the use 

of recyclable materials. The EU-Directive states that by 2006 [8], at least 85% 

reuse and recovery and 80% re-use and recycling must be achieved, and these 

targets were set to rise in 2015 to 95% and 85% [36].  

It is reported that every year around 8-9 million tonnes of waste is generated due 

to ELV's [11, 15]. The EU directive was established to encourage the reduction of 

waste.  The directive aims to reduce the environmental impact of ELV by 

promoting re-use, recycling, and recovery. This initiative forces the automotive 

manufacturer to take responsibility for its product's disposal and by doing so, 

encourages manufacturers to make their products more sustainable. The ELV 

directive states that no more than 5% of a vehicle can be sent to landfill, leaving 

the remainder to be recycled or re-used. Data from 2014 [34] revealed that waste 

sent to landfill was cut by a third in a year to achieve an all-time low.  

The Society of Motor Manufacturers and Traders (SMMT) [34] state that the EU 

recycling and recovery targets require 95% of ELV's to be recycled and recovered. 

As a result, industries are developing better strategies for coping with the waste. 

Vehicle scrapping over the past 4 years has fallen from 2.1 million per year 

between 2003 and 2009 to almost 1.85 million per year [34].  EoL treatment, 

recovery, and recycling are ultimately an OEM's responsibility, therefore they need 

to design their products in a way that minimises or eliminates environmental 

impact or makes the product easier to recycle at end-of-life [16, 31].  Gonzalez 

and Adenso-Diaz [19] mentioned the five alternatives such as disposal, recycling, 

reuse, repair, or remanufacturing for a product at end-of-life. They state that reuse, 

remanufacturing and repair are the better options for their environmental impact. 

However, they are not necessarily the best options due to the high cost associated 

with them [19].  

Recycling would be a more viable option if disassembly cost was not so expensive. 

If products were designed with dismantling in mind then this would lower the EoL 
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cost but this in turn may increase production costs. Das et al [7] discussed that 

disassembly is gradually becoming more widespread and frequently used in 

industry. They suggest several reasons for this, including: 

• retrieving valuable and reusable vehicle parts,  

• separation processes which allow for downstream material recovery,  

• hazardous and toxic materials removed,  

• remanufacturing to elongate lifespan, and  

• to break up the proprietary components.  

They pointed out that at the very least, disassembly reduces the need for 

disposing into landfill [7].  

Thierry et al [35] declare that from the design stage, OEMs need to consider 

different materials, their value, their environmental impacts, and the way the 

components and materials are assembled [17]. To achieve a more sustainable 

automotive production, OEMs will need to consider design for sustainability which 

involves economical, social, and ecological aspects. Mcauley [27] states that 

automotive manufacturers need to consider the product's entire life cycle and its 

overall environmental impact during the design stage. To reduce or remove the 

impact they can minimise materials of concern and integrate design for recycling, 

disassembly, and reuse. To ensure long term sustainability, energy consumption 

and environmental impact must be greatly reduced during the life cycle. Keoleian 

and Menerey [25] promote a systematic approach to reduce environmental impact 

using life cycle design. This method balances environmental impact with satisfying 

customer needs.   

Hatcher et al [21] confirm that 'remanufacturing’ can often be considered an 

environmentally sustainable product end-of-life solution. Remanufacturing means 

the life of a product is extended and the product does not end up in landfill too 

soon [29, 37]. Reuse is considered environmentally friendly due to its goal of 

preserving resources and energy. Environmentally, repair and remanufacturing 

are a good option as they extend a product's life. To ensure life-cycle longevity, 

OEMs should design their products to allow the user to be able to look after and 

maintain them. Design for disassembly means that vehicle’s parts can be easily 
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removed to repair or replace which makes maintenance easier. Overall, cost is an 

important factor whilst designers have to comply with ELV legalisation, they should 

also consider the costs associated to a component once it has reached the end of 

its life at the design stage.   

 

3. The Proposed End-of-life Cost Prediction Method for ELV 

As suggested by Cheung et al [3]’s finding, most companies do not consider EoL 

costs in design. However the design stage is very crucial as a product's impact is 

often 'locked in' at this stage. By developing a cost estimation method to predict 

products EoL costs at the design stage, this will help product designers to 

consider the economic aspect.  The scope of this section therefore discusses the 

different EoL options in terms of cost.   

Reuse is often the first option manufacturers consider. Reuse would provide the 

most cost-effective method due to no cost for additional processes. This is not 

always possible as EoL parts tend not to be in a usable condition without requiring 

rework. In accordance with the literature’s finding the main EoL options are (i) 

recycling; (ii) remanufacturing; (iii) refurbishing and (iv) disposal as illustrated in 

Fig 1. The method is based on Gonzalez and Adenso-Diaz [19]’s approach in 

“Product life cycle and end of life cycle”. The following sections examine how each 

of these cost options is formulated. 

 

[Insert Fig 1 here] 
 

Fig 1. The proposed method of processing ELV cost options (Adopted from 

Gonzalez and Adenso-Diaz [19]) 

 
3.1 Product End-of-life Cost Prediction 

With increasing environmental awareness within the EU, several directives such 

as Waste Electrical and Electronic Equipment (WEEE); Restriction of Hazardous 

Substances (RoHS) and the ELV have been implemented to reduce the quantity 
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of waste and toxic materials and increase its re-use, recovery and recycling [12]. 

Manufactures are effectively being forced to minimise their environmental impact 

when creating products.  To achieve this, design for disassembly (DFD) is 

necessary. DFD is the consideration of easing disassembly to allow for a product 

to be easily dismantled at EoL and this will allow for ease of re-use, recycling, and 

remanufacture [2, 14, 18, 20].  Disassembly allows components and materials to 

be broken down into individual parts. There are two types of disassembly [20]: 

(i) Non-destructive disassembly is the systematic process of removing parts 

from an assembly whilst ensuring that no damage occurs as a result of the 

process.  

(ii) Destructive disassembly involves separating materials for recycling.  

Bogue [2] mentions the factors that affect disassembly should be considered. 

Bogue concludes by saying that DFD allows manufacturers to comply with 

legislation and produce more cost-effective, environmentally friendly products. 

Disassembly is difficult to calculate as various factors can affect the result, such 

as; component complexity, fastening methods, part fragility, wear resistance, and 

ease of identification and handling. Disassembly depth factor proposed by 

Cheung et al [3] made an assumption that all assemblies will take the same time 

to disassemble. The use of the disassembly depth factor measures how 

complicated a part is to disassemble, which is important to consider when 

estimating disassembly costs.  

For calculating the disassembly depth factor:  

𝑓𝑓 =
Number of assemblies to disassemble

Total Number of Assemblies
 

(1) 

This is based on the following assumptions and details: 

• each assembly can be disassembled in the same time, 

• disassembly divides an assembly into fundamental components and low-

level assemblies, 

• the time for individual component separation equals the disassembly time 

for the whole assembly, 

• model treats as a component when entire assembly is targeted.  
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However, this is not a realistic assumption. For example, when considering a 

component fixed with 50 screws against one fixed with quick joints, and then quick 

joints will be easier and faster to disassemble. Situations like this make it difficult 

to devise a method for calculating disassembly which can be used across various 

components. 

 

3.2 Recycling 

Yan et al [39] state that the process of recycling involves recovering used 

components and materials to use as raw materials. This definition is also 

supported by the ELV directive in that “recycling means reprocessing in a 

production process of the waste materials for the original purpose or for other 

purposes [10]”. The associated costs that need to be considered for recycling are: 

disassembly, cleaning, and recycling (material processing, manufacturing, 

packaging, and assembly). It is believed that 75% of ELV's are made of metals [32] 

which is the material that is mostly recycled at EoL. Other materials such as 

plastics and rubber will have to be considered too. Sakai et al [30] discussed how 

recycling of Automotive Shredder Residue (ASR) is difficult due to the complexity 

of separating the materials; in particular the hazardous waste. During the design 

stage, manufacturers should look to reduce the number of materials and consider 

the environmental impact to make EoL manageable. For recycling option the 

proposed method has adapted Dantec’s approach [6] of calculating recycling cost. 

In this cost model: 

(i) recycling cost is defined as the amount of money to invest to remove 

targeted parts;  

(ii) RVi represents the removal value of targeted parts; and  

(iii) RCi represents the removal cost of targeted parts. 

𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 = ∑( RVi − RCi)                                (2) 

𝐑𝐑𝐕𝐕𝐢𝐢 = ∑((Partsi  ×  MVm −  OCi) × Wi)                         (3) 

𝐑𝐑𝐑𝐑𝐢𝐢 =  ∑( RTi  × 𝑓𝑓 ×  L)                (4) 
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Where:  

• Partsi = the number of parts of type i 

• Wi = the weight of parts of type i (kg) 

• MVm = the mass material value of parts (£/kg) 

• RTi = the time necessary to remove one type i part (hr) 

• L = the hourly wage (£/hr) 

• OCi = opportunity cost (£/kg). The opportunity cost corresponds to the 

revenue the dismantler would make by selling the parts to the shredder [6]. 

• f = disassembly depth factor   

 

3.3 Remanufacturing 

Ijomah et al [22] state that “remanufacturing is a process of returning a used 

product to at least the original equipment manufacturer (OEM) performance 

specification from the customers’ perspective and giving the resultant product a 

warranty that is at least equal to that of a newly manufactured equivalent”. 

According to Ijomah et al [23], remanufacturing can be both profitable and less 

harmful to the environment than conventional manufacturing as it reduces landfill 

and the levels of virgin material, energy and specialised labour used in production. 

Costs to be considered for remanufacturing are disassembly, cleaning, redesign 

and remanufacturing. Hatcher et al [21] research shows that decisions made 

during the design process can greatly affect the remanufacturing process's 

'efficiency and effectiveness'. To determine remanufacturing cost, the proposed 

method has adapted Shu et al [33]’s approach of predicting the expense of 

remanufacturing. This adapted remanufacturing cost model however is focused on 

disassembly and assembly of a part or component using riveting. Costs 

associated with restoring of parts or components are excluded in the model. 

Further explanation of each of the expressions in equation (5) can be found in 

reference [33] under section 8.25: 

𝐂𝐂𝐑𝐑𝐑𝐑 = �(Td + Ta) × L × f� + (Pf × Cf) + (�Ppd + (Pf × Ppe) − (Ppd × Pf × Ppe)� × Cp)  

    

              (5) 
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Where  

• Crm= remanufacture cost (£) 

• Td= disassembly time (hr) 

• Ta= assembly time (hr) 

• L= labour rate (£/hr) 

• f = disassembly depth factor 

• Pf= probability of fastener failure in disassembly and assembly 

• Cf= cost of fastener failure (£) 

• Ppd= probability of part failure in disassembly and assembly   

• Ppe= probability of part failure in fastening method extraction 

• Cp= cost of part failure (£) 

 

3.4 Refurbishing 

Refurbishing is an important part of the manufacturing process. It ensures that 

those re-usable components are as capable as new components.  Whether the 

components have failed or not, they will be targeted for refurbishment. If the target 

component is in good condition at its EOL then a relatively minor refurbishing cost 

would be incurred e.g. cleaning. In contrast, a failed target component will incur 

higher refurbishing costs such as repair, replacement, etc and the likely cost to 

refurbish is according to component failure/degradation rate data [40]. In order to 

determine refurbishing cost, the proposed method has adapted Zhou et al [40]’s 

cost model as shown in equation (6):   

CRefurbish = ∑(Cgoode−
λt

+ Cfailure(1−e−λt)) + f ×  L ×  (Td + Ta)   (6) 

  

Where: 

• Cgood= cost to refurbish a target part/ component in good condition (£) 

• Cfailure= cost to refurbish a target component has failed (£) 

• t = expected lifetime of product (usually per million depends on degradation 

rate λ) 

• Td= time to completely disassembly product (hr) 

• Ta= time to completely assembly product (hr) 
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• f= disassembly depth factor  

• L= labour rate (£/hr) 

• λ= degradation rate (failure per million hr) 

 

3.5 Implementation 

Microsoft Visual Basic was used to develop the software program. A user interface 

has been created as shown in Fig. 2. and this will to allow a designer to 

incorporate ELV costing into the design process to compare EoL options to 

understand which the most economical option for the targeted components is. To 

decide which EoL option to pursue, the designer will need to execute the software 

by selecting all options individually so that a comparison of EoL costs can be 

performed. The relevant source code of the software system is shown in Appendix 

A.   

[Insert Fig 2 here] 
 

Fig 2. The GUI of EoL cost evaluations 

 

 

4. Case Studies 

Two case studies are used to validate the approach and the chosen vehicle 

components are (i) a registration plate lamp light and (ii) a brake pad. These two 

components are made of different materials and manufacturing methods.  

4.1 Registration Plate Lamp Light 

Fig. 3 illustrates a ‘registration plate lamp light’, when it reaches the end of its life, 

the light can no longer illuminate the number plate or if the light becomes too dull. 

To ensure the light is bright enough, the upper polymer housing is made of 

polycarbonate. It also has a very high impact resistance which is an important 

factor when designing these components to be used on the external of a car. The 

lower housing of the light is made of polypropylene which only absorbs minimal 

water and has low permeability. There is also a rubber seal inside the housing to 

11 
 



prevent water from entering. Once it has reached the end-of-its useful life, and 

evaluation of its EoL is represented by the flow chart as shown in Fig. 4. 

 

[Insert Fig 3 here] 
 

Fig. 3. A vehicle’s registration plate lamp light 

 

[Insert Fig 4 here] 
  

Fig. 4. EoL process of a vehicle’s registration plate lamp light 

 

The registration plate lamp light consists of 5 components that require 

disassembly so the disassembly depth factor can be calculated as shown in Fig. 

A1 Appendix B. By taking the disassembly depth factor into account of, the 

following EoL costs can be determined. 

• EoL Option 1 - Remanufacturing cost 

The whole part can be remanufactured for reuse. The fasteners are snap-fits 

which can easily be separated. With constant use they can become fatigue and 

fail. Therefore possibility of fastener failure is relatively high. Remanufacturing cost 

can be calculated as shown in Fig A2 (Appendix B). 

 

• EoL Option 2 – Recycling cost 

As seen in Appendix B, Fig A3, A4 and A5 illustrate recycling evaluations of three 

different sub-components and materials of the vehicle’s number lamp light. 

Recycling all the components would be a low cost for the OEM as each individual 

material has a low cost to compare with remanufacturing. 

 

• Compare EoL costs of the registration plate lamp light (Fig. 5.): 

- Option 1 represents remanufacturing of the whole part. 

- Option 2 represents recycling the whole part. 

- Option 3 was not calculated as this component cannot be refurbished. 

Fig. 5 shows that recycling is the optimum option for the EoL of the registration 

plate lamp light because it’s cheaper than remanufacturing. 

12 
 



 

 

[Insert Fig 5 here] 
 

Fig. 5: Registration Plate Lamp EoL cost comparison 

 

4.2 Car’s Brake Pad 
The second case study is a brake pad as shown in Fig 6. Brake pads are used to 

convert a car's kinetic energy into thermal energy using friction. Brake pads 

operate under increasing temperatures. Therefore they need a high resistance to 

heat and must be able to recover quickly from extreme heat application. The 

material needs to be smooth to provide even contact with the rotor. The brake pad 

is semi-metallic and is made of a mix of synthetics and flaked metals bonded 

together by various resins. These materials make it hard and resistant to wear. 

The shim is a thin layer of metal used to reduce brake noise caused by 

imperfections. The aluminium shim is riveted onto the steel base plate and an 

adhesive is used to join the pad to the plate. Once a brake pad becomes unsafe to 

continue using, then it can be considered at the end of its useful life. Fig 7 

represents the EoL options of brake pads when they reached the end-of-their-

useful life.  

[Insert Fig 6 here] 
 

Fig 6. A Semi-metallic brake pad  

 
 

 

[Insert Fig 7 here] 
 

Fig. 7. EoL options of a brake pad 

 

The part is made up of 5 components; two rivets, steel base plate, aluminium shim, 

and semi-metallic brake pad, so the disassembly depth factor can be calculated as 

shown in Appendix B Fig A6. By taking the disassembly depth factor into account 

of, the following brake pad’s EoL costs can be determined. 
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• EoL Option 1 - Remanufacture 

The brake pad and rivets cannot be remanufactured so that remanufacturing cost 

of the metal plates can be estimated as shown in Fig A7 (Appendix B). The 

probability of fastener failure is 100% as the rivets must be drilled to disassemble 

the brake pad. The probability of part failure is low because the other components 

are strong and the number of fasteners is minimal. 

 

• EoL Option 2 - Refurbishing 

The brake pads and rivets cannot be refurbished but the metal plates can be 

reused. The degradation rate was obtained from Carnegie Mellon University [24]. 

This option looks already quite expensive for the OEM. The calculation of the 

refurbishing cost is shown in Fig A8 (Appendix B). 

 

• Recycling for EoL Options 1 and 2 

The brake pad can be recycled for options 1 and 2, the cost of recycling for these 

two options are shown in Fig A9 under Appendix B. This calculation shows that 

recycling the pad and rivets is least expensive.   

 

• EoL Option 3 

This option also gives a low recycling cost as shown in Fig A10 (Appendix B) 

 

Compare EoL costs of the brake pad, as seen in Fig 8: 

- Option 1 represents remanufacturing and recycling. 

- Option 2 represents refurbishing and recycling. 

- Option 3 represents all components are being recycled. 

 

As seen in Fig 8 that option 3 of recycling the whole component is an optimum 

solution as it works out significantly cheaper. It is also more ideal as it only 

requires one process whereas the other options require multiple processes.  
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[Insert Fig 8 here] 
 

Fig. 8. A brake pad’s EoL cost comparison 

 

5. Conclusion and further work 
For the case study it would have been preferential to have had accurate and 

consistent data from one source to achieve a more reliable result for EoL costing 

analysis. However, as this was not possible, therefore assumptions were made 

based on different sources. This should give an approximate representation of the 

costs OEMs can expect to encounter at EoL.  

 
The average retail price of the registration plate lamp light is £9. Any of the EoL 

options chosen would mean that around 50% of the retail price would cover EoL 

recovery cost. This indicates that there may have been over estimated. The 

proposed approach is also used estimated data for material value and opportunity 

cost. This will have led to a degree of inaccuracy. This implies that there have 

been inaccuracies in the values inputted into the software. It is possible that the 

average time of dismantling the part is unrealistically high as it was not dismantled 

by a trained labourer.  

 

Due to cost, recycling appeared to be the optimum option for both parts. 

Realistically this might not be true as it is not necessarily the most economically-

viable solution. Recycling adds no value to the product and its associated parts. 

Therefore it should only really be considered if the other options are not available. 

All of the EoL options point to disassembly being a major contributing factor to 

EoL cost. In the literature review, it was discovered that if disassembly was made 

easier then EoL costs could be reduced. To reduce costs, the following should be 

considered: 

- Reducing the number of assemblies to speed up disassembly. 

- Use simpler and less fastenings to reduce disassembly time and fastening 

failure. 

- Using fewer materials within components. 

- Automate the disassembly process. 
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These options should only be considered if they do not affect quality, safety and 

functionality of the product.  
 

To increase the accuracy of the estimations, a more comprehensive view of 

disassembly is needed. The disassembly depth factor in this study simplifies the 

time taken for disassembly and does not take into account the amount of 

fasteners or complexity of the fasteners. Therefore a new method for calculating 

disassembly is needed to ensure the cost estimations are more accurate.  
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Figure captions: 
 

Fig 1. The proposed method of processing ELV cost options (Adopted from 

Gonzalez and Adenso-Diaz [19]) 

Fig 2. The GUI of EoL cost evaluations 

Fig. 3. A vehicle’s registration plate lamp light 

Fig. 4. EoL process of a vehicle’s registration plate lamp light 

Fig. 5: Registration Plate Lamp EoL cost comparison 

Fig 6. A Semi-metallic brake pad  

Fig. 7. EoL options of a brake pad 

Fig. 8. A brake pad’s EoL cost comparison 
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Fig 1. The proposed method of processing ELV cost options (Adopted from 

Gonzalez and Adenso-Diaz [19]) 

 

 

Fig 2. The GUI of EoL cost evaluations 
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Fig. 3. A vehicle’s registration plate lamp light 
 

 

 
 

Fig. 4. EoL process of a vehicle’s registration plate lamp light 
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Fig. 5: Registration Plate Lamp EoL cost comparison 

 

 

 

  

 

Fig 6. A Semi-metallic brake pad  
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Fig. 7. EoL options of a brake pad 
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Fig. 8. A brake pad’s EoL cost comparison 
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