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Abstract. A group G of permutations of a set Ω is primitive
if it acts transitively on Ω, and the only G-invariant equivalence
relations on Ω are the trivial and universal relations.

A digraph Γ is primitive if its automorphism group acts prim-
itively on its vertex set, and is infinite if its vertex set is infinite.
It has connectivity one if it is connected and there exists a vertex
α of Γ, such that the induced digraph Γ \ {α} is not connected. If
Γ has connectivity one, a lobe of Γ is a connected subgraph that
is maximal subject to the condition that it does not have connec-
tivity one. Primitive graphs (and thus digraphs) with connectivity
one are necessarily infinite.

The primitive graphs with connectivity one have been fully clas-
sified by Jung and Watkins: the lobes of such graphs are primi-
tive, pairwise-isomorphic and have at least three vertices. When
one considers the general case of a primitive digraph with connec-
tivity one, however, this result no longer holds. In this paper we
investigate the structure of these digraphs, and obtain a complete
characterisation.
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1. Preliminaries

Throughout this note, a graph Γ will be a pair (V Γ, EΓ), where V Γ
is the set of vertices of Γ, and EΓ the set of edges. The set EΓ consists
of unordered pairs of distinct elements of V Γ.

A digraph Γ is a pair (V Γ, AΓ), where AΓ is the set of arcs of Γ.
Each arc is an ordered pair of distinct elements of V Γ. All paths in a
digraph will be undirected, unless otherwise stated. A directed cycle in
Γ is a path α0α1 . . . αn such that (αn, α0) ∈ AΓ and (αi, αi+1) ∈ AΓ for
all integers i satisfying 0 ≤ i < n.

All graphs and digraphs will be free of loops and multiple edges.
They are said to be infinite if their vertex sets are infinite.
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The distance between two connected vertices α and β in a graph or
digraph Γ will be denoted by dΓ(α, β).

Groups, and in particular groups of automorphisms, will play a lead-
ing role in many of the arguments presented herein. Throughout this
work, G will be a group of permutations of a set Ω, where Ω will usually
be the vertex set of some infinite digraph.

If α ∈ Ω and g ∈ G, we denote the image of α under g by αg.
Following this notation, all permutations will act on the right. The
orbit of α under the action of G will be denoted by αG.

If α ∈ Ω, we denote the stabiliser of α in G by Gα, and if Σ ⊆ Ω
we denote the setwise and pointwise stabilisers of Σ in G by G{Σ} and
G(Σ) respectively.

A transitive group G is primitive on Ω if the only G-congruences
admitted by Ω are the trivial and universal equivalence relations; oth-
erwise G is said to be imprimitive. It is said to act regularly on Ω if
Gα = 1 for each α ∈ Ω.

A subset ∆ of Ω is called a block if for all g ∈ G we have either
∆g = ∆ or ∆g ∩∆ = ∅. A block is called trivial if |∆| = 1, and proper
if ∆ 6= Ω. Since the existence of a non-trivial proper block permits
the construction of a non-trivial and non-universal G-congruence on Ω,
the group G is primitive if and only if Ω does not contain a non-trivial
proper block.

The following is well known, and is often a very useful test for prim-
itivity.

Theorem 1.1. ([1, Theorem 4.7]) If G is a transitive group of permu-
tations on Ω, and |Ω| > 1, then G is primitive on Ω if and only if, for
every α ∈ Ω, the stabiliser Gα is a maximal subgroup of G. �

A graph or digraph Γ is primitive if its automorphism group Aut Γ
acts primitively on the set V Γ, and is automorphism-regular if Aut Γ
acts regularly on V Γ.

A primitive graph or digraph Γ with at least one edge or arc is
always connected. Indeed, the connected components of Γ form a set
of Aut Γ-congruence classes.

The connectivity of an infinite connected graph or digraph Γ is the
smallest possible size of a subset W of V Γ for which the induced graph
Γ \ W is disconnected. A lobe of Γ is a connected subgraph that is
maximal subject to the condition it has connectivity strictly greater
than one. If Γ has connectivity one, then the vertices α for which
Γ \ {α} is disconnected are called the cut vertices of Γ.

2. Local structure

Consider the following construction. Let V1 be the set of cut vertices
of a connected graph Γ, and let V2 be a set in bijective correspondence
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with the set of lobes of Γ. We let T be a bipartite graph whose parts
are V1 and V2. Two vertices α ∈ V1 and x ∈ V2 are adjacent in T if
and only if α is contained in the lobe of Γ corresponding to x. In fact,
this construction yields a tree, which is called the block-cut-vertex tree
of Γ. Note that if Γ has connectivity one and block-cut-vertex tree T ,
then any group G acting on Γ has a natural action on T .

It is perhaps helpful to the reader at this point to describe a graph
that is typical of those in which we are interested. Let P5 denote the
Petersen Graph. To each vertex α in P5 we adjoin another two copies
of P5 in such a way that α is contained in three distinct copies of P5

that intersect only in α. We continue this process for each additional
vertex whenever a new P5 is adjoined. In this way we obtain an infinite
graph with connectivity one, whose lobes are isomorphic to P5. The
block-cut-vertex tree of this graph is a biregular tree, in which one set
of the natural bipartition has valency 3, and the other valency 10. As
we shall see, this graph is primitive.

Let Γ be a primitive digraph with connectivity one whose lobes have
at least three vertices, and suppose G is a vertex- and arc-transitive
group of automorphisms of Γ. Since Γ is vertex-transitive with connec-
tivity one, every vertex is a cut vertex. Fix some lobe Λ of Γ, and let
H be the subgroup of the automorphism group Aut Λ induced by the
setwise stabiliser G{Λ} of V Λ in G. Let T be the block-cut-vertex tree
of Γ, and let x be the vertex of T that corresponds to the lobe Λ. Our
aim in this section is to show H is primitive but not regular.

If x1 and x2 are distinct vertices of the tree T , we use C(T \{x1}, x2)
to denote the connected component of T \{x1} that contains the vertex
x2.

Lemma 2.1. If G acts primitively on the vertices of Γ, then H acts
primitively on the vertices of Λ.

Proof. If H acts transitively but not primitively on V Λ, then there
exists a non-trivial proper block ∆ ⊆ V Λ. For any two distinct vertices
α, β ∈ ∆, the digraph (V Λ, (α, β)H) is not connected, since it does not
contain a path from α to any vertex in V Λ \∆.

If H does not act transitively on V Λ, then one may choose distinct
vertices α, β, γ ∈ V Λ such that β ∈ αH but γ 6∈ αH . Again the digraph
(V Λ, (α, β)H) is not connected, as there is no path from α to γ. Thus,
if H is not transitive on V Λ, or if H is transitive but not primitive on
V Λ, then there exist distinct vertices α, β ∈ V Λ such that the digraph
Λ′ := (V Λ, (α, β)H) is not connected.

Suppose this is the case, and choose distinct vertices α, β ∈ V Λ such
that Λ′ is not connected. We will show this assumption implies the
digraph Γ′ := (V Γ, (α, β)G) cannot be connected, and is therefore not
primitive; whence G cannot be primitive.
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Recall that T is the block-cut-vertex tree of Γ and x is the vertex
of T corresponding to the lobe Λ. Let {∆i}i∈I be the set of connected
components of Λ′ and let

Ci :=
⋃
δ∈∆i

C(T \ {x}, δ) ∩ V Γ.

Suppose δi ∈ Ci and δj ∈ Cj, with i 6= j. We claim δi and δj are not
adjacent in Γ′. Indeed, since the distance dT (α, β) between α and β
in T is equal to 2, if δi and δj are to be adjacent in the arc-transitive
digraph Γ′, it must be the case that dT (δi, δj) = 2. If either δi or δj is
not adjacent to x in T then dT (δi, δj) > 2, so they cannot be adjacent
in Γ′. On the other hand, if δi and δj are adjacent to x in T , then
they both lie in V Λ = V Λ′, and therefore δi ∈ ∆i and δj ∈ ∆j. In this
case, if they are adjacent in Γ′ then there exists g ∈ G such that either
(δi, δj) or (δj, δi) is equal to (α, β)g. Such an automorphism must fix
V Λ setwise, and therefore lies in G{Λ}. Thus, there exists an element
h ∈ H such that either (δi, δj) or (δj, δi) is equal to (α, β)h, meaning
that δi and δj are adjacent in Λ′; however, this contradicts the fact that
δi and δj are in distinct components of Λ′. Hence, δi and δj are not
adjacent in Γ′.

Hence, there can be no path in Γ′ between a vertex in Ci and a vertex
in Cj whenever i 6= j, and so the digraph Γ′ is not connected. Whence,
Γ′ cannot be primitive, and G cannot act primitively on V Γ. �

Fix distinct vertices α, β ∈ V Γ and recall that α and β are also
vertices of the block-cut-vertex tree T .

A geodesic between two vertices is a shortest path between them. In
a tree, there is a unique geodesic between any two vertices. Let [α, β]T
be the T -geodesic between α and β, and let (α, β)T be the T -geodesic
[α, β]T excluding both α and β. This notation extends obviously to
[α, β)T and (α, β]T .

Since α and β are vertices of both Γ and T , the distance dT (α, β)
is even, so we may choose a vertex y ∈ (α, β)T that is distinct from α
and β.

Lemma 2.2. If g ∈ Gα does not fix y ∈ V T , and δ 6∈ C(T \ {y}, α),
then δg 6∈ C(T \ {y}, β).

Proof. If δ 6∈ C(T \ {y}, α) and δg ∈ C(T \ {y}, β) then δ, δg 6∈ C(T \
{y}, α), so we must have g ∈ Gα,y. �

Lemma 2.3. If g ∈ Gα does not fix the vertex y and δ 6∈ C(T \ {y}, α)
then dT (y, δg) > dT (y, δ).

Proof. If δ 6∈ C(T \{y}, α) then y ∈ [α, δ]T . Thus dT (δ, δg) = dT (δ, y)+
dT (y, yg) + dT (yg, δg) and dT (δ, δg) = dT (δ, y) + dT (y, δg). Therefore
dT (y, δg) = dT (yg, δg) + dT (y, yg). Now dT (yg, δg) = dT (y, δ), and
dT (y, yg) ≥ 1. Whence dT (y, δg) > dT (y, δ). �
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Henceforth, if H is a subgroup of G, then we will write H ≤ G; if we
wish to exclude the possibility of H = G we will instead write H < G.

Lemma 2.4. Let g1, . . . , gn ∈ Gα and h1, . . . , hn ∈ Gβ, and suppose
Gα,y = Gβ,y. If there exists γ ∈ V T such that Gα,y ≤ Gγ then, for
some m ≤ n, there exist g′2, . . . , g

′
m ∈ Gα \Gy and g′1 ∈ Gα \Gy ∪ {1}

together with h′1, . . . , h
′
m−1 ∈ Gβ \Gy and h′m ∈ Gβ \Gy ∪{1} such that

γg
′
1h
′
1...g

′
mh
′
m = γg1h1...gnhn .

Proof. The proof of this lemma will be an inductive argument. Suppose
there exists γ ∈ V T such that Gα,y ≤ Gγ.

Let n = 1. When considering h1 ∈ Gβ we have two cases: either
h1 ∈ Gy or h1 ∈ Gβ \Gy. If h1 ∈ Gy then h1 ∈ Gβ,y = Gα,y, so g1h1 ∈
Gα. In this case, redefine g1 := g1h1 and set h′1 := 1. Alternatively,
if h1 ∈ Gβ \ Gy then set h′1 := h1. Having found a suitable h′1, we
will now construct g′1 from the (possibly redefined) element g1 ∈ Gα.
We again have two cases: either g1 ∈ Gy or g1 ∈ Gα \ Gy. If g1 ∈ Gy

then g1 ∈ Gα,y and so g1 ∈ Gγ. In this case we can choose g′1 := 1.
Otherwise, if g1 ∈ Gα \ Gy, then choose g′1 := g1. In choosing g′1 and
h′1 in this way we ensure that

γg1h1 = γg
′
1h
′
1 ,

so the hypothesis holds when n = 1.
Let k be a positive integer, and suppose the hypothesis is true for all

integers n ≤ k. Fix g1, . . . , gk+1 ∈ Gα and h1, . . . , hk+1 ∈ Gβ, and set

γ′ := γg1h1...gk+1hk+1 .

We will use induction to construct elements g′2, . . . , g
′
m ∈ Gα \ Gy and

g′1 ∈ Gα \ Gy ∪ {1} together with h′1, . . . , h
′
m−1 ∈ Gβ \ Gy and h′m ∈

Gβ \Gy ∪ {1} such that

γg
′
1h
′
1...g

′
mh
′
m = γ′,

where m is some integer less than or equal to k + 1.
We begin by considering hk+1 ∈ Gβ. There are two cases: either

hk+1 ∈ Gy or hk+1 ∈ Gβ \Gy. If hk+1 ∈ Gy then hk+1 ∈ Gβ,y = Gα,y, so
gk+1hk+1 ∈ Gα. In this case, redefine gk+1 := gk+1hk+1 and set h′ := 1.
If, on the other hand, hk+1 ∈ Gβ \Gy, then set h′ := hk+1.

If we now consider the (possibly redefined) element gk+1 ∈ Gα, there
are again two cases: either gk+1 ∈ Gy, or gk+1 ∈ Gα \Gy. If gk+1 ∈ Gy

then gk+1 ∈ Gα,y = Gβ,y, so hkgk+1h
′ ∈ Gβ. In this case, let h′′ :=

hkgk+1h
′; then

γ′ = γg1h1...gkh
′′
,

so we can apply the induction hypothesis to γg1h1...gkh
′′

and we are done.
If, on the other hand, gk+1 ∈ Gα \Gy, then set g′ := gk+1, and observe

γ′ = γg1h1...gkhkg
′h′ .
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By the induction hypothesis, for some l ≤ k there exist g′2, . . . , g
′
l ∈

Gα \ Gy and g′1 ∈ Gα \ Gy ∪ {1} together with h′1, . . . , h
′
l−1 ∈ Gβ \ Gy

and h′l ∈ Gβ \Gy ∪ {1} such that

γg1h1...gkhk = γg
′
1h
′
1...g

′
lh
′
l .

At this final stage in the proof, we again face two possibilities: either
h′l = 1 or h′l ∈ Gβ \ Gy. In the first instance define g′′ := g′lh

′
lg
′, so

γ′ = γg
′
1h
′
1...g

′
l−1h

′
l−1g

′′h′ . Since g′′ = g′lg
′ ∈ Gα and h′ ∈ Gβ and l ≤ k, we

may apply the induction hypothesis.
On the other hand, if h′l ∈ Gβ \ Gy, then set g′l+1 := g′ ∈ Gα \ Gy

and h′l+1 := h′ ∈ Gβ \ Gy ∪ {1}, and observe γ′ = γg
′
1h
′
1...g

′
l+1h

′
l+1 . Now

l ≤ k, so defining m to be l+ 1 we have m ≤ k+ 1. Thus in both cases
the hypothesis holds. It is therefore true for n = k + 1. �

We are now in a position to present the main result of this section
which describes necessary conditions for a vertex-transitive subgroup
of the automorphism group of an infinite primitive digraph with con-
nectivity one to be imprimitive.

Theorem 2.5. Let G be a vertex-transitive group of automorphisms
of a connectivity-one digraph Γ whose lobes have at least three vertices,
and let T be the block-cut-vertex tree of Γ. If there exist distinct vertices
α, β ∈ V Γ such that, for some vertex x ∈ (α, β)T ,

Gα,x = Gβ,x,

then G does not act primitively on V Γ.

Proof. Suppose G acts primitively on V Γ and there exist distinct ver-
tices α, β ∈ V Γ and x ∈ (α, β)T such that Gα,x = Gβ,x. We will
begin by showing the group 〈Gα, Gβ〉 generated by Gα and Gβ is
not equal to G; then we shall show it is not equal to Gα. Whence,
Gα < 〈Gα, Gβ〉 < G which, by applying Theorem 1.1, will contradict
the assumption that G is primitive.

Without loss of generality, suppose dT (x, α) ≤ dT (x, β). If the orbit
β〈Gα,Gβ〉 contains α, then there exist elements g1, . . . , gn ∈ Gα and
h1, . . . , hn ∈ Gβ such that α = βg1h1...gnhn . By Lemma 2.4, we can find
m ≤ n and g′2, . . . , g

′
m ∈ Gα \Gx and g′1 ∈ Gα \Gx ∪ {1} together with

h′1, . . . , h
′
m−1 ∈ Gβ \Gx and h′m ∈ Gβ \Gx ∪ {1} such that

α = βg
′
1h
′
1...g

′
mh
′
m .

Suppose these automorphisms are chosen so that m is minimal.
Now either g′1 ∈ Gα \Gx or g′1 = 1. If g′1 = 1 then βg

′
1 = β and there-

fore βg
′
1h
′
1 = β. Thus βg

′
2h
′
2...g

′
mh
′
m = α, contradicting the minimality of

m. So we must have g′1 ∈ Gα \ Gx. Since β 6∈ C(T \ {x}, α), we may
apply Lemma 2.2 and Lemma 2.3 to obtain dT (x, βg

′
1) > dT (x, β) and

βg
′
1 6∈ C(T \ {x}, β).



INFINITE PRIMITIVE DIRECTED GRAPHS 7

We now observe h′1 6= 1. Indeed, if h′1 = 1 then m = 1 and α = βg
′
1 ;

since g′1 ∈ Gα this is clearly not possible.
Thus, h′1 ∈ Gβ \ Gx and βg

′
1 6∈ C(T \ {x}, β), and we can again de-

duce from Lemma 2.2 and Lemma 2.3 that dT (x, βg
′
1h
′
1) > dT (x, βg

′
1) >

dT (x, β), and βg
′
1h
′
1 6∈ C(T \ {x}, α).

We may continue to apply Lemmas 2.2 and 2.3 to obtain βg
′
1h
′
1...g

′
m 6∈

C(T \ {x}, β) and dT (x, βg
′
1h
′
1...g

′
m) > dT (x, β). Now either h′m ∈ Gβ \

Gx or h′m = 1. If h′m = 1 then α = βg
′
1h
′
1...g

′
m , and so dT (x, α) =

dT (x, βg
′
1h
′
1...g

′
m) > dT (x, β). If h′m ∈ Gβ \ Gx then, by Lemma 2.3,

dT (x, βg
′
1h
′
1...g

′
mh
′
m) > dT (x, β); that is, dT (x, α) > dT (x, β). Thus, in

both cases dT (x, α) > dT (x, β). This contradicts our assumption that
dT (x, α) ≤ dT (x, β). Hence α 6∈ β〈Gα,Gβ〉, and so 〈Gα, Gβ〉 cannot act
transitively on the set V Γ. This ensures that 〈Gα, Gβ〉 6= G.

By Theorem 1.1, we must therefore have 〈Gα, Gβ〉 = Gα. Thus, the
set of vertices Fix (Gα) fixed by Gα contains both α and β. This set
is a block of imprimitivity. Thus, every vertex in V Γ must be fixed by
Gα, and so Gα = 〈1〉. However, Gα is a maximal subgroup of G, so
Gα = 〈1〉 implies that G is a finite cyclic group of prime order. This,
however, is impossible, as G acts transitively on the infinite set V Γ.

Hence 〈Gα, Gβ〉 6= Gα, and 〈Gα, Gβ〉 6= G, which contradicts our
assumption that G is primitive. �

Theorem 2.6. Let G be a vertex-transitive group of automorphisms of
a connectivity-one digraph Γ whose lobes have at least three vertices. If
G acts primitively on V Γ and Λ is some lobe of Γ then G{Λ} is primitive
and not regular on V Λ.

Proof. Suppose G acts primitively on V Γ, and Λ is a lobe of Γ. By
Lemma 2.1, G{Λ} acts primitively on V Λ. Suppose this action is reg-
ular. If T is the block-cut-vertex tree of Γ then there exists a vertex
x ∈ V T corresponding to the lobe Λ. Choose distinct vertices α and
β in V Λ, and observe Gα,x = Gα,{Λ} ≤ Gβ and Gβ,x = Gβ,{Λ} ≤ Gα;
furthermore, x ∈ (α, β)T . This, however, is impossible, as it implies G
is imprimitive by Theorem 2.5. �

3. Global structure

In this section we shall employ Theorem 2.6 to give a complete char-
acterisation of the primitive connectivity-one digraphs.

Lemma 3.1. Suppose Γ is a vertex-transitive digraph with connectivity
one, whose lobes are vertex-transitive, have at least three vertices and
are pairwise isomorphic.

If γ is a vertex in some lobe Λ of Γ and α ∈ V Γ is γ or lies in a
component of Γ\{γ} distinct from the component containing V Λ\{γ},
then the subgroup of Aut Λ induced by the action of (Aut Γ)α,{Λ} on Λ
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is (Aut Λ)γ, and the group induced by the action of (Aut Γ){Λ} on Λ is
Aut Λ.

Proof. Let T denote the block-cut-vertex tree of Γ, and let Λ be a lobe
of Γ. Choose γ ∈ V Λ and let C ′ be a component of Γ\{γ} distinct from
that which contains V Λ \ {γ}. Let C be the subgraph of Γ induced by
C ′ ∪ {γ}, and suppose α is any vertex in C.

We begin by asserting that if Λ1 and Λ2 are lobes of Γ, and α1 and α2

are vertices in Λ1 and Λ2 respectively, then there exists an isomorphism
ρ : Λ1 → Λ2 such that αρ1 = α2. Indeed, by assumption there exists

an isomorphism ρ′ : Λ1 → Λ2. Define α′1 := αρ
′

1 . Since the lobe Λ2

is vertex-transitive, there exists an automorphism τ of Λ2 such that
α′1

τ = α2. Let ρ := ρ′τ . Then ρ : Λ1 → Λ2 is an isomorphism, with

αρ1 = αρ
′τ

1 = α′1
τ = α2.

Let x be the vertex of T that corresponds to Λ. For k ≥ 0, define Γk
to be the subgraph of Γ induced by the set {ξ ∈ V Γ | dT (x, ξ) ≤ 2k+1},
and Ck := C ∩Γk. Note that Γ0 = Λ. We will show any automorphism
σk : Γk → Γk which fixes Ck admits an extension σk+1 : Γk+1 → Γk+1

which fixes Ck+1.
Fix k ≥ 0 and let σk : Γk → Γk be an automorphism that fixes

Ck pointwise; in particular, σ0 ∈ (Aut Λ)γ. Let {αi}i∈I be the set of
vertices in V Γk \ V Γk−1 (where V Γ−1 := ∅). Each vertex αi belongs to
a unique lobe Λi of Γk, and, if k ≥ 1, the lobe Λi possesses precisely one
vertex in Γk−1. Since Γ is vertex transitive, any two vertices lie in the
same number of lobes of Γ, so let {Λi,j}j∈J be the set of lobes of Γ that
contain αi and are distinct from Λi. Each lobe Λi,j is wholly contained
in Γk+1 and has exactly one vertex in Γk, namely αi. If i ∈ I, set
α′i := ασki and Λ′i := Λσk

i . Then Λ′i = Λi′ for some i′ ∈ I. For all j ∈ J
there exists an isomorphism ρi,j : Λi,j → Λi′,j such that α

ρi,j
i = α′i.

Thus, we may define a mapping σk+1 : Γk+1 → Γk+1 with

βσk+1 :=


βσk if β ∈ V Γk;

β if β ∈ C;

βρi,j if β ∈ V Λi,j \ C.

This is clearly a well-defined automorphism of Γk+1.
Hence if σ0 ∈ (Aut Λ)γ, then we may extend it to an automorphism

σ of Γ that fixes C pointwise, and therefore fixes α. Since each au-
tomorphism in (Aut Λ)γ may be extended in this way, the subgroup
of Aut Λ induced by (Aut Γ)α,{Λ} must contain (Aut Λ)γ. Clearly no
automorphism of Γ may fix α and Λ setwise whilst not also fixing γ,
so these two groups must in fact be equal.

We now adjust the above argument to show that the group induced
by the action of (Aut Γ){Λ} on Λ is Aut Λ. Fix k ≥ 0 and consider
an automorphism σk : Γk → Γk that fixes V Λ setwise; in particular,
σ0 ∈ (Aut Λ).
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Using the above notation, we may define a map σk+1 : Γk+1 → Γk+1

with

βσk+1 :=

{
βσk if β ∈ V Γk;

βρi,j if β ∈ V Λi,j.

This is a well-defined automorphism of Γk+1. Thus we may extend any
automorphism σ0 ∈ (Aut Λ) to an automorphism σ of Γ that fixes Λ
setwise. Whence the group induced by the action of (Aut Γ){Λ} on Λ
is Aut Λ. �

The primitive graphs with connectivity one have the following com-
plete characterisation.

Theorem 3.2. ([3, Theorem 4.2]) If Γ is a vertex-transitive graph with
connectivity one, then it is primitive if and only if the lobes of Γ are
primitive, pairwise isomorphic and each has at least three vertices. �

Jung and Watkins’ result, while impressive, cannot be applied to
primitive digraphs without some modification. Indeed, consider the fol-
lowing counterexample. Let Γ be the connectivity-one primitive graph
whose lobes are undirected 3-cycles, in with each vertex lies in precisely
two lobes. It is of course possible to verify this graph is primitive using
Theorem 3.2.

We assign to each vertex in Γ the label 1, 2 or 3 in such a way that
no two vertices in a common lobe of Γ share the same label. Whence,
each lobe of Γ has a vertex labelled 1, a vertex labelled 2 and a vertex
labelled 3.

For each lobe in Γ we replace its edge set with a set of three arcs, from
the vertex labelled i to the vertex labelled (i+ 1) mod 3, for i = 1, 2, 3.
In this way we obtain a vertex-transitive connected digraph Γ′ whose
vertex set is V Γ. Furthermore, the lobes of this digraph are primitive,
pairwise isomorphic, and have at least three vertices. However, the set
of vertices labelled 1 is a non-trivial proper block of the group Aut Γ′,
so this group cannot act primitively on the digraph Γ′.

The approach taken by Jung and Watkins in their proof of Theo-
rem 3.2 is broadly similar to the argument presented thus far. They
first prove that any automorphism of a lobe Λ of a vertex-transitive
graph Γ with connectivity one may be extended to an automorphism
of Γ. It is then shown that if the lobes of Γ are vertex primitive, have
at least three vertices, and are pairwise isomorphic, then Γ is primitive.
It is here that their proof fails to apply to digraphs; by citing Theo-
rem 1 of [2] they claim the lobes of Γ cannot be automorphism-regular.
While this is indeed true of graphs, it is not true of digraphs, as our
previous example illustrates.

Imrich’s result states that the automorphism group of a graph with
more than two vertices cannot be regular and primitive. It relies on two
results, Lemmas 2 and 3 of [2]. Lemma 2 is the well-known result that a
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regular primitive group of permutations must be cyclic; Lemma 3 states
that any transitive abelian automorphism group of a non-trivial graph
is the direct product of two cyclic groups of order 2. Any primitive
and regular automorphism group of a graph must therefore equal this
direct product; Imrich shows that no such graph exists, and correctly
deduces that automorphism-regular primitive graphs are not possible.
It is in the proof of the latter lemma that Imrich’s result ceases to
be applicable to digraphs: his argument requires the existence of a
specific graph automorphism ψ. On inspection it transpires that ψ is
not a digraph automorphism, since it reverses the direction of edges.
Thus Theorem 1 of [2] is not applicable to digraphs, which in turn
causes Jung and Watkins’ result to fail.

Although their result does not extend immediately to digraphs, a
complete characterisation is still possible.

Theorem 3.3. If Γ is a vertex-transitive digraph with connectivity one,
then it is primitive if and only if the lobes of Γ are primitive but not
automorphism-regular, pairwise isomorphic and each has at least three
vertices.

Proof. Let Γ be a vertex-transitive digraph with connectivity one. Sup-
pose the lobes of Γ are primitive but not automorphism-regular, pair-
wise isomorphic and each has at least three vertices. Let≈ be an Aut Γ-
congruence on V Γ such that there exist distinct vertices α, β ∈ V Γ with
α ≈ β. We will show this relation must be universal, and thus that Γ
is a primitive digraph.

Let T be the block-cut-vertex tree of Γ, let γ ∈ V Γ be the vertex in
the geodesic [α, β]T such that dT (β, γ) = 2, and let Λ be the lobe of Γ
containing β and γ.

By Lemma 3.1 the group (Aut Γ){Λ} acts primitively and not regu-
larly on the lobe Λ. Thus there exits an automorphism h ∈ (Aut Γ)γ,{Λ}
which does not fix β. By restricting the action of h to the vertices of Λ,
we see that there must be an element in Aut Λγ which does not fix β.
By Lemma 3.1, the subgroup of Aut Λ induced by (Aut Γ)α,{Λ} is equal
to (Aut Λ)γ, so there must therefore exist an element g ∈ (Aut Γ)α,γ,{Λ}
that does not fix β.

Thus, β and βg are distinct vertices in Λ. Now α ≈ β, so α ≈ βg,
and therefore β ≈ βg. Since (Aut Γ){Λ} is primitive on V Λ and ≈
induces a non-trivial (Aut Γ){Λ}-congruence on V Λ, this relation must
be universal in Λ. By assumption, Aut Γ acts transitively on the lobes
of Γ, so if two vertices lie in the same lobe then they must lie in the same
congruence class. Thus, if γ is any vertex of Γ, and αx1α1x2 . . . xnγ is
the geodesic in T between α and γ, then α and α1 lie in a common
lobe, so α ≈ α1. Similarly, α1 ≈ α2 and α2 ≈ α3, so α ≈ α2 and
α ≈ α3. Continuing in this way we eventually obtain α ≈ γ. Hence,
this congruence relation is universal on V Γ.
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Conversely, suppose the group Aut Γ acts primitively on V Γ. Since
Γ is a primitive digraph with connectivity one, we can obtain an graph
Γ′ with vertex set V Γ and edge set {{α, β} | (α, β) ∈ AΓ}. Two
vertices are adjacent in Γ if and only if they are adjacent in Γ′. As
Aut Γ is primitive on V Γ and Aut Γ ≤ Aut Γ′, it follows that Aut Γ′

must be primitive on V Γ, and hence Γ′ is a primitive graph. Since Γ
has connectivity one, the same is true of Γ′, so we may apply Theo-
rem 3.2 to deduce the lobes of Γ′ are primitive, pairwise isomorphic
and each has at least three vertices. Now, given a lobe Λ of Γ, there is
a lobe Λ′ of Γ′ such that V Λ = V Λ′. Therefore, the lobes of Γ have at
least three vertices, and are primitive but not automorphism-regular
by Theorem 2.6.

It remains to show they are pairwise isomorphic. Fix some lobe Λ of
Γ and an arc (α, β) ∈ AΛ. Let Γ1 be the digraph (V Γ, (α, β)Aut Γ). As
Aut Γ is primitive, this digraph is a connected subgraph of Γ. Thus,
every lobe of Γ must contain an arc in AΓ1. Furthermore, if ∆ is a lobe
of Γ, then any automorphism of Γ mapping the arc (α, β) to an arc in
∆ must map Λ to ∆. Since Γ1 is arc-transitive, the lobes of Γ must be
pairwise isomorphic. �

It is now a simple exercise to classify those vertex-transitive digraphs
with connectivity one which are counterexamples to the application
of Jung and Watkins’ result to digraphs without modification. Any
such counterexample must be one of two types: digraphs that satisfy
the conditions of Jung and Watkins’ theorem, but are nevertheless
imprimitive; and digraphs that are primitive, but fail to satisfy Jung
and Watkins’ characterisation.

Since the conditions given in Theorem 3.3 under which one may be
certain a vertex-transitive digraph with connectivity one is primitive
include the corresponding conditions given in Jung and Watkins’ the-
orem, no primitive digraph with connectivity one is of the latter type.
Thus, any counterexample must be imprimitive, yet still satisfy the
conditions of Jung and Watkins result. We begin with a lemma.

Lemma 3.4. For each prime p, a digraph Λ on p vertices is a directed
cycle if and only if its automorphism group is the cyclic group Cp of
order p.

Proof. Suppose p is prime and Λ is a digraph on p vertices. If Λ is a
directed cycle then clearly its automorphism group is Cp.

Conversely, suppose Λ has automorphism group Cp. Without loss
of generality, we may label the vertices of Λ as integers 0, 1, . . . , p − 1
such that (0, 1) is an arc in Λ and Cp is generated by the permutation
ρ with

iρ = i+ 1 mod p.
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Since Cp is transitive on V Λ, for some set J ⊆ {1, . . . , p − 1} we may
write

AΛ =
⋃
j∈J

(0, j)Cp .

Note that 1 ∈ J . Let σ be a permutation of V Λ fixing the vertex 0
and fixing J setwise. Choose (a, b) ∈ AΛ and observe (a, b) = (0, j)ρ

k

for some j ∈ J and some integer k. Now (a, b)ρ
−kσ = (0, j)σ = (0, j′)

for some j′ ∈ J , and (0, j′) ∈ AΛ. Thus σ lies in Aut Λ and, if J
contains at least two elements, is not in Cp. Whence, J = {1} and Λ
is a directed cycle. �

Recall that any counterexample to the unmodified extension of Jung
and Watkins’ result to digraphs must be imprimitive, yet still satisfy
the conditions of their theorem. By Theorem 3.3, all such digraphs
must have automorphism-regular primitive lobes which are pairwise
isomorphic, with each possessing at least three vertices. Let Γ be such
a digraph.

If Λ is a lobe of Γ, then Theorem 1.1 tells us that Aut Λ is cyclic of
prime order p. Since this group is transitive, it implies that Λ must have
precisely p vertices. Thus Λ is a p-vertex digraph whose automorphism
group is the cyclic group Cp of order p, and is necessarily a directed
cycle by Lemma 3.4.

Conversely, we note that for any odd prime p, a vertex-transitive
digraph with connectivity one whose lobes have p vertices and auto-
morphism group Cp, satisfies the primitivity conditions given by Jung
and Watkins for graphs.

Thus the counterexamples to the unmodified extension of Jung and
Watkins’ result are precisely those digraphs whose lobes have an odd
prime p number of vertices, and are directed cycles. This is summarised
in our concluding theorem. Here the undirected graph associated with
the digraph Γ is the graph with vertex set V Γ and edge set {{α, β} |
(α, β) ∈ AΓ or (β, α) ∈ AΓ}.

Theorem 3.5. If Γ is a vertex-transitive imprimitive digraph with con-
nectivity one, then its associated (undirected) graph is primitive if and
only if the lobes of Γ are pairwise isomorphic directed p-cycles, for some
odd prime p. �

This paper contains parts taken from the author’s DPhil thesis, com-
pleted under the supervision of Peter Neumann at the University of
Oxford. The author would like to thank Dr Neumann for his tireless
enthusiasm and helpful suggestions. The author would also like to
thank the EPSRC for generously funding this research, and the two
referees who strengthened this paper with their advice.
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